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Abstract

Given different instructions, large vision-language models (LVLMs) exhibit differ-
ent degrees of object hallucinations, posing a significant challenge to the evaluation
of object hallucinations. Overcoming this challenge, existing object hallucina-
tion evaluation methods average the results obtained from a set of instructions.
However, these methods fail to provide consistent evaluation across instruction
sets that generate image descriptions of significantly different lengths. In this
paper, we present the first systematic investigation into the effect of instructions
on object hallucinations in LVLMs, with a specific focus on the role played by
image description lengths. A valuable finding is that instructions indirectly affect
hallucinations through the length of image descriptions. The longer the image
description, the higher the object hallucination degree. Accordingly, we fit an infor-
mative length-hallucination curve, upon which a fine-grained evaluation framework
named LeHaCE is introduced for evaluating object hallucinations at any given
image description length. LeHaCE evaluates the object hallucination degree at
a uniform image description length to mitigate the effect of description lengths,
promoting stability and fairness. Moreover, LeHaCE incorporates the curve slope
as an innovative hallucination evaluation metric, reflecting the extent to which the
object hallucination degree is affected by the image description length, achieving a
more comprehensive evaluation. Experimental results demonstrate that LeHaCE
provides a more stable, fair, and comprehensive evaluation of object hallucinations
in LVLMs compared to existing methods.

1 Introduction

Drawing inspiration from the remarkable language capabilities exhibited by large language models
(LLMs) [1–3], large vision-language models (LVLMs) [2, 4–7] have been well-developed, achieving
significant advancements in complex multimodal tasks. However, the practical application of LVLMs
is heavily hindered by hallucination phenomena [8, 9], which refer to situations where objects in
image descriptions generated by LVLMs are inconsistent with the provided visual content. Consider-
able efforts have been dedicated to both evaluation [9–11] and mitigation [12–14] of hallucination
phenomena, leading to notable advancements.

A significant challenge in object hallucination evaluation arises from the effect of instructions
on object hallucinations [9]. Overcoming this challenge, existing object hallucination evaluation
methods typically adopt an average-based framework, which averages the results obtained from a set
of instructions. However, as shown in Figure 1, this framework fails to provide consistent evaluation
across instruction sets that generate image descriptions of significantly varying lengths. Specifically,
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Figure 1: The evaluation results of LVLMs on four instruction sets using the CHAIR with the
average-based framework. Length refers to the average length of generated image descriptions. Each
instruction set consists of six distinct instructions, and there is no overlap between instructions in
different sets. All instructions prompt LVLMs to describe the image.

while evaluation results of LVLMs remain consistent across certain instruction sets (e.g., set 1 and set
2), inconsistencies arise when comparing instruction sets with significantly different average image
description lengths (e.g., set 2 and set 3).

In this paper, we present the first systematic investigation into the effect of instructions on object
hallucinations in LVLMs, with a specific focus on the role played by the length of image descriptions.
Technically, we evaluate lengths and object hallucination degrees (measured by CHAIR scores) of
the image descriptions generated by LVLMs under different instructions (see Section 3.1 for more
details). The experimental results are shown in Figures 2 & 3, from which we can observe that
the degree of object hallucination is primarily influenced by the length of image descriptions, with
instructions only indirectly affecting hallucinations through their effect on description lengths. The
longer the image description, the higher the object hallucination degree, and there is a clear linear
relation between them. Hence, it is imperative to take into account the length of image descriptions
in hallucination evaluation. Unfortunately, the average-based framework can only select instructions,
without the ability to directly control the length of image descriptions.

Motivated by the findings, we propose a fine-grained evaluation framework called LeHaCE, which
fits an informative length-hallucination curve to evaluate object hallucinations at any given image
description length within a large range. LeHaCE evaluates the object hallucination degree at a
uniform image description length to mitigate the effect of image description length, ensuring stable
evaluations for the same LVLM across different instruction sets and fair comparisons among different
LVLMs. Moreover, LeHaCE incorporates the curve slope as an innovative hallucination evaluation
metric, reflecting the extent to which the object hallucination degree is influenced by the image de-
scription length, achieving a more comprehensive evaluation. Experiment results on 12 representative
LVLMs show that LeHaCE can evaluate object hallucinations of LVLMs in a more stable, fair, and
comprehensive way.

The main contributions of this paper are summarized as follows:

• We conduct the first systematic investigation into the effect of instructions on object halluci-
nations in LVLMs and find that the degree of object hallucinations is primarily influenced by
the length of image descriptions, with instructions only indirectly affecting hallucinations
through their effect on image description lengths.

• We propose an object hallucination evaluation framework called LeHaCE, which fits an
informative length-hallucination curve to evaluate object hallucination at a uniform image
description length, realizing a more stable and fair evaluation.

• We employ the curve slope as an innovative hallucination evaluation metric, reflecting the
extent to which the object hallucination degree is affected by the image description length,
achieving a more comprehensive evaluation.
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2 Related work

2.1 Large Vision-Language Models

Inspired by the success of LLMs in NLP [1–3], researchers have extended LLMs to multimodal
tasks [15–28], proposing numerous LVLMs and achieving new advancements [7, 14, 29–35]. These
LVLMs align the multi-modal encoders with LLM through multitask fine-tuning and instruction
fine-tuning on multi-modal datasets, enabling LLM to acquire multi-modal perception and instruction-
following capabilities. Specifically, to integrate multimodal features, Flamingo [29] proposes a
cross-attention structure to achieve arbitrary interleaved multi-modal feature fusion. BLIP-2 [35]
introduces Q-Former to bridge the visual backbone model and LLM. mPLUG-Owl2 [36] introduces
a modality adaptive module to facilitate the fusion between different modules. To enhance generaliza-
tion and improve instruction-following capabilities, some methods [4–6, 12, 37] propose multi-task
fine-tuning and instruction fine-tuning for LVLMs. Among them, LRV-instruction [12], MiniGPT-4
[5], LLaVA [6] and SViT [37] employ ChatGPT to augment instruction data. To mitigate the risk
of catastrophic forgetting of language knowledge during the training process, mPLUG-Owl [38] and
LLaVA-1.5 [6] perform joint training on pure language and visual-language instructional data. More
recently, mPLUG-DocOwl [31], InternLM-XComposer [32], Kosmos-2 [33], Shikra [34], Cantor
[39], BuboGPT [30], and Qwen-VL [7] further enhance the capabilities of LVLMs in optical character
recognition, document understanding, multi-modal interleaved composition and visual grounding.

2.2 Hallucination in LVLMs

Works on the hallucination in LVLMs focus on two aspects: evaluation and mitigation. For the hallu-
cination evaluation, POPE [9] designs a polling-based query method to avoid the influence of instruc-
tions on hallucination evaluation. By presenting LVLMs with brief "yes" or "no" questions regarding
the target of detection, the evaluation of hallucination is transformed into a simple binary classification
task. NOPE [10] designs a novel benchmark to evaluate the performance of LVLMs in recognizing the
non-existence of objects in visual questions. AMBER [11] designs a multi-dimensional LVLMs hallu-
cination evaluation benchmark without LLMs, targeting existence, attribute, and relation hallucination.
For the hallucination mitigation, LRV-Instruction [40] creates a balanced set of positive and negative
instructions to perform robust visual instruction adjustment for LVLMs. VIGC [14] employs an itera-
tive approach to generate detailed and accurate answers gradually. Woodpecker [13] proposes a post-
processing method that utilizes expert models to locate and correct hallucinations from generated text.

While existing methods [9] observe that the hallucination degree of LVLMs is unstable across
different instructions, this phenomenon has not been thoroughly investigated to date. This work
presents the first comprehensive study investigating the influence of instructions on the hallucination
rate of LVLMs. Building upon our findings, we propose LeHaCE framework, which can evaluate
hallucination of LVLMs in a more stable and comprehensive manner. Contrary to polling-based query
methods, LeHaCE can directly evaluate the hallucination rate of image descriptions generated by
LVLMs, which is more in line with the practical application scenarios of LVLMs.

3 Hallucination of LVLMs Under Different Instructions

This section provides the investigation into the effect of instructions on hallucinations, with a specific
focus on the role played by the length of image descriptions. The experimental settings are presented
initially, followed by a comprehensive analysis of the experimental results

3.1 Experimental Settings

In this investigation, twelve popular LVLMs are included, namely Gemini-Pro-Vision pro [2], Qwen-
VL [7], MiniGPT-4 [5], LLaVA [6], InstructBLIP [4], LLaMA-Adapter-v2 [41], mPLUG-Owl2
[36], mPLUG-Owl [38], InternLM-XComposer [32], VPGTrans [42], Otter [43] and Lynx [44]. All
LVLMs are prompted by 25 different instructions to generate image descriptions for 256 images
in MSCOCO [45]. All descriptions are generated using beam search with a beam size of 5. For
the instructions, we utilize those from [4] and additionally propose several others, as detailed in the
appendix. We use CHAIR [8] as the evaluation metric for hallucinations, which has two variants:
CHAIRI and CHAIRS. Given the ground truth objects in the image, CHAIRI calculates the proportion
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Figure 2: Scatter plots of CHAIR scores and average lengths of the 25 sets of image descriptions
generated by 25 instructions. r denotes the Pearson correlation coefficient between the hallucination
rates and the average image description lengths, R2 and P represent the coefficient of determination
and p-value respectively for the linear regression.

of objects that appear in the descriptions but not in the image, while CHAIRS is the proportion of
descriptions that include hallucination. Formally, CHAIRI and CHAIRS can be expressed as follows:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

, (1)

CHAIRS =
|{descriptions with hallucinated objects}|

|{all descriptions}|
. (2)

For more experimental settings, we use the Pearson correlation coefficient to measure the correlation
between the average length and the hallucination rate of image descriptions. Lengths are measured in
word count.

3.2 Experimental Analysis

The results are presented in Figure 2 & 3, from which we get two key observations: 1) Fig-
ure 2 shows the relationship between the hallucination rate and the average image description
length, we can observe that the hallucination rate increases with the average image description
length and there is a clear linear correlation between them. Specifically, the Pearson correla-
tion coefficient between hallucination rates and the average image description lengths exceeds
0.6 for all LVLMs, with 10 LVLMs exceeding 0.8 and 5 LVLMs exceeding 0.9. 2) Figure 3
shows the impact of instructions on the length of image descriptions generated by LVLMs, from
which we can observe that the length of image descriptions generated by the same LVLM with
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Figure 3: The average lengths of image
descriptions generated by LVLMs when
prompted by different instructions.

different instructions can vary significantly, e.g.,
Gemini-Pro-Vision with Instruction 11 (101 words
in average) v.s. Gemini-Pro-Vision with Instruction
18 (20 words in average). Furthermore, the length
of image descriptions generated by different LVLMs
with the same instruction can also differ greatly, e.g.,
MiniGPT-4 (11 words in average) v.s. Gemini-Pro-
Vision (97 words in average) with Instruction 17.

Based on the aforementioned two observations, we
can draw the following conclusions: 1) The degree of
object hallucinations is primarily influenced by the
length of image descriptions, with instructions only
indirectly affecting hallucinations through their effect
on image description lengths. Hence, it is imperative
to take into account the length of image descriptions
in hallucination evaluation. However, controlling the
length of image descriptions generated by LVLMs is
challenging 2, given that even subtle semantic differ-
ences between instructions can significantly impact
the output length of LVLMs (shown in Figure 3). 2)
In addition to the hallucination degree , the rate at
which hallucination degree increase with description length is also a meaningful indicator for char-
acterizing the nature of LVLMs hallucinations. Considering both the hallucination degree and the
growth rate of hallucination degree can provide a more comprehensive evaluation for hallucinations
in LVLMs. For example, as shown in the Figure 2, although InstructBLIP has the lowest hallucination
degrees in short image descriptions, it exhibits high instability with a rapid increase in hallucination
degrees, resulting in high hallucination in long image descriptions.

4 Length-Hallucination Curve Based Hallucination Evaluation Framework

In this section, we first introduce the average-based hallucination evaluation framework and discuss
its limitations. Then, we elaborate on the proposed LeHaCE framework and evaluate representative
LVLMs with LeHaCE. Finally, the stability of LeHaCE is analysed.

4.1 Average-Based Hallucination Evaluation Framework

The average-based hallucination evaluation framework mitigates the challenge caused by instructions
by averaging the hallucination rates over different instructions. Formally, the hallucination rates and
average lengths of the image descriptions generated by the LVLM under N instructions are denoted
as {`i, hri}Ni=1. The average hallucination rate h̄r and average length ¯̀of image descriptions over all
instructions can be calculated as follows: h̄r = 1

N

∑N
i=1hri and ¯̀= 1

N

∑N
i=1`i. The average-based

hallucination evaluation framework utilizes h̄r to evaluate the hallucination of LVLMs.

However, due to substantial variations in the average lengths of image descriptions generated by
different instruction sets, the average-based framework struggles to mitigate the effect of image
description lengths on object hallucinations, resulting in unstable and unfair evaluations. Specifically,
as shown in Figure 4 (left), when the average-based framework evaluates an LVLM under different
instruction sets, the inconsistent average image description lengths lead to unstable evaluation. More-
over, Figure 4 (right) shows that when the average-based framework evaluates different LVLMs under
the same instructions, the inconsistent average image description lengths lead to unfair evaluation.

4.2 Length-Hallucination Curve Based Hallucination Evaluation Framework

Section 3.2 reveals the significant effect of image description lengths on the hallucination degree. To
mitigate this effect, it is crucial to control the description length during the hallucination evaluation.

2This work does not consider controlling length by truncating the generated descriptions, only considering
cases where LVLMs generate complete image descriptions, as this better fits practical application scenarios.
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Figure 4: Illustrations of the average-based evaluation framework (ABF) and our LeHaCE framework.
The left figure presents the object hallucination evaluation of LLaVa on two instruction sets. The
right figure presents the object hallucination evaluation of LLaVa and mPLUG-Owl on the same set
of instructions.

However, controlling the length of generated image descriptions is challenging because LVLMs are
highly sensitive to instructions. To address this challenge, we fit a length-hallucination curve to
evaluate LVLMs at any desired length. Specifically, based on the clear linear correlation observed in
Section 3.2, we assume a linear correlation between image description lengths and hallucination rates
of LVLMs. Figure 4 intuitively illustrates the LeHaCE framework.

Formally, we use {`i, hri}Ni=1 to represent the average lengths and hallucination rates of image
descriptions generated by the LVLM under N instructions. The linear regression curve of {`i, hri}Ni=1,
which we refer to as the Length-Hallucination Curve (LHC), can be formalized as follows:

LHC (`) = β ∗ `+ α, (3)
where β and α are:

β =

∑N
i=1

(
`i − ¯̀

) (
hri − h̄r

)∑N
i=1

(
`i − ¯̀

)2 , (4)

α = h̄r −
(
β ∗ ¯̀

)
. (5)

Length-hallucination curve summarizes the trend between the hallucination rate and the description
length. The regression coefficient β represents the rate at which the hallucination rate increases with
the growth of description length. LeHaCE uses the LHC to evaluate the hallucination in LVLMs.
LeHaCE consists of two metrics:

LeHaCE (`) = LHC (`) , (6)
LeHaCEGR = β (7)

where LeHaCE (`) measures the hallucination rate at the specified length ` , and LeHaCEGR

measures the rate at which the hallucination rate increases with the increase in description length.
Note that LeHaCE can be built upon any hallucination degree evaluation metric, enhancing their
stability, fairness, and comprehensiveness. In this paper, we use CHAIR as the metric for measuring
the hallucination degree.

Compared to the average-based hallucination evaluation framework, LeHaCE has three advantages.
As intuitively shown in Figure 4, LeHaCE can evaluate the hallucination degree of LVLMs at a uni-
form image description length, thereby mitigating the influence of description length on hallucination
degree and resulting in a more stable and fair evaluation. Moreover, LeHaCE can evaluate the
hallucination degree at multiple lengths and the growth rate of hallucination degree, leading to a
more comprehensive evaluation.

4.3 Evaluation on MSCOCO and NoCaps

We evaluate twelve LVLMs with LeHaCE at lengths of 20, 40, 60, and 80 words. This evaluation is
conducted on subsets of the MSCOCO [45] test set and the NoCaps [46] validation set, each compris-
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Model LCI (20) LCI (40) LCI (60) LCI (80) LCI GR LCS (20) LCS (40) LCS (60) LCS (80) LCS GR

MSCOCO
MiniGPT-4 5.33 6.66 7.98 9.31 0.07 9.27 15.71 22.15 28.59 0.32
InstructBLIP 2.35 5.10 7.86 10.61 0.14 5.61 16.24 26.87 37.50 0.53
Lynx 3.26 6.49 9.72 12.95 0.16 8.00 17.48 26.97 36.46 0.47
LLaVA 7.22 8.30 9.38 10.46 0.05 14.48 20.31 26.14 31.97 0.29
Otter 8.76 12.66 16.56 20.45 0.19 15.31 29.88 44.45 59.02 0.73
VPGTrans 5.77 6.87 7.97 9.08 0.06 9.08 15.01 20.94 26.86 0.30
LLaMA-Adapter-v2 6.04 9.29 12.54 15.80 0.16 11.31 22.99 34.66 46.34 0.58
mPLUG-Owl 7.15 10.84 14.52 18.20 0.18 11.18 23.71 36.25 48.79 0.63
Gemini-Pro-Vision 4.30 5.22 6.15 7.07 0.05 8.00 12.61 17.22 21.83 0.23
InternLM-XComposer 5.40 7.82 10.25 12.67 0.12 9.48 19.18 28.88 38.58 0.48
Qwen-VL 3.44 5.36 7.28 9.20 0.10 6.15 15.31 24.47 33.63 0.46
mPLUG-Owl2 3.92 7.39 10.86 14.33 0.17 8.19 21.66 35.12 48.59 0.67

NoCaps
MiniGPT-4 14.53 16.79 19.05 21.30 0.11 23.75 35.75 47.76 59.77 0.60
InstructBLIP 6.52 10.20 13.88 17.56 0.18 13.33 26.39 39.45 52.50 0.65
Lynx 13.79 17.18 20.57 23.96 0.17 36.07 46.11 56.16 66.21 0.50
LLaVA 12.68 14.48 16.29 18.09 0.09 24.15 33.90 43.66 53.42 0.49
Otter 15.49 19.03 22.58 26.12 0.18 25.38 38.89 52.40 65.91 0.68
VPGTrans 12.51 14.39 16.26 18.14 0.09 20.39 31.95 43.51 55.07 0.58
LLaMA-Adapter-v2 12.52 16.07 19.62 23.17 0.18 22.44 35.31 48.18 61.04 0.64
mPLUG-Owl 12.85 15.84 18.84 21.83 0.15 19.77 30.68 41.60 52.52 0.55
Gemini-Pro-Vision 12.76 15.17 17.57 19.98 0.12 22.63 34.56 46.50 58.44 0.60
InternLM-XComposer 10.93 12.74 14.54 16.34 0.09 20.12 31.22 42.33 53.44 0.56
Qwen-VL 8.37 10.69 13.01 15.33 0.12 14.15 25.00 35.85 46.71 0.54
mPLUG-Owl2 6.91 10.82 14.72 18.63 0.20 11.72 25.45 39.17 52.90 0.69

Table 1: LeHaCE scores of LVLMs on the MSCOCO and NoCaps datasets. LCI and LCS represent
CHAIRI and CHAIRS with the LeHaCE framework. The best result on each metric for each dataset
is represented in bold, and the second best result is indicated with an underline.

ing randomly selected 256 images. The length-hallucination curve in LeHaCE is fitted on the CHAIR
scores of image descriptions generated by 25 different instructions. To calculate CHAIR scores on No-
Caps, we follow the setting proposed in [8, 47]. All descriptions are generated using beam search with
a beam size of 5. The experiments are conducted with PyTorch on Nvidia GeForce RTX 3090 GPUs.

The results are shown in Table 1, which demonstrate that LeHaCE can evaluate the object
hallucination degree of LVLMs at given image description lengths, as well as the growth rate
of the hallucination degree, providing a fair and comprehensive evaluation. Specifically, 1) For
short descriptions, InstructBLIP achieves the best performance on both the MSCOCO and NoCaps
datasets. However, its higher growth rate of hallucination degree leads to poor performance on longer
descriptions. 2) For medium-length and long descriptions, Gemini-Pro-Vision and Qwen-VL exhibit
the best performance on the MSCOCO and NoCaps datasets, respectively. This is attributed to their
relatively small growth rate in hallucination degree. 3) Gemini-Pro-Vision and LLaVA exhibit the
lowest growth rate in hallucination degree on the MSCOCO and NoCaps datasets, respectively.

In Table 1, LVLMs exhibit higher degrees of hallucination on the NoCaps dataset compared to the
MSCOCO dataset. This is attributed to the fact that LVLMs typically use the MSCOCO for training,
making the NoCaps dataset an out-of-distribution dataset. The results show that the distributional
differences not only increase the hallucination degree of LVLMs at various description lengths but
also amplify the growth rate of hallucination degree.

4.4 Stability of LeHaCE

As mentioned above, LeHaCE evaluates the hallucination degree of LVLMs in a more stable manner.
This subsection verifies the stability of the proposed LeHaCE framework. Specifically, LVLMs are
prompted by three sets of different instructions to generate three sets of image descriptions. Each
instruction set consists of multiple instructions randomly drawn from a pool of 25 instructions, with
no overlap between instructions in different sets. The image descriptions generated by different
instructions in each set are evaluated using the LeHaCE framework and the average-based framework,
respectively. The stability of the LeHaCE and the average-based frameworks on the three sets of
image descriptions is evaluated using the Relative Standard Deviation (RSD), which is defined as
the ratio of the standard deviation σ to the mean µ, RDS = σ/µ. The lower the RSD, the more stable
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MSCOCO

# of Ins Gemini-Pro-Vision Qwen-VL MiniGPT-4 LLaVA

CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS

3 0.16 0.25 0.32 0.18 0.29 0.11 0.41 0.09 0.14 0.09 0.22 0.07 0.16 0.23 0.29 0.23
4 0.14 0.16 0.30 0.13 0.27 0.11 0.38 0.15 0.12 0.08 0.21 0.06 0.13 0.20 0.23 0.18
5 0.16 0.15 0.27 0.12 0.22 0.08 0.34 0.05 0.08 0.06 0.15 0.05 0.10 0.08 0.20 0.08
6 0.13 0.09 0.24 0.10 0.21 0.07 0.32 0.06 0.10 0.04 0.16 0.04 0.10 0.07 0.19 0.06
7 0.15 0.12 0.22 0.11 0.18 0.06 0.25 0.05 0.10 0.06 0.15 0.06 0.10 0.06 0.18 0.07
8 0.12 0.09 0.20 0.08 0.15 0.06 0.22 0.04 0.06 0.04 0.12 0.03 0.08 0.06 0.15 0.06

# of Ins InternLM Otter LLaMA-Adapter-v2 mPLUG-Owl

CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS

3 0.19 0.13 0.31 0.13 0.24 0.13 0.31 0.14 0.27 0.75 0.32 0.80 0.19 0.08 0.25 0.06
4 0.18 0.07 0.27 0.06 0.19 0.07 0.24 0.07 0.20 0.13 0.25 0.11 0.20 0.07 0.26 0.03
5 0.17 0.08 0.28 0.08 0.15 0.08 0.20 0.09 0.22 0.10 0.27 0.09 0.16 0.06 0.23 0.02
6 0.16 0.05 0.27 0.06 0.18 0.09 0.23 0.09 0.17 0.10 0.21 0.09 0.14 0.04 0.18 0.02
7 0.15 0.05 0.22 0.05 0.14 0.05 0.19 0.05 0.15 0.08 0.19 0.07 0.14 0.04 0.17 0.02
8 0.09 0.05 0.16 0.05 0.10 0.06 0.14 0.06 0.17 0.08 0.21 0.07 0.15 0.04 0.20 0.02

# of Ins InstructBLIP mPLUG-Owl2 Lynx VPGTrans

CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS

3 0.43 0.28 0.53 0.20 0.39 0.34 0.50 0.27 0.13 0.19 0.14 0.14 0.14 0.17 0.32 0.14
4 0.37 0.12 0.44 0.10 0.32 0.05 0.41 0.09 0.13 0.07 0.14 0.06 0.13 0.14 0.30 0.13
5 0.43 0.15 0.50 0.11 0.33 0.04 0.44 0.06 0.12 0.07 0.13 0.05 0.10 0.10 0.26 0.09
6 0.28 0.11 0.34 0.10 0.29 0.03 0.37 0.04 0.10 0.05 0.10 0.03 0.11 0.05 0.26 0.07
7 0.30 0.09 0.35 0.10 0.23 0.03 0.28 0.05 0.12 0.04 0.11 0.02 0.10 0.06 0.21 0.05
8 0.36 0.10 0.41 0.09 0.26 0.04 0.31 0.04 0.11 0.05 0.10 0.03 0.08 0.05 0.17 0.04

NoCaps

# of Ins Gemini-Pro-Vision Qwen-VL MiniGPT-4 LLaVA

CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS

3 0.15 0.26 0.30 0.24 0.17 0.28 0.33 0.26 0.08 0.06 0.16 0.06 0.14 0.12 0.28 0.14
4 0.13 0.10 0.28 0.10 0.15 0.10 0.28 0.09 0.07 0.05 0.15 0.06 0.13 0.12 0.23 0.18
5 0.14 0.14 0.27 0.14 0.16 0.15 0.29 0.11 0.05 0.03 0.11 0.04 0.08 0.05 0.18 0.07
6 0.12 0.09 0.25 0.11 0.14 0.07 0.26 0.05 0.06 0.03 0.11 0.03 0.10 0.04 0.18 0.06
7 0.13 0.10 0.22 0.11 0.10 0.06 0.19 0.05 0.06 0.03 0.12 0.04 0.10 0.05 0.17 0.05
8 0.10 0.07 0.18 0.09 0.11 0.05 0.19 0.04 0.04 0.03 0.09 0.04 0.06 0.04 0.12 0.04

# of Ins InternLM Otter LLaMA-Adapter-v2 mPLUG-Owl

CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS

3 0.12 0.58 0.26 0.44 0.16 0.06 0.25 0.09 0.17 0.33 0.25 0.23 0.14 0.15 0.22 0.10
4 0.09 0.07 0.22 0.07 0.12 0.05 0.19 0.05 0.13 0.06 0.20 0.05 0.14 0.06 0.23 0.05
5 0.08 0.08 0.21 0.05 0.10 0.04 0.15 0.05 0.13 0.04 0.19 0.04 0.11 0.05 0.18 0.04
6 0.09 0.05 0.20 0.03 0.12 0.05 0.18 0.05 0.11 0.04 0.16 0.03 0.09 0.04 0.15 0.03
7 0.07 0.04 0.16 0.03 0.10 0.04 0.14 0.04 0.10 0.05 0.14 0.03 0.09 0.04 0.15 0.03
8 0.05 0.04 0.13 0.03 0.06 0.04 0.10 0.04 0.11 0.05 0.14 0.03 0.10 0.03 0.16 0.03

# of Ins InstructBLIP mPLUG-Owl2 Lynx VPGTrans

CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS CI LCI CS LCS

3 0.31 0.12 0.42 0.08 0.34 0.18 0.50 0.20 0.06 0.04 0.07 0.04 0.12 0.17 0.27 0.20
4 0.26 0.05 0.34 0.04 0.29 0.14 0.43 0.14 0.05 0.03 0.06 0.03 0.10 0.10 0.25 0.08
5 0.28 0.05 0.37 0.05 0.31 0.11 0.45 0.07 0.06 0.03 0.06 0.03 0.09 0.08 0.23 0.11
6 0.19 0.04 0.26 0.04 0.27 0.05 0.40 0.03 0.04 0.02 0.04 0.02 0.10 0.07 0.25 0.08
7 0.19 0.04 0.25 0.04 0.19 0.04 0.29 0.03 0.06 0.03 0.06 0.02 0.08 0.07 0.18 0.08
8 0.25 0.04 0.31 0.03 0.20 0.04 0.29 0.02 0.04 0.02 0.05 0.02 0.07 0.06 0.16 0.06

Table 2: The average RSD of CHAIR with the LeHaCE and the average-based frameworks, lower is
better. CI and CS respectively represent CHAIRI and CHAIRS with the average-based hallucination
evaluation framework. LCI and LCS respectively represent CHAIRI and CHAIRS with the LeHaCE
framework. The best result under each setting is represented in bold.
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#Ins
MiniGPT-4 InstructBLIP LLaVA

CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

3 0.07 0.50 0.58 0.09 0.58 0.70 0.20 2.30 2.81 0.28 1.62 2.61 0.23 1.51 1.53 0.23 1.15 1.62
4 0.06 0.18 0.62 0.08 0.19 0.67 0.10 3.88 1.79 0.12 2.00 1.64 0.18 0.41 3.31 0.20 0.46 2.06
5 0.05 0.04 0.08 0.06 0.06 0.15 0.11 1.00 2.56 0.15 1.31 2.56 0.08 0.14 0.42 0.08 0.14 0.38
6 0.04 0.04 0.06 0.04 0.05 0.06 0.10 0.41 0.70 0.11 0.47 0.54 0.06 0.12 0.24 0.07 0.10 0.25
7 0.06 0.05 0.07 0.06 0.06 0.08 0.10 0.86 1.56 0.09 1.08 0.80 0.07 0.12 0.26 0.06 0.09 0.15
8 0.03 0.04 0.05 0.04 0.04 0.04 0.09 0.23 0.19 0.10 0.28 0.18 0.06 0.12 0.11 0.06 0.10 0.09

#Ins
LLaMA-Adapter-v2 Lynx InternLM-XC

CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

3 0.80 2.23 1.76 0.75 1.97 1.69 0.14 0.35 0.36 0.19 0.40 0.40 0.13 1.13 1.91 0.13 2.35 5.83
4 0.11 0.75 1.03 0.13 1.02 1.06 0.06 0.12 12.90 0.07 0.15 0.84 0.06 0.20 1.78 0.07 0.20 1.13
5 0.09 0.33 0.60 0.10 0.39 0.79 0.05 0.14 0.22 0.07 0.15 0.14 0.08 0.23 0.67 0.08 1.08 0.54
6 0.09 0.19 0.43 0.10 0.27 0.51 0.03 0.04 0.08 0.05 0.07 0.13 0.06 0.12 0.14 0.05 0.10 0.21
7 0.07 0.09 0.10 0.08 0.12 0.15 0.02 0.05 0.13 0.04 0.08 0.14 0.05 0.12 0.12 0.05 0.09 0.08
8 0.07 0.10 0.20 0.08 0.14 0.27 0.03 0.06 0.05 0.05 0.10 0.08 0.05 0.10 0.12 0.05 0.10 0.10

#Ins
mPLUG-Owl Otter VPGTrans

CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

3 0.06 0.93 1.22 0.08 0.67 0.80 0.14 0.49 0.45 0.13 0.59 0.49 0.14 3.27 1.84 0.17 16.25 5.50
4 0.03 0.12 1.12 0.07 0.10 2.80 0.07 0.13 0.83 0.07 0.12 0.35 0.13 0.87 2.66 0.14 0.85 5.69
5 0.02 0.10 0.53 0.06 0.08 0.77 0.09 0.12 0.17 0.08 0.12 0.16 0.09 0.24 1.06 0.10 0.16 0.96
6 0.02 0.05 0.05 0.04 0.07 0.08 0.09 0.10 0.09 0.09 0.11 0.08 0.07 0.14 0.45 0.05 0.10 0.25
7 0.02 0.04 0.07 0.04 0.06 0.08 0.05 0.08 0.10 0.05 0.09 0.09 0.05 0.13 0.22 0.06 0.05 0.10
8 0.02 0.05 0.06 0.04 0.06 0.05 0.06 0.09 0.10 0.06 0.09 0.09 0.04 0.11 0.14 0.05 0.06 0.07

#Ins
Qwen-VL mPLUG-Owl2 Gemini-Pro-V

CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

3 0.09 1.11 0.99 0.11 2.26 1.67 0.27 0.88 0.81 0.34 0.91 0.91 0.18 1.02 1.03 0.25 3.92 1.24
4 0.15 0.40 4.94 0.11 0.43 19.84 0.09 0.67 4.33 0.05 0.39 1.76 0.13 0.19 1.67 0.16 0.24 1.87
5 0.05 0.05 3.40 0.08 0.14 2.23 0.06 0.20 4.27 0.04 0.24 0.84 0.12 2.28 0.51 0.15 1.27 1.18
6 0.06 0.09 0.74 0.07 0.12 0.44 0.04 0.08 0.33 0.03 0.10 0.85 0.10 1.00 0.84 0.09 0.38 0.47
7 0.05 0.08 0.93 0.06 0.08 0.89 0.05 0.09 0.30 0.03 0.15 0.23 0.11 0.09 0.15 0.12 0.13 0.30
8 0.04 0.06 0.16 0.06 0.08 0.19 0.04 0.08 33.42 0.04 0.11 0.20 0.08 0.08 0.13 0.09 0.11 0.12

Table 3: The average RSD of CHAIR scores with the LeHaCE on MSCOCO with different fitting
methods. L1 represents LeHaCE with linear fitting, while L2 and L3 represent LeHaCE with quadratic
and cubic polynomial fitting, respectively.

the results. For the number of instructions in each instruction set, we conduct extensive experiments
under five different conditions: 3, 4, 5, 6, 7, and 8. The experiments are carried out 10 times using
distinct instruction sets, and the final results are determined by averaging the outcomes of these 10
experiments.

The results are shown in Table 2, from which we can observe that LeHaCE demonstrates superior
stability compared to the average-based framework in nearly all cases. Notably, 1) On the MSCOCO
dataset, for the CHAIRI metric, LeHaCE consistently outperforms the average-based framework
across all twelve LVLMs when the number of instructions reaches five or more. Similarly, for the
CHAIRS metric, LeHaCE exhibits superior performance across all twelve LVLMs when the number
of instructions reaches four or more. 2) On the NoCaps dataset, when the number of instructions
reaches four or more, LeHaCE consistently outperforms the average-based framework across all
twelve LVLMs on both CHAIRI and CHAIRS metrics. In Table 2, we observe that when the number
of instructions is very low, such as three, the stability of LeHaCE is compromised due to the difficulty
in accurately fitting the length-hallucination curve. However, with just four or five instructions,
LeHaCE consistently exhibits superior stability.

To verify the validity of the linear assumption we make in the LeHaCE method, we evaluate the
stability of LeHaCE with different fitting methods. Specifically, we assess the RSD of LeHaCE on
the MSCOCO dataset when applying linear, quadratic, and cubic fitting. As shown in Table 3, the
results indicate that linear fitting significantly outperforms polynomial fitting, particularly when the
instruction count is low.
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Figure 5: Average RSD of CHAIR with the LeHaCE framework at different lengths, lower is better.
ABF refers to the average-based evaluation framework.

For the stability of LeHaCE at different lengths, the results are shown in Figure 5, from which we can
see that LeHaCE significantly improves the stability of the CHAIR metrics across a wide range of
description lengths. All of these experimental results validate the superior stability of LeHaCE.

5 Conclusion and Limitations

Conclusion: In this paper, we find the degree of object hallucinations is primarily influenced by
the length of image descriptions, with instructions only indirectly affecting hallucinations through
their effect on image description lengths. The degree of object hallucination and the length of image
descriptions exhibit a clear positive linear correlation. Based on our findings, a stable, fair and
comprehensive object hallucination evaluation framework named LeHaCE is introduced. Extensive
experimental results validate the superiority of LeHaCE over existing frameworks.

Limitations: Despite exhaustive investigations, this work still has potential limitations. 1) We focus
on object hallucination, leaving other types of hallucinations for future work. 2) Due to computational
constraints, we evaluate LVLMs on only a subset of each dataset. Nevertheless, we conduct thorough
experiments across various datasets to validate our findings and method. 3) Due to high API fees,
we only explore one proprietary business LVLM in our experiments. However, we conduct in-depth
analyses on eleven open-source LVLMs, validating the broad applicability of our method. 4) In the
typical practice of evaluating hallucination levels in LVLMs, multiple instructions are usually used
to enhance the stability of the evaluation results. Although LeHaCE cannot be used with just one
instruction, this limitation does not affect its ability to provide stable evaluations.
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7 Technical Appendices

7.1 Instructions

We primarily referred to the instructions from [4] and additionally designed some instructions, totaling
25 in number.

• I1:’Describe the image in one sentence.’,

• I2:’Summarize the image in a single sentence.’,

• I3:’Give a one-sentence depiction of the image.’,

• I4:’Provide a concise sentence describing the image.’,

• I5:’Give a brief summary of the image in a single sentence.’,

• I6:’Describe this image in short.’,

• I7:’Describe this image in a few words.’,

• I8:’Provide a brief caption for this image.’,

• I9:’Provide a short caption for this image.’,

• I10:’Briefly describe the content of the image.’,

• I11:’Describe this image.’,

• I12:’What does the image show?’,

• I13:’What can you see in the image?’,

• I14:’What is described in the image?’,

• I15:’Provide a caption for this image.’,

• I16:’Describe the objects in this image.’,

• I17:’Can you provide a description of the image?’,

• I18:’What objects or subjects are present in the image?’,

• I19:’Describe this image in detail.’,

• I20:’Describe this image in extremely detail.’,

• I21:’Provide a detailed description of this image.’,

• I22:’Can you describe the scene in the image in great detail?’,

• I23:’Give a thorough account of what is depicted in this image.’,

• I24:’Provide an elaborate and comprehensive analysis of this image.’,

• I25:’Give a comprehensive and in-depth description of what is shown in this image.’,

7.2 Further Exploration

Why does the hallucination rate of MLLMs increase with the increase in image description length?
The underlying reasons behind this phenomenon are difficult to determine, as the output of MLLMs
is influenced by multiple factors such as visual encoders, language models, and training data. In this
section, we aim to shed light on this phenomenon by delving into an analysis of common hallucination
patterns in long image descriptions.

As shown in Figure 7, We found that hallucinations are more likely to occur after some words
or phrases that indicate enumeration or introduce additional information, such as "in addition",
"addition to", "additionally", "include", "including", "such as", "as well" and "also". We refer to
these words/phrases as "hallucinogenic words". As shown in Figure 6 left, we performed a statistical
analysis on a subset of MSCOCO dataset comprising 256 images to investigate the hallucination
rate of image descriptions containing hallucinogenic words. The experimental results demonstrate a
notable increase in the hallucination rate of image descriptions that incorporate hallucinogenic words,
compared to descriptions that lack such words. This phenomenon was consistently observed across
all twelve MLLMs.
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Figure 6: Left: Comparison of the hallucination rates between image descriptions containing
hallucinogenic words and image descriptions without hallucinogenic words. Right: Proportion of
hallucinogenic words in image descriptions containing hallucinations under different instructions.

Metric MSCOCO NoCaps

Beam Search Beam Search
w/o HW Beam Search Beam Search

w/o HW

CI ↓ 8.86 7.86 15.44 14.73
LCI (20) ↓ 5.15 4.77 11.43 11.14
LCI (40) ↓ 7.95 6.85 14.24 13.72
LCI (60) ↓ 10.04 8.93 17.05 16.31
LCI (80) ↓ 12.49 11.01 19.87 18.89
LCI GR ↓ 0.12 0.10 0.14 0.13
CS ↓ 24.27 21.77 37.91 36.39
LCS (20) ↓ 9.69 8.93 21.15 20.49
LCS (40) ↓ 19.38 17.76 33.00 32.12
LCS (60) ↓ 29.07 26.60 44.85 43.75
LCS (80) ↓ 38.75 35.43 56.70 55.37
LCS GR ↓ 0.48 0.44 0.59 0.58
T2I-CLIPRetrieval (R@1) ↑ 32.75 32.73 46.39 48.49
CLIPScore ↑ 0.81 0.81 0.80 0.80
RefCLIPScore ↑ 0.81 0.81 0.81 0.82

Table 4: Hallucination rate and quality of the gen-
erated image descriptions after disabling hallucino-
genic words. The values in the table are averaged
across 10 MLLMs.

Therefore, we propose a hypothesis that
MLLMs are more likely to employ hallucino-
genic words in generating lengthy and detailed
image descriptions, resulting in a higher hallu-
cination rate. To validate our hypothesis, we ex-
plored the relationship between the occurrence
frequency of hallucinogenic words and the av-
erage length of image descriptions. The image
descriptions with varying average lengths were
generated by different instructions. The results
are depicted in Figure 6 right. As the length
of the description increases, the number of in-
correct descriptions containing hallucinogenic
words increases and constitutes a significant por-
tion of all incorrect descriptions. This validates
our hypothesis."

We further explored whether the hallucination rate of MLLMs can be reduced by disabling hallu-
cinogenic words. Specifically, we prohibited the use of previously mentioned hallucinogenic words
("in addition," "addition to," "additionally," "include," "includes," "including," "such as," "as well,"
"also") during the generation process in the MLLMs, ensuring that the generated image descriptions
did not contain these hallucinogenic words. The results, presented in Table 4, clearly demonstrate
that disabling hallucinogenic words can significantly decrease the hallucination rate without com-
promising the quality of image descriptions. Furthermore, it helps alleviate the tendency for the
hallucination rate to increase as the description length grows. These experimental findings not only
highlight the substantial impact of hallucinogenic words on the hallucination rate of MLLMs but also
offer valuable insights for mitigating hallucination in MLLMs.

7.3 More Experimental Results

The average length and CHAIR scores of image descriptions generated by 12 MLLMs (Gemini-Pro-
Vision pro [2], Qwen-VL [7], MiniGPT-4 [5], LLaVA [6], InstructBLIP [4], LLaMA-Adapter-v2
[41], mPLUG-Owl2 [36], mPLUG-Owl [38], InternLM-XComposer [32], VPGTrans [42], Otter [43]
and Lynx [44]) under 25 instructions on subsets of MSCOCO [45] and NoCap [46] are shown in
Table 5 and Table 6, respectively.

The hallucination degree of each MLLM with hallucinogenic words disabled are shown in Table 4
and Table 8. Disabling hallucinogenic terms can effectively alleviate hallucinations in MLLMs.

7.4 More Case Studies

Figure 7 showcases examples of image descriptions generated by MLLMs before and after disabling
hallucinogenic words.
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Ins MiniGPT-4 InstructBLIP Lynx LLaVA Otter VPGTrans
Len CI CS Len CI CS Len CI CS Len CI CS Len CI CS Len CI CS

I1 17.29 3.76 6.64 43.52 5.63 14.84 34.97 6.86 17.58 18.70 7.40 14.84 26.48 10.78 20.31 15.92 3.75 6.25
I2 17.62 2.99 5.08 11.39 1.18 1.56 38.17 4.70 12.50 19.41 8.02 16.02 32.30 12.35 26.17 15.20 5.17 7.81
I3 20.83 5.54 9.38 10.96 0.97 1.56 36.69 6.10 15.23 18.12 5.33 10.16 27.01 10.95 20.70 15.30 4.45 6.25
I4 25.26 5.06 8.59 11.00 0.96 1.56 35.68 4.91 13.28 18.69 6.79 14.06 51.97 13.33 35.94 16.55 5.02 7.42
I5 21.76 5.31 9.77 10.82 0.95 1.56 38.19 6.50 18.36 21.14 6.91 14.06 35.20 12.04 25.39 15.65 4.94 7.42
I6 51.10 8.70 22.27 84.66 9.50 33.59 38.46 7.37 19.92 46.25 9.87 26.95 69.41 18.35 48.83 49.00 8.06 20.31
I7 39.39 6.36 16.02 76.02 7.81 28.52 40.21 6.75 17.19 31.38 6.98 16.41 58.12 14.33 40.63 24.34 7.31 12.89
I8 48.46 7.75 19.53 11.01 0.96 1.56 37.14 6.36 17.19 45.61 9.00 21.09 54.59 13.33 33.98 23.71 5.97 8.59
I9 42.79 6.85 16.80 10.86 1.20 1.95 36.79 5.56 14.84 45.55 9.08 21.48 53.70 13.48 33.59 16.83 4.20 5.47
I10 50.16 7.95 21.88 10.92 1.21 1.95 44.59 7.10 19.14 27.44 6.92 14.06 57.01 14.34 41.80 46.24 7.78 17.97
I11 63.67 7.67 23.44 90.46 10.02 35.55 46.65 6.85 19.92 57.75 8.96 27.34 78.25 21.68 62.11 68.75 8.19 22.27
I12 34.10 6.74 14.06 24.25 4.10 8.98 70.71 10.15 29.69 19.06 6.88 13.28 1.63 1.57 1.17 23.51 6.58 12.50
I13 41.19 6.93 16.41 40.76 4.94 13.28 68.39 11.36 31.25 26.33 7.99 16.41 51.03 16.36 40.23 39.59 7.91 17.97
I14 41.82 7.75 19.53 26.76 4.24 9.38 66.39 10.57 28.13 20.92 5.60 10.94 16.19 8.53 10.94 26.46 7.18 12.50
I15 40.84 7.84 17.97 11.11 0.95 1.56 41.04 6.67 17.58 60.71 7.42 18.75 63.95 15.54 35.94 19.73 5.18 7.03
I16 55.95 9.05 21.48 81.48 8.72 34.77 50.32 8.10 23.05 33.21 10.80 23.05 60.63 20.29 55.47 58.06 9.44 24.61
I17 67.46 7.79 22.66 11.02 0.96 1.56 58.48 9.82 26.95 41.94 8.23 20.70 59.64 14.71 39.06 46.72 8.25 10.55
I18 29.29 6.62 11.33 18.74 3.12 5.86 61.49 13.40 32.81 18.98 8.58 19.14 23.50 15.92 32.81 21.18 6.46 10.94
I19 75.31 7.31 24.22 98.68 14.29 52.34 60.34 8.68 26.95 84.97 10.48 35.55 81.89 20.26 61.33 93.45 8.83 28.52
I20 87.63 8.42 28.13 100.46 16.05 55.86 61.69 9.23 27.73 94.15 11.56 37.11 86.79 21.36 63.28 102.59 10.16 33.59
I21 77.58 9.04 27.34 94.07 14.57 51.56 53.25 9.06 25.78 89.18 11.34 36.33 82.18 21.09 66.80 92.48 9.80 29.69
I22 80.14 11.14 32.42 100.25 16.70 58.20 84.23 14.88 39.45 81.75 12.71 37.89 70.52 13.41 41.02 85.76 10.29 28.13
I23 74.70 9.87 26.95 12.10 1.34 1.95 72.46 11.17 32.03 87.27 9.66 30.08 80.48 21.49 58.20 79.47 9.05 29.30
I24 94.29 8.51 29.69 96.74 11.44 43.36 78.71 11.99 35.55 112.24 12.01 37.89 90.93 26.89 80.47 101.60 8.54 31.25
I25 78.88 9.85 30.47 77.02 8.46 30.86 53.86 8.02 21.48 96.59 10.62 37.50 83.79 21.50 60.16 85.68 9.40 30.47

Ins LLaMA-Adapter-v2 mPLUG-Owl Gemini-Pro-Vision InternLM-XComposer Qwen-VL mPLUG-Owl2
Len CI CS Len CI CS Len CI CS Len CI CS Len CI CS Len CI CS

I1 30.59 8.56 18.36 22.71 7.19 12.50 15.13 4.00 6.25 14.17 4.23 7.03 18.10 2.26 4.69 9.96 2.37 2.73
I2 23.19 7.02 15.23 18.71 5.26 9.77 14.06 3.90 5.86 13.44 3.90 6.25 18.04 3.08 5.86 10.04 2.33 3.13
I3 20.00 7.22 13.67 15.98 4.36 7.42 14.70 3.84 6.25 13.98 3.93 6.64 18.89 3.00 5.86 10.04 2.37 3.13
I4 18.61 6.70 12.89 15.36 3.89 6.25 14.54 3.19 5.08 14.93 4.46 7.42 18.34 3.02 5.86 9.93 2.35 3.13
I5 32.91 9.76 21.09 23.90 6.81 12.89 15.41 2.62 4.30 13.90 4.31 7.42 18.00 2.55 4.69 10.00 2.10 2.73
I6 79.85 19.07 52.73 87.25 21.27 57.42 19.84 2.92 5.47 22.51 7.07 11.33 49.76 6.03 17.58 64.30 12.32 33.98
I7 72.24 16.46 44.92 72.70 18.32 48.83 10.77 1.70 2.34 22.23 4.77 9.38 27.00 4.22 9.77 41.52 8.96 21.09
I8 60.97 11.34 31.25 32.95 12.30 20.70 14.33 4.65 6.64 19.11 6.57 9.77 25.70 4.98 9.77 9.73 2.43 3.13
I9 46.49 10.43 26.17 16.91 6.21 9.38 12.78 3.14 3.52 17.54 4.83 7.03 19.36 5.63 9.38 9.72 2.39 3.13
I10 44.54 8.68 22.27 74.50 17.38 45.31 26.22 3.50 8.20 19.41 4.17 6.64 49.01 5.89 19.14 70.53 13.27 39.06
I11 87.73 19.38 58.98 101.23 21.65 59.77 42.68 6.18 15.23 59.15 9.73 25.78 75.04 8.47 28.91 91.07 17.04 57.03
I12 20.29 5.01 8.98 82.36 18.70 47.66 28.59 6.07 12.11 40.42 6.94 17.58 19.64 2.50 4.69 16.80 3.03 5.08
I13 29.50 4.96 11.33 70.57 17.19 41.41 33.11 5.48 14.06 38.90 8.28 18.36 28.87 3.74 6.64 30.76 4.45 10.94
I14 18.46 4.75 8.98 88.11 18.30 52.34 31.86 5.46 12.11 27.32 6.46 11.72 42.22 5.58 15.63 34.97 5.77 13.67
I15 69.86 11.92 34.77 46.09 14.23 26.17 18.38 4.43 5.08 17.88 5.94 9.77 48.83 7.73 20.31 9.80 2.40 3.13
I16 53.31 12.15 31.25 64.19 18.58 40.63 45.50 6.45 16.02 56.87 10.90 32.03 66.16 7.47 26.95 70.91 12.04 39.06
I17 59.07 8.18 25.78 96.80 21.08 61.33 50.84 7.69 18.36 37.50 8.99 18.36 66.72 8.30 26.95 83.73 14.85 50.39
I18 19.68 9.59 20.70 19.64 8.86 13.67 30.73 6.83 12.89 31.91 8.78 20.31 17.07 3.00 6.25 16.44 2.82 5.08
I19 89.76 19.98 60.55 101.93 22.28 64.84 62.08 6.05 19.92 66.83 10.52 32.81 87.10 9.58 36.72 93.40 16.99 63.67
I20 90.54 20.21 59.77 103.02 21.63 64.45 85.19 7.93 25.39 71.45 11.06 32.03 92.94 9.78 39.45 96.84 18.89 67.19
I21 88.58 19.37 58.98 100.25 21.52 61.72 63.95 6.35 18.75 72.29 11.64 35.55 86.27 10.87 39.06 90.73 15.76 59.77
I22 84.65 8.48 31.25 105.22 22.39 60.55 79.56 9.56 31.25 49.08 7.29 19.53 87.15 7.75 28.13 80.87 13.73 44.92
I23 85.40 13.11 38.67 103.27 21.98 61.72 74.96 5.97 18.75 69.35 11.94 35.55 85.61 12.44 44.92 89.39 15.99 55.47
I24 92.66 22.14 60.94 106.13 21.34 66.41 134.82 7.18 25.39 60.96 9.95 27.34 105.59 10.84 45.70 99.26 16.47 60.55
I25 83.82 13.31 40.23 102.21 21.93 60.94 81.99 6.51 21.09 69.60 11.75 35.16 95.62 10.95 42.19 92.32 15.90 53.91

Table 5: The average length and CHAIR scores of descriptions generated by 12 MLLMs prompted
by the 25 instructions on a subset of MSCOCO containing 256 images.

7.5 Broader Impacts

The LeHaCE framework provides a stable, fair, and comprehensive way to evaluate object halluci-
nations in large vision-language models. It helps in assessing the usability of large vision-language
models, thereby helping to prevent safety incidents.

We acknowledge the potential ethical concerns associated with the use of the MSCOCO dataset,
particularly regarding data privacy, copyright, and consent, as the images in this dataset were
collected from Flickr without explicit user consent. However, it is important to note that our study’s
methodology and findings are independent of the dataset used. Our research focuses on evaluating
the relationship between instruction length and hallucinations in Large Vision-Language Models
(LVLMs), and does not rely on or alter the underlying data in the MSCOCO dataset. Nonetheless, we
recognize the ethical implications of using such datasets and recommend future research to continue
exploring these issues in greater depth.
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Input Image

Instruction

MiniGPT-4

MiniGPT-4 
w/o HW

Can you describe the scene in the image in great detail?

Yes, I can describe the scene in the image in great detail. The image shows a pizza with a variety of 
toppings, including whipped cream, bananas, and chocolate chips. The pizza is on a wooden platter 
and appears to have been served on a table with a white tablecloth. There are also some utensils, such 
as forks and knives, on the table. The overall atmosphere of the scene appears to be casual and relaxed.

Yes, I can describe the scene in the image in great detail. The image shows a dessert plate with a piece 
of pizza on it. The pizza has a crispy crust and is topped with whipped cream, bananas, and chocolate 
chips. There are also some crumbs on the plate. The plate is on a wooden table with a white tablecloth. 
There are two glasses of water on the table next to the plate. The room is dimly lit, and there is a 
chandelier hanging from the ceiling.

Input Image

Instruction

MiniGPT-4

MiniGPT-4 
w/o HW

Describe this image in a few words.

This image shows a man sitting at a desk with a laptop computer in front of him. The man is wearing 
glasses and has his hands on the keyboard. There are several other electronic devices on the desk, 
including a cell phone and a headset. The background is cluttered with wires and other electronic 
equipment.

The image shows a man sitting at a desk with a laptop computer in front of him. The man is wearing a 
blue shirt and has glasses on. There are several other electronic devices on the desk and on the wall 
behind him.

In the image, a blender is placed on a wooden table. The blender contains a variety of fruits and 
vegetables, which are blended together to create a refreshing drink. The blender appears to be in the 
process of blending the ingredients, as some of the fruits and vegetables are visible at different stages 
of blending. The blender is positioned close to the edge of the table, allowing for easy access to the 
ingredients and the finished product. The wooden table provides a natural and rustic setting for the 
blender, adding to the overall ambiance of the scene.

Input Image

Instruction

InstructBLIP

InstructBLIP
w/o HW

Can you describe the scene in the image in great detail?

In the image, a blender is placed on a wooden table. The blender contains a variety of ingredients, 
including fruits and vegetables, such as apples, oranges, bananas, and carrots. These ingredients are 
mixed together in the blender, creating a refreshing and healthy drink. The blender is positioned in the 
center of the table, surrounded by various fruits and vegetables. There is also a bowl nearby, possibly 
containing additional ingredients for the blended drink.

Input Image

Instruction

InstructBLIP

InstructBLIP
w/o HW

Can you describe the scene in the image in great detail?

The image depicts a man in a suit standing next to a pile of luggage, which is decorated with colorful 
ribbons. He appears to be posing for a photo with the luggage as a backdrop. There are several other 
people in the scene, some of whom are seated on benches or standing around the area.  In addition to 
the man and the luggage, there are various objects scattered throughout the scene, including a handbag, 
a cell phone, and a bottle of water. A chair can be seen in the foreground, close to the man and the 
luggage.

The image depicts a man in a suit standing next to a pile of luggage. He appears to be posing for a 
photo with the luggage, which is decorated with colorful ribbons and bows. There are several other 
people in the scene, some of whom are seated on benches or standing around the area. One person is 
closer to the man with the luggage, while others are positioned further away from him. In total, there 
are at least six people visible in the scene.

Input Image

Instruction

LLaVA

LLaVA
w/o HW

Describe the objects in this image.

The image features a busy street with a large group of people riding motorcycles. There are several 
motorcycles parked on the side of the road, and a few people are riding them. Additionally, there are 
cars and a truck on the street, indicating a mix of different types of vehicles. The street is lined with 
trees, which adds to the overall atmosphere of the scene.

In the image there are several motorcycles and a car driving down a street. The street is lined with trees 
and has a sidewalk where people are walking.

The image features a pizza with a generous amount of ice cream on top of it. The pizza is placed on a 
wooden table or countertop. There are several people present in the scene who are likely enjoying the 
pizza and the ice cream. The pizza is topped with whipped cream and chocolate sauce. The 
combination of pizza and ice cream is an unconventional and creative dessert choice that is likely to be 
a delightful treat for those who enjoy both pizza and ice cream.

Input Image

Instruction

LLaVA

LLaVA
w/o HW

Describe the objects in this image.

The image features a pizza with ice cream on top of it, served on a wooden table. The pizza is topped 
with a generous amount of ice cream, which is dripping down the sides of the pizza. The ice cream is 
likely to be a combination of flavors, contributing to the overall delicious appearance of the dish. The 
table is set with utensils, such as a fork and a spoon, and there are also cups and bowls on the table, 
suggesting that the pizza might be accompanied by additional beverages or side dishes.

Input Image

Instruction

Qwen

Qwen
w/o HW

Describe this image in detail.

The image depicts a lush green field where a group of giraffes is enjoying their time. There are five 
giraffes visible in the scene, some of them standing close to each other while others are spread out. 
One of the giraffes appears to be walking or running across the field, adding movement and liveliness 
to the scene. In addition to the giraffes, there are two birds visible at the far left and far right edges of 
the image, adding diversity to the wildlife present in this environment.

The image depicts a lush green field where a group of giraffes is enjoying their time. There are five 
giraffes visible in the scene, some of them standing close to each other while others are spread out. 
One of the giraffes appears to be walking or running across the field, adding movement and liveliness 
to the scene.In addition to the giraffes, there are two birds visible at the far left and far right edges of 
the image, adding diversity to the wildlife present in this environment.

Input Image

Instruction

Qwen

Qwen
w/o HW

Describe the image in one sentence.

The image shows a counter filled with a variety of groceries, including lettuce, broccoli, cheese, and 
other ingredients.

The image shows a counter covered with a variety of fresh vegetables, salad, cheese, and other 
ingredients.

Figure 7: Example of detailed image descriptions generated by beam search and beam search with
out hallucinogenic words. The hallucination content is highlighted in red, and the hallucinogenic
words are highlighted in green.
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Ins MiniGPT-4 InstructBLIP Lynx LLaVA Otter VPGTrans
Len CI CS Len CI CS Len CI CS Len CI CS Len CI CS Len CI CS

I1 21.48 12.13 17.19 46.27 13.03 36.72 35.52 15.84 42.19 19.49 11.09 18.75 25.50 17.78 33.59 15.34 10.85 16.80
I2 24.50 13.58 21.88 11.50 4.29 5.86 39.05 17.65 48.05 20.04 12.23 23.05 31.52 19.63 35.55 15.16 8.85 12.89
I3 26.64 15.97 24.61 10.98 4.50 6.25 35.79 14.97 41.41 18.55 12.12 21.88 26.04 17.66 31.64 16.37 12.65 19.92
I4 34.26 16.03 29.69 11.09 4.51 6.25 35.30 16.16 42.19 18.84 11.03 19.53 49.61 21.83 46.09 17.63 10.98 17.19
I5 33.45 13.93 28.52 11.05 5.66 7.81 38.95 17.60 46.88 21.60 12.21 24.61 34.21 19.79 39.06 15.51 11.25 16.41
I6 59.70 19.80 53.13 80.65 17.69 55.08 40.11 16.78 47.66 45.34 14.64 35.94 68.98 24.04 56.64 47.39 17.76 45.70
I7 51.91 18.70 46.48 76.69 16.35 53.13 40.16 16.01 42.97 31.57 13.25 29.30 54.95 20.24 48.05 25.17 13.93 26.95
I8 60.38 18.72 51.56 10.98 4.23 5.86 35.79 16.47 43.36 46.28 17.59 40.63 53.29 19.40 40.23 24.84 11.75 19.14
I9 56.07 18.48 48.05 10.84 4.55 6.64 35.71 15.75 42.19 45.19 14.94 35.16 52.82 20.44 42.19 19.90 9.32 13.28
I10 60.73 21.23 52.73 10.81 4.85 6.64 43.50 17.53 48.83 28.38 15.55 31.25 55.16 19.78 44.53 46.40 17.65 47.66
I11 72.61 20.90 58.20 88.72 17.68 55.86 45.53 19.08 50.39 58.91 17.23 50.00 74.64 26.13 66.02 67.08 16.81 52.34
I12 47.92 18.85 43.36 23.92 8.53 17.97 69.55 23.03 60.94 19.81 11.52 20.31 3.64 7.46 5.86 23.54 13.41 23.44
I13 53.16 20.12 48.05 40.66 10.90 32.03 66.67 20.96 56.25 27.24 15.23 30.08 47.86 21.59 48.44 40.57 16.06 36.72
I14 52.89 18.69 46.09 25.81 9.16 18.75 62.31 18.86 53.13 21.47 10.57 21.09 17.83 13.02 17.97 27.65 14.37 27.73
I15 55.90 17.41 42.19 11.07 4.40 6.25 38.64 18.38 48.05 60.23 14.45 33.98 61.43 22.70 48.44 22.37 10.47 15.63
I16 64.24 21.43 55.47 77.42 16.38 51.17 45.67 19.44 50.78 33.66 16.15 37.50 60.77 24.13 58.20 58.08 18.43 49.22
I17 74.12 21.68 57.03 10.96 5.00 7.03 52.23 18.50 50.00 42.40 14.33 38.28 57.95 19.90 48.83 48.74 18.33 26.95
I18 41.50 18.43 39.84 17.88 6.10 10.94 63.18 23.39 62.11 20.17 14.15 27.73 23.75 23.24 43.36 21.86 15.38 22.66
I19 85.50 21.39 60.16 98.16 22.37 63.67 57.25 21.29 58.59 85.00 18.01 60.55 78.92 26.19 69.14 89.88 18.36 59.77
I20 92.09 21.91 62.11 97.32 23.13 66.02 58.61 19.74 53.91 93.33 18.49 63.28 82.53 26.52 66.02 99.56 19.29 64.06
I21 87.03 21.90 61.33 92.97 19.75 57.03 51.97 20.51 56.64 88.46 18.23 57.42 80.18 26.37 66.80 92.18 17.99 58.98
I22 84.68 23.02 64.45 97.89 20.72 60.55 76.86 23.08 62.50 83.05 20.32 63.28 67.57 19.85 49.22 83.74 19.68 54.30
I23 81.96 20.93 60.55 11.85 4.08 6.25 70.57 22.57 63.67 86.93 21.58 58.59 77.14 24.24 62.11 78.73 17.89 55.08
I24 98.97 20.35 61.72 95.41 19.07 60.16 76.41 22.29 64.45 110.76 20.01 59.38 89.67 30.58 77.34 98.40 16.61 59.38
I25 85.08 21.36 63.67 76.37 15.28 51.95 51.12 18.85 49.61 95.95 17.24 54.69 80.16 26.41 67.58 85.92 18.66 61.72

Ins LLaMA-Adapter-v2 mPLUG-Owl Gemini-Pro-Vision InternLM-XComposer Qwen-VL mPLUG-Owl2
Len CI CS Len CI CS Len CI CS Len CI CS Len CI CS Len CI CS

I1 31.18 15.16 32.42 20.84 11.99 17.19 15.11 11.75 16.41 13.75 9.83 16.02 16.10 7.26 12.11 10.10 5.18 5.86
I2 22.96 14.04 25.00 17.77 12.18 18.36 14.24 8.36 11.33 13.16 8.99 15.63 16.28 8.35 12.50 10.00 5.52 6.25
I3 20.46 13.20 23.05 15.47 10.41 15.63 14.86 8.25 10.94 13.88 10.04 17.58 19.55 8.99 16.80 10.15 5.39 6.25
I4 19.14 12.11 20.70 15.17 10.50 13.67 14.49 10.39 14.45 14.41 9.50 16.02 18.11 8.13 14.06 9.85 5.54 6.25
I5 31.72 16.16 32.42 21.13 13.91 20.31 15.34 9.62 13.67 13.59 9.40 16.02 15.72 7.28 11.33 10.04 5.47 6.25
I6 79.44 25.74 62.89 79.79 21.98 56.64 18.66 13.11 19.14 18.95 12.76 21.88 25.48 10.61 17.58 32.86 12.77 22.27
I7 70.22 24.55 57.03 62.93 20.53 48.05 10.95 6.39 7.03 18.32 12.99 21.88 17.64 8.57 13.28 11.09 6.05 7.03
I8 58.44 20.65 49.22 29.20 16.16 26.95 14.89 8.82 11.33 16.70 12.09 19.92 19.23 5.95 8.98 9.57 4.79 5.08
I9 46.78 17.34 39.06 16.68 12.35 17.58 13.56 9.88 10.94 15.84 10.94 17.97 18.65 6.71 9.38 9.48 4.21 4.69
I10 43.18 16.77 36.33 61.12 18.17 42.97 24.44 14.17 28.13 17.54 11.35 20.70 29.62 13.06 24.61 51.38 14.11 31.64
I11 85.95 25.01 67.19 96.82 26.47 64.06 40.54 15.95 41.80 52.59 14.98 39.84 53.85 14.61 35.55 76.91 17.50 52.34
I12 20.60 11.07 18.36 66.96 20.69 45.70 28.32 14.89 27.34 30.93 11.06 24.61 17.44 6.31 9.38 13.86 4.71 5.47
I13 30.45 13.15 28.52 56.76 18.64 42.97 29.25 16.16 28.52 34.13 10.86 28.13 25.22 6.76 13.28 19.04 4.70 7.03
I14 18.62 10.85 16.80 73.85 19.16 50.00 29.42 15.77 30.47 19.32 7.88 12.50 42.02 11.67 26.95 18.46 5.40 7.42
I15 71.89 20.68 53.91 40.79 18.89 34.77 20.76 15.57 21.48 16.32 11.20 17.97 22.72 7.11 12.11 9.66 5.48 6.25
I16 56.18 18.08 49.61 49.82 22.37 42.97 40.91 18.18 47.66 52.25 15.86 41.02 59.89 13.72 39.06 58.22 14.74 39.84
I17 56.27 15.85 43.36 91.68 24.00 57.81 48.17 17.88 46.88 28.23 13.26 26.95 55.39 14.17 35.94 68.76 16.54 46.09
I18 19.98 14.67 28.91 16.64 9.15 12.50 30.06 18.27 39.84 29.03 11.79 25.39 18.59 8.42 14.45 14.90 3.59 5.08
I19 89.07 26.50 67.97 97.53 24.29 60.55 57.96 20.35 54.69 66.71 14.91 46.09 75.82 16.22 48.44 85.39 20.61 58.59
I20 88.86 26.23 66.41 99.19 23.19 57.81 74.82 20.17 64.45 71.59 15.37 50.00 76.08 15.10 42.58 91.28 20.75 61.72
I21 87.02 25.31 70.70 94.21 24.12 59.77 59.99 20.80 57.81 72.08 15.53 50.39 75.26 14.91 45.70 80.65 19.61 54.69
I22 82.08 16.74 51.17 102.12 25.81 61.72 72.84 21.61 62.11 49.79 11.83 32.03 79.31 14.14 46.88 69.08 16.39 42.97
I23 84.57 22.55 60.94 99.18 23.19 61.33 68.37 20.94 60.16 67.72 15.68 47.27 75.40 16.15 46.88 79.66 17.67 52.34
I24 90.38 28.01 74.22 103.79 22.92 63.28 131.89 18.08 59.38 65.69 14.82 43.75 108.95 15.32 52.73 93.00 20.48 59.77
I25 83.27 20.28 56.64 98.92 24.16 62.89 80.01 20.16 60.16 71.17 14.97 46.48 86.81 15.70 51.95 81.84 18.13 52.34

Table 6: The average length and CHAIR scores of descriptions generated by 12 MLLMs prompted
by the 25 instructions on a subset of NoCaps containing 256 images.
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Metric MiniGPT-4 InstructBLIP Lynx LLaVA Otter

BS BS w/o HW BS BS w/o HW BS BS w/o HW BS BS w/o HW BS BS w/o HW

CI ↓ 7.39 6.99 6.01 4.95 8.49 8.12 8.77 6.95 15.76 13.32
LCI (20) ↓ 5.33 5.20 2.35 2.24 3.26 3.69 7.22 5.67 8.76 7.89
LCI (40) ↓ 6.66 6.36 5.10 4.36 6.49 6.42 8.30 6.81 12.66 11.00
LCI (60) ↓ 7.98 7.53 7.86 6.47 9.72 9.16 9.38 7.96 16.56 14.10
LCI (80) ↓ 9.31 8.70 10.61 8.59 12.95 11.89 10.46 9.10 20.45 17.21
LCI GR ↓ 0.07 0.06 0.14 0.11 0.16 0.14 0.05 0.06 0.19 0.16

CS ↓ 19.28 17.95 19.75 17.00 23.34 22.53 22.84 17.95 41.45 35.73
LCS (20) ↓ 9.27 8.98 5.61 5.33 8.00 8.87 14.48 10.32 15.31 14.26
LCS (40) ↓ 15.71 14.82 16.24 14.44 17.48 17.29 20.31 17.12 29.88 26.55
LCS (60) ↓ 22.15 20.65 26.87 23.56 26.97 25.71 26.14 23.92 44.45 38.84
LCS (80) ↓ 28.59 26.49 37.50 32.67 36.46 34.13 31.97 30.72 59.02 51.14
LCS GR ↓ 0.32 0.29 0.53 0.46 0.47 0.42 0.29 0.34 0.73 0.61

T2I-CLIPRetrieval (R@1) ↑ 38.76 38.18 29.66 30.20 39.76 40.18 35.02 33.52 21.72 22.08
CLIPScore ↑ 0.82 0.82 0.80 0.80 0.81 0.81 0.81 0.81 0.78 0.78
RefCLIPScore ↑ 0.81 0.81 0.83 0.83 0.80 0.80 0.82 0.82 0.79 0.79

Metric VPGTrans LLaMA-Adapter-v2 InternLM-XComposer Qwen-VL mPLUG-Owl2

BS BS w/o HW BS BS w/o HW BS BS w/o HW BS BS w/o HW BS BS w/o HW

CI ↓ 7.28 6.84 11.91 11.48 7.54 6.73 6.39 5.63 9.08 7.55
LCI (20) ↓ 5.77 5.50 6.04 5.78 5.40 5.25 3.44 3.01 3.92 3.48
LCI (40) ↓ 6.87 6.48 9.29 8.97 7.82 6.96 5.36 4.77 7.39 6.36
LCI (60) ↓ 7.97 7.47 12.54 12.15 10.25 8.68 7.28 6.53 10.86 9.23
LCI (80) ↓ 9.08 8.45 15.80 15.34 12.67 10.40 9.20 8.29 14.33 12.11
LCI GR ↓ 0.06 0.05 0.16 0.16 0.12 0.09 0.10 0.09 0.17 0.14

CS ↓ 17.19 16.64 32.39 31.33 18.03 16.67 20.20 18.15 28.20 23.78
LCS (20) ↓ 9.08 8.93 11.31 10.39 9.48 9.49 6.15 5.50 8.19 7.24
LCS (40) ↓ 15.01 14.61 22.99 22.09 19.18 17.78 15.31 14.00 21.66 18.95
LCS (60) ↓ 20.94 20.28 34.66 33.80 28.88 26.07 24.47 22.50 35.12 30.65
LCS (80) ↓ 26.86 25.96 46.34 45.50 38.58 34.36 33.63 31.00 48.59 42.36
LCS GR ↓ 0.30 0.28 0.58 0.59 0.48 0.41 0.46 0.43 0.67 0.59

T2I-CLIPRetrieval (R@1) ↑ 31.74 31.50 31.16 30.96 36.04 35.74 35.46 35.81 28.20 29.12
CLIPScore ↑ 0.80 0.79 0.81 0.81 0.81 0.81 0.82 0.82 0.81 0.81
RefCLIPScore ↑ 0.80 0.80 0.81 0.81 0.82 0.82 0.83 0.83 0.83 0.83

Table 7: Hallucination rate and quality of the generated image descriptions on MSCOCO after
disabling hallucinogenic words. BS stands for Beam Search and HW stands for hallucinogenic
Words.

Metric MiniGPT-4 InstructBLIP Lynx LLaVA Otter

BS BS w/o HW BS BS w/o HW BS BS w/o HW BS BS w/o HW BS BS w/o HW

CI ↓ 19.08 18.27 11.29 10.48 18.99 19.00 15.29 13.72 21.56 20.35
LCI (20) ↓ 14.53 14.08 6.52 6.44 13.79 14.53 12.68 11.51 15.49 15.16
LCI (40) ↓ 16.79 16.17 10.20 9.73 17.18 17.41 14.48 13.42 19.03 18.27
LCI (60) ↓ 19.05 18.26 13.88 13.03 20.57 20.29 16.29 15.33 22.58 21.38
LCI (80) ↓ 21.30 20.34 17.56 16.32 23.96 23.17 18.09 17.23 26.12 24.49
LCI GR ↓ 0.11 0.10 0.18 0.16 0.17 0.14 0.09 0.10 0.18 0.16

CS ↓ 47.92 47.16 30.23 28.66 51.47 51.52 38.25 33.95 48.52 45.83
LCS (20) ↓ 23.75 23.53 13.33 13.04 36.07 35.98 24.15 20.90 25.38 25.22
LCS (40) ↓ 35.75 35.32 26.39 25.77 46.11 45.99 33.90 32.17 38.89 37.57
LCS (60) ↓ 47.76 47.10 39.45 38.51 56.16 56.00 43.66 43.44 52.40 49.93
LCS (80) ↓ 59.77 58.89 52.50 51.24 66.21 66.01 53.42 54.71 65.91 62.28
LCS GR ↓ 0.60 0.59 0.65 0.64 0.50 0.50 0.49 0.56 0.68 0.62

T2I-CLIPRetrieval (R@1) ↑ 50.34 50.72 47.48 48.12 55.24 53.94 47.38 46.08 31.46 30.94
CLIPScore ↑ 0.82 0.82 0.80 0.80 0.81 0.81 0.80 0.80 0.76 0.77
RefCLIPScore ↑ 0.82 0.82 0.82 0.83 0.81 0.81 0.81 0.82 0.78 0.79

Metric VPGTrans LLaMA-Adapter-v2 InternLM-XComposer Qwen-VL mPLUG-Owl2

BS BS w/o HW BS BS w/o HW BS BS w/o HW BS BS w/o HW BS BS w/o HW

CI ↓ 15.07 14.80 18.83 18.21 12.32 11.76 11.01 10.29 11.01 10.47
LCI (20) ↓ 12.51 12.29 12.52 11.69 10.93 10.83 8.37 7.94 6.91 6.89
LCI (40) ↓ 14.39 14.15 16.07 15.41 12.74 12.08 10.69 10.03 10.82 10.56
LCI (60) ↓ 16.26 16.00 19.62 19.13 14.54 13.33 13.01 12.12 14.72 14.22
LCI (80) ↓ 18.14 17.85 23.17 22.85 16.34 14.58 15.33 14.21 18.63 17.89
LCI GR ↓ 0.09 0.09 0.18 0.19 0.09 0.06 0.12 0.10 0.20 0.18

CS ↓ 36.16 35.70 45.31 43.83 28.64 27.91 26.50 24.75 26.14 24.56
LCS (20) ↓ 20.39 19.96 22.44 20.72 20.12 20.32 14.15 13.54 11.72 11.73
LCS (40) ↓ 31.95 31.60 35.31 33.90 31.22 30.50 25.00 23.50 25.45 24.88
LCS (60) ↓ 43.51 43.23 48.18 47.08 42.33 40.68 35.85 33.45 39.17 38.04
LCS (80) ↓ 55.07 54.87 61.04 60.26 53.44 50.87 46.71 43.40 52.90 51.20
LCS GR ↓ 0.58 0.58 0.64 0.66 0.56 0.51 0.54 0.50 0.69 0.66

T2I-CLIPRetrieval (R@1) ↑ 43.94 43.60 42.96 42.62 50.48 50.50 56.14 56.54 44.78 45.48
CLIPScore ↑ 0.79 0.79 0.80 0.80 0.79 0.79 0.82 0.82 0.81 0.81
RefCLIPScore ↑ 0.80 0.80 0.81 0.81 0.81 0.81 0.83 0.83 0.83 0.83

Table 8: Hallucination rate and quality of the generated image descriptions on NoCaps after dis-
abling hallucinogenic words. BS stands for Beam Search and HW stands for hallucinogenic Words.
Disabling hallucinogenic words can alleviate hallucinations in MLLMs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: Yes
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: Yes
Justification: We provide a detailed discussion of the limitations of our work in Section 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: NA
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: Yes
Justification: All experimental settings are detailed in Sections 3 & 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: Yes

Justification: The code is included in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: Yes

Justification: All experimental settings are detailed in Sections 3 & 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: Yes

Justification: This paper reports the confidence intervals and statistical significance tests in
Section 3. The assumptions used in our method are provided in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: Yes

Justification: We detail the information on the computer resources in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: Yes

Justification: This research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: Yes

Justification: We discuss the broder impacts of our work in Appendix Section 7.5

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: NA

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: Yes

Justification: CC-BY 4.0

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: Yes
Justification: New assets introduced in the paper are well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: NA
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: NA
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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