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1 INTRODUCTION

Morphogenesis, the process by which organs and organisms acquire their shape, requires the inte-
gration of genetic, biochemical and mechanical signals. The data that we collect for this process
is therefore multimodal and multi-scale, typically image time series of the morphology of the de-
veloping tissue and some measure of the (spatial) expression of genetic and hormonal components.
In plants (and beyond) there has been an increasing number of ‘atlases’ where expression data are
connected to their morphological context in space, either through multiplexed imaging techniques
(spatial transcriptomics; Nobori et al. (2023)), single-cell sequencing mapped spatially Neumann
et al. (2022), or computationally multiplexing low-throughput imaging experiments Oughou et al.
(2019); Refahi et al. (2021). As the data grows in size and diversity, integrated analysis of these
datasets and incorporation into mechanical theories of growth becomes extremely challenging to do
manually Berens et al. (2023). We address this problem in sepals – the first organs of the flower,
emerging in the outer whorl of the flower bud and transitioning from outgrowths to folded structures
– as an example system of complex organogenesis Roeder (2021). In previous work we have devel-
oped an ‘atlas’ of spatial gene expression for this process at cellular resolution, integrating a number
of genetic components in the same reference time series Refahi et al. (2021) (Figure 1a). Here we
use this dataset to infer a mechanical model of growth to propose possible physical mechanisms
of action of molecular species by (i) computing separate representations for the morphology and
genetic views of the dataset and learning a mapping between them to identify genetic components
more likely to have contributed to morphological characteristics of the tissue and (ii) inferring a
linear mechanical model of growth for this process using the identified genetic components from (i),
calculated cell growth rates and computed mechanical state. This representation integrates genetic
and mechanical signals to give a more comprehensive picture of the process and is an example of a
method to gain a more mechanistic understanding from the increasingly available spatially mapped
gene expression datasets.

MEANINGFULNESS STATEMENT

A meaningful representation of life is one that fits with our analogies and models of biology so
that it can be used to generate interpretable and testable hypotheses and ideas. Here, we propose
learning a mechanical model of growth as a way to integrate large and multimodal datasets in the
complex process of organogenesis. This model can be used to propose multi-scale hypotheses, for
example the physical actions of genes. These hypotheses are physically interpretable and testable
either experimentally or computationally by simulations.

2 RESULTS

2.1 DATA REPRESENTATION

One way to infer the causality of genes in (flower) development is through perturbations, so if we
perturb a gene and see an effect on the organ identity or morphology of the tissue, we can link them
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Figure 1: a. Morphological characteristics are computed from the last time point of an imaging time
series of the developing organ and are b. mapped to spatial gene expression to get the genes most
correlated to morphology c. Schematic of the mechanical growth model including the proposed
influence of genetic factors d. Inferred molecular contributions to growth using the computed strain
rates and mechanical stress of the tissue. Images of the time series in a. are reproduced from Refahi
et al. (2021).

causally. This led to the identification of important developmental genes and models of their action
in flower morphogenesis (ABC model; Bowman & Moyroud (2024); Coen & Meyerowitz (1991);
Bowman et al. (1989)). Since plant cells are non-migrating, their action should be local so here we
will use spatial correlation between morphological characteristics and gene expression as a proxy of
causality. From the reference time series we focus on the last time point as it is the first stage where
we can see distinct morphological aspects of the sepals (Figure 1a). At that stage, we focus on the
first layer of cells (450 cells) as that is considered the determinant of overall shape.

To compute morphological characteristics we first extract a surface mesh from the 3D image stack
and then for each point on the mesh compute the principal curvatures at that point, κ1 and κ2, and
other curvature descriptors based on those; gaussian curvature (κ1κ2), mean curvature ((κ1+κ2)/2),
and deviatoric curvature ((κ1−κ2)/2). These curvature metrics are transferred to the tissue cells and
combined with cell volume. With the chosen measures we tried to capture the local geometry around
a cell but there are more morphological features that could potentially be interesting like the shape of
the cell itself and other more series-based descriptions of shape (based e.g. on spherical harmonics
as in Pönisch et al. (2024)). On the other hand the spatial gene expressions are defined in the atlas
per cell and are spread using a diffusion process to make them continuous as they were initially
binary. Using PCA for dimensionality reduction and a Gaussian Mixture model for clustering, these
features seem to capture the main regions and cell types at this stage, the central stem cell region,
the developing organs at the four poles, and the boundary between them (Figure 1b). We next use
logistic regression to learn functions between the morphological characteristics and each of the 25
genes across the cells in the dataset. From the 25 genes, 13 were well predicted from morphology.
This was assessed by first binarising the predicted expression with a threshold of 0.5 and computing
the balanced accuracy score with the atlas patterns (score > 0.75). The highlighted genes include
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some well known markers for cell states, like CUC (boundary), LFY (sepals) and AG (central region)
(Figure 1b, Alvarez-Buylla et al. (2010)).

2.2 MODEL INFERENCE

We have identified a statistical relation between morphology and gene expression but how could the
genes have caused the morphology? Since plant cells are surrounded by a cell wall, morphogenesis
becomes purely a problem of growth and the role of cell wall mechanics is especially apparent.
Assuming a linear mechanical model, the irreversible growth (strain) rate of the tissue at any point is
given by: ϵ̇ = ϕσ where σ is a measure of the mechanical stress and ϕ is a measure of the material
properties and addition of new wall material (extensibility) Lockhart (1965); Ortega (1985). We can
think of growth as the balance between the amount of force and the amount of resistance by the
tissue. Here, for simplicity, we omit the ‘yield’ stress by which growth only occurs after a threshold
(ϵ̇ = ϕ (σ−Y )). One proposed way that genes affect this process locally is by changing the material
properties of the tissue to allow either more or less resistance to the mechanical forces that then gives
rises to differential growth, ϵ̇ = ϕ({gi})σ (Figure 1c).

Since we have live imaging and tracking of the cells, we can compute their volumetric growth rate
(ϵ̇ = 1

V
dV
dt , computed as in Refahi et al. (2021), range [−0.04h−1, 0.14h−1]) and we can also

computationally infer the mechanical state of the cells (maximal stress, σ, computed as in Bozorg
et al. (2014)). The inference problem can then be posed as:

ϵ̇

σ
= gi

Tw + ηi (1)

where we assume a linear effect of the genes on the mechanical properties. The weights to learn
w can then be interpreted as the contributions of each gene to the mechanical properties and conse-
quently growth via mechanical stress (Figure 1d). Practically, in solving 1 we also used the l2-norm
of the weights to balance the fitting with model simplicity. The predicted growth captures the main
spatial pattern of growth in the organ (mean squared error=7 × 10−4, Figure 1d) and the learned
weights propose new hypotheses as they disambiguate the effects proposed by previous analyses
Refahi et al. (2021).

3 DISCUSSION

We have proposed a method to infer a mechanical growth model to propose physical action of
genes, connecting molecular, mechanical and morphology data to get a more comprehensive picture
of development in a complex organ. As with any model there are simplifications. Plant growth
is unlikely to be linear and volumetric growth, like we have assumed, misses important aspects of
growth like direction and anisotropy. There have been many other components not included here that
have been proposed to influence aspect of growth like the microtubule networks in cells Hamant et al.
(2008). Instead of volumetric growth, growth can also be captured tensorially (theory is developed
Goriely (2017) and the stress tensor is already available), which would capture its direction, for
example, and would allow testing (or learning) a larger range of hypotheses including the effect of
the cytoskeleton. Practically, however, this would make the learning problem harder and the growth
tensor would have to be computed for every point between successive images.

As for our data, we took advantage of the integrated dataset and despite the increasing number
of ‘atlases’, this might not be the case in general. It is more likely that expression data comes in
as, for example, single-cell sequencing data. There are already cartography methods to spatially
map single-cell data Nitzan et al. (2019) which would improve integration in those cases. More-
over here we ignored previous time steps in our time series data but computing trajectories in shape
space would allow a possible mapping with the (pseudo)time developmental trajectories routinely
computed for single-cell RNA-seq data using similar temporal cartography methods (e.g., Lis et al.
(2020)). Linking trajectories in different spaces in integrated or unintegrated datasets will be valu-
able and come closer to causality. We can imagine, for example, even learning the terms of the
physical theoretical model to further explore the space of hypotheses Kamienny et al. (2022); Maddu
et al. (2021).

In conclusion, our proposed method is a powerful way to integrate data from multiple processes
in development and can unlock the mechanistic potential in the increasing number of spatial gene
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expression data available in plant systems either through spatial transcriptomics or lower through-
put methods. These methods can be developed further to act as a vehicle for integrating diverse
hypotheses going beyond genes in developmental biology and should carry to other developmental
processes in plants and beyond Özpolat et al. (2025).
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Yassin Refahi, Argyris Zardilis, Gaël Michelin, Raymond Wightman, Bruno Leggio, Jonathan
Legrand, Emmanuel Faure, Laetitia Vachez, Alessia Armezzani, Anne-Evodie Risson, et al. A
multiscale analysis of early flower development in arabidopsis provides an integrated view of
molecular regulation and growth control. Developmental Cell, 56(4):540–556, 2021.

Adrienne HK Roeder. Arabidopsis sepals: A model system for the emergent process of morphogen-
esis. Quantitative Plant Biology, 2:e14, 2021.

5


	Introduction
	Results
	Data representation
	Model inference

	Discussion

