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ABSTRACT

Efficient video tokenization remains a key bottleneck in learning general purpose
vision models that are capable of processing long video sequences. Prevailing
approaches are restricted to encoding videos to a fixed number of tokens, where too
few tokens will result in overly lossy encodings, and too many tokens will result
in prohibitively long sequence lengths. In this work, we introduce ElasticTok, a
method that conditions on prior frames to adaptively encode a frame into a variable
number of tokens. To enable this in a computationally scalable way, we propose
a masking technique that drops a random number of tokens at the end of each
frames’s token encoding. During inference, ElasticTok can dynamically allocate
tokens when needed – more complex data can leverage more tokens, while simpler
data only needs a few tokens. Our empirical evaluations on images and video
demonstrate the effectiveness of our approach in efficient token usage, paving the
way for future development of more powerful multimodal models, world models,
and agents. Video examples of using ElasticTok can be found on our website:
elastic-tokenizer.github.io
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Figure 1 ElasticTok adaptively represent video based on information available. (Top) Ground-
truth video frames. (Middle) Reconstructed frames with varying token usage. (Bottom) The bottom
section depicts how ElasticTok dynamically adjusts token allocation over time, with the percentage
of tokens used correlating to different content complexities in the video.

1 INTRODUCTION

Efficient video tokenization remains a key bottleneck in learning general purpose vision models that
are capable of processing long video sequences – a crucial aspect towards developing intelligent
agents for the visual world. Prevailing approaches (Van Den Oord et al., 2017; Esser et al., 2021;
Yu et al., 2023a; Yan et al., 2021) are restricted to encoding videos to a fixed number of tokens
irrespective of the visual content of the original video. As a result, being able to reliably encode with
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little information loss requires increasing the number of tokens to account for the worst case, highly
complex visual inputs. However, this in turn causes many wasted tokens on simpler data, and leads to
significant computational challenges for downstream training, where encoding a video or trajectory
can require tens or even hundreds of millions of tokens, resulting in substantial computational costs
and inefficiency (Liu et al., 2024a; Brooks et al., 2024; Liu et al., 2024b). On the other hand, using a
too few number of tokens will result in lossy encodings, and fundamentally limit the capabilities of
vision models when processing more complex visual data.

Intuitively, we would want do learn a model that adaptively encodes visual input in a data-dependent
manner to variable length encodings, similar to how existing works in image and video compres-
sion (Richardson, 2004; Li et al., 2023a; Christopoulos et al., 2000; Chen et al., 2017) compress data
to a varying number of bytes. Taking inspiration from this, we introduce ElasticTok, a method that
conditions on prior frames to adaptively encode a frame into a variable number of tokens. To enable
this in a computationally scalable way, we propose a masking technique that drops a random number
of tokens at the end of each frame’s token encoding. During inference, ElasticTok can dynamically
allocate tokens when needed – more complex data can leverage more tokens, while simpler data only
needs a few tokens.

Our empirical evaluations demonstrate the effectiveness of ElasticTok, highlighted below.

• We show that ElasticTok can leverage adaptive tokenization to efficiently represent long videos
with up to 2-5x fewer tokens.

• We show that ElasticTok enables flexibility in downstream vision-language tasks, allowing users to
allocate tokens based on their compute budget.

• We show that ElasticTok allows leveraging different objectives during inference to adaptively trade
off various semantic aspects of images.

2 BACKGROUND

2.1 BLOCKWISE RINGATTENTION

Blockwise RingAttention (Liu et al., 2024b) is a sequence parallelism technique for efficiently
training transformers on long-context data. Each rank along the sequence parallel sharding axis
retains non-overlapping, equal sizes slices of the full sequence. During an attention operation, each
sequence parallel rank calculates its own corresponding Qi,Ki, Vi, and computes its own portion of

Figure 2 ElasticTok adaptively encodes image and video to variable length outputs based on
the complexity of the input data. Single block uses an Encoder-Decoder pipeline with a sampled
latent mask. Multi-block extends this with a Block Causal Mask to handle longer video sequences.
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the full attention as: softmax(QT
i [K1, . . . ,KS ])[V1, . . . , VS ], where S is size of the sequence parallel

dimension. Instead of naively all-gathering K,V , RingAttention proposes to iteratively pass Ki, Vi

blocks in a ring-structure, where rank i will pass its current key-value block to rank (i+ 1) mod S.
Importantly, RingAttention enables overlap between compute and communication by computing
the partial attention over the current block while communicating the next block. In this paper, we
leverage RingAttention to scale our method to long sequences of videos.

3 METHOD

In this section, we present ElasticTok, a scalable adaptive visual tokenizer than can efficiently encode
image and video. At a high level, we leverage a specialized random masking scheme when training
any standard autoencoder to learn our elastic encodings. In the following sections, we provide a more
detailed description of our model – first covering the simpler single block case (image / short video),
and then moving on to the multi block case (longer video). An overview of our method is shown in
Figure 2.

3.1 TRAINING

First, we consider a single-block case in which we want to learn elastic codes over an image or
a short video chunk (e.g., 4 frames). Let x represent a sequence of input frames, where images
are considered as 1 frame videos. Our proposed method extends upon any existing variants of
autoencoders (VQ-VAE (Van Den Oord et al., 2017), FSQ (Mentzer et al., 2024), VAE (Kingma,
2013)) by incorporating additional masking of the encoder tokens.

For each training input x, we first uniformly sample the number of tokens to keep ℓ ∼
U({Mmin, . . . ,Mmax}), where Mmin and Mmax define the supported range of encoding lengths.
Mmax is generally set as N , the maximum number of tokens the encoder can output (e.g., 2048 or
4096), and Mmin a lower bound such as 128 or 256. We found this lower bound necessary as we
found that sampling too few tokens could destabilize training. After sampling ℓ, we then compute its
mask m, defined as a binary vector of length N with the first ℓ values set to 1. Input x and mask m
are then fed into the encoder E(x,m) to compute z. z is masked as zm = z ⊙m, and fed through
the decoder D(zm) to produce x̂. Finally, our model optimizes a reconstruction loss, with potentially
auxiliary losses depending on the exact autoencoder being used (e.g., KL for VAE or VQ loss for
VQ-VAE). Although our method is generally architecture invariant, we opt to use ViTs (Dosovitskiy,
2020) as our encoder and decoders for simplicity.

We can extend our method to process longer video by breaking up video into blocks, with sizes
defined by the number of frames used for the single block model (e.g 4 frames per block). The
training process remains the same as the single block case, with two key differences: (1) masks for
each multi block video sequence are sampled independently for each block, and (2) a block causal
mask (block size N ) is used in the encoder and decoder. The number of blocks is constrained only
by the transformer’s context size. We utilize a prior long-context method (Liu et al., 2024b) to train
ElasticTok on longer videos. Architecturally, there are no added parameters which we found useful
when progressively training our model from single block to multi block.

Exact details of our model’s forward pass are described in Algorithm 1.

3.2 INFERENCE

There are two primary ways to use ElasticTok for inference – by specify a target encoding length, or
a target reconstruction threshold.

Target encoding lengths. This method is simple to implement, as it only requires generating the
correct mask and running the input through the encoder. However, although such inference is simple
and efficient, it is difficult from a user’s perspective due to lack of knowledge of how many tokens to
specify.

Target reconstruction threshold. This method presents a more intuitive inference approach that will
automatically adaptively allocate tokens between different inputs based on a specified reconstruction
threshold (e.g., target pixel-wise MSE loss). Visual content that is easy to reconstruct may require
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fewer tokens to meet the threshold whereas more complex inputs may require more tokens. Doing so
requires a search process over different encoding lengths to determine lowest encoding length that
still satisfies the given threshold.

We consider a few different search algorithms, detailed below:

• Full Search: Exhaustive search over every possible number of tokens lengths, and treat the result
as ground truth. We use our discrete latent with max 4096 tokens.

• Binned Search (100): Similar to Full Search, but only evaluate on 100 uniformly spaced token
lengths.

• Binary Search: We perform search using binary search, where the token length is the "array
index", and the evaluated reconstruction loss is the "array value." Note that this assumes that
reconstruction loss is monotonic with respect to token length, which is generally close to true, but
not fully accurate, hence error in the result produced.

• Neural Regression: We collect 100k examples of paired (image / video, token length) data, and
finetune our autoencoder to directly regress the number of tokens given an image or video.

Each search algorithm has its own trade-off between accuracy and efficiency – we further examine
this relationship in Section 4.4.

In the multi block case, we iteratively perform the search process for each block in a block autore-
gressive manner, using caching similar to in language models. Algorithm 2 provides more details on
the exact inference process.

Further ablations on conditioning the encoder on the mask (Table 5 in Appendix F) suggest that we
can additionally achieve 2x inference speedup at a slight cost to encoding quality. This may be a
better choice depending on the size of the downstream pretrained model.

Algorithm 1 Training
Required: Video x. Patch size Tp ×Hp ×Wp.
Required: Tokens per block Z
Required: Encoder E. Decoder D
Required: Min / Max token lengths Mmin,Mmax

// batch size, timesteps, height, width, channels
// x is B × T ×H ×W × C
x← PatchifyRearrange(x) // B × L×D
// L = T/Tp ∗H/Hp ∗W/Wp

// D = Tp ∗Hp ∗Wp ∗ C
Nb ← L/Z
for i in {0, . . . , Nb − 1} do

Sample ℓi ∼ U({Mmin, . . . ,Mmax})
Initialize masks mi ← 0Z

Fill masks mi[: ℓi] = 1
end for
Concatenate masks m← (m0, . . . ,mNb−1)
Encode z ← E(x,m) // B × L×Dz

Mask out along sequence length zm ← z ⊙m
Decode x̂← D(zm)
Compute loss L(x̂, x) // e.g., MSE + LPIPS

Algorithm 2 Inference
Required: Video x. Patch size Tp ×Hp ×Wp.
Required: Tokens per block Z.
Required: Encoder E. Decoder D
Required: Target reconstruction threshold t
// batch size, timesteps, height, width, channels
// x is B × T ×H ×W × C
x← PatchifyRearrange(x) // B × L×D
// L = T/Tp ∗H/Hp ∗W/Wp

// D = Tp ∗Hp ∗Wp ∗ C
Nb ← L/Z
Initialize KV cache c of length L
for i in {0, . . . , Nb − 1} do

// See Section 2.2 for search algorithms
ℓi,mi, c← SearchAlgo(xiZ:(i+1)Z , c, t,D,E)
Encode zi ← E(xiZ:(i+1)Z ,mi, c)⊙mi

end for
Return z ← (z0, . . . , zNb−1)

4 EXPERIMENTS

In this section, we introduce our evaluation setup and present the results of pretraining ElasticTok to
adaptively represent images and videos, as well as its performance on downstream tasks.

4.1 EXPERIMENTAL SETUP

Model details. We train 200M parameter discrete and continuous autoencoders on images and
video sequences. For learning discrete representations, we use FSQ (Mentzer et al., 2023), while
for continuous representations, we use a VAE (Kingma, 2013). Both models employ ViT encoders
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and decoders, consisting of a single patchify strided convolutions (the transpose for the decoder),
followed by transformer blocks identical to those in LLaMA 2 (Touvron et al., 2023). Attention is
applied in a block-causal manner, with block size equal to the number of tokens per video block. The
encoder is additionally conditioned on the token mask (represented as a binary mask) by replacing 0’s
and 1’s with different learned embedding vectors, and then added to the video patchify output hidden
states. The bottleneck representations are computed through a linear projection on the encoder output.
Similar to prior works (Esser et al., 2021), we optimize both a pixel-wise reconstruction loss (MSE)
and a perceptual loss (LPIPS) (Johnson et al., 2016). Notably, we do not use a GAN (Goodfellow
et al., 2014), as we find it more difficult to stably train when progressively extending to much longer
sequences (e.g. 1000+ frames), which we leave to future work, as it is not the main focus of this
paper.

Training details. All models are jointly trained on 256 × 256 images and 24 FPS videos. Each
video block consists of 4 frames, and joint training is conducted by treating images as single-frame
videos, replicating each image 4 times to match the block size. Each block is encoded into 2048 or
4096 tokens by the continuous and discrete autoencoders, respectively. Following prior research in
LWM (Liu et al., 2024a) on scaling sequence length, we begin by training our models on single-block
cases (images and short videos) and progressively extend the context length to cover up to 40-second
videos (512K to 1M tokens). We train our long video models using v4-512 TPUs from Google Cloud
on the COYO-700M image dataset and a custom dataset consisting of 6M videos scraped from the
web. We additionally train an image-only model on ImageNet using v4-256 TPUs. Details for further
training details can be find in Appendix B, and data details in Appendix C

Baselines. We compare our proposed method against fixed token baselines trained at a varying token
capacities. The architecture, training processes, and total FLOPs are exactly the same as our method
with the only difference being restricted to one fixed mask, instead of sampling variable masks.

Evaluation Search Algorithm Unless otherwise noted, all results use the Binary Search algorithm
as described in Section 3.2.
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47% Tokens (962)

GT Recon GT Recon GT Recon GT Recon
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t=0s t=21sTime

Figure 3 ElasticTok adaptively encodes image and video to variable length outputs based
on the complexity of the input data (using ElasticTok-VAE). The top rows shows examples
of ElasticTok on images. Below shows a video example with: (Top) Ground-truth video frames.
(Middle) Reconstructed frames with varying token usage. (Bottom) The bottom section depicts
how ElasticTok dynamically adjusts token allocation over time, with the percentage of tokens used
correlating to different content complexities in the video.
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Figure 4 Performance comparison between baseline and ElasticTok-FSQ on ImageNet and
Video. The y-axis shows the percentage of samples that satisfy the reconstruction threshold, while
the x-axis represents the percentage of tokens used. (Left) On image, ElasticTok achieves a 3.5x and
1.3x efficiency boost at different reconstruction thresholds. (Right) On video, ElasticTok shows a
5x and 2.4x improvement over the baseline, maintaining superior performance while using fewer
tokens. Figure 10 in Appendix D shows reference examples of reconstruction quality for an image at
different thresholds.

4.2 MAIN RESULTS

Intuitively, the advantages of our elastic tokenization allow variable length codes that can depend
on the visual content of a given image or video. Figure 3 shows some qualitative examples that
demonstrate this. All images and videos are provided the same MSE reconstruction quality (0.003)
threshold to satisfy, and require different number of tokens depending on the complexity the images.
Simpler images such as the blue cushion require fewer tokens, while more complex images such as
the painting or recipe have details that require more tokens to properly encode. For the provided
video example, we generally see larger token usage spikes in the event of a scene change or faster
motion, such as when the phone animates a transition screen, or when the finger scrolls up in the
newsfeed. More qualitative examples can be found at: elastic-tokenizer.github.io.

Figure 4 shows quantitative comparisons between our method and different fixed token baselines
trained at each token length. In order to show the benefits of elastic token representations, we compute
a quantitative metric that measures the percentage of images or videos blocks in which a model
satisfies a specified reconstruction (MSE) threshold. As shown, our method can leverage its elastic
representations to achieve similar reconstruction satisfactory percentages compared to baselines
while using 1.3x - 5x fewer tokens, depending on the given threshold. Generally, more lax (0.015)
reconstruction thresholds present larger performance improvements due to more room to use fewer
than max tokens. In contrast, more strict (0.001) thresholds usually almost always require all tokens.
Different thresholds may be useful for different cases, where more lossy encodings can be used for
simple VQA tasks, while more accurate reconstructions are useful for tasks such as image / video
generation. Table 3 shows similar results for the continuous variant of our model, compared against a
single baseline model fixed to 50% token usage.

Figure 5 shows qualitative examples of progressive reconstruction quality as we increase the number
of tokens. Different visual inputs will saturate reconstruction quality at a different number of tokens.
This flexibility allows us to use a large number of tokens for very hard images (e.g.inputs with detailed
fine-grained text), while saving tokens on inputs that are easier to reconstruct. Figure 6 shows the
performance of our method as we increase the sequence length of the model – performing better as
sequence length increases due to being able to leverage long context for more accurate reconstruction.
However, performance degrades at the max context length (1M tokens), which we hypothesize is due
to not enough training due to our relatively limited compute budget for that context size.
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Figure 5 Loss progressively declines as more tokens are used (ElasticTok-FSQ). The top row
illustrates the impact on text clarity, while the bottom row shows the effect on image sharpness. The
graphs on the right quantify the reconstruction loss relative to token usage percentage, showing a
rapid decline as more tokens are consumed.

Figure 6 Progressive performance increase with more frames (ElasticTok-FSQ). Performance
improves with increasing sequence length, peaking around 100 frames before a slight decline. (Note
the log scale for the x-axis)

Takeaway: ElasticTok offers significant advantages in image and video reconstruction by using
variable-length codes that depend on content complexity. Qualitatively, simpler images require fewer
tokens, while more complex ones need more tokens for accurate encoding. Quantitatively, elastic
tokenization achieves similar reconstruction quality compared to fixed token baselines while using up
to 5x fewer tokens

4.3 DOWNSTREAM TASKS

In order to evaluate the quality of our learned representations, we finetune a pretrained language
model with our visual tokens, and evaluate on text-image and text-video VQA tasks. We use
OpenLLaMA-3B (Geng and Liu, 2023), and finetune with visual tokens from the continuous variant
of our model (max 2048 tokens). We finetune the entire model for 80M text-image pairs from
COYO-700m (Byeon et al., 2022), and chat finetune with data from Chen et al. (2023). For video, we
continue to train on WebVid10M (Bain et al., 2021) and finetune on Video-ChatGPT (Maaz et al.,
2023) instruct data. Figure 7 shows evaluation results on GQA (Ainslie et al., 2023), POPE (Li et al.,
2023b), MSVD-QA (Xu et al., 2017), and MSRVTT-QA (Xu et al., 2017) at a varying number of
input inference tokens. Benchmark performance generally increases at the number inference tokens
increases, suggesting the usefulness of our model as a means for users to potentially be able to
flexibly choose how many tokens use, as a compute / accuracy trade-off, especially useful for users
with more limited compute / API call budgets. Lastly, Table 1 shows that our VLM finetuned on
our adaptive tokens can match the performance of a VLM finetuned on a fixed token (50% tokens)
baseline tokenizer, suggesting that there is little to no loss in accuracy when switching to ElasticTok
as the tokenizer, with additional added adaptivity benefits.
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Figure 7 The accuracy and compute trade-
off with varying percentages of tokens used
(ElasticTok-VAE). This allows users to adjust the
accuracy based on computational budget.

GQA POPE MSVD MSRVTT
Ours 54% 82% 52% 37%
Baseline 54% 82% 53% 37%

Table 1 Comparison of our method with
baseline on image and video benchmarks
(ElasticTok-VAE). Our method can match the
performance of the baseline trained on a fixed
number (100%) of tokens. However, baseline
models are restricted to a fixed token output, and
require full pretraining a new model for every
possible token length, whereas ElasticTok only
requires a single model to generalize to all token
lengths.

4.4 INFERENCE

Speed. Table 2 shows comparisons of the accuracy and inference speed (NFEs) for each of these
methods. Error rate is computed as the relative error between the ground truth number of tokens used,
and the number of tokens returned by each method. NFE (Number of Function Evaluations) is the
number of forward passes that are needed. In generally, methods closer to exhaustive search (Full /
Binned Search) are more accurate, while methods that orders of magnitudes faster generally have
much higher error around 5− 10%. Users with less compute available for inference may want to use
the faster inference methods at a slight cost to token encoding accuracy. Users with a lot of compute
can leverage more exhaustive approaches while retaining fast inference speed by computing search
for token lengths as parallel batches.

Target Objective. One benefit of computing elastic tokens is that we can switch to any target objective
during inference, and can adaptively tokenize visual content based on certain visual preferences,
or aspects that users want to prioritize by allocating more tokens to. For example, Figure 8 shows
qualitative examples comparing running inference using an MSE objective versus using a CLIP loss
(image-image cosine distance) On average, thresholds are set so that both models as the same average
number of tokens over the dataset, but OCR capabilities of CLIP allow it to show preference towards
allocating more tokens in reconstructing the text (bottom images), while deprioritizing other images
such as the fine-grained details in the bottom image. In general, any scalar function is usable, and
does not need to be differentiable (e.g., running OCR detection, and computing a more direct text
reconstruction metric, or running segmentation and priortizing object clarity).

Takeaway: ElasticTok allows multiple adaptive inference methods: full search is the most accurate
but slow, while faster methods like neural regression slightly sacrifice accuracy (5-10% error) for
speed. Users with less compute can opt for faster methods with a slight accuracy loss. Additionally,
inference objectives can be adapted to prioritize specific content, such as focusing on text over other
image features, allowing for flexible token allocation based on user preferences.

4.5 FREQUENCY ANALYSIS

We hypothesize that visual content that tends to have more fine-grained details, and high-frequncy
features tends to use a higher number of tokens. To investigate this, we run inference on 2k videos (5s,
32 blocks), and also compute an approximate frequency metric for each video block. For each frame
in a video block, we convert it to grayscale, run a Sobel edge detection filter (horizontal / vertical), and
compute average gradient magnitudes. Figure 9 shows scatter plots and correlation for the single and
multi block cases. For the single block case, the correlation between encoding length and amount of
high-frequency detail is quite high (0.77). The multi block case is lower (0.67), which is most likely

8
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due to slight decorrelation from being able to leverage past frames (conditional encoding) in videos.

Inference Method Error Rate NFEs
Full Search 0% 4096
Binned Search (100) 0.5% 100
Binary Search 7% 12
Neural Regression 9% 1

Table 2 Comparison of inference methods
showing their respective error rates, number of
function evaluations (NFEs) (ElasticTok-FSQ.
Note that while Full and Binned Search are more
computationally expensive, they could also bene-
fit more from parallel function evaluations if com-
pute is available.

GT MSE CLIP

3101, 1166

437, 1704

437692, 1953 
1704

1252, 2008

76% Tokens 28% Tokens

30% Tokens 50% Tokens

Figure 8 Comparison of different loss func-
tions for inference (ElasticTok-FSQ). Inference
with a CLIP model (cosine distance) prioritizes
textual reconstruction (bottom) while deprioritiz-
ing other detailed visual features (top).

Takeaway: Pearson correlation shows that ElasticTok adaptively allocate number of tokens for videos
with more detailed visual content and high-frequency features require more tokens for encoding.

5 RELATED WORK

Adaptive Representation. There have been a lot of research studies on learning adaptive or ordered
representations. Early work on nested dropout (Rippel et al., 2014) proposes using dropout (Srivastava
et al., 2014) in the context of autoencoders to learn ordered representations. In this approach, an
index is sampled from a prior distribution, and all units with an index larger than the sampled one are
dropped. Similar to our ElasticTok, this method imposes an inherent ordering on the representation
dimensions. Units that are dropped less frequently encode more important information, while those
that are dropped more often encode less critical details. Other works study adaptive architectures
based on context size (Kim and Cho, 2020), slimmable neural networks that train a network by
sampling multiple sub-networks of different channel numbers simultaneously, where the weights
are shared among different widths (Lee and Shin, 2018; Yu et al., 2018), adaptive width and depth
in BERT (Hou et al., 2020), or dropping random layers during training to increase robustness
to pruning (Fan et al., 2019; Huang et al., 2016). Dieleman et al. (2021) learns a variable-rate
representation on audio applied to speech. Transframer (Nash et al., 2022) uses variable-length
DCT representations with transformers for general image and frame-level video prediction tasks.
Matryoshka representation learning (Kusupati et al., 2022) explores adding nested substructures
inside the standard Transformer block. Graves (2016) explores using recurrent neural networks to
learn adaptive computation for learning tasks. However, none of the previous works consider learning
elastic representations in autoencoders for long sequences like videos. Our work provides a scalable
solution for representing videos with elastic representations.

Tokenization. Representing visual images with a set of discrete tokens has been extensively studied,
such as in VQVAE (Van Den Oord et al., 2017; Razavi et al., 2019) and VQGAN (Yu et al., 2021).
Recent research has highlighted several shortcomings of traditional tokenization methods, including
low vocabulary utilization. In response, alternative approaches like FSQ have been explored (Mentzer
et al., 2024; Yu et al., 2023b). These discrete visual tokens facilitate integration with next-token
prediction in language models and multimodal models (Yu et al., 2023b; Liu et al., 2024a; Xie et al.,
2024; Wang et al., 2024). Parallel to this, other studies have investigated the use of continuous
embeddings for representing images and videos (Lin et al., 2023; Liu et al., 2023; Zhu et al., 2023).
Other research proposes next-scale prediction (Tian et al., 2024), which employs hierarchical multi-
scale modeling to first capture coarse details, followed by finer ones. However, this approach requires
a manually defined hierarchy and uses a fixed number of tokens. Our work, while complementary

9
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to these efforts, focuses on adaptive representation and can be directly applied to both discrete and
continuous approaches.

Figure 9 Comparison of token usage versus frequency magnitude in single-block and multi-
block frequency analysis (ElasticTok-FSQ). Both scatter plots show a strong positive correlation
between frequency magnitude and token usage in a single-block setting a multi-block setting. The
red lines represent the linear regression fits for each case.

Compression. Adaptive learning for images and video have also been well-studied in the context
of variable-rate compression. JPEG (Christopoulos et al., 2000) remains one of the most popular
lossy image compression algorithms in the world, using a combination of DCT with quantization
followed by entropy coding. For video, codecs such as H264 (Wiegand et al., 2003), H265 (Sze et al.,
2014), VP9 (Mukherjee et al., 2015), and AV1 (Han et al., 2021) are popularly used compression
algorithms. Prior works have additionally explored extending neural networks to learn more effective
compressors. Theis et al. (2022) and Minnen et al. (2018) introduce methods that leverage CNNs to
learn effective variable bit-rate compression algorithms over images competitive with JPEG. Li et al.
(2023a), Mentzer et al. (2022), and Li et al. (2021) extend neural networks to learn how to effectively
compress videos. While similar to our work in that these methods also learn adaptive encodings,
these compression methods are more difficult to utilize for downstream training and generation tasks
due to lack of direct compatibility. In contrast, our work builds upon existing tokenization strategies
(VAE, FSQ) that have shown to work well for such downstream tasks, as well as take advantage of
the adaptive representations to better utilize compute.

6 DISCUSSION AND CONCLUSION

In this work, we propose an elastic representation approach to address the inefficiencies of traditional
video encoding approaches through an adaptive encoding method that selectively encodes new
information based on the context of previous frames. By dynamically allocating resources, it reduces
computational costs while maintaining high-quality video representation. The proposed technique
of dropping tokens at the end of each sequence allows the model to prioritize essential information,
ensuring scalability and efficiency during inference. ElasticTok demonstrates strong performance in
both video representation and downstream tasks. Lastly, we identify some limitations of our method,
as well as possible directions for future work.

• Masking schemes: Our model currently slightly underperforms baselines at the tail ends of
encoding lengths, which we hypothesize may be partially due to conflicting representations that
the model needs to learn in each case (low frequency, global encodings vs high frequency, local
encodings). Preliminary investigations showed that changing the way tokens are distributed (as
opposed to our method of left-aligned tokens) improved reconstruction accuracy. Future work may
also explore learnable encoding masks to dynamically select which tokens to keep for each input.

• Other temporal modalities: Although our primary focus was on image and video, our method
is generally modality-agnostic and can be extended to any temporal data, such as audio and
decision-making trajectories (e.g., state, action, reward).

• Conditional encoding and different training objectives: Our focus was on leveraging temporal
encoding to achieve more efficient tokenization while retaining high reconstructed visual quality.
However, our method can be explored more broadly as a means of encouraging meaningful lossy
encodings. For example, robotics models can learn text-conditioned visual encoders that capture
only task-relevant information from an image. In other scenarios, different reconstruction objectives
could prioritize facial or textual reconstruction while ignoring background reconstruction accuracy.
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A MODEL CONFIGURATION

ElasticTok-VAE (Continuous) ElasticTok-FSQ (Discrete)

Parameters 210M 210M
Frame Resolution 256× 256 256× 256
Block Size (Mmax) 2048 tokens (4 frames) 4096 tokens (4 frames)
Mmin 128 tokens 256 tokens
Max Number of Frames 1024 1024
Patch Size (T, H, W) (2, 8, 8) (1, 8, 8)
Hidden Size 1024 1024
FFN Size 2048 2048
Encoder Layers 10 10
Decoder Layers 10 10
RoPE Theta 5000000 50000000
Max Sequence Length 512K 1M
FSQ Dims N/A 8, 8, 8, 5, 5, 5 (64k codes)
VAE Dim 8 N/A
KL Weight 1e-8 N/A

B TRAINING DETAILS

The tables below showing trainin details for each of our models. Our Long Video model is trained on
a mix of images and video (Batch Split), and each run (e.g. Long Video (2)) is initialized from the
previous run (e.g. Long Video (1)). For the discrete (FSQ) model, each block has 4k tokens (256
blocks = 1M tokens), and the continuous (VAE) model has 2k tokens in each block (256 blocks =
512K tokens).

ImageNet Long Video (1) Long Video (2) Long Video (3)

Batch Size 256 256 256 256
# Blocks 1 1 2 4
Batch Split (Image / Video) 100%/0% 50%/50% 50%/50% 25%/75%
Total Iterations 200k 200k 80k 50k
Learning Rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Optimizer AdamW AdamW AdamW AdamW
Weight Decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Warmup Iterations 10k 10k 5k 2k

Long Video (4) Long Video (5) Long Video (6) Long Video (7)

Batch Size 64 16 8 4
# Blocks 16 64 128 256
Batch Split (Image / Video) 25%/75% 25%/75% 25%/75% 25%/75%
Total Iterations 10k 1k 500 200
Learning Rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Optimizer AdamW AdamW AdamW AdamW
Weight Decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Warmup Iterations 1k 200 100 25

C DATA CURATION DETAILS

Image Data We use COYO-700M (Byeon et al., 2022) for our text-image data. We filter out images
with less than 256 × 256 images. After accounting for stale links, we are left with roughly 350M
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text-image pairs. For better text correspondance, we further generate synthetic captions for each
image using the mooondream2 model.

Video Data To collect our video data, we first scrape Common Crawl to collect video links. After
deduplication, we download each video and split then into individual scenes using PySceneDetect.
For each scene we run various filtering metrics, such as OCR detection, NSFW scoring, motion score,
and aesthetic scoring. Filtering metrics are aggregated over each scene in a video, and used to select
a final subset of 6M videos ranging from 4 seconds to 2 minutes in length.

D RECONSTRUCTION EXAMPLES BY MSE

We include the reconstructed images at different Mean Squared Error (MSE) loss thresholds in
Figure 10 as a reference for how the images appear at various MSE thresholds.

0.0040.0070.010.020.04

GT Recon With MSE

Figure 10 Comparison of reconstructed image quality at varying MSE thresholds. The ground
truth (GT) image is displayed on the left, followed by reconstructions at different MSE thresholds
(0.04, 0.02, 0.01, 0.007, and 0.004), showing progressive improvement in fidelity as the threshold
decreases.

E DETAILS ON NEURAL REGRESSION MODEL

To collect training data, we first run inference with the tokenizer for a pre-defined noise target of
0.003 on 100K sequences to get pairs of image/video and token lengths. To train the neural regression
model, we augment the pretrained encoder model with alternating downsampling and transformer
blocks. We downsample by a factor of 4 over sequence each time each time using a simple size 4
stride 4 1D conv, and each set of transformer blocks consists of 4 layers. The final output is pooled,
and fed through a 2 hidden layer MLP to output a single scalar per block. The regressor is optimized
using MSE loss, and regresses to a normalized token length in the range [−1, 1].

F FURTHER EXPERIMENTS

Table 3 Performance of ElasticTok-VAE on videos. Values in the table show the percentage of
reconstructed video blocks that satisfy a given reconstruction threshold. The baseline is a 50% fixed
token baseline, and our method uses variable token lengths with an average of 50% token usage over
the dataset.

Threshold
0.001 0.003 0.015

Baseline 40% 78% 99%
Ours 50% 88% 99%

Table 3 above shows the same metrics as Fig 4 but on our continuous variant ElasticTok-VAE model.
Similar to ElasticTok-FSQ, the VAE variant can reliably encode more videos to satisfy a given
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reconstruction threshold while using the same number of tokens (on average) as a FLOPs identical
continuous variant baseline.

Table 4 Quality baseline comparison with ElasticTok-FSQ on videos. Values shown in the table
represent the average percentage of tokens used by each model to achieve the same worse-case MSE
(compute MSE over each video block, and take the max MSE over the all blocks in the video). Our
method uses fewer tokens to acheive the same worse-case reconstruction as the baseline.

Threshold
0.001 0.003 0.015

Baseline 78% 57% 15%
Ours 75% 37% 9.4%

Table 4 above shows running a quality baseline comparison between our method and a baseline. For
our method, we encode each evaluation video using a given reconstruction threshold, and compute
the average percentage of tokens per frame. For the baseline, we find the needed fixed tokens per
frame such that the worse-case reconstruction MSE over the whole video matches the worst-case
MSE of ElasticTok’s reconstruction. Intuitively, fixed token baselines perform worse due to allocated
a fixed number of tokens per video block, and must optimize for the worst-case scenario. In contrast,
ElasticTok can save tokens when the videos transition to simpler to encode scenes while allocating
more tokens to more complex scenes.

Table 5 Ablation comparing with and without encoder conditioning on the masked tokens.
Values in the table show the percentage of reconstructed video blocks that satisfy a given reconstruc-
tion threshold under the constraint that both models use the same average percentage of tokens.

Threshold
0.001 0.003 0.015

With Enc Cond 36% 79.6% 98.5%
Without Enc Cond 33.1% 75.3% 98.4%

Table 5 shows a comparison of ElasticTok with and without encoder conditioning on the mask.
ElasticTok with conditioning slightly outperforms the model without conditioning. As such, it may
be more efficient to train the model without encoder conditioning depending on expected size of the
downstream models - as this present a trade-off in terms of slightly better encoding quality at the cost
of 2x slower inference speed.
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G MORE PROGRESSIVE RECONSTRUCTION EXAMPLES

Figure 11 Progressive reconstruction of a given images as you increasing the number of tokens
(left-to-right in the encoding). Images are in raster scan order, and the number of tokens used is in the
bottom right of each image (from 256 - 4096 interpolated with 20 values on a log scale)
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Figure 12 Progressive reconstruction of a given images as you increasing the number of tokens
(left-to-right in the encoding). Images are in raster scan order, and the number of tokens used is in the
bottom right of each image (from 256 - 4096 interpolated with 20 values on a log scale)
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Figure 13 Progressive reconstruction of a given images as you increasing the number of tokens
(left-to-right in the encoding). Images are in raster scan order, and the number of tokens used is in the
bottom right of each image (from 256 - 4096 interpolated with 20 values on a log scale)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 14 Progressive reconstruction of a given images as you increasing the number of tokens
(left-to-right in the encoding). Images are in raster scan order, and the number of tokens used is in the
bottom right of each image (from 256 - 4096 interpolated with 20 values on a log scale)
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