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Abstract

This paper observes the inner workings when001
LLMs encode inputs with typos to understand002
robustness against typos. We hypothesize that003
specific neurons in FFN layers and attention004
heads in multi-head attention layers recognize005
typos and internally recover them to capture006
the originally intended meaning. We introduce007
a method to identify the typo neurons and008
typo heads that work actively only when inputs009
contain typos. Through our experiments with010
Gemma 2, the following findings are obtained:011
1) Neurons in the early and early middle layers012
strongly respond to typos. 2) Few heads captur-013
ing contextual information also contribute to re-014
covering typos. 3) The difference in the model015
size results in the different proportions of typo-016
related workload for neurons and heads.017

1 Introduction018

Large language models (LLMs) have been widely019

used in real applications (Dam et al., 2024), and020

their inputs are likely to contain typographical er-021

rors (typos). LLMs often make correct inferences022

on inputs with typos (Wang et al., 2024a), which023

suggests that LLMs can “recover” the words with024

typos to the originally intended meaning. However,025

LLMs sometimes imperfectly recover the meaning026

against typos, which might “damage” the perfor-027

mance of LLMs on downstream tasks (Zhuo et al.,028

2023; Wang et al., 2023; Zhu et al., 2023; Edman029

et al., 2024). To reduce the impact of typos on030

LLMs, it is essential to understand both their ro-031

bustness against typos and the reasons for perfor-032

mance degradation caused by typos more deeply.033

Existing studies have primarily focused on the034

surface-level exhibition of performance degra-035

dation due to typos (Wang et al., 2023; Zhu036

et al., 2023) and methods for improving robust-037

ness against typos (Zheng and Saparov, 2023; Zhuo038

et al., 2023; Almagro et al., 2023). Few studies039

have investigated how typos affect LLM’s inner040

workings (Kaplan et al., 2024; García-Carrasco 041

et al., 2024). However, the previous work focused 042

on the case where the input has only one word with 043

a typo, and there is a large room to be explored 044

for the case where the typo appears with contex- 045

tualized words, which is a more realistic situation. 046

Besides, the previous work investigated the inner 047

workings of LLMs with typos only from the view- 048

points of attention heads. We believe that typos are 049

recovered with contextual judgments across both 050

neurons and attention heads, which are the main 051

structural layers of the Transformer architecture. 052

We hypothesize that the robustness against ty- 053

pos is provided by inner workings such as neurons 054

(typo neurons) and attentional heads (typo heads) 055

with contexts around typos. We investigated the in- 056

ner workings against typos in contextualized words 057

using a word identification task (§3). Our work pro- 058

poses a method to identify typo neurons (§4) and 059

typo heads (§5). Then, we investigate how these 060

neurons and heads change with different strengths 061

of typos. Subsequently, we analyze the differences 062

in their behavior between cases where the model is 063

damaged by typos and cases or not. 064

We conducted experiments using Gemma 2 065

(Team et al., 2024) to investigate the inner work- 066

ings when feeding inputs with typos to the LLM. 067

Our findings on Gemma 2 suggest the following: 068

• There are neurons that perform typo recog- 069

nition and typo-recovering in the early and 070

early middle layers. Specifically, neurons in 071

the early middle layer are responsible for the 072

core of typo-recovering. 073

• A few heads that capture the basic grammati- 074

cal information such as contexts and check the 075

immediately preceding tokens also contribute 076

to recovering typos. 077

• The workloads of typo neurons and typo heads 078

differ depending on the size of LLMs. 079
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Figure 1: The dataset overview (left), an input example to LLM (middle), and the visualization of Mx for calculating
neurons activation score sxn (right).

2 Related work080

2.1 Analysis of LLMs against Typos081

Typos are mistakes in writing or typing letters, cat-082

egorized into insertion, deletion, substitution, and083

reordering (Gao et al., 2018). Research on the084

robustness of LLMs regards typos as a perturba-085

tion applied to input text. Typos changes the to-086

ken sequence obtained through the tokenization087

process. Changing the token sequence potentially088

leads to a different output, even if the sentence is089

the same (Tsuji et al., 2024). Most existing LLM090

studies on typos focus on task performance by cre-091

ating datasets to measure the model’s robustness092

against perturbed inputs (Wang et al., 2021, 2023;093

Zhu et al., 2023; Edman et al., 2024) or modify-094

ing the architecture or prompts to improve robust-095

ness (Zhuo et al., 2023; Zheng and Saparov, 2023;096

Almagro et al., 2023). Chai et al. (2024) reported097

that the larger models are more robust to typos.098

2.2 LLM’s Interpretability099

The feed-forward network (FFN) layer in the Trans-100

former (Vaswani, 2017) has two linear layers sep-101

arated by an activation function. Recent studies102

regard the output of the activation function as “neu-103

rons” that store knowledge (Geva et al., 2021).104

It has been reported that some neurons promote105

specific tasks (Wang et al., 2022, 2024c), knowl-106

edge (Dai et al., 2022; Bau et al., 2019; Gurnee107

et al., 2024), and behaviors (Hiraoka and Inui,108

2024; Wang et al., 2024b; Chen et al., 2024).109

Similar to neurons, some attention heads110

have been found to respond to specific knowl- 111

edge (Gould et al., 2024; Voita et al., 2019; García- 112

Carrasco et al., 2024) or behaviors (McDougall 113

et al., 2024; Crosbie and Shutova, 2024). Addi- 114

tionally, some heads are responsible for merging 115

multiple subwords of a word (Correia et al., 2019; 116

Ferrando and Voita, 2024). Mosbach et al. (2024) 117

concludes that understanding the inner workings is 118

important to improve the model performance. 119

Kaplan et al. (2024) has investigated which lay- 120

ers are responsible for typo-recovering. However, 121

they primarily focused on isolated words as inputs 122

and only examined which layers recover typos. Our 123

study is different from Kaplan et al. (2024) in focus- 124

ing on neurons and attention heads and conducting 125

experiments that allow contextual typo-recovering. 126

3 Preliminary 127

3.1 Research Overview 128

We created a dataset to investigate the typo-related 129

phenomena (§3.3). Then, we applied typos to the 130

dataset (§3.4) and conducted a preliminary experi- 131

ment to observe accuracy when inputs include ty- 132

pos (§3.5). Next, we identify typo neurons and re- 133

veal their specific roles (§4). Similarly, we conduct 134

analogous experiments for attention heads (§5). 135

3.2 Models 136

We used the 2B, 9B, and 27B models from 137

Google’s Gemma 2 (Team et al., 2024); only the 138

27B model was loaded in bfloat16, while the 2B 139
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and 9B models were loaded in float321. We con-140

ducted all experiments using greedy generation.141

3.3 Clean Datasets without Typos142

To investigate typos in contextualized words, we143

utilize a word identification task in which the LLMs144

are required to output a single word corresponding145

to a given definition. For instance, we feed the defi-146

nition of the word as input, like “a young swan”, to147

the LLMs, and then the model is expected to output148

the corresponding word “cygnet”. Following Greco149

et al. (2024), we extracted 62,643 word-definition150

pairs from WordNet (Fellbaum, 2005)2. We created151

the word identification task with these pairs. We152

designed a prompt so that LLMs can solve this task153

as predicting tokens following outputs, as shown154

in the middle part of Figure 1.155

For our analysis, we need a dataset composed156

of samples that LLMs can correctly answer when157

the samples do not include typos. Therefore, we158

extracted the top 5,000 word-definition pairs after159

sorting the samples by descending order of likeli-160

hood for the correct words. Note that we created161

unique datasets of the same size for three variations162

of Gemma-2 (i.e., 2B, 9B, 27B)3.163

3.4 Applying typos164

3.4.1 Typo Dataset165

Since our work focuses on text with typos, we166

manually applied typos to the definition part of167

the clean dataset created in §3.3. We selected the168

top t most important tokens depending on their169

importance scores on the word identification task.170

Then, we injected a random single letter or digit171

into each selected token as a typo. The importance172

scores are calculated with the method used in Wang173

et al. (2023); Li et al. (2019), using Gemma 2 2B.174

Specifically, we obtained the importance scores175

by performing back-propagation while predicting176

words from their definitions. This process assigns177

higher gradients to tokens that are important to178

predict the correct answer. For example, consider179

the sentence “a young swan” with t = 2 and the180

top two most important words are “young” and181

“swan.” In this case, we inject random letters such182

as “e” and “5” into random positions4 of each word,183

1We used Xeon Gold 6230R + NVIDIA A100 40GB*2
2We used WordNet via NLTK (Bird and Loper, 2004)

ver.3.9.1.
3Most samples overlap across three models.
4We exclude the positions before the spaces to avoid the

situation where a typo would appear at the end of the previous

which results in “a youneg s5wan.” 184

3.4.2 Split Dataset 185

We often obtain a different number of subwords 186

when tokenizing typo inputs compared to clean 187

inputs. For instance, the Gemma-2 tokenizer en- 188

codes the word “young” into a single token, but it 189

tokenizes the typo version “youneg” into two to- 190

kens (e.g., “you / neg”). When comparing the inner 191

workings when LLMs encode the clean inputs and 192

the typo inputs, the difference in the token length 193

might prevent appropriate analysis5. 194

To break down typo-related inner workings into 195

the factor corresponding to typos and the one to tok- 196

enization difference, we created a “split-dataset” in 197

addition to the “typo-dataset” mentioned in §3.4.1. 198

The split-dataset comprises samples that are tok- 199

enized into the same number of tokens as the one 200

with typos. For example, when the typo-dataset 201

has a sample whose tokenized sequence is “a / you 202

/ neg / swan”, an example of counterparts in the 203

split-dataset is “a / y / oung / swan” whose length 204

is equivalent to the one of the typo version. We can 205

obtain the various tokenization candidates using 206

the tokenizer and we randomly selected one candi- 207

date with the same length as the typo input. This 208

process is shown in Figure 1 (left). 209

3.5 Preliminary Experiment 210

To examine the effect of typos on the model perfor- 211

mance, we applied typos to t tokens (1 ≤ t ≤ 16) 212

and analyzed the change in accuracy and average 213

likelihood of predicting correct words. 214

Figure 2 shows the preliminary experimental re- 215

sults. The accuracy and the average likelihood of 216

t = 0 indicate the performance of the clean data 217

without typos. Since the clean data consists of sam- 218

ples that each model was able to answer correctly, 219

the accuracy for all models is 1.0. While the ac- 220

curacy of the 2B model drops to about 50% for 221

the case of t = 16, the 9B model maintains more 222

than 70%, and the 27B model more than 80%. This 223

result supports the existing work reporting that the 224

larger model has robustness against typos (Chai 225

et al., 2024). This preliminary result also indicates 226

that the robustness of larger models against typos is 227

insufficient, resulting in a performance drop. This 228

token rather than within the target token.
5Kaplan et al. (2024) reported that there are inner workings

to recover the original token from differently tokenized sub-
words. We need to exclude the effect of this factor to deeply
focus on the typo-related inner workings.
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Figure 2: Accuracy (top) and likelihood (bottom) on
the word identification task with a different number of
tokens with typo t.

fact motivates us to reveal the inner workings re-229

lated to typo inputs. For the average likelihood,230

the 2B model starts with a relatively low value;231

however, all models followed a similar pattern of232

decrease as the number of typos increased.233

From the preliminary results, we conclude that234

typos damage performance, but larger LLMs have235

some robustness against typos. This fact motivates236

us to investigate the reasons for the differences in237

robustness against typos by model sizes for further238

improvement.239

4 Typo Neurons240

Some FFN layers have been found to combine mul-241

tiple tokens into a single representation vector (Ka-242

plan et al., 2024; Elhage et al., 2022; Lad et al.,243

2024). Additionally, it has been reported that cer-244

tain neurons within LLMs function as “skill neu-245

rons” with specific roles (Wang et al., 2022). In246

this section, we investigate the existence of typo247

neurons, a particular type of skill neuron that is248

responsible for recognizing and recovering typos.249

4.1 Method to Identify Typo Neurons250

Following the approach of Hiraoka and Inui (2024),251

we compare the activation values of neurons be-252

tween clean inputs and typo inputs to identify253

neurons that specifically respond to typos. Let254

x = w1, ..., wm, ..., w|x| be a sample of the com-255

pleted input the word identification task composed256

of the prompt (e.g., “Q. What is ... A. This is ”) 257

and the answer (e.g., “cygnet”), where |x| is the 258

number of tokens comprises x. 259

The activation value sXn of a neuron n when 260

feeding a dataset X ∋ x is defined as the following: 261

sXn =
1

|X|
∑
x∈X

(
1

|Mx|
∑

m∈Mx

f(xm1 , n)

)
, (1) 262

where |X| is the number of samples in the dataset. 263

f(xm1 , n) is a function calculating the activation 264

value of the neuron n corresponding to wm when 265

the LLM reads the input xm1 = w1, ..., wm. Mx is 266

a set of indices that indicates the token positions, 267

and |Mx| is the number of indices. We define Mx 268

as the indices comprising the answer word tokens 269

and t important words. 270

For example, in Figure 1, Mx for the clean input 271

is composed of “young” and “swan”, while Mx for 272

the typo input is composed of “you”, “neg”, and 273

“cygnet”. Similarly, Mx for the split input is “y”, 274

“oung”, and “cygnet”. In the figure, tokens compris- 275

ing Mx are indicated with an orange background. 276

We obtain the responsibility of neurons special- 277

ized to the typo inputs separated from clean and 278

split inputs with the following score ∆n: 279

∆n = s
Xtypo
n −max

(
sXclean
n , s

Xsplit
n

)
, (2) 280

where Xtypo, Xclean, and Xsplit are the typo, clean, 281

and the split datasets, respectively. 282

A larger ∆n indicates the neuron n that responds 283

specifically to typos but not clean inputs or split 284

inputs. Among the neurons, the top K neurons 285

based on ∆n scores are identified as typo neurons. 286

4.2 Experimental Results 287

This section investigates the typo neurons found 288

with the method introduced in §4.1. We selected 289

two settings of the number of typos, t ∈ 1, 16. 290

Figure 3 shows the distribution of ∆n and the dis- 291

tribution of the typo neurons in each layer. We 292

extracted the top 0.5% of neurons with the high- 293

est ∆n and ∆n > 0 as the typo neurons6. The 294

distribution of ∆n reveals that a few neurons have 295

significantly larger scores than others both in t = 1 296

and t = 16, similar to knowledge neurons and skill 297

neurons (Dai et al., 2022; Wang et al., 2022). 298

For t = 1, many typo neurons exist in the early 299

layers (i.e., from 0.0 to 0.2). Especially in the 300

6∆n < 0 indicates the fact that activations in inputs with-
out typo are greater than activation in typo input.
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Figure 3: Distribution of ∆n (upper) and percentage of typo neurons per layer (lower). Left figures are for t = 1
and right figures are for t = 16.

9B and 27B models, the largest number of typo301

neurons exist in the early layers. In contrast, for302

t = 16, the number of typo neurons in the early303

layers is decreased. The distribution of typo neu-304

rons per layer reveals that typo neurons are not305

limited to the early layers in all models. This partly306

supports the existing work (Lad et al., 2024) re-307

porting that early layers perform de-tokenization,308

which integrates local context to transform raw to-309

ken representations into coherent entities. Many310

typo neurons also exist in the early middle layers311

(i.e., from 0.2 to 0.5). In contrast to the early layers,312

increasing typos does not decrease the number of313

typo neurons in the early middle layers. This sug-314

gests that typo neurons in the early middle layers315

may play a significant role overall among typo neu-316

rons. This observation is consistent with Kaplan317

et al. (2024), which reported that typos are not re-318

covered in the early layers but done in later layers.319

This result also aligns with Lad et al. (2024) report-320

ing that early middle layers have the role of feature321

engineering, which iteratively builds feature rep-322

resentation depending on token context. Existing323

studies and our experimental results suggest that324

feature engineering with a wider context recovers325

the typos if de-tokenization with local context fails.326

Additionally, neurons near the final layers ex-327

hibit significantly higher activation in all models328

for t = 16. We consider two possible causes for329

this phenomenon. First, as the number of typos330

increases, the corrections performed by the early331

2B 9B
Clean Typo Clean Typo

Vanilla 1.00 0.86 1.00 0.93
⊖ Random Neurons 0.98 0.87 0.99 0.93
⊖ Typo Neurons 0.84 0.73 0.96 0.90

Table 1: Accuracy of the word identification task with
neuron ablation (⊖) on clean and typo datasets. “Vanilla”
indicates the accuracy without neuron ablation.

layers become insufficient, leading to suppressed 332

activation of typo neurons in the final layers. Sec- 333

ond, as the number of typos increases, the internal 334

state contains more errors. This may lead to differ- 335

ent neuron activation in the final layers. 336

4.3 Discussion 337

While the experimental results in §4.2 suggest the 338

existence of typo neurons, the impact of these typo 339

neurons has not been clarified. This section inves- 340

tigates their impact in detail, focusing on 2B and 341

9B models in this section because we can see the 342

different tendency of neurons between the small 343

model (2B) and larger models (9B, 27B) in §4.2. 344

4.3.1 Neuron ablation 345

Typo neurons are expected to work typo-recovering. 346

Therefore, ablating them should result in a signif- 347

icant decrease in performance in the typo inputs. 348

In contrast, since they are not activated for clean 349

inputs, ablating them is expected to have minimal 350

impact on performance in the clean inputs. 351
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Figure 4: Distribution of typo neurons per layer for
samples damaged or not. Values above the black line
indicate many typo neurons activated when the LLMs
predicted correct words.

We test this hypothesis by conducting ablation352

experiments on typo neurons and randomly se-353

lected neurons. From a dataset of 5,000 samples,354

100 randomly selected samples were used to iden-355

tify typo neurons. Then, we evaluate the perfor-356

mance of the word identification task using the357

remaining 4,900 samples by deactivating the iden-358

tified neurons. Following the approach in §4.2, the359

top 0.5% of neurons were identified as typo neu-360

rons. We also randomly selected 0.5% of neurons361

as a baseline. Deactivation was performed by set-362

ting the output values of the neurons to zero. The363

experiments were conducted for the clean inputs364

and the typo inputs with t = 1.365

Table 1 shows the experimental results. For typo366

inputs, performance remained largely unchanged367

when random neurons were ablated, regardless of368

the model. However, performance decreased when369

typo neurons were ablated. This suggests that a370

small number of typo neurons play a dominant role371

in typo-covering for typo inputs. For clean inputs,372

the ablation of typo neurons also resulted in a larger373

performance decrease compared to the random neu-374

ron ablation. This indicates that typo neurons may375

not exclusively act on typos but could also play376

a crucial role in processing general grammar or377

morphological features.378

4.3.2 Neurons for Typo-recovering379

The experiments in §4.2 sought typo neurons by380

comparing clean and typo inputs without consid-381

ering whether the LLMs could correctly solve the382

task with typo inputs. This section focuses on the383

difference in typo neurons between cases where the384

LLMs answer with typos correctly and incorrectly.385

From the dataset of 5,000 samples, we extracted386

100 samples where typos did not damage the in-387

ferences and the correct word was predicted. Sim-388

ilarly, we extracted another 100 samples where 389

typos damaged the inferences and led to incorrect 390

word prediction. We compared differences in the 391

activation of typo neurons in these two groups. We 392

conducted this experiment with t = 1 and com- 393

pared by the difference in the layer distribution of 394

the typo neurons that have the top 0.5% ∆n. 395

Figure 4 shows the result. In the 9B model, 396

the number of typo neurons in the early layers in- 397

creases when incorrect inferences are predicted. 398

This suggests that some neurons in the early layers 399

might play other roles than typo-related phenom- 400

ena, and activation of those neurons prevents cor- 401

rect recognition of typos. In the 2B model, neurons 402

in the middle-middle layers were activated when 403

incorrect predictions were more frequent. This dif- 404

ference between model sizes can be attributed to 405

the fact that, as described in §4.2, the 2B model 406

has fewer typo neurons in the early layers and re- 407

lies more heavily on the middle layers. Across 408

all models, more typo neurons in the early middle 409

layer were activated when typos did not damage 410

inferences. This indicates the importance of typo 411

neurons in the early middle layers. 412

5 Typo Heads 413

5.1 Method to Identify Typo Heads 414

Typo-recovering may not be solely dependent on 415

neurons but also relates to subword merging by 416

attention heads (Correia et al., 2019; Ferrando and 417

Voita, 2024) and based on contextual understanding. 418

Such heads are expected to become nearly uniform 419

attention across all tokens for clean inputs while 420

showing concentrated attention between specific 421

tokens for typo inputs. 422

In this section, we investigate the attention heads 423

specialized to typo inputs by comparing attention 424

maps. Herein, we calculated the KL divergence 425

between a uniform distribution and the rows of at- 426

tention maps by considering them as a probability 427

distribution. The KL divergence increases mono- 428

tonically with the number of tokens, which can 429

result in higher values for typo inputs or split in- 430

puts, as they often have more tokens than clean 431

inputs. We alleviate this problem by normalizing 432

the KL divergence with the maximum score log2m, 433

defined as follows: 434

sXh =
1

|X|
∑
x∈X

(∑
m

(
DKL(Px,m,h||Um)

log2m

))
,

(3) 435
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Figure 5: Distribution of ∆h for each model and each number of typos. The heat map colors are centered around 0,
and the tick mark closest to 0 on the positive side of the heat bar represents the maximum ∆h.

where DKL(·) is the function that returns the KL436

divergence, Um is a uniform distribution over m437

elements. Px,m,h is the m-th row of the attention438

map output by head h for the token sequence x. In439

decoder models, attention scores for the m-th token440

and each token from the 1st to the m-th token sum441

to 1. Unlike neurons, for the calculation of typo442

head identification, we did not narrow down the443

tokens to calculate and used all tokens in prompts.444

Similar to Eq. (2) in neurons, the responsibility445

score of the heads to the typos is defined as follows:446

∆h = s
Xtypo

h −max
(
sXclean
h , s

Xsplit

h

)
, (4)447

where Xtypo, Xclean, and Xsplit are the typo, clean,448

and split datasets, respectively. A larger ∆h means449

a head that responds specifically to typos, concen-450

trating on specific tokens in typo inputs, but not451

in clean or split inputs. The top J heads with the452

highest ∆h scores were identified as typo heads.453

5.2 Experimental Results454

Figure 5 shows ∆h for t ∈ 1, 16 across all heads455

in each model. In all models and settings, the dif-456

ferences between the maximum and absolute mini-457

mum scores are approximately 10 times. Despite458

normalization to eliminate dependency on token459

length in the KL divergence, this result suggests460

that typo recognition and typo-recovering in the at-461

2B 9B
Clean Typo Clean Typo

Vanilla 1.00 0.86 1.00 0.93
⊖ Random Heads 0.75 0.64 0.60 0.55
⊖ Typo Heads 0.68 0.58 0.94 0.87

Table 2: Accuracy of the word identification task with
head ablation (⊖) on clean and typo datasets. “Vanilla”
indicates the accuracy without neuron ablation.

tention layers are not handled by specific heads but 462

are performed using all heads, unlike in neurons. 463

5.3 Discussion 464

Although the experimental results in §5.2 did not 465

provide strong evidence of typo-specific heads, Fig- 466

ure 5 shows some heads have positive values. §4.2 467

suggest that the wide context is sometimes used to 468

recover typos. We believe that such a wide con- 469

text is encoded by attention layers. Therefore, we 470

clarify the contribution of typo heads to recovering 471

typos, even if their response is slight. This section 472

discusses the effect of typo heads on the down- 473

stream task in detail. Similar to §4.3, the analysis 474

focuses on experiments with the 2B and 9B models 475

in this section. 476

5.3.1 Head Ablation 477

Following the approach in §4.3.1, we identified 478

typo heads from 100 randomly selected samples. 479
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Figure 6: Visualization of typo heads in the 2B model. The word definition in the clean input is “not refined or
processed,” and the correct answer is “unrefined”. The word “processed” was changed with a typo to “pbrocessed.”

Then, we ablated these identified heads and mea-480

sured the accuracy on the remaining 4900 samples.481

Since the total number of heads is smaller than neu-482

rons, we identified the top 2.5% of heads as typo483

heads. We also randomly selected 2.5% of heads484

as a baseline. We performed ablation by setting all485

attention scores of the heads to 0. The experiments486

were conducted for the clean inputs and the typo487

inputs with t = 1.488

Table 2 shows the experimental result. For the489

9B model, the accuracy drop caused by the typo490

head ablation is smaller than that caused by the ran-491

domly selected head ablation, regardless of whether492

the inputs have typos. This indicates that the typo493

heads in the 9B model react to typos but play less494

specialized roles. This is a different result from495

the typo neurons in §4.3.1 and suggests that the496

heads with the least impact on overall inference are497

identified as the typo head in the 9B model. In con-498

trast, for the 2B model, which has fewer heads, the499

ablation of either random or typo heads resulted500

in a significant drop in accuracy. The accuracy501

decrease was even greater when typo heads were502

ablated. This suggests that when the number of503

heads and parameters is limited, they are actively504

used for typo-recovering. Furthermore, it suggests505

that the typo heads are also used for inference with506

clean inputs like the typo neurons.507

From the results, we conclude that larger models508

do not have heads specifically playing a role in509

typo-recovering as discussed in §5.2. However, 510

in smaller models, important heads for inference 511

without typos also play a role in typo-recovering. 512

5.3.2 Visualization of Typo Heads. 513

To investigate how the typo heads identified in the 514

2B model in §5.2 behave, we visualize their atten- 515

tion maps of one typo input example in Figure 6. 516

Most typo heads consistently concentrate on the 517

immediately preceding token (left) or always fo- 518

cus on ’<bos>’ (right). In the head shown on the 519

right, for example, the typo token ’bro’ focuses on 520

’<bos>’ more than any other token except ’<bos>’ 521

itself. This suggests that this head uses context 522

aggregated in ’<bos>’ to recover typos. 523

6 Conclusion 524

This paper investigated how the neurons and heads 525

of Transformer-based LLMs respond to inputs with 526

typos. Experimental results show that some neu- 527

rons perform typo recognition and typo-recovering 528

in the early and early middle layers. Specifically, 529

neurons in the early middle layer are responsible 530

for the core of typo-recovering. Besides, a few 531

heads capturing contextual information also con- 532

tribute to recovering typos. Although the workload 533

of typo neurons and typo heads differs depending 534

on the model size, our study concludes that it is 535

important to focus on the early and early middle 536

layers for the typo-related analysis. 537
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Limitation538

Our analysis was limited to the Gemma 2 model539

and examined models with sizes up to 27B. Larger540

models or LLMs with different architectures may541

have different properties. in §4.3 and §5.3, we have542

limited our experiments to the 2B and 9B mod-543

els. For hyperparameters, our experiments were544

performed only at t ∈ {1, 16}. Furthermore, our545

experiments focused on a specific task, and models546

may show different properties in a wider variety547

of tasks. We ran all experiments only once, al-548

though there was randomness in applying typos549

and conducting some experiments. Additionally, in550

identifying typo heads, we defined them as heads551

that differ from a uniform distribution across all552

tokens. As a result, we were unable to find heads553

specifically responsible for typo-recovering. How-554

ever, using alternative methods might reveal the555

existence of typo heads.556
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