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ABSTRACT

Bivariate causal discovery aims to determine the causal relationship between two
random variables from passive observational data (as intervention is not affordable
in many scientific fields), which is considered fundamental and challenging. De-
signing algorithms based on the post-nonlinear (PNL) model has aroused much
attention for its generality. However, the state-of-the-art (SOTA) PNL-based al-
gorithms involve highly non-convex objectives due to the use of neural networks
and non-convex losses, thus optimizing such objectives is often time-consuming
and unable to produce meaningful solutions with finite samples. In this paper,
we propose a novel method that incorporates maximal correlation into the PNL
model learning (short as MC-PNL) such that the underlying nonlinearities can be
accurately recovered. Owing to the benign structure of our objective function, when
modeling the nonlinearities with linear combinations of random Fourier features,
the target optimization problem can be solved rather efficiently and rapidly via the
block coordinate descent. We also compare the MC-PNL with SOTA methods on
the downstream synthetic and real causal discovery tasks to show its superiority in
time and accuracy. Our code is available at jhttps://anonymous.4open.science/r/MC+
PNL-3C09/.

1 INTRODUCTION & RELATED WORKS

Causal discovery has recently gained significant attention within the machine learning community,
which aims to find causal relationships among variables. Many recent attempts at application have
emerged in various scientific domains, such as climate science (Ebert-Uphoff & Deng), |2012; Runge
et al.| [2019), bioinformatics (Choi et al., 2020; |[Foraita et al., [2020; [Shen et al.l 2020), etc. The
gold standard for causal discovery is to conduct randomized experiments (via interventions), how-
ever, interventions are often expensive and impractical. It is highly demanded to discover causal
relationships purely from passive observational data. In the past three decades, many pioneer al-
gorithms for directed acyclic graph (DAG) searching have been developed for multivariate causal
discovery to reduce the computational complexity and improve the accuracy. For example, there are
constraint/independence-based algorithms such as IC, PC, FCI (Pearl, 2009; |Spirtes et al., [2000),
RFCI (Colombo et al.,|2012) (too many to be listed), as well as score-based methods such as GES
(Chickeringl 2002), NOTEARS (Zheng et al.| 2018)), etc. However, the algorithms mentioned above
can merely return a Markov equivalence class (MEC) that encodes the same set of conditional inde-
pendencies, with many undetermined edge directions. In this paper, we will focus on a fundamental
problem, namely bivariate causal discovery, which aims to determine the causal direction between
two random variables X and Y. Bivariate causal discovery is one promising routine for appropriate
identification of the underlying causal DAG (Peters et al.l 2017)).

Bivariate causal discovery is a challenging task, which cannot be directly solved using the existing
methodologies for the multivariate case, because the two candidate DAGs, X — Y and X «+ Y, are
in the same MEC. To make bivariate causal discovery feasible, it is necessary to impose additional
assumptions, as summarized in Peters et al.[(2017). One vital assumption is on the a priori restricted
model class, e.g., linear non-Gaussian acyclic model (LINGAM) (Shimizu et al., 2006), nonlinear
additive noise model (ANM) (Mooijj et al.,[2016), post-nonlinear (PNL) model (Zhang & Hyvérinen,
2009), etc. The other assumption is on the "independence of cause and mechanism" leading to the
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algorithms of trace condition (Janzing et al., 2010), IGCI (Janzing et al.,2012)), distance correlations
(Liu & Chan, 2016), meta-transfer (Bengio et al.| 2020), CDCI (Duong & Nguyen, 2022), etc. There
are also seminal works focusing on causal discovery in linear/nonlinear dynamic systems, which are
out of the scope of this paper, and the corresponding representatives are the Granger causality test
(Granger, |1969) and convergent cross mapping (Sugihara et al., 2012).

In this work, we focus on the PNL model, given its generality compared to LINGAM and ANM. The
PNL learning problem is essentially a bi-variate case of the PNL mixture separation (Taleb & Jutten,
1999). The existing works merely show the identifiability results with infinite data samples, while
practical issues with finite sample size are seldom discussed. In this paper, we will reveal the difficul-
ties with the current PNL-based algorithms in the finite sample regime, such as insufficient model
fitting, slow training progress, and unsatisfactory independent test performance, and correspondingly
propose novel and practical solutions.

The main contributions of this work are as follows.

1. We systematically discuss the pros and cons of the existing PNL model learning algo-
rithms, in particular the independence-based and maximal correlation-based algorithms,
and propose a new algorithm called MC-PNL (specifically, the maximal correlation-
based algorithm with independence regularization), which can achieve a better nonlinear
transformation recovery with finite samples.

2. The devised MC-PNL objective admits a benign optimization structure and can be
optimized with the block coordinate descent (BCD) algorithm efficiently.

3. We suggest using the randomized dependence coefficient (RDC) instead of the Hilbert-
Schmidt independence criterion (HSIC) for the independence test with finite samples,
and give a universal view of a subset of widely used dependence measures from the
perspective of squared-loss mutual information estimation.

4. We use MC-PNL in bivariate causal discovery and show that our method outperforms other
SOTASs on various benchmark datasets (20-300 x faster with competitive accuracy).

2 PRELIMINARIES

In this section, we will introduce the HSIC as a dependence measure for regression, the current
independence test-based causal discovery methods for PNL model, and other relevant learning
methods based on the Hirschfeld-Gebelein-Rényi (HGR) correlation. Our proposed MC-PNL method
exploits all these ingredients.

2.1 HSIC-BASED REGRESSION

Regression by dependence minimization (Mooij et al.l |2009) has recently attracted much attention
and shown its power for robust learning (Greenfeld & Shalit, [2020). Consider the additive noise
model (ANM), Y = f(X) + ¢,e 1L X, where the additive noise ¢ is assumed to be independent
with the input variable X. The selected regression model fy is to be learned via minimizing the
dependence between the input variable X and the residual Y — fg(X). A widely used dependence
measure is the Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., {2005} [2007)).
Definition 1 (HSIC). Let X,Z ~ Pxz be jointly distributed random variables, and F,G be
reproduced kernel Hilbert spaces with kernel functions k(-,-) and l(-, ), the HSIC is expressed as,

HSIC(X, Z; F.G) = ExzEx 2k (z,2') 1 (2,2") + ExEx/k (z,2") EzE 21 (2,2")
— QEX/Z/ [Exk (1‘, l’/) Ezl (Z, Z/)] s
where x’ and 2’ denote independent copies of x and z, respectively.

Remark 2.1. We can conclude that: (a) X 1L Z = HSIC(X, Z) = 0; (b) with a proper universal
kernel (e.g., Gaussian kernel), X 1l 7 < HSIC(X, Z) = 0 (Gretton et al.| 2005).

(D

When the joint Px 7 is unknown, given a dataset with n samples (¢ = [z1, 22, ...,2,]T € R", 2 =
[21,22,...,2,)7 € R™), a biased HSIC estimate can be constructed as,
— 1 1
HSIC (@, 2; F,G) = — tr(KHLH) = — (HKH,HLH), 2)
n n
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where K; ; = k(2;,2;), Li; = (2;,%;), and H = I — 2117 € R"*" is a centering matrix.
The Gaussian kernel k (z;,2;) = exp (—(z; — x;)%0~2) is commonly used, and the same for [.
This empirical HSIC can be interpreted as the inner-product of two centralized kernel matrices that
summarize the sample similarities.

Mooij et al| (2009) first proposed to use the empirical HSIC (Z) for ANM learning. Concretely,
the regression model is a linear combination of the basis functions, ¢;(-), i = 1,2, ..., k, namely

fo(z) = Zle 0;¢;(); and the parameters, @ = [0, ..., 0;]7, are learned from:

R — A
0 ¢ argmin (FSIC(@.y — fo(@) + 51613 ) G
OcRE 2

where fg is applied element-wisely to the data points, and A > 0 is a penalty parameter (we will keep
using A as a penalty parameter under different contexts). One key advantage of this formulation is
that it does not require any assumption on the noise distribution. (Greenfeld & Shalit (2020) further
implemented fg using neural networks, and showed the learnability with the HSIC loss theoretically.

2.2 CAUSAL DISCOVERY WITH PNL MODEL

Compared to ANM, the PNL model is preferred due to its richer representation power. The bivariate
PNL model is expressed as, Y = fo(f1(X) + €), where f; denotes the nonlinear effect of the
cause, € is the independent noise, and f, denotes the invertible post-nonlinear distortion from the
sensor or measurement side. The goal is to find the causal direction X — Y from a set of passive
observations on X and Y, assuming no unobserved confounders. Note that from the data generating
process, € is independent with X but not Y. Taking this asymmetry as a prior, one can determine the
causal direction by first learning the underlying transformations, f; Land fi, and then testing the
independence between the residual r(_,) = fy YY) — f1(X) and the input X.

The PNL-MLP algorithm proposed by [Zhang & Hyvirinen| (2009) tests between two hypotheses
(X — Y and X « Y) as follows. Under the hypothesis X — Y, one can parameterize f; and f5 !
by two multi-layer perceptrons (MLPs) f(_,) and g(_,), and learn them via minimizing the mutual
information (MI):

f(ﬁ),g(_n € ?rg min MI (r(_>); a:) , )
(=)9(=)

where 7,y 1= g()(y) — f(>) (), and g, f() are applied element-wisely. The resulting
estimated residual is 7#(_,) = () (y) — f(ﬂ)(w). Similarly, under the hypothesis X <+ Y, one

can obtain an estimate of #) = §(—)(z) — f—)(y) via minimizing MI(r);y). The causal
direction is determined by comparing HSIC (7(-), ) and HSIC (F(e),y)- If HSIC (F(o) @) <
HSIC (f‘(<_), y) , the hypothesis X — Y is endorsed; otherwise, the hypothesis X < Y is endorsed.

However, the MI between random variables is often difficult to calculate (see suppl. [A]), and tuning
the MLPs requires many tricks as mentioned in|/Zhang & Hyvirinen|(2009). The PNL-MLP algorithm
may easily fall into some undesired local optima. To eliminate those, Uemura & Shimizu| (2020)
proposed the AbPNL algorithm that directly uses HSIC instead of MI as the objective, and imposes
the invertibility constraint of f5 via an auto-encoder,

min HSIC (9(y) — (@), @) + Ally - g (g3, (5)
where g, g’ are the encoder and decoder MLPs. The subscript (_,y is omitted for conciseness here. The
learning architectures of the above-mentioned two methods are summarized in Figure[I] Nevertheless,
inherent issues still exist, concerning the cost function and the neural network training procedure when
dealing with finite samples, see Section [3] Recently, Keropyan et al.| (2023) proposed a rank-based
method (rank-PNL), and showed its efficacy in PNL learning. We also include it as a baseline.

2.3 PNL LEARNING THROUGH MAXIMAL CORRELATION

A more generic and effective routine to learn the nonlinear transformations f and g is through the
HGR maximal correlation (Rényi, [1959).
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Figure 1: Comparisons of several PNL model learning architectures.

Definition 2 (HGR maximal correlation). Let X, Y be jointly distributed random variables. Then,

p* =HGR(X:;Y) := sup E[f(X)g(Y)], (6)
f:X—>R,g: YR
E[f(X)]=E[g(¥)]=0

E[£2(X)]=E[¢*(V)]=1

is the HGR maximal correlation between X and Y, where f, g are the associated transformations.

Remark 2.2. The HGR maximal correlation p* is attractive as a measure of dependency due to some
useful properties: (1) Bounded p* : 0 < p* < 1;(2) X and Y are independent if and only if p* = 0.

The optimal unit-variance feature transformations, f* and g*, can be found by iteratively updating f
and g in (6). However, for causal discovery applications, one fatal issue of using the HGR is that the
unit-variance f* and g* cannot reflect the true magnitudes of the underlying functions f and g. As a
consequence, the resulting residual can be erroneous for the independence tests in the next stage. We
found two feasible remedies in the literature, namely the alternating conditional expectation (ACE)
algorithm (Breiman & Friedman, [1985) and a soft version of @ (Soft-HGR)(Wang et al., 2019).

The ACE algorithm solves the regression problem (/) by computing the conditional mean alternatively,

min E(f(X)—g(Y))?, -
st E[f(X)] = E[g(Y)] = 0, E[g*(Y)] = 1,

which imposes the unit-variance constraint only on g. Problem (7) is equivalent to (6)), and the optimal
transformation pair (fXcg, gxce) equals (p* f*, g*) (Breiman & Friedman| |1985).

The other formulation, Soft-HGR, relaxes the unit-variance constraints as follows,

max B [f(X)g(Y)] - § var(/(X)) var(g(¥). ©

st E[f(X)] =E[g(Y)] =0,

which allows linearly transformed solutions (af*,a~1g*),Va € R\{0}. This scale ambiguity results
in enormous solutions, out of which the desired one for causal discovery must enforce the estimated
residual to be independent of the input. We notice that the cutting-edge method in self-supervised
learning, i.e., Variance-Invariance-Covariance Regularization (Bardes et al.| 2022)), actually shares
the same rationale with the HGR maximal correlation, see suppl. [B|for more details.

3 PRrOS & CONS OF EXISTING ALGORITHMS

In this section, we summarize the pros and cons of the existing PNL learning algorithms, including
among others PNL-MLP, AbPNL, and ACE, which motivate our proposed MC-PNL to be introduced
in Section[d] We also discuss the choice of dependence measures in the finite sample regime, as it is
an important module for causal discovery.

3.1 PROS & CONS OF EXISTING PNL LEARNING ALGORITHMS

INDEPENDENCE-BASED METHOD The learning objectives of PNL-MLP and AbPNL match the
independent noise assumption, yet they suffer from the following over-fitting and optimization issues.
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Over-fitting issue. The general idea of PNL learning, according to Section is to encourage
statistical independence between the input and the residual. Both PNL-MLP and AbPNL use neural
networks to parameterize f and g. However, it is doubtful that meaningful representations can be
learned with finite samples. To reveal this, let us review the dependence minimization problem below,

— 1
I?IH{HSIC(w,T) = ﬁtr(meHLT’l'H)}a (9)
»g

where r = f(x) — g(y) is the residual term. We argue that it is utmost difficult to learn meaningful
representations of f and g via minimizing solely the HSIC score, due to the enormous degrees of
freedom for f and g to fit arbitrary random noise profiles. We adopted wide over-parameterized and
narrow deep neural networks for f and g in simulations, and they both can achieve zero training
loss but unfortunately produce meaningless estimates, see suppl. [C} This is unsurprising though, as
one can force r to match samples from arbitrary independent random noise (Zhang et al.l 2021). To
resolve with this issue, we propose to cooperate dependence minimization with maximal correlation,
which helps to obtain desired solutions, see Figure [I|c) for illustration and Section 4] for details.

Optimization issue. Efficient optimization of neural networks is a long-standing problem, and yet
there is not any study on the optimization landscape of the HSIC loss with neural networks. Typically,
first-order methods such as stochastic gradient descent were used in the existing causal discovery
methods, and the goodness of initialization is crucial to the causal discovery accuracy, see suppl. [C|
In this paper, we propose to parameterize both f and g as a linear combination of random Fourier
features and adopt a linear kernel for HSIC, such that the resulting non-convex optimization problem
has a benign landscape with symmetry (see Chapter 7 in|Wright & Ma (2022)).

MAXIMAL CORRELATION-BASED METHODS For ACE and Soft-HGR, their objective functions
are often easier to optimize with proper parameterization, and can produce meaningful solutions.
However, the independence property is not ensured, see the following inconsistency issue for the
ACE model in (7).

Lemma 1 (Inconsistency of ACE). Suppose the data were generated from the PNL model

—1 _Rrf! _
Y = f(fi(X) + €), where ¢ 1. X. And let g(Y) = \/Ef['} f@féﬁ 7(12),])”2 and f(X) =
2 2
1(X)~E[A1 (X)]

TR ) B OO be the underlying ground truth of (ﬂ) Then (f,g) is not a local minimum of

the regression problem ([7).

It is not hard to show, starting from (f, §), the function g can always be further optimized to improve
the objective value. A similar result also holds for Soft-HGR. The objective of ACE or Soft-HGR
failed to capture the asymmetricity induced by the independent causal mechanism. Thus, the resulting
solution will always be deviated/distorted from the underlying (f, g). It is necessary to involve the
independence constraint newly introduced in Section 4]

3.2 DISCUSSIONS ON INDEPENDENCE TEST

As the independence test is crucial to the causal discovery accuracy, we shall cautiously choose a
dependence measure. Although the HSIC is widely used, there are several drawbacks (e.g., the choice
of kernel and corresponding hyper-parameters are user-defined, the HSIC value depends on the scale
of the random variables). It is shown experimentally that the HSIC score may not be a proper choice,
and we favor randomized dependence coefficient (RDC) (Lopez-Paz et al.,2013), particularly for
finite samples.

We generate various synthetic datasets following the PNL models (see suppl.[D)), and know in advance
that e 1l X and e /I Y. Thus, we are able to compare various dependence measures, by checking
whether Dep(z, €) < Dep(y, €) holds for all datasets. Herein, the compared dependence measures
are HSIC (Gretton et al.l |2005)), its normalized variant (NOCCO) (Fukumizu et al.,[2007)), and RDC
(Lopez-Paz et al.| 2013)). Besides, we also studied the impact of different choices of linear, Gaussian
radial basis function (RBF), and rational quadratic (RQ) kernels. We stress especially that RDC is a
computationally tractable estimator inspired by the HGR maximal correlation, and it outperforms
other dependence measures especially when the sample size is small, see Table
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Table 1: The independence test accuracy (%) with known injected noise.

# of samples n = 500 n = 1000 n = 2000 n = 5000
noise level, o | 0.01 0.1 1 10 001 0.1 1 10 | 001 0.1 1 10 | 001 0.1 1 10

HSIC-linear 64 81 95 100 | 69 79 95 100 | 67 8 96 100 | 73 8 97 100
HSIC-RBF 64 88 99 100 | 66 85 100 100 | 75 95 100 100 | 77 99 100 100
HSIC-RQ 77 93 100 100 | 81 92 100 100 | 86 100 100 100 | 86 100 100 100
NOCCO-RBF | 65 82 91 97 73 88 94 99 |73 89 98 100 | 76 92 99 100
NOCCO-RQ | 66 8 91 91 67 84 94 98 | 68 8 95 99 |75 91 96 100
RDC 90 93 100 100 | 84 94 100 100 | 91 98 100 100 | 87 100 100 100

We also provide a universal view of the aforementioned dependence measures through squared-
loss mutual information (SMI) (Suzuki et al.}|2009), see our derivations in the suppl. E}

4 PROPOSED METHOD

In this section, we propose a new maximal correlation-based post-nonlinear model learning algorithm,
called MC-PNL, to accurately estimate the nonlinear functions and compute the corresponding
residuals. Thereafter, independence tests will be conducted to determine the causal direction.

4.1 MAXIMAL CORRELATION-BASED PNL LEARNING WITH INDEPENDENCE CONSTRAINT

As we have seen in Section [3] minimizing HSIC (9) requires no assumption on the noise distribution
and encourages independent residuals, but it can easily get stuck at meaningless local minima.
Maximal correlation-based methods can learn meaningful transformations as the name suggested,
but do not necessarily produce independent residuals. To combine their strengths, we propose the
following MC-PNL formulation that imposes the independence constraint to (),

min — B(f(X)g(Y)] + 5 var(f (X)) var(g(¥)),
st E[f(X)] = E[g(Y)] =0, Dep(X, f(X) - g(¥)) =0,

(10)

where Dep(-, -) > 0 is a dependence measure (e.g., HSIC with different kernel functions). The hard
independence constraint can ensure the recovery of ground truth up to a linear transformation.

Lemma 2. Assuming invertible f and g, we have
HSIC(f(X) —g(Y), X) =0 = [(X)=af(X)+biandg(Y)=ag(Y)+bs, (1)
where a # 0, by, by are some constant numbers.

Proposition 1. Assuming invertible f and g, (@]) has only two solutions aligning with the underlying

E[f(X)g(Y)]

ground truth up to a sign ambiguity, i.e., (a* f,a*g), where a* = + B NEGE V)"

The proof can be found in the suppl. [} While the independence constraint is non-convex and difficult
to deal with, we adopt the following penalized form instead,

. 1
win —E[f(X)g(V)] + 5 var(/ (X)) var(g(¥)) + ADep(X. (X) ~g(¥)),

st E[f(X)] =E[g(Y)] =0,

where A > 0 is a newly introduced hyper-parameter. We aim to learn meaningful feature transforma-
tions with the Soft-HGR term, and resolve the scale ambiguity via the dependence penalty.

Parameterization with Random Fourier Features

For ease of optimization, we parameterize the transformation functions as the linear combination of the
random Fourier features, namely f(z; a) := o ¢(x) and g(y; 8) := 874 (y) , where the random
Fourier features ¢(z) € R¥1 4)(y) € R*2 are nonlinear projections as described in Lopez-Paz et al.
(2013)), see suppl. |G| For a given dataset {(x;, y;) }"_;, the corresponding feature matrices are denoted

as @ := [p(x1), d(x2),...,P(x,)] € RF*" and W := [¢(y1),¥(y2), - .., ¥ (yn)] € R¥2X" We
further denote the residual vector as 7 := 7o — U7 3.
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Consequently, (I2)) can be written as the following non-convex optimization problem,

1 1
min  J(a,8) = ——aT o3+ —aT®dTaB” w78 + ADep(x, r),
mip (o, B) - B+33 B B p(z,r) (13)

st. of®d1 =p7v1 =0,

where the dependence measure, Dep(x, ), can be specially set to the HSIC with linear kernel,
namely,

—lin 1 . 1

HSIC (@,7) = — tr(Kee HLY)'H) = — tr(Kzo Hrr' H)

n n

(14)
1
:E(aTq)HKmH(I)Ta + BT VHK ,, HVTB — 20T OHK ,, HVT 3).

Remark: We adopt the HSIC with linear kernel LI := »rT mainly for a favorable optimization
structure, as the resulting HSIC score admits a quadratic form with respect to (w.r.t.) both o and 3.

Note that the penalty HSIC term is always non-negative, but the Soft-HGR objective can be negative.

The above problem can be solved via the famous BCD algorithm that updates « and 3 iteratively, see
Algorithm[I] In each update (line 3 or 4), the sub-problem belongs to linearly constrained quadratic
programs. When sub-problems are strictly convex, unique minimum in closed-form can be obtained
(see suppl. [H), ensuring convergence to a critical point (Grippo & Sciandrone] 2000).

Algorithm 1 BCD for problem (T3] Algorithm 2 MC-PNL for causal direction inference.

1: Initialize a® and B® Input: Standardized data «, y € R", decision criterion d.

2 for + « 1to T do Output: The causal direction with Cx v

3 a” « argming J(a ﬁ(t%)) 1: Fit PNL models via Algorithm[I]and estimate residuals under
subject to aldl =0 ’ ’ hypotheses, Hp : X — Y and H; : X < Y.

4:  BM arg ming J(a(t),/@), - Under Ho, () = §(—) (¥) — Ji(%)(m)
subject to 87 W1 = 0. - Under Hy, #() = @Le\)(m) - f(e)(yl\

5:  if stopping criteria are met then 2: Compute C'x vy := Dep (ﬂg), y) — Dep ('f'(ﬁ), w) .

6: return a®, 3 3: Output the causal score Cx _,y and the directionis X — Y

7:  endif if Cxoy > 6, X < Y if Cx_y < 4, and no decision if

8: end for [Cxy| < 0.

Residual-Plot Aided Fine-Tuning: Algorithm [T may produce solutions with distortions, see Fig-
ure Eka,b), as the independence constraint is softened and a simple linear kernel is used (Gretton et al.}
2005)). To cope with that, one can enlarge the penalty of the dependence term via A, and use HSIC
with universal kernels (e.g., RBF kernel) or other dependence measures. Alternatively, as the injected
noises are assumed to be independently and identically distributed, implying a horizontal-band
residual plot, we design a banded residual loss to fine-tune the models as follows. The data samples
are separated into b bins {z(*), y® }b_, according to the ordering of X, and we expect the residuals
in those bins Res; = f(x) — g(y?) to have the same distribution. To this end, we adopt the
empirical maximum mean discrepancy (MMD) (Gretton et al.l 2012)) as a measure of distributional

discrepancy. The banded residual loss is defined as band MMP) . Z’;:l m(ReSi, Resan),
where Resqy = f(x) — g(y). Then we append this p-penalized banded loss to as,

min  J(ea,8) + p - band MMP)
P (15)
st. a1 =701 =0.

The fine-tuning problem can be solved by gradient-based algorithms. In general, our proposed method
relies on the maximal correlation problem to generate near-optimal solutions while consistently
emphasizing the importance of the independence constraint through a readily optimized structure.

4.2 CAUSAL DIRECTION INFERENCE VIA INDEPENDENCE TEST

Following the framework proposed by Zhang & Hyvirinen| (2009), we infer the causal direction
according to Algorithm[2} We first fit nonlinear models f(_,), g(—) under hypothesis X — Y, and
J(<)» 9(«) under hypothesis X « Y, using Algorithm|I} Thereafter, we conduct the following
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independence tests. If ]jeY) (13(_>)7a:) < [/)a) (7‘(<_),y), the hypothesis X — Y is supported;
otherwise, the hypothesis X < Y is supported. Towards trustworthy decisions, bootstrap (Efron|
1992) can also be used for the uncertainty quantification, see examples in suppl.

5 EXPERIMENTS

In the following, we show the performance of MC-PNL for PNL model learning and bivariate causal
discovery applications.

5.1 NONLINEAR FUNCTION FITTING

For a better demonstration, we generated two synthetic datasets from the PNL model, ¥ =
f2 (f1(X) + €), and each contains 1000 samples. The data generation mechanisms are as follows,

e Syn-1: f1(X) = X1+ 10X, fo(Z) = Z3, X ~U(0.1,1.1),e ~ U(0,5),
¢ Syn-2: f1(X) =sin(7X), f2(Z) = exp(Z), X ~ U(0,1),e ~ N(0,0.3%).

We apply Algorithm|[T]to both datasets and show the learned nonlinear transformations as well as the
corresponding residual plots in Figure[2] The underlying nonlinear functions are learned under the
true hypothesis but with certain distortions. We also show that, after fine-tuning with HSIC-RBF loss
or additionally with our proposed banded residual loss (see suppl.[[.T), such distortions can be fixed
up. The corresponding residual plot is more of a band shape, and is clearly better than that reported
in|Uemura & Shimizul (2020).

-
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Figure 2: The sub-figures (a) and (b) show the nonlinear function fitting of the two datasets. In each
sub-figure, the top row shows the learned f(_,)(z) (red line) and the residual plot under the correct
hypothesis X — Y, which has a lower RDC value (see top right corner); the bottom row is for the
opposite direction, X < Y. Sub-figures (c) and (d) are the results fine-tuned with HSIC-RBF loss.

Convergence Results. We demon- epoch=0__ _epoch=5 epoch=10 _ epoch=20
strate the convergence profile of our b os o 02
Algorithm [I] with Syn-2, see Fig- S - o o0

ure[3] Convergence results for Syn- 2000 oz 0 0a

1 can be found in the suppl.[[3] The o LI -
upper row shows the snapshots of o :

the learned representations, where = 2000 N

we do not impose independence reg- oo S M LIN
ularization (A = 0); and Algorithm X X X

[ starting from different random

initializations, quickly converges to ~ Figure 3: Convergence profile of Algorithm[T]on Syn-2. We
the local minimizers with the same  plot snapshots of the feature transformations f at the training
objective value. The lower row is  epochs 0, 5,10, 20, using 15 random initializations (indicated
drawn with independence regular- by colors). Upper (A = 0): most initializations converge
ization \ = 5, where the solutions  to local minimizers (symmetry: (a,3) = (ac,a™'g)).
are identified up to a sign ambigu- Lower (A = 5): most initializations converge to two local
ity. minimizers (symmetry: (o, 8) — —(a, 8)).
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Table 2: Comparison of bivariate causal discovery ROC-AUC on both synthetic and real datasets

Dataset ANM!  CDS IGCI RECI CDCI OT-PNL | AbPNL' rank-PNL' ACE! MC-PNL!
(HSIC) (HSIC) (HSIC) (HSIC)  (RDC) | (RDC) (HSIC)
PNL-A-mixG  0.256  0.207  0.932 0.537 0.410  0.431 0.645 0.635 0.580 | 0.708  0.702
PNL-B-mixG ~ 0.150  0.160  0.908 0.462 0.304  0.309 0.672 0.388 0.536 | 0.771  0.738
PNL-A-unif 0.203  0.390 0.681 0.879 0.544  0.711 0.517 0.953 0.514 | 0.617  0.399
PNL-B-unif 0.094 0311 0.866 0.929 0.535  0.536 0.599 0.979 0.418 | 0.608  0.329
D4-S1 0.604  0.582  0.380 0.550 0.651  0.474 0.408 0.717 0.592 | 0.646  0.625
D4-S2A 0.616  0.580  0.447 0.592 0.673  0.472 0.519 0.361 0.558 | 0.626  0.635
D4-S2B 0.521 0529  0.450 0.491 0.614  0.517 0.501 0.458 0.495 | 0.519  0.482
D4-S2C 0.556  0.564  0.441 0.521 0.590  0.490 0.445 0.493 0.538 | 0.576  0.577
Avg. AUC 0.375 0415 0.638 0.620 0.540  0.493 0.538 0.623 0.529 | 0.634  0.561

Avg. time? (s)  20.11 7.67 0.50 027 026 ~7220 | ~ 9300 811.03 21.68 | 30.31 46

! Independence test-based methods.
2 Average running time evaluated on synthetic datasets containing 100 pairs, and each pair has 1000 samples.

5.2 BIVARIATE CAUSAL DISCOVERY

We evaluated the ROC-AUC score of bivariate causal discovery on both synthetic and real datasets.

Datasets: Synthetic: The generated datasets all follow the PNL model. Concretely, we considered the
following two settings: 1) PNL-A: f; are general nonlinear functions generated by polynomials with
random coefficients; and f> are monotonic nonlinear functions generated by unconstrained monotonic
neural networks (UMNN) (Wehenkel & Louppel 2019); 2) PNL-B: Both f; and f> are monotonic
functions, generated by UMNN. The variances of f1, f> are rescaled to 1. The input variable X
is sampled either from Gaussian mixture (mixG) or uniform (unif) distribution, and the injected
noise ¢ is generated from normal distributions N (0, ns?), where ns € {0.2,0.4,0.6,0.8,1}. Each
configuration contains 100 data pairs, and each data pair has 1000 samples. Gene Data: Discovering
gene-gene causal relationships is one important application. We pick the data used in DREAM4
competition (D4-S1,D4-S2A,D4-S2B,D4-S2C) (Marbach et al., [2009).

Baselines & Evaluation: Thanks to the implementation by |[Kalainathan et al.| (2020), we can easily
compare our proposed method with various existing algorithms. In this paper, we compared our
proposed algorithm on both synthetic and real datasets with several baselines, including ANM (Hoyer
et al., 2008)), CDS (Fonollosa, 2019), IGCI (Janzing et al., |2012), RECI (Blobaum et al., [2018)),
CDCI (Duong & Nguyen, 2022), OT-PNL (Tu et al., 2022)), AbPNL (Uemura & Shimizul 2020)), and
rank-PNL (Keropyan et al., 2023). Our implementation of MC-PNL follows Algorithm [I|(without
fine-tuning), and we empirically set A\ = 5 (the choice of A is briefly discussed in suppl. [.4). We
compared two dependence measures RDC and HSIC-RBF for the ablation study. We also conducted
causal discovery based on the PNL functions learned by the ACE algorithm for comparison. The
causal scores C'x _,y calculated for each data pair are used for the ROC-AUC evaluation.

We report the comparison of ROC-AUCs in Table 2} The results are averaged over five different
noise scales for the synthetic datasets. Our proposed MC-PNL is competitive compared to other
independence test-based methods on the synthetic PNL data. Especially compared with AbPNL, our
MC-PNL is not sensitive to the initializations and is much more efficient (300 x faster); compared
to ACE (without independence regularizer), MC-PNL has better causal discovery accuracy. The
rank-PNL method achieves good performance when the input X is uniformly distributed, but fails
when the input distribution gets closer to reality. The IGCI method also performs well on synthetic
datasets, however, it cannot provide transparent and interpretable transformations as MC-PNL does.
For gene datasets, our method is quite competitive and shows its good potential. We also note
increasing the sample size can also improve the performance of MC-PNL, see suppl.

6 CONCLUSIONS

In this paper, we focus on the PNL model learning and propose a maximal correlation-based method,
which can recover the nonlinear transformations accurately and swiftly. The key is to introduce
the maximal correlation to avoid learning random independent noise. The proposed MC-PNL is
more reliable than previous methods solely based on the independence loss. Besides the PNL model
learning, we conduct experiments on the downstream causal discovery task where MC-PNL is
superior to the SOTA independence test-based methods.
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A DISCUSSION ON MI MINIMIZATION

It was shown that minimizing the ML i.e. miny_, 4, MI (r(_>); m) , 1s equivalent to maximizing
Elogp (r(_))) + Elog ’diyg(_” (y)’ (Zhang & Hyvirinen, 2009), where p(-) is the noise density
assumed to be known. We find this objective interpretable since the first term, [E log p (r(ﬁ) ), can be

understood as the data-fitting term. The second term, [E log ‘ % 9—) (v) ‘, can be understood from an

information-geometric perspective (Daniusis et al., [2010). However, the equivalent maximization
formula requires a known noise distribution to calculate the log-likelihood. Some works (Ma et al.,
2020; Uemura & Shimizu, 2020) have been proposed to avoid this difficulty by using the HSIC
instead of the MI.

B CONNECTIONS BETWEEN VICREG AND SOFT-HGR

Variance-Invariance-Covariance Regularization (VICReg) (Bardes et al.,[2022) has shown an out-
standing performance in self-supervised learning. When the dimension of the representation vectors
(i.e., f and g) reduces to one, the covariance term is vanished, and the VICReg objective becomes,

min  E(f(X) = g(V))? +A[ReLU(y — var(f(X))) + ReLU(y — var(g(¥)))],

invariance term variance term

(16)

where A,y > 0 are the hyper-parameters that need to be tuned. We notice that it shares similar
rationale with the HGR maximal correlation. To better spot that, we rewrite the Soft-HGR in @) as,

min - E[£(X) — (V)] +yar(f(X)) var(g(¥)) — var((X)) — var(g(¥),

— , a7
invariance term variance term

st E[f(X)] =E[g(Y)] =0,

For both of them, the invariance term encourages the alignment of the learned features. The variance
term encourages a ~y-bounded variation (VICReg) or a variance-product (var(f (X)) var(g(Y)))
controlled variation (Soft-HGR) to avoid trivial solutions like f(X) = g(Y') = constant.

C EXPERIMENTS ON MINIMIZING HSIC SOLELY

In this section, we show the PNL model learning result by solving ming g, H/SI\C(:B7 r) =
L tr(Kgo H Lyr H). We generated two synthetic datasets from the PNL model, Y = f5 (f1(X) + €),
and each contains 1000 data samples. The data generation mechanisms are as follows (see Figure[d),

o Syn-1: f1(X) = X'+ 10X, f2(Z) = Z3,X ~U(0.1,1.1),e ~ U(0,5),
¢ Syn-2: f1(X) =sin(7X), f2(Z) = exp(Z), X ~ U(0,1),e ~ N(0,0.3%).

g £. N
s Do
X y
1 /.
3 £, N
S ‘Uﬁo
f* g* scatter plot

Figure 4: The ground truth transformations of f* and ¢g* of Syn-1 (top) and Syn-2 (bottom).

We build different MLPs with the following configurations.
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* Narrow deep MLP: Both the input and the output are one-dimensional; there are 9 hidden
layers, each with 5 neurons. The activation function is Leaky—-ReLU.

* Wide over-parameterized MLP: Both the input and the output are one-dimensional; there is
only one single hidden layer with 9000 neurons. The activation function is Leaky-ReLU.

We use the default initialization method in PyTorch (Paszke et all [2019), and make sure the initializa-
tions for all the narrow (or wide) MLPs are the same across experiments, as shown in Figure@

asol™
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Figure 5: The initializations of MLPs.

Optimization Setup: We set the batch size to be 32. We use Adam (Kingma & Bal, [2013)) for the
optimization (the learning rates are 10~2 and 10~ for narrow deep and wide over-parameterized
MLPs, respectively, while all the other parameters are set by default).
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Figure 6: Visualization of the learned nonlinearities (trained solely with HSIC, under different
dataset/MLP configurations). From top to bottom, the convergence results, residual plot, learned
f, and learned g are plotted, respectively. Each column shows one specific configuration of datasets
and MLPs. None of them learns meaningful nonlinearities, and the learned transformations are
quite similar across datasets.

We report the corresponding learning outcome in Figure[6] The learned transformations (see row 3
and row 4 in Figure[f) deviate far from the underlying ground truth functions, and are quite similar to
each other. This is possibly because the solutions were trapped at the local minima near the same
initialization point.

To verify whether such an HSIC-based PNL learning algorithm is stable for causal discovery, we
further evaluate the baselines on the following dataset. We build 100 data pairs with different random
seeds, following the same mechanism of Syn-1, and each contains 1000 data samples. We use
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different MLP initializations for each data pair. The ROC-AUC scores reported in Table 3| show that
the causal discovery stableness for ANM, IGCI, and AbPNL is not satisfactory.

Table 3: Comparison of bivaraite causal discovery ROC-AUC on 100 realizations of Syn-1.
Dataset ANM CDS IGCI RECI CDCI | AbPNL ACE MC-PNL

Syn-1 0.495 1 0.528 1 1 | 0.281 1 1

D DETAILED DATA DESCRIPTIONS

In this section, we describe the datasets in detail.
Synthetic Datasets for Independence Test:

In this section, we describe the synthetic data generation from PNL model for the independent test.
The data were generated from the following model, Y = fo (f1(X) +€), X ~ GMM, e ~ N(0,02),
where f1, fo are randomly initialized monotonic neural networks (Wehenkel & Louppel [2019)
with 3 layers and 100 integration steps, and each layer contains 100 units. The cause term X is
sampled from a Gaussian mixture model as described in|Lopez-Paz et al.|(2017). The datasets were
configured with various noise levels and sample sizes. There are three different injected noise levels,
o. € {0.01,0.1,1, 10}, and three different sample sizes, N € {1000, 2000, 5000}. And under each
configuration, we generated 100 data pairs for evaluating the independence test accuracy.

Gene Datasets:

For D4-S1, D4-S2A, D4-S2B, D4-S2C, we used the preprocessed data in|Duong & Nguyen| (2022) [ﬂ
D4-S1 contains 36 variable pairs with 105 samples in each pair; D4-S2A, D4-S2B, D4-S2C contain
528, 747, and 579 variable pairs respectively, and each pair contains 210 samples.

E A UNIVERSAL VIEW OF DEPENDENCE MEASURES

Actually the discussed dependence measures in Section 3 are all closely related to the mean squared
contingency introduced by (Rényi, |1959)) and rediscovered due to its squared version called squared-
loss mutual information (SMI) (Suzuki et al.,|2009),

SMI := //p(a:)p(y) (m — 1)2 dady = // Mp(x,y)dxdy — 1. (18)

When the density ratio DR(z, y) := p{'g;z;) is a constant 1 (namely X and Y are independent), the

SMI should be zero. To estimate the SMI, one can first approximate DR (z, y) by a surrogate function

DRy (z,y) parameterized by 6, where the optimal parameter 6 can be obtained via minimizing the
following squared-error loss JPR,

JPR(f) = / / (DRg (2, ) — DRz, 9))? p(x)p(y)dady

(19)
= // DRy (z,y)*p(z)p(y)dady — 2// DReg(z,y)p(x, y)dedy + Const.

Then the empirical SMI can be calculated as, SMI = 1 Z?Zl DRy(zj,y;) — 1.

We show that, with different parameterizations of the density ratio, the resulting SMI will be equivalent
to different dependence measures, see Table ]

"https://github.com/baosws/CDCI
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Table 4: Connections between DR parameterization and dependence measure

Density ratio surrogate function DRg(z, y) \ Corresponding dependence measure

DRo(z,y) =1+ Zz 1 9 k(x,2z;)l(y,y;) | variant of LSMI (Sugiyama & Yamada, 2012)
DRo(z,y) =14+ 30" ~k(z,2;) L (y, v:) HSIC (Gretton et al.,[2005)

DRo(z,y) =1+ >1", fi(z)g:(y) m-mode HGR correlation (Wang et al., 2019)
DRe(z,y) =1+ f(z)g(y) HGR correlation (Rényil [1959)

" When f, g are the linear combinations of random features, f(z) = a” ¢(x), g(y) = BT (y), the corre-
sponding dependence measure will be RDC (Lopez-Paz et al.l|2013),

In Sugiyama & Yamada (2012), they proposed to approximate the density ratio by DRy (z,y) =
Dy 0;k (, ;) (y, y;), where @ has a closed-form solution via minimizing . After that, they
approximated the SMI using the empirical average of Equation , % Z?Zl DRy (zj,y;) =1 =
DD D 0;k (z,x;) 1 (y,y;) — 1. It is shown that, the first term is actually the empirical HSIC,
when {§;}7_, = L1

We argue that there is a small flaw in their derivation. When X and Y are independent, both the
SMI and the HSIC score should be zero. A simple modification is to model the density ratio by
DRo(z,y) = 1+ >0 ik (x, 2:) L (y, vi), see TableE], where the constant 1 is to exclude all the
independence terms, and the rest terms should model the dependency only. This modification will
not hurt the quadratic form of J DR (@), and maintains good interpretation. And the SMI is reduced to
HSIC score when {6;} | = L.

n

We extend this density ratio estimation to a different parameterization, DRg(z,y) = 1 + f(z)g(y),
where f, g are zero mean and unit variance functions parameterized by 8. The resulting SMI will be
equal to the HGR maximal correlation, see Proposition[2] Similarly, the constant 1 will capture the
independence part, and f(z)g(y) will capture the dependencies.

Proposition 2. The density ratio estimation problem ([[9) is equivalent to the maximal HGR correla-
tion problem, when the density ratio is modeled in the form of DRg(z,y) =1+ f(x)g(y), and f,g
are restricted to zero mean and unit variance functions.

Proof. We substitute DR (z, ) into Equation ,

JPR(f,9) //1+f y))?p(2)p( dxdy—Q//1+f y))p(z,y)dzdy + Const.
=14 2E(f(X))E(g(Y)) + var(f(X))var(g(Y)) — 2 — 2E(f(X)g(Y")) + Const.

Then it is not hard to see, miny ; JPR(f, g), subject to E(f) = E(g) = 0, var(f) = var(g) = 1, is
equivalent to the maximal HGR correlation problem. O

Proposition 3. The density ratio estimation problem (I9) is equivalent to the Soft-HGR problem,
when the density ratio is modeled in the form of DRe(x,y) = 1+ f(x)g(y), and f, g are restricted
to zero mean functions.

We further note that the above density ratio estimation can be regarded as a truncated singular value
decomposition DRy(z,y) = 1+ >_i", 0y fi(x)gi(y), where m = 1 and o, can be absorbed as
scaling of functlons (Buja, |1990). When letting m > 1 and imposing zero mean and orthonormal
constraints on all f; and g;, the corresponding JP® minimization problem is equivalent to solving
the m-mode HGR maximal correlation (Wang et al., 2019; [Leel 2021), as defined below.

maximal correlation problem for random variables X € XY € ) is,

(f*,g") = arg max E[f1(X)g(Y)], (20)
f:X>R™ g YVR™
E[f(X)]=E[g(Y)]=0
E[f(X)f" (X)]=E[g(Y)g" (V)]=I
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where £ = [f1, fa,. .., fm]T & =1[91,92,- - ,gm]T are referred as the maximal correlation func-
tions.

F THEORETICAL JUSTIFICATIONS OF THE PROPOSED METHODS

In this section, we prove the lemmas and propositions in our main paper in detail.

Lemma 3 (Inconsistency of ACE). Suppose the data were generated from the PNL model

Y = fo(f1(X) + ¢€), where e 1L X. Without loss of generality, we can get the ground truth transfor-

mation by rescaling, g(Y) = (Y) Elfy (V)] . such that E[¢g* (V)] = 0 and E[¢g* (Y)]? = 1;
Y & 9(Y) = \/E TR lg"(Y)] [g*(Y)]

fl(X) [fl(X)] — €
with zero mean, and € = .
VELf; S (V) =E[f5 S (V)))2 VEf () —E[f5; T(YV)]]2

Then, (f,g) is not a local minimum of the ACE regression problem below,

correspondingly, f(X) =

minE(f(X) ~g(¥)%, st E(0] =Elg(v)] =0, BlP(V))=1. @D

Proof. If we fix ¢ = g and optimize f, the optimization problem becomes

g E((X) =g = min B(F(X) = F(X) + F(X) - g("))%
= min z _ 1 _ 8?2
= g fn Eex(F(X) - () -9, (22)

whose optimal solution align with the ground truth f (note that € is independent with X). While if
we fix f = f and optimize g, the optimization problem becomes

min  E(f(X)—-g(Y))? = min ]EiX—fY—&—’Y_Y{
oo U (K) ma) = i (B0 ~9() +9() = (1)
Elg*(v)]=1 Elg®(Y)]=1
= min Eey(—e+g(Y)—g(Y))>* 23
E[g(Y)]=0 'Y( 9(Y) —9(Y)) (23)
Elg® (¥)]=1

In this case, we do not have the independence between € and Y, so the optimal solution of (23)would
not be g. O

The independence between the residual and input is not ensured for (2I]), so we can observe the
distortion while applying the ACE algorithm solely. The independence constramt f iL X
should be included to fix the above inconsistency, e.g., HSIC(f(X) — g(Y) = O see

min  E(f(X) ~ 9(Y))?,

st E[f(X)] =E[g(Y)] = 0,E[¢*(YV)] = 1, 24)
HSIC(f(X) —g(Y), X) =0
Let us first show the model identifiability with the independence constraint in Lemma []

Lemma 4. Assuming invertible f and g, we have
HSIC(f(X) —g(Y),X) =0 = f(X)=af(X)+biandg(Y)=ag(Y)+bs, (25
where a, by, by are some constant numbers.

To prove this, we can directly apply the identifiability results of post-nonlinear mixtures (Achard &
Jutten, |2005)) in the nonlinear independent component analysis (ICA) literature. We first reformulate
the PNL learning problem as a two-dimensional blind source PNL mixture separation problem as in
(26). Starting from the right-hand side, the independent sources are hnearly mixed by a matrix A,
and then processed with component-wise invertible PNL functions (e.g., Ff~r g Vin ( . )). One can
observe the PNL mixed signals (X, Y)” in the middle. Taleb & Jutten (1999) proposed to separate
out the independent sources through a separation structure consisting of un-mixing component-wise
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nonlinearities (e.g., f ,g1n lb and a separation matrix B. Note that the matrices A, B are usually
unknown for the PNL mixture blind separation, but are given in our bivariate PNL learning context.

(X 1 0 i\ L o/x\ L= /1o f(X
()0 )0 S 6) & C)0) e
N——r g g ! ——
=:B =A
separation structure PNL mixture

Achard & Jutten| (2005) showed that, under some weak assumptions, the separation mechanism in
can produce mutually independent components (e.g., independent f (X ) €), if and only if the

composmon of PNL functions and un-mixing nonlinearities, h; (e.g., h1 = f fLhy=gog™,
are linear, and BA = P D, where P is a permutation matrix, and D is a diagonal matrix. Now, we
are prepared to see the proof of Lemmalfd]

Proof. To make HSIC(f(X) — g(Y), X) = 0, i.e., independent ¢ and f(X), we need linear h; and
BA = PD. The second condition BA = PD is easy to check, since BA = (é _01> To

ensure linear h;, we have

'

hl(z):f(f_l(z))—alz-i-bl4>f()—alf(t)+b1, (27)
ha(z) = 5571 (2) = azz + b = (1) = azg (1) + b (8)
Only when a; = ay = a, the independence between f(X) and f(X) — §(Y) is achieved. O

Corollary 1. Assuming invertible fi and fa, the ground truth transformations +(f, g) are the only
two feasible solutions of (24).

Proof. According to Lemmafd] it is not hard to see the following results:

* E(9(Y)) =E(@mg(Y)+b2)=0 = b=0,
o similarly, E(f(X)) = E(alf(X) +b)=0 = b =0,

* B (V) =E(ag(Y))* =1 = a =+l
So there are only two feasible solutions. O

A similar result holds for the Soft-HGR objective with independence constraint,

min —E[f(X)g(¥)] + } var(f (X)) var(g()),
st E[f(X)] =E[g(V)] =0, (29)
HSIC(X, f(X) ~ g(¥)) = 0.

Corollary 2 (Proposition 1 in main paper). Assuming invertible f1 and fs, the ground truth transfor-
mations =(a* f, a*g) are the only two solutions of

Proof. According to Lemma the zero mean constraints E[f(X)] = E[g(Y’ )} 0 1mply by =

by = 0. And we obtain optimal a* = argmin, —a’E [f(X)g(Y)] + $a*E(f*(X))E(g*(Y)) =
E[f(X)3(Y)]

H\ EPCEE ) =

The main purpose of introducing the Soft-HGR objective is to learn meaningful transformations

rather than those in Figure[6] Also, the reformulation of (29) to its soft version (i.e., treat the hard

constraint as a penalty term) allows efficient BCD-like optimization algorithms to be exploited.
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G RANDOM FOURIER FEATURE GENERATION

We design a k-dimensional random feature vector ¢ () = [sin(wyx + by),--- ,sin(wrx + by)]7,
where w;, b; ~ N (0, s?). The random feature matrix ® € R¥*™ is stacked as,

sin (wixy +b1) -+ sin(wiz, +b1)

O(x;k, 5) 1= : : :
sin (w1 +bg) -+ sin (wgx, + bi)

The same procedure can be applied to y as well to generate W. The number of random Fourier

features k is user-defined, which is typically chosen from a few tens to a few thousands (Rahimi &
Recht, 2008}, Theodoridis}, 2015). In our experiments, we set £ = 30 and s = 2.

H ON THE OPTIMIZATION OF PROPOSED OBJECTIVE

H.1 SUBPROBLEM: EQUALITY CONSTRAINED QUADRATIC PROGRAMMING

To simplify the notation, we rewrite the subproblem into the following form,

; 1 TPy ol
in f(x):= ;2" Px — q" x,

(30)
st. vix=c

With the KKT conditions, one can find the unique optimal solution * by solving the following linear

system,
P v x* q
(53)(5)-(1)
—_——

=:KKT
when the KKT matrix is non-singular. In our setting, we can choose ¢ and ¥ properly to make
®®T and WU positive definite, or add a small positive definite perturbation matrix eI, such that the
unique optimum would be obtained. Besides, the sub-problem is of smaller size and easy to solve.

H.2 LANDSCAPE STUDY WITH HESSIAN

To simplify the notation, we rewrite

J(a,3;A,B,C,D,E) = a’AaB"BB — aTCB + " Da + BT EB, (32)

where A = 55007, B = VU", 0 = 10U" + - A5 OHKuo HVT, D = 25 PH Ky HOT,

E= ﬁ\IJHKmH\IJT. The corresponding Hessian is
2 _ (248"BB+2D AaBTB-C
ViJieB) = (BTﬁaTA ~CT 2BaTAa+2E)" (33)
Now we can verify the property of the critical points via checking their Hessians numerically. One
obvious critical point is the all-zero vector 0. From our experiments, the Hessian at 0 is mostly
indefinite, as long as the convex regularization term A is not too huge, which means 0 is a saddle
point that is easy to escape. In practice, the algorithm rarely converges to 0.

I ADDITIONAL EXPERIMENTS

1.1 FINE-TUNE WITH THE BANDED L0OSS / HSIC WITH UNIVERSAL KERNEL

Recall the designed banded residual loss as follows. The data samples are separated into b bins
{:L'(l), y(’)}ﬁ’:1 according to the ordering of X, and we expect the residuals in those bins Res; =
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f(x®) — g(y@) to have the same distribution, see Figurelﬂ To this end, we adopt the empirical
maximum mean discrepancy (MMD) (Gretton et al 2012)) as a measure of distributional discrepancy.
The banded residual loss is defined as band M™MP) .= Z?=1 MMD(Res;, Resa ), where Resqy =
f(x) — g(y). Then we append this u-penalized banded loss,

min  J(a,B) + - band™MP) st aT®1 =BTl = 0. 34)

a,B

1.0

0.5

Residual
o
o

-1.0

Figure 7: The construction of banded residual loss.

The above banded residual loss involves MMD, which is highly non-convex and brings difficulties
to the optimization. We used the projected gradient descent with momentum to optimize (34). The
residual plot shows a band shape, see the top row in Figure 8]
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Figure 8: Fine-tuning with the banded residual loss.

We also show the results of fine-tuning by enlarging the penalty (to A = 10000) HSIC term with the
universal Gaussian RBF kernel in Figure 9]

Definition 4 (Universal Kernel (Gretton et al.l 2005)). A continuous kernel k(-,-) on a compact
metric space (X, d) is called universal if and only if the RKHS F induced by the kernel is dense in
C(X), the space of continuous functions on X, with respect to the infinity norm || f — g|| co-
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Figure 9: Fine-tuning with the HSIC-RBF loss.

1.2 BOOTSTRAP FOR TRUSTWORTHY CAUSAL DISCOVERY

Bootstrap is a commonly used technique to estimate the confidence interval. In this section, we show
a few examples of bootstrap with Tuebingen data (Mooij et al.,[2016). We obtained 30 estimates of
RDC from the data re-sampled with replacement, see Figure The blue bars indicate the RDC

distribution under the true causal direction; The orange bars indicate the RDC distribution under the
false causal direction.
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Figure 10: Bootstrap results of MC-PNL on eight Tuebingen data pairs. We plot the histogram of

the RDC estimates and the estimated causal scores of 30 replications. The red vertical line indicates
where C'x_,y = 0.
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1.3 ADDITIONAL CONVERGENCE RESULTS

In this section, we show the convergence results on Syn-1 as well. With the regularization term
(bottom in Figure [TT), the algorithm can converge to two critical points with sign symmetry.
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Figure 11: Convergence profile of Algorithm 1 on Syn-1.

1.4 ON THE CHOICE OF \

We tried seven different values for A, and reported the AUC scores on the PNL-A-unif dataset with
different noise levels. We found that the MC-PNL is suitable to use in the small noise regime. We also
found that for the data with small noise, smaller X is preferred; and for the data with large injected
noise, larger \ is preferred.
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O 06 ’—’.-_‘\‘\___ 06
2 0.5 0.8

o ._/—-—"'A_‘ .

03

Figure 12: The detailed AUC scores vs. A under five noise levels on PNL-A-unif data.

1.5 EFFECTS OF INCREASING THE SAMPLE SIZE

We show that the improvement of causal discovery accuracy when increasing the sample size in
Table 3]

Table 5: The average AUC on synthetic datasets vs. sample size.
sample size 200 400 600 800 1000 5000 10000

average AUC 0.58935 0.6476 0.66915 0.6658 0.6738 0.7065 0.69785
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