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Abstract

This paper observes the inner workings when
LLMs encode inputs with typos to understand
robustness against typos. We hypothesize that
specific neurons in FFN layers and attention
heads in multi-head attention layers recognize
typos and internally recover them to capture
the originally intended meaning. We introduce
a method to identify the typo neurons and
typo heads that work actively only when inputs
contain typos. Through our experiments with
Gemma 2, the following findings are obtained:
1) Neurons in the early and early middle layers
strongly respond to typos. 2) Few heads captur-
ing contextual information also contribute to re-
covering typos. 3) The difference in the model
size results in the different proportions of typo-
related workload for neurons and heads.

1 Introduction

Large language models (LLMs) have been widely
used in real applications (Dam et al., 2024), and
their inputs are likely to contain typographical er-
rors (typos). LLMs often make correct inferences
on inputs with typos (Wang et al., 2024a), which
suggests that LLMs can “recover” the words with
typos to the originally intended meaning. However,
LLMs sometimes imperfectly recover the meaning
against typos, which might “damage” the perfor-
mance of LLMs on downstream tasks (Zhuo et al.,
2023; Wang et al., 2023; Zhu et al., 2023; Edman
et al., 2024). To reduce the impact of typos on
LLMs, it is essential to understand both their ro-
bustness against typos and the reasons for perfor-
mance degradation caused by typos more deeply.
Existing studies have primarily focused on the
surface-level exhibition of performance degra-
dation due to typos (Wang et al., 2023; Zhu
et al., 2023) and methods for improving robust-
ness against typos (Zheng and Saparov, 2023; Zhuo
et al., 2023; Almagro et al., 2023). Few studies
have investigated how typos affect LLM’s inner

workings (Kaplan et al., 2024; Garcia-Carrasco
et al., 2024). However, the previous work focused
on the case where the input has only one word with
a typo, and there is a large room to be explored
for the case where the typo appears with contex-
tualized words, which is a more realistic situation.
Besides, the previous work investigated the inner
workings of LLMs with typos only from the view-
points of attention heads. We believe that typos are
recovered with contextual judgments across both
neurons and attention heads, which are the main
structural layers of the Transformer architecture.

We hypothesize that the robustness against ty-
pos is provided by inner workings such as neurons
(typo neurons) and attentional heads (typo heads)
with contexts around typos. We investigated the in-
ner workings against typos in contextualized words
using a word identification task (§3). Our work pro-
poses a method to identify typo neurons (§4) and
typo heads (§5). Then, we investigate how these
neurons and heads change with different strengths
of typos. Subsequently, we analyze the differences
in their behavior between cases where the model is
damaged by typos and cases or not.

We conducted experiments using Gemma 2
(Team et al., 2024) to investigate the inner work-
ings when feeding inputs with typos to the LLM.
Our findings on Gemma 2 suggest the following:

* There are neurons that perform typo recog-
nition and typo-recovering in the early and
early middle layers. Specifically, neurons in
the early middle layer are responsible for the
core of typo-recovering.

* A few heads that capture the basic grammati-
cal information such as contexts and check the
immediately preceding tokens also contribute
to recovering typos.

* The workloads of typo neurons and typo heads
differ depending on the size of LLMs.
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Figure 1: The dataset overview (left), an input example to LLM (middle), and the visualization of M, for calculating

neurons activation score sy (right).

2 Related work

2.1 Analysis of LLMs against Typos

Typos are mistakes in writing or typing letters, cat-
egorized into insertion, deletion, substitution, and
reordering (Gao et al., 2018). Research on the
robustness of LLMs regards typos as a perturba-
tion applied to input text. Typos changes the to-
ken sequence obtained through the tokenization
process. Changing the token sequence potentially
leads to a different output, even if the sentence is
the same (Tsuji et al., 2024). Most existing LLM
studies on typos focus on task performance by cre-
ating datasets to measure the model’s robustness
against perturbed inputs (Wang et al., 2021, 2023;
Zhu et al., 2023; Edman et al., 2024) or modify-
ing the architecture or prompts to improve robust-
ness (Zhuo et al., 2023; Zheng and Saparov, 2023;
Almagro et al., 2023). Chai et al. (2024) reported
that the larger models are more robust to typos.

2.2 LLM’s Interpretability

The feed-forward network (FFN) layer in the Trans-
former (Vaswani, 2017) has two linear layers sep-
arated by an activation function. Recent studies
regard the output of the activation function as “neu-
rons” that store knowledge (Geva et al., 2021).
It has been reported that some neurons promote
specific tasks (Wang et al., 2022, 2024c¢), knowl-
edge (Dai et al., 2022; Bau et al., 2019; Gurnee
et al., 2024), and behaviors (Hiraoka and Inui,
2024; Wang et al., 2024b; Chen et al., 2024).
Similar to neurons, some attention heads

have been found to respond to specific knowl-
edge (Gould et al., 2024; Voita et al., 2019; Garcia-
Carrasco et al., 2024) or behaviors (McDougall
et al., 2024; Crosbie and Shutova, 2024). Addi-
tionally, some heads are responsible for merging
multiple subwords of a word (Correia et al., 2019;
Ferrando and Voita, 2024). Mosbach et al. (2024)
concludes that understanding the inner workings is
important to improve the model performance.
Kaplan et al. (2024) has investigated which lay-
ers are responsible for typo-recovering. However,
they primarily focused on isolated words as inputs
and only examined which layers recover typos. Our
study is different from Kaplan et al. (2024) in focus-
ing on neurons and attention heads and conducting
experiments that allow contextual typo-recovering.

3 Preliminary

3.1 Research Overview

We created a dataset to investigate the typo-related
phenomena (§3.3). Then, we applied typos to the
dataset (§3.4) and conducted a preliminary experi-
ment to observe accuracy when inputs include ty-
pos (§3.5). Next, we identify typo neurons and re-
veal their specific roles (§4). Similarly, we conduct
analogous experiments for attention heads (§5).

3.2 Models

We used the 2B, 9B, and 27B models from
Google’s Gemma 2 (Team et al., 2024); only the
27B model was loaded in bfloat16, while the 2B



and 9B models were loaded in float32!. We con-
ducted all experiments using greedy generation.

3.3 Clean Datasets without Typos

To investigate typos in contextualized words, we
utilize a word identification task in which the LLMs
are required to output a single word corresponding
to a given definition. For instance, we feed the defi-
nition of the word as input, like “a young swan”, to
the LLMs, and then the model is expected to output
the corresponding word “cygnet”. Following Greco
et al. (2024), we extracted 62,643 word-definition
pairs from WordNet (Fellbaum, 2005)2. We created
the word identification task with these pairs. We
designed a prompt so that LLLMs can solve this task
as predicting tokens following outputs, as shown
in the middle part of Figure 1.

For our analysis, we need a dataset composed
of samples that LLMs can correctly answer when
the samples do not include typos. Therefore, we
extracted the top 5,000 word-definition pairs after
sorting the samples by descending order of likeli-
hood for the correct words. Note that we created
unique datasets of the same size for three variations
of Gemma-2 (i.e., 2B, 9B, 27B)>.

3.4 Applying typos
3.4.1 Typo Dataset

Since our work focuses on text with typos, we
manually applied typos to the definition part of
the clean dataset created in §3.3. We selected the
top ¢ most important tokens depending on their
importance scores on the word identification task.
Then, we injected a random single letter or digit
into each selected token as a typo. The importance
scores are calculated with the method used in Wang
et al. (2023); Li et al. (2019), using Gemma 2 2B.
Specifically, we obtained the importance scores
by performing back-propagation while predicting
words from their definitions. This process assigns
higher gradients to tokens that are important to
predict the correct answer. For example, consider
the sentence “a young swan” with t = 2 and the
top two most important words are “young” and
“swan.” In this case, we inject random letters such

as “e” and “5” into random positions* of each word,

'We used Xeon Gold 6230R + NVIDIA A100 40GB*2

>We used WordNet via NLTK (Bird and Loper, 2004)
ver.3.9.1.

*Most samples overlap across three models.

*We exclude the positions before the spaces to avoid the
situation where a typo would appear at the end of the previous

which results in “a youneg sSwan.”

3.4.2 Split Dataset

We often obtain a different number of subwords
when tokenizing typo inputs compared to clean
inputs. For instance, the Gemma-2 tokenizer en-
codes the word “young” into a single token, but it
tokenizes the typo version “youneg” into two to-
kens (e.g., “you/neg”’). When comparing the inner
workings when LLMs encode the clean inputs and
the typo inputs, the difference in the token length
might prevent appropriate analysis®.

To break down typo-related inner workings into
the factor corresponding to typos and the one to tok-
enization difference, we created a “split-dataset” in
addition to the “typo-dataset” mentioned in §3.4.1.
The split-dataset comprises samples that are tok-
enized into the same number of tokens as the one
with typos. For example, when the typo-dataset
has a sample whose tokenized sequence is “a/ you
/ neg / swan”, an example of counterparts in the
split-dataset is “a/y / oung / swan” whose length
is equivalent to the one of the typo version. We can
obtain the various tokenization candidates using
the tokenizer and we randomly selected one candi-
date with the same length as the typo input. This
process is shown in Figure 1 (left).

3.5 Preliminary Experiment

To examine the effect of typos on the model perfor-
mance, we applied typos to ¢ tokens (1 < ¢ < 16)
and analyzed the change in accuracy and average
likelihood of predicting correct words.

Figure 2 shows the preliminary experimental re-
sults. The accuracy and the average likelihood of
t = 0 indicate the performance of the clean data
without typos. Since the clean data consists of sam-
ples that each model was able to answer correctly,
the accuracy for all models is 1.0. While the ac-
curacy of the 2B model drops to about 50% for
the case of t = 16, the 9B model maintains more
than 70%, and the 27B model more than 80%. This
result supports the existing work reporting that the
larger model has robustness against typos (Chai
et al., 2024). This preliminary result also indicates
that the robustness of larger models against typos is
insufficient, resulting in a performance drop. This

token rather than within the target token.

SKaplan et al. (2024) reported that there are inner workings
to recover the original token from differently tokenized sub-
words. We need to exclude the effect of this factor to deeply
focus on the typo-related inner workings.
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Figure 2: Accuracy (top) and likelihood (bottom) on
the word identification task with a different number of
tokens with typo t.

fact motivates us to reveal the inner workings re-
lated to typo inputs. For the average likelihood,
the 2B model starts with a relatively low value;
however, all models followed a similar pattern of
decrease as the number of typos increased.

From the preliminary results, we conclude that
typos damage performance, but larger LLMs have
some robustness against typos. This fact motivates
us to investigate the reasons for the differences in
robustness against typos by model sizes for further
improvement.

4 Typo Neurons

Some FFN layers have been found to combine mul-
tiple tokens into a single representation vector (Ka-
plan et al., 2024; Elhage et al., 2022; Lad et al.,
2024). Additionally, it has been reported that cer-
tain neurons within LL.Ms function as “skill neu-
rons” with specific roles (Wang et al., 2022). In
this section, we investigate the existence of typo
neurons, a particular type of skill neuron that is
responsible for recognizing and recovering typos.

4.1 Method to Identify Typo Neurons

Following the approach of Hiraoka and Inui (2024),
we compare the activation values of neurons be-
tween clean inputs and typo inputs to identify
neurons that specifically respond to typos. Let
T = W1, ..., W, ..., W)z be a sample of the com-
pleted input the word identification task composed

“cygnet”.
“oung”, and “cygnet”

of the prompt (e.g., “Q. What is ... A. This is”)
and the answer (e.g., “cygnet”), where |z| is the
number of tokens comprises x.

The activation value s\ of a neuron n when
feeding a dataset X > x is defined as the following:

Sn |X|Z< > fain >,<1>

zeX meM

where | X | is the number of samples in the dataset.
f(z*,n) is a function calculating the activation
value of the neuron n corresponding to w,,, when
the LLM reads the input z7* = wy, ..., Wy,. My is
a set of indices that indicates the token positions,
and | M| is the number of indices. We define M,
as the indices comprising the answer word tokens
and ¢ important words.

For example, in Figure 1, M, for the clean input
is composed of “young” and “swan”, while M, for
the typo input is composed of “you”, “neg”, and
Similarly, M, for the split input is “y”,
. In the figure, tokens compris-
ing M, are indicated with an orange background.

We obtain the responsibility of neurons special-
ized to the typo inputs separated from clean and
split inputs with the following score A,,:

X Xoos
A, = s5,"P° — max (sf‘ﬂea“, Sn “pht> , (2)

where Xiypo, Xclean, and Xgpiit are the typo, clean,
and the split datasets, respectively.

A larger A, indicates the neuron n that responds
specifically to typos but not clean inputs or split
inputs. Among the neurons, the top K neurons
based on A, scores are identified as typo neurons.

4.2 Experimental Results

This section investigates the typo neurons found
with the method introduced in §4.1. We selected
two settings of the number of typos, ¢ € 1, 16.
Figure 3 shows the distribution of A,, and the dis-
tribution of the typo neurons in each layer. We
extracted the top 0.5% of neurons with the high-
est A, and A,, > 0 as the typo neurons®. The
distribution of A,, reveals that a few neurons have
significantly larger scores than others bothint =1
and ¢ = 16, similar to knowledge neurons and skill
neurons (Dai et al., 2022; Wang et al., 2022).

For t = 1, many typo neurons exist in the early
layers (i.e., from 0.0 to 0.2). Especially in the

®A,, < 0 indicates the fact that activations in inputs with-
out typo are greater than activation in typo input.
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Figure 3: Distribution of A,, (upper) and percentage of typo neurons per layer (lower). Left figures are for t = 1

and right figures are for ¢ = 16.

9B and 27B models, the largest number of typo
neurons exist in the early layers. In contrast, for
t = 16, the number of typo neurons in the early
layers is decreased. The distribution of typo neu-
rons per layer reveals that typo neurons are not
limited to the early layers in all models. This partly
supports the existing work (Lad et al., 2024) re-
porting that early layers perform de-tokenization,
which integrates local context to transform raw to-
ken representations into coherent entities. Many
typo neurons also exist in the early middle layers
(i.e., from 0.2 to 0.5). In contrast to the early layers,
increasing typos does not decrease the number of
typo neurons in the early middle layers. This sug-
gests that typo neurons in the early middle layers
may play a significant role overall among typo neu-
rons. This observation is consistent with Kaplan
et al. (2024), which reported that typos are not re-
covered in the early layers but done in later layers.
This result also aligns with Lad et al. (2024) report-
ing that early middle layers have the role of feature
engineering, which iteratively builds feature rep-
resentation depending on token context. Existing
studies and our experimental results suggest that
feature engineering with a wider context recovers
the typos if de-tokenization with local context fails.

Additionally, neurons near the final layers ex-
hibit significantly higher activation in all models
for t = 16. We consider two possible causes for
this phenomenon. First, as the number of typos
increases, the corrections performed by the early

2B ‘ 9B
Clean Typo , Clean Typo

Vanilla 1.00 0.86 1 1.00 0.93
© Random Neurons 0.98 0.87 ' 0.99 0.93
© Typo Neurons 084 073' 096 0.90

Table 1: Accuracy of the word identification task with
neuron ablation (&) on clean and typo datasets. “Vanilla”
indicates the accuracy without neuron ablation.

layers become insufficient, leading to suppressed
activation of typo neurons in the final layers. Sec-
ond, as the number of typos increases, the internal
state contains more errors. This may lead to differ-
ent neuron activation in the final layers.

4.3 Discussion

While the experimental results in §4.2 suggest the
existence of typo neurons, the impact of these typo
neurons has not been clarified. This section inves-
tigates their impact in detail, focusing on 2B and
9B models in this section because we can see the
different tendency of neurons between the small
model (2B) and larger models (9B, 27B) in §4.2.

4.3.1 Neuron ablation

Typo neurons are expected to work typo-recovering.
Therefore, ablating them should result in a signif-
icant decrease in performance in the typo inputs.
In contrast, since they are not activated for clean
inputs, ablating them is expected to have minimal
impact on performance in the clean inputs.
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We test this hypothesis by conducting ablation
experiments on typo neurons and randomly se-
lected neurons. From a dataset of 5,000 samples,
100 randomly selected samples were used to iden-
tify typo neurons. Then, we evaluate the perfor-
mance of the word identification task using the
remaining 4,900 samples by deactivating the iden-
tified neurons. Following the approach in §4.2, the
top 0.5% of neurons were identified as typo neu-
rons. We also randomly selected 0.5% of neurons
as a baseline. Deactivation was performed by set-
ting the output values of the neurons to zero. The
experiments were conducted for the clean inputs
and the typo inputs with ¢ = 1.

Table 1 shows the experimental results. For typo
inputs, performance remained largely unchanged
when random neurons were ablated, regardless of
the model. However, performance decreased when
typo neurons were ablated. This suggests that a
small number of typo neurons play a dominant role
in typo-covering for typo inputs. For clean inputs,
the ablation of typo neurons also resulted in a larger
performance decrease compared to the random neu-
ron ablation. This indicates that typo neurons may
not exclusively act on typos but could also play
a crucial role in processing general grammar or
morphological features.

4.3.2 Neurons for Typo-recovering

The experiments in §4.2 sought typo neurons by
comparing clean and typo inputs without consid-
ering whether the LLMs could correctly solve the
task with typo inputs. This section focuses on the
difference in typo neurons between cases where the
LLMs answer with typos correctly and incorrectly.

From the dataset of 5,000 samples, we extracted
100 samples where typos did not damage the in-
ferences and the correct word was predicted. Sim-

ilarly, we extracted another 100 samples where
typos damaged the inferences and led to incorrect
word prediction. We compared differences in the
activation of typo neurons in these two groups. We
conducted this experiment with ¢ = 1 and com-
pared by the difference in the layer distribution of
the typo neurons that have the top 0.5% A,,.

Figure 4 shows the result. In the 9B model,
the number of typo neurons in the early layers in-
creases when incorrect inferences are predicted.
This suggests that some neurons in the early layers
might play other roles than typo-related phenom-
ena, and activation of those neurons prevents cor-
rect recognition of typos. In the 2B model, neurons
in the middle-middle layers were activated when
incorrect predictions were more frequent. This dif-
ference between model sizes can be attributed to
the fact that, as described in §4.2, the 2B model
has fewer typo neurons in the early layers and re-
lies more heavily on the middle layers. Across
all models, more typo neurons in the early middle
layer were activated when typos did not damage
inferences. This indicates the importance of typo
neurons in the early middle layers.

S Typo Heads
5.1 Method to Identify Typo Heads

Typo-recovering may not be solely dependent on
neurons but also relates to subword merging by
attention heads (Correia et al., 2019; Ferrando and
Voita, 2024) and based on contextual understanding.
Such heads are expected to become nearly uniform
attention across all tokens for clean inputs while
showing concentrated attention between specific
tokens for typo inputs.

In this section, we investigate the attention heads
specialized to typo inputs by comparing attention
maps. Herein, we calculated the KL divergence
between a uniform distribution and the rows of at-
tention maps by considering them as a probability
distribution. The KL divergence increases mono-
tonically with the number of tokens, which can
result in higher values for typo inputs or split in-
puts, as they often have more tokens than clean
inputs. We alleviate this problem by normalizing
the KL divergence with the maximum score logy m,

defined as follows:
Z DKL(Pm,m,h| |Um)
log, m ’

1 >
Si(:!X! (m
3

zeX
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where Dk, (+) is the function that returns the KL
divergence, U, is a uniform distribution over m
elements. P, ,, 1, is the m-th row of the attention
map output by head & for the token sequence z. In
decoder models, attention scores for the m-th token
and each token from the 1st to the m-th token sum
to 1. Unlike neurons, for the calculation of typo
head identification, we did not narrow down the
tokens to calculate and used all tokens in prompts.
Similar to Eq. (2) in neurons, the responsibility
score of the heads to the typos is defined as follows:
Ay, = shXtypo — max (sfcma", SZ(SPM) . @
where Xiypo, Xclean, and Xgpii are the typo, clean,
and split datasets, respectively. A larger A;, means
a head that responds specifically to typos, concen-
trating on specific tokens in typo inputs, but not
in clean or split inputs. The top J heads with the
highest Ay, scores were identified as typo heads.

5.2 Experimental Results

Figure 5 shows Ay, for ¢t € 1,16 across all heads
in each model. In all models and settings, the dif-
ferences between the maximum and absolute mini-
mum scores are approximately 10 times. Despite
normalization to eliminate dependency on token
length in the KL divergence, this result suggests
that typo recognition and typo-recovering in the at-

2B ‘ 9B
Clean Typo | Clean Typo
Vanilla 1.00 086 1 100 093
© Random Heads 075 0.64 ' 060 055
© Typo Heads 068 058' 094 0.87

Table 2: Accuracy of the word identification task with
head ablation (©) on clean and typo datasets. “Vanilla”
indicates the accuracy without neuron ablation.

tention layers are not handled by specific heads but
are performed using all heads, unlike in neurons.

5.3 Discussion

Although the experimental results in §5.2 did not
provide strong evidence of typo-specific heads, Fig-
ure 5 shows some heads have positive values. §4.2
suggest that the wide context is sometimes used to
recover typos. We believe that such a wide con-
text is encoded by attention layers. Therefore, we
clarify the contribution of typo heads to recovering
typos, even if their response is slight. This section
discusses the effect of typo heads on the down-
stream task in detail. Similar to §4.3, the analysis
focuses on experiments with the 2B and 9B models
in this section.

5.3.1 Head Ablation

Following the approach in §4.3.1, we identified
typo heads from 100 randomly selected samples.
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Figure 6: Visualization of typo heads in the 2B model. The word definition in the clean input is “not refined or
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Then, we ablated these identified heads and mea-
sured the accuracy on the remaining 4900 samples.
Since the total number of heads is smaller than neu-
rons, we identified the top 2.5% of heads as typo
heads. We also randomly selected 2.5% of heads
as a baseline. We performed ablation by setting all
attention scores of the heads to 0. The experiments
were conducted for the clean inputs and the typo
inputs with ¢ = 1.

Table 2 shows the experimental result. For the
9B model, the accuracy drop caused by the typo
head ablation is smaller than that caused by the ran-
domly selected head ablation, regardless of whether
the inputs have typos. This indicates that the typo
heads in the 9B model react to typos but play less
specialized roles. This is a different result from
the typo neurons in §4.3.1 and suggests that the
heads with the least impact on overall inference are
identified as the typo head in the 9B model. In con-
trast, for the 2B model, which has fewer heads, the
ablation of either random or typo heads resulted
in a significant drop in accuracy. The accuracy
decrease was even greater when typo heads were
ablated. This suggests that when the number of
heads and parameters is limited, they are actively
used for typo-recovering. Furthermore, it suggests
that the typo heads are also used for inference with
clean inputs like the typo neurons.

From the results, we conclude that larger models
do not have heads specifically playing a role in

typo-recovering as discussed in §5.2. However,
in smaller models, important heads for inference
without typos also play a role in typo-recovering.

5.3.2 Visualization of Typo Heads.

To investigate how the typo heads identified in the
2B model in §5.2 behave, we visualize their atten-
tion maps of one typo input example in Figure 6.
Most typo heads consistently concentrate on the
immediately preceding token (left) or always fo-
cus on ’<bos>’ (right). In the head shown on the
right, for example, the typo token *bro’ focuses on
’<bos>’ more than any other token except *<bos>’
itself. This suggests that this head uses context
aggregated in "<bos>’ to recover typos.

6 Conclusion

This paper investigated how the neurons and heads
of Transformer-based LLMs respond to inputs with
typos. Experimental results show that some neu-
rons perform typo recognition and typo-recovering
in the early and early middle layers. Specifically,
neurons in the early middle layer are responsible
for the core of typo-recovering. Besides, a few
heads capturing contextual information also con-
tribute to recovering typos. Although the workload
of typo neurons and typo heads differs depending
on the model size, our study concludes that it is
important to focus on the early and early middle
layers for the typo-related analysis.



Limitation

Our analysis was limited to the Gemma 2 model
and examined models with sizes up to 27B. Larger
models or LLMs with different architectures may
have different properties. in §4.3 and §5.3, we have
limited our experiments to the 2B and 9B mod-
els. For hyperparameters, our experiments were
performed only at ¢t € {1,16}. Furthermore, our
experiments focused on a specific task, and models
may show different properties in a wider variety
of tasks. We ran all experiments only once, al-
though there was randomness in applying typos
and conducting some experiments. Additionally, in
identifying typo heads, we defined them as heads
that differ from a uniform distribution across all
tokens. As a result, we were unable to find heads
specifically responsible for typo-recovering. How-
ever, using alternative methods might reveal the
existence of typo heads.
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