
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ELASTICTOK: ADAPTIVE TOKENIZATION FOR IMAGE
AND VIDEO

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient video tokenization remains a key bottleneck in learning general purpose
vision models that are capable of processing long video sequences. Prevailing
approaches are restricted to encoding videos to a fixed number of tokens, where too
few tokens will result in overly lossy encodings, and too many tokens will result
in prohibitively long sequence lengths. In this work, we introduce ElasticTok, a
method that conditions on prior frames to adaptively encode a frame into a variable
number of tokens. To enable this in a computationally scalable way, we propose
a masking technique that drops a random number of tokens at the end of each
frames’s token encoding. During inference, ElasticTok can dynamically allocate
tokens when needed – more complex data can leverage more tokens, while simpler
data only needs a few tokens. Our empirical evaluations on images and video
demonstrate the effectiveness of our approach in efficient token usage, paving the
way for future development of more powerful multimodal models, world models,
and agents. Video examples of using ElasticTok can be found on our website:
elastic-tokenizer.github.io

0 40 144 228 300 343 408 491

G
T

Re
co

n

t=0s t=21sTime

Figure 1 ElasticTok adaptively represent video based on information available. (Top) Ground-
truth video frames. (Middle) Reconstructed frames with varying token usage. (Bottom) The bottom
section depicts how ElasticTok dynamically adjusts token allocation over time, with the percentage
of tokens used correlating to different content complexities in the video.

1 INTRODUCTION

Efficient video tokenization remains a key bottleneck in learning general purpose vision models that
are capable of processing long video sequences – a crucial aspect towards developing intelligent
agents for the visual world. Prevailing approaches (Van Den Oord et al., 2017; Esser et al., 2021;
Yu et al., 2023a; Yan et al., 2021) are restricted to encoding videos to a fixed number of tokens
irrespective of the visual content of the original video. As a result, being able to reliably encode with

1

https://elastic-tokenizer.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

little information loss requires increasing the number of tokens to account for the worst case, highly
complex visual inputs. However, this in turn causes many wasted tokens on simpler data, and leads to
significant computational challenges for downstream training, where encoding a video or trajectory
can require tens or even hundreds of millions of tokens, resulting in substantial computational costs
and inefficiency (Liu et al., 2024a; Brooks et al., 2024; Liu et al., 2024b). On the other hand, using a
too few number of tokens will result in lossy encodings, and fundamentally limit the capabilities of
vision models when processing more complex visual data.

Intuitively, we would want do learn a model that adaptively encodes visual input in a data-dependent
manner to variable length encodings, similar to how existing works in image and video compres-
sion (Richardson, 2004; Li et al., 2023a; Christopoulos et al., 2000; Chen et al., 2017) compress data
to a varying number of bytes. Taking inspiration from this, we introduce ElasticTok, a method that
conditions on prior frames to adaptively encode a frame into a variable number of tokens. To enable
this in a computationally scalable way, we propose a masking technique that drops a random number
of tokens at the end of each frame’s token encoding. During inference, ElasticTok can dynamically
allocate tokens when needed – more complex data can leverage more tokens, while simpler data only
needs a few tokens.

Our empirical evaluations demonstrate the effectiveness of ElasticTok, highlighted below.

• We show that ElasticTok can leverage adaptive tokenization to efficiently represent long videos
with up to 2-5x fewer tokens.

• We show that ElasticTok enables flexibility in downstream vision-language tasks, allowing users to
allocate tokens based on their compute budget.

• We show that ElasticTok allows leveraging different objectives during inference to adaptively trade
off various semantic aspects of images.

2 BACKGROUND

2.1 BLOCKWISE RINGATTENTION

Blockwise RingAttention (Liu et al., 2024b) is a sequence parallelism technique for efficiently
training transformers on long-context data. Each rank along the sequence parallel sharding axis
retains non-overlapping, equal sizes slices of the full sequence. During an attention operation, each
sequence parallel rank calculates its own corresponding Qi,Ki, Vi, and computes its own portion of

Figure 2 ElasticTok adaptively encodes image and video to variable length outputs based on
the complexity of the input data. Single block uses an Encoder-Decoder pipeline with a sampled
latent mask. Multi-block extends this with a Block Causal Mask to handle longer video sequences.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

the full attention as: softmax(QT
i [K1, . . . ,KS])[V1, . . . , VS], where S is size of the sequence parallel

dimension. Instead of naively all-gathering K,V , RingAttention proposes to iteratively pass Ki, Vi

blocks in a ring-structure, where rank i will pass its current key-value block to rank (i+ 1) mod S.
Importantly, RingAttention enables overlap between compute and communication by computing
the partial attention over the current block while communicating the next block. In this paper, we
leverage RingAttention to scale our method to long sequences of videos.

3 METHOD

In this section, we present ElasticTok, a scalable adaptive visual tokenizer than can efficiently encode
image and video. At a high level, we leverage a specialized random masking scheme when training
any standard autoencoder to learn our elastic encodings. In the following sections, we provide a more
detailed description of our model – first covering the simpler single block case (image / short video),
and then moving on to the multi block case (longer video). An overview of our method is shown in
Figure 2.

3.1 TRAINING

First, we consider a single-block case in which we want to learn elastic codes over an image or
a short video chunk (e.g., 4 frames). Let x represent a sequence of input frames, where images
are considered as 1 frame videos. Our proposed method extends upon any existing variants of
autoencoders (VQ-VAE (Van Den Oord et al., 2017), FSQ (Mentzer et al., 2024), VAE (Kingma,
2013)) by incorporating additional masking of the encoder tokens.

For each training input x, we first uniformly sample the number of tokens to keep ℓ ∼
U({Mmin, . . . ,Mmax}), where Mmin and Mmax define the supported range of encoding lengths.
Mmax is generally set as N , the maximum number of tokens the encoder can output (e.g., 2048 or
4096), and Mmin a lower bound such as 128 or 256. We found this lower bound necessary as we
found that sampling too few tokens could destabilize training. After sampling ℓ, we then compute its
mask m, defined as a binary vector of length N with the first ℓ values set to 1. Input x and mask m
are then fed into the encoder E(x,m) to compute z. z is masked as zm = z ⊙m, and fed through
the decoder D(zm) to produce x̂. Finally, our model optimizes a reconstruction loss, with potentially
auxiliary losses depending on the exact autoencoder being used (e.g., KL for VAE or VQ loss for
VQ-VAE). Although our method is generally architecture invariant, we opt to use ViTs (Dosovitskiy,
2020) as our encoder and decoders for simplicity.

We can extend our method to process longer video by breaking up video into blocks, with sizes
defined by the number of frames used for the single block model (e.g 4 frames per block). The
training process remains the same as the single block case, with two key differences: (1) masks for
each multi block video sequence are sampled independently for each block, and (2) a block causal
mask (block size N) is used in the encoder and decoder. The number of blocks is constrained only
by the transformer’s context size. We utilize a prior long-context method (Liu et al., 2024b) to train
ElasticTok on longer videos. Architecturally, there are no added parameters which we found useful
when progressively training our model from single block to multi block.

Exact details of our model’s forward pass are described in Algorithm 1.

3.2 INFERENCE

There are two primary ways to use ElasticTok for inference – by specify a target encoding length, or
a target reconstruction threshold.

Target encoding lengths. This method is simple to implement, as it only requires generating the
correct mask and running the input through the encoder. However, although such inference is simple
and efficient, it is difficult from a user’s perspective due to lack of knowledge of how many tokens to
specify.

Target reconstruction threshold. This method presents a more intuitive inference approach that will
automatically adaptively allocate tokens between different inputs based on a specified reconstruction
threshold (e.g., target pixel-wise MSE loss). Visual content that is easy to reconstruct may require

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

fewer tokens to meet the threshold whereas more complex inputs may require more tokens. Doing so
requires a search process over different encoding lengths to determine lowest encoding length that
still satisfies the given threshold.

We consider a few different search algorithms, detailed below:

• Full Search: Exhaustive search over every possible number of tokens lengths, and treat the result
as ground truth. We use our discrete latent with max 4096 tokens.

• Binned Search (100): Similar to Full Search, but only evaluate on 100 uniformly spaced token
lengths.

• Binary Search: We perform search using binary search, where the token length is the "array
index", and the evaluated reconstruction loss is the "array value." Note that this assumes that
reconstruction loss is monotonic with respect to token length, which is generally close to true, but
not fully accurate, hence error in the result produced.

• Neural Regression: We collect 100k examples of paired (image / video, token length) data, and
finetune our autoencoder to directly regress the number of tokens given an image or video.

Each search algorithm has its own trade-off between accuracy and efficiency – we further examine
this relationship in Section 4.4.

In the multi block case, we iteratively perform the search process for each block in a block autore-
gressive manner, using caching similar to in language models. Algorithm 2 provides more details on
the exact inference process.

Further ablations on conditioning the encoder on the mask (Table 5 in Appendix F) suggest that we
can additionally achieve 2x inference speedup at a slight cost to encoding quality. This may be a
better choice depending on the size of the downstream pretrained model.

Algorithm 1 Training
Required: Video x. Patch size Tp ×Hp ×Wp.
Required: Tokens per block Z
Required: Encoder E. Decoder D
Required: Min / Max token lengths Mmin,Mmax

// batch size, timesteps, height, width, channels
// x is B × T ×H ×W × C
x← PatchifyRearrange(x) // B × L×D
// L = T/Tp ∗H/Hp ∗W/Wp

// D = Tp ∗Hp ∗Wp ∗ C
Nb ← L/Z
for i in {0, . . . , Nb − 1} do

Sample ℓi ∼ U({Mmin, . . . ,Mmax})
Initialize masks mi ← 0Z

Fill masks mi[: ℓi] = 1
end for
Concatenate masks m← (m0, . . . ,mNb−1)
Encode z ← E(x,m) // B × L×Dz

Mask out along sequence length zm ← z ⊙m
Decode x̂← D(zm)
Compute loss L(x̂, x) // e.g., MSE + LPIPS

Algorithm 2 Inference
Required: Video x. Patch size Tp ×Hp ×Wp.
Required: Tokens per block Z.
Required: Encoder E. Decoder D
Required: Target reconstruction threshold t
// batch size, timesteps, height, width, channels
// x is B × T ×H ×W × C
x← PatchifyRearrange(x) // B × L×D
// L = T/Tp ∗H/Hp ∗W/Wp

// D = Tp ∗Hp ∗Wp ∗ C
Nb ← L/Z
Initialize KV cache c of length L
for i in {0, . . . , Nb − 1} do

// See Section 2.2 for search algorithms
ℓi,mi, c← SearchAlgo(xiZ:(i+1)Z , c, t,D,E)
Encode zi ← E(xiZ:(i+1)Z ,mi, c)⊙mi

end for
Return z ← (z0, . . . , zNb−1)

4 EXPERIMENTS

In this section, we introduce our evaluation setup and present the results of pretraining ElasticTok to
adaptively represent images and videos, as well as its performance on downstream tasks.

4.1 EXPERIMENTAL SETUP

Model details. We train 200M parameter discrete and continuous autoencoders on images and
video sequences. For learning discrete representations, we use FSQ (Mentzer et al., 2023), while
for continuous representations, we use a VAE (Kingma, 2013). Both models employ ViT encoders

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

and decoders, consisting of a single patchify strided convolutions (the transpose for the decoder),
followed by transformer blocks identical to those in LLaMA 2 (Touvron et al., 2023). Attention is
applied in a block-causal manner, with block size equal to the number of tokens per video block. The
encoder is additionally conditioned on the token mask (represented as a binary mask) by replacing 0’s
and 1’s with different learned embedding vectors, and then added to the video patchify output hidden
states. The bottleneck representations are computed through a linear projection on the encoder output.
Similar to prior works (Esser et al., 2021), we optimize both a pixel-wise reconstruction loss (MSE)
and a perceptual loss (LPIPS) (Johnson et al., 2016). Notably, we do not use a GAN (Goodfellow
et al., 2014), as we find it more difficult to stably train when progressively extending to much longer
sequences (e.g. 1000+ frames), which we leave to future work, as it is not the main focus of this
paper.

Training details. All models are jointly trained on 256 × 256 images and 24 FPS videos. Each
video block consists of 4 frames, and joint training is conducted by treating images as single-frame
videos, replicating each image 4 times to match the block size. Each block is encoded into 2048 or
4096 tokens by the continuous and discrete autoencoders, respectively. Following prior research in
LWM (Liu et al., 2024a) on scaling sequence length, we begin by training our models on single-block
cases (images and short videos) and progressively extend the context length to cover up to 40-second
videos (512K to 1M tokens). We train our long video models using v4-512 TPUs from Google Cloud
on the COYO-700M image dataset and a custom dataset consisting of 6M videos scraped from the
web. We additionally train an image-only model on ImageNet using v4-256 TPUs. Details for further
training details can be find in Appendix B, and data details in Appendix C

Baselines. We compare our proposed method against fixed token baselines trained at a varying token
capacities. The architecture, training processes, and total FLOPs are exactly the same as our method
with the only difference being restricted to one fixed mask, instead of sampling variable masks.

Evaluation Search Algorithm Unless otherwise noted, all results use the Binary Search algorithm
as described in Section 3.2.

0 60 192 293 349 420 480 511

G
T

Re
co

n

47% Tokens (962)

GT Recon GT Recon GT Recon GT Recon

15% Tokens (318) 78% Tokens (1595) 100% Tokens (2048)

t=0s t=21sTime

Figure 3 ElasticTok adaptively encodes image and video to variable length outputs based
on the complexity of the input data (using ElasticTok-VAE). The top rows shows examples
of ElasticTok on images. Below shows a video example with: (Top) Ground-truth video frames.
(Middle) Reconstructed frames with varying token usage. (Bottom) The bottom section depicts
how ElasticTok dynamically adjusts token allocation over time, with the percentage of tokens used
correlating to different content complexities in the video.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.5x

1.3x

5x

2.4x

1.3x

Figure 4 Performance comparison between baseline and ElasticTok-FSQ on ImageNet and
Video. The y-axis shows the percentage of samples that satisfy the reconstruction threshold, while
the x-axis represents the percentage of tokens used. (Left) On image, ElasticTok achieves a 3.5x and
1.3x efficiency boost at different reconstruction thresholds. (Right) On video, ElasticTok shows a
5x and 2.4x improvement over the baseline, maintaining superior performance while using fewer
tokens. Figure 10 in Appendix D shows reference examples of reconstruction quality for an image at
different thresholds.

4.2 MAIN RESULTS

Intuitively, the advantages of our elastic tokenization allow variable length codes that can depend
on the visual content of a given image or video. Figure 3 shows some qualitative examples that
demonstrate this. All images and videos are provided the same MSE reconstruction quality (0.003)
threshold to satisfy, and require different number of tokens depending on the complexity the images.
Simpler images such as the blue cushion require fewer tokens, while more complex images such as
the painting or recipe have details that require more tokens to properly encode. For the provided
video example, we generally see larger token usage spikes in the event of a scene change or faster
motion, such as when the phone animates a transition screen, or when the finger scrolls up in the
newsfeed. More qualitative examples can be found at: elastic-tokenizer.github.io.

Figure 4 shows quantitative comparisons between our method and different fixed token baselines
trained at each token length. In order to show the benefits of elastic token representations, we compute
a quantitative metric that measures the percentage of images or videos blocks in which a model
satisfies a specified reconstruction (MSE) threshold. As shown, our method can leverage its elastic
representations to achieve similar reconstruction satisfactory percentages compared to baselines
while using 1.3x - 5x fewer tokens, depending on the given threshold. Generally, more lax (0.015)
reconstruction thresholds present larger performance improvements due to more room to use fewer
than max tokens. In contrast, more strict (0.001) thresholds usually almost always require all tokens.
Different thresholds may be useful for different cases, where more lossy encodings can be used for
simple VQA tasks, while more accurate reconstructions are useful for tasks such as image / video
generation. Table 3 shows similar results for the continuous variant of our model, compared against a
single baseline model fixed to 50% token usage.

Figure 5 shows qualitative examples of progressive reconstruction quality as we increase the number
of tokens. Different visual inputs will saturate reconstruction quality at a different number of tokens.
This flexibility allows us to use a large number of tokens for very hard images (e.g.inputs with detailed
fine-grained text), while saving tokens on inputs that are easier to reconstruct. Figure 6 shows the
performance of our method as we increase the sequence length of the model – performing better as
sequence length increases due to being able to leverage long context for more accurate reconstruction.
However, performance degrades at the max context length (1M tokens), which we hypothesize is due
to not enough training due to our relatively limited compute budget for that context size.

6

https://elastic-tokenizer.github.io/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

GT More Tokens Used0% 100%

Figure 5 Loss progressively declines as more tokens are used (ElasticTok-FSQ). The top row
illustrates the impact on text clarity, while the bottom row shows the effect on image sharpness. The
graphs on the right quantify the reconstruction loss relative to token usage percentage, showing a
rapid decline as more tokens are consumed.

Figure 6 Progressive performance increase with more frames (ElasticTok-FSQ). Performance
improves with increasing sequence length, peaking around 100 frames before a slight decline. (Note
the log scale for the x-axis)

Takeaway: ElasticTok offers significant advantages in image and video reconstruction by using
variable-length codes that depend on content complexity. Qualitatively, simpler images require fewer
tokens, while more complex ones need more tokens for accurate encoding. Quantitatively, elastic
tokenization achieves similar reconstruction quality compared to fixed token baselines while using up
to 5x fewer tokens

4.3 DOWNSTREAM TASKS

In order to evaluate the quality of our learned representations, we finetune a pretrained language
model with our visual tokens, and evaluate on text-image and text-video VQA tasks. We use
OpenLLaMA-3B (Geng and Liu, 2023), and finetune with visual tokens from the continuous variant
of our model (max 2048 tokens). We finetune the entire model for 80M text-image pairs from
COYO-700m (Byeon et al., 2022), and chat finetune with data from Chen et al. (2023). For video, we
continue to train on WebVid10M (Bain et al., 2021) and finetune on Video-ChatGPT (Maaz et al.,
2023) instruct data. Figure 7 shows evaluation results on GQA (Ainslie et al., 2023), POPE (Li et al.,
2023b), MSVD-QA (Xu et al., 2017), and MSRVTT-QA (Xu et al., 2017) at a varying number of
input inference tokens. Benchmark performance generally increases at the number inference tokens
increases, suggesting the usefulness of our model as a means for users to potentially be able to
flexibly choose how many tokens use, as a compute / accuracy trade-off, especially useful for users
with more limited compute / API call budgets. Lastly, Table 1 shows that our VLM finetuned on
our adaptive tokens can match the performance of a VLM finetuned on a fixed token (50% tokens)
baseline tokenizer, suggesting that there is little to no loss in accuracy when switching to ElasticTok
as the tokenizer, with additional added adaptivity benefits.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 7 The accuracy and compute trade-
off with varying percentages of tokens used
(ElasticTok-VAE). This allows users to adjust the
accuracy based on computational budget.

GQA POPE MSVD MSRVTT
Ours 54% 82% 52% 37%
Baseline 54% 82% 53% 37%

Table 1 Comparison of our method with
baseline on image and video benchmarks
(ElasticTok-VAE). Our method can match the
performance of the baseline trained on a fixed
number (100%) of tokens. However, baseline
models are restricted to a fixed token output, and
require full pretraining a new model for every
possible token length, whereas ElasticTok only
requires a single model to generalize to all token
lengths.

4.4 INFERENCE

Speed. Table 2 shows comparisons of the accuracy and inference speed (NFEs) for each of these
methods. Error rate is computed as the relative error between the ground truth number of tokens used,
and the number of tokens returned by each method. NFE (Number of Function Evaluations) is the
number of forward passes that are needed. In generally, methods closer to exhaustive search (Full /
Binned Search) are more accurate, while methods that orders of magnitudes faster generally have
much higher error around 5− 10%. Users with less compute available for inference may want to use
the faster inference methods at a slight cost to token encoding accuracy. Users with a lot of compute
can leverage more exhaustive approaches while retaining fast inference speed by computing search
for token lengths as parallel batches.

Target Objective. One benefit of computing elastic tokens is that we can switch to any target objective
during inference, and can adaptively tokenize visual content based on certain visual preferences,
or aspects that users want to prioritize by allocating more tokens to. For example, Figure 8 shows
qualitative examples comparing running inference using an MSE objective versus using a CLIP loss
(image-image cosine distance) On average, thresholds are set so that both models as the same average
number of tokens over the dataset, but OCR capabilities of CLIP allow it to show preference towards
allocating more tokens in reconstructing the text (bottom images), while deprioritizing other images
such as the fine-grained details in the bottom image. In general, any scalar function is usable, and
does not need to be differentiable (e.g., running OCR detection, and computing a more direct text
reconstruction metric, or running segmentation and priortizing object clarity).

Takeaway: ElasticTok allows multiple adaptive inference methods: full search is the most accurate
but slow, while faster methods like neural regression slightly sacrifice accuracy (5-10% error) for
speed. Users with less compute can opt for faster methods with a slight accuracy loss. Additionally,
inference objectives can be adapted to prioritize specific content, such as focusing on text over other
image features, allowing for flexible token allocation based on user preferences.

4.5 FREQUENCY ANALYSIS

We hypothesize that visual content that tends to have more fine-grained details, and high-frequncy
features tends to use a higher number of tokens. To investigate this, we run inference on 2k videos (5s,
32 blocks), and also compute an approximate frequency metric for each video block. For each frame
in a video block, we convert it to grayscale, run a Sobel edge detection filter (horizontal / vertical), and
compute average gradient magnitudes. Figure 9 shows scatter plots and correlation for the single and
multi block cases. For the single block case, the correlation between encoding length and amount of
high-frequency detail is quite high (0.77). The multi block case is lower (0.67), which is most likely

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

due to slight decorrelation from being able to leverage past frames (conditional encoding) in videos.

Inference Method Error Rate NFEs
Full Search 0% 4096
Binned Search (100) 0.5% 100
Binary Search 7% 12
Neural Regression 9% 1

Table 2 Comparison of inference methods
showing their respective error rates, number of
function evaluations (NFEs) (ElasticTok-FSQ.
Note that while Full and Binned Search are more
computationally expensive, they could also bene-
fit more from parallel function evaluations if com-
pute is available.

GT MSE CLIP

3101, 1166

437, 1704

437692, 1953
1704

1252, 2008

76% Tokens 28% Tokens

30% Tokens 50% Tokens

Figure 8 Comparison of different loss func-
tions for inference (ElasticTok-FSQ). Inference
with a CLIP model (cosine distance) prioritizes
textual reconstruction (bottom) while deprioritiz-
ing other detailed visual features (top).

Takeaway: Pearson correlation shows that ElasticTok adaptively allocate number of tokens for videos
with more detailed visual content and high-frequency features require more tokens for encoding.

5 RELATED WORK

Adaptive Representation. There have been a lot of research studies on learning adaptive or ordered
representations. Early work on nested dropout (Rippel et al., 2014) proposes using dropout (Srivastava
et al., 2014) in the context of autoencoders to learn ordered representations. In this approach, an
index is sampled from a prior distribution, and all units with an index larger than the sampled one are
dropped. Similar to our ElasticTok, this method imposes an inherent ordering on the representation
dimensions. Units that are dropped less frequently encode more important information, while those
that are dropped more often encode less critical details. Other works study adaptive architectures
based on context size (Kim and Cho, 2020), slimmable neural networks that train a network by
sampling multiple sub-networks of different channel numbers simultaneously, where the weights
are shared among different widths (Lee and Shin, 2018; Yu et al., 2018), adaptive width and depth
in BERT (Hou et al., 2020), or dropping random layers during training to increase robustness
to pruning (Fan et al., 2019; Huang et al., 2016). Dieleman et al. (2021) learns a variable-rate
representation on audio applied to speech. Transframer (Nash et al., 2022) uses variable-length
DCT representations with transformers for general image and frame-level video prediction tasks.
Matryoshka representation learning (Kusupati et al., 2022) explores adding nested substructures
inside the standard Transformer block. Graves (2016) explores using recurrent neural networks to
learn adaptive computation for learning tasks. However, none of the previous works consider learning
elastic representations in autoencoders for long sequences like videos. Our work provides a scalable
solution for representing videos with elastic representations.

Tokenization. Representing visual images with a set of discrete tokens has been extensively studied,
such as in VQVAE (Van Den Oord et al., 2017; Razavi et al., 2019) and VQGAN (Yu et al., 2021).
Recent research has highlighted several shortcomings of traditional tokenization methods, including
low vocabulary utilization. In response, alternative approaches like FSQ have been explored (Mentzer
et al., 2024; Yu et al., 2023b). These discrete visual tokens facilitate integration with next-token
prediction in language models and multimodal models (Yu et al., 2023b; Liu et al., 2024a; Xie et al.,
2024; Wang et al., 2024). Parallel to this, other studies have investigated the use of continuous
embeddings for representing images and videos (Lin et al., 2023; Liu et al., 2023; Zhu et al., 2023).
Other research proposes next-scale prediction (Tian et al., 2024), which employs hierarchical multi-
scale modeling to first capture coarse details, followed by finer ones. However, this approach requires
a manually defined hierarchy and uses a fixed number of tokens. Our work, while complementary

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

to these efforts, focuses on adaptive representation and can be directly applied to both discrete and
continuous approaches.

Figure 9 Comparison of token usage versus frequency magnitude in single-block and multi-
block frequency analysis (ElasticTok-FSQ). Both scatter plots show a strong positive correlation
between frequency magnitude and token usage in a single-block setting a multi-block setting. The
red lines represent the linear regression fits for each case.

Compression. Adaptive learning for images and video have also been well-studied in the context
of variable-rate compression. JPEG (Christopoulos et al., 2000) remains one of the most popular
lossy image compression algorithms in the world, using a combination of DCT with quantization
followed by entropy coding. For video, codecs such as H264 (Wiegand et al., 2003), H265 (Sze et al.,
2014), VP9 (Mukherjee et al., 2015), and AV1 (Han et al., 2021) are popularly used compression
algorithms. Prior works have additionally explored extending neural networks to learn more effective
compressors. Theis et al. (2022) and Minnen et al. (2018) introduce methods that leverage CNNs to
learn effective variable bit-rate compression algorithms over images competitive with JPEG. Li et al.
(2023a), Mentzer et al. (2022), and Li et al. (2021) extend neural networks to learn how to effectively
compress videos. While similar to our work in that these methods also learn adaptive encodings,
these compression methods are more difficult to utilize for downstream training and generation tasks
due to lack of direct compatibility. In contrast, our work builds upon existing tokenization strategies
(VAE, FSQ) that have shown to work well for such downstream tasks, as well as take advantage of
the adaptive representations to better utilize compute.

6 DISCUSSION AND CONCLUSION

In this work, we propose an elastic representation approach to address the inefficiencies of traditional
video encoding approaches through an adaptive encoding method that selectively encodes new
information based on the context of previous frames. By dynamically allocating resources, it reduces
computational costs while maintaining high-quality video representation. The proposed technique
of dropping tokens at the end of each sequence allows the model to prioritize essential information,
ensuring scalability and efficiency during inference. ElasticTok demonstrates strong performance in
both video representation and downstream tasks. Lastly, we identify some limitations of our method,
as well as possible directions for future work.

• Masking schemes: Our model currently slightly underperforms baselines at the tail ends of
encoding lengths, which we hypothesize may be partially due to conflicting representations that
the model needs to learn in each case (low frequency, global encodings vs high frequency, local
encodings). Preliminary investigations showed that changing the way tokens are distributed (as
opposed to our method of left-aligned tokens) improved reconstruction accuracy. Future work may
also explore learnable encoding masks to dynamically select which tokens to keep for each input.

• Other temporal modalities: Although our primary focus was on image and video, our method
is generally modality-agnostic and can be extended to any temporal data, such as audio and
decision-making trajectories (e.g., state, action, reward).

• Conditional encoding and different training objectives: Our focus was on leveraging temporal
encoding to achieve more efficient tokenization while retaining high reconstructed visual quality.
However, our method can be explored more broadly as a means of encouraging meaningful lossy
encodings. For example, robotics models can learn text-conditioned visual encoders that capture
only task-relevant information from an image. In other scenarios, different reconstruction objectives
could prioritize facial or textual reconstruction while ignoring background reconstruction accuracy.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and
image encoder for end-to-end retrieval. In IEEE International Conference on Computer Vision,
2021.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Sae-
hoon Kim. Coyo-700m: Image-text pair dataset. https://github.com/kakaobrain/
coyo-dataset, 2022.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint
arXiv:2311.12793, 2023.

Tong Chen, Haojie Liu, Qiu Shen, Tao Yue, Xun Cao, and Zhan Ma. Deepcoder: A deep neural
network based video compression. In 2017 IEEE Visual Communications and Image Processing
(VCIP), pages 1–4. IEEE, 2017.

Charilaos Christopoulos, Athanassios Skodras, and Touradj Ebrahimi. The jpeg2000 still image
coding system: an overview. IEEE transactions on consumer electronics, 46(4):1103–1127, 2000.

Sander Dieleman, Charlie Nash, Jesse Engel, and Karen Simonyan. Variable-rate discrete representa-
tion learning. arXiv preprint arXiv:2103.06089, 2021.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12873–12883, 2021.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama. URL: https://github.
com/openlm-research/open_llama, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Jingning Han, Bohan Li, Debargha Mukherjee, Ching-Han Chiang, Adrian Grange, Cheng Chen, Hui
Su, Sarah Parker, Sai Deng, Urvang Joshi, et al. A technical overview of av1. Proceedings of the
IEEE, 109(9):1435–1462, 2021.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 646–661. Springer, 2016.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14, pages 694–711. Springer, 2016.

Gyuwan Kim and Kyunghyun Cho. Length-adaptive transformer: Train once with length drop, use
anytime with search. arXiv preprint arXiv:2010.07003, 2020.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

Hankook Lee and Jinwoo Shin. Anytime neural prediction via slicing networks vertically. arXiv
preprint arXiv:1807.02609, 2018.

Jiahao Li, Bin Li, and Yan Lu. Deep contextual video compression. Advances in Neural Information
Processing Systems, 34:18114–18125, 2021.

Jiahao Li, Bin Li, and Yan Lu. Neural video compression with diverse contexts. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22616–22626, 2023a.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023b.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united visual
representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
language with ringattention. arXiv preprint arXiv:2402.08268, 2024a.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. International Conference on Learning Representations(ICLR), 2024b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

Fabian Mentzer, George Toderici, David Minnen, Sung-Jin Hwang, Sergi Caelles, Mario Lucic, and
Eirikur Agustsson. Vct: A video compression transformer. arXiv preprint arXiv:2206.07307,
2022.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization:
Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization:
VQ-VAE made simple. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=8ishA3LxN8.

David Minnen, Johannes Ballé, and George D Toderici. Joint autoregressive and hierarchical priors
for learned image compression. Advances in neural information processing systems, 31, 2018.

Debargha Mukherjee, Jingning Han, Jim Bankoski, Ronald Bultje, Adrian Grange, John Koleszar,
Paul Wilkins, and Yaowu Xu. A technical overview of vp9—the latest open-source video codec.
SMPTE Motion Imaging Journal, 124(1):44–54, 2015.

Charlie Nash, Joao Carreira, Jacob Walker, Iain Barr, Andrew Jaegle, Mateusz Malinowski, and
Peter Battaglia. Transframer: Arbitrary frame prediction with generative models. arXiv preprint
arXiv:2203.09494, 2022.

12

https://openreview.net/forum?id=8ishA3LxN8

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

Iain E Richardson. H. 264 and MPEG-4 video compression: video coding for next-generation
multimedia. John Wiley & Sons, 2004.

Oren Rippel, Michael Gelbart, and Ryan Adams. Learning ordered representations with nested
dropout. In International Conference on Machine Learning, pages 1746–1754. PMLR, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan. High efficiency video coding (hevc). In
Integrated circuit and systems, algorithms and architectures, volume 39, page 40. Springer, 2014.

Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image compression with
compressive autoencoders. In International conference on learning representations, 2022.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024.

Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the h. 264/avc
video coding standard. IEEE Transactions on circuits and systems for video technology, 13(7):
560–576, 2003.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. arXiv preprint arXiv:2408.12528, 2024.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang. Video
question answering via gradually refined attention over appearance and motion. In Proceedings of
the 25th ACM international conference on Multimedia, pages 1645–1653, 2017.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
vq-vae and transformers. arXiv preprint arXiv:2104.10157, 2021.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627, 2021.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10459–10469, 2023a.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023b.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A MODEL CONFIGURATION

ElasticTok-VAE (Continuous) ElasticTok-FSQ (Discrete)

Parameters 210M 210M
Frame Resolution 256× 256 256× 256
Block Size (Mmax) 2048 tokens (4 frames) 4096 tokens (4 frames)
Mmin 128 tokens 256 tokens
Max Number of Frames 1024 1024
Patch Size (T, H, W) (2, 8, 8) (1, 8, 8)
Hidden Size 1024 1024
FFN Size 2048 2048
Encoder Layers 10 10
Decoder Layers 10 10
RoPE Theta 5000000 50000000
Max Sequence Length 512K 1M
FSQ Dims N/A 8, 8, 8, 5, 5, 5 (64k codes)
VAE Dim 8 N/A
KL Weight 1e-8 N/A

B TRAINING DETAILS

The tables below showing trainin details for each of our models. Our Long Video model is trained on
a mix of images and video (Batch Split), and each run (e.g. Long Video (2)) is initialized from the
previous run (e.g. Long Video (1)). For the discrete (FSQ) model, each block has 4k tokens (256
blocks = 1M tokens), and the continuous (VAE) model has 2k tokens in each block (256 blocks =
512K tokens).

ImageNet Long Video (1) Long Video (2) Long Video (3)

Batch Size 256 256 256 256
Blocks 1 1 2 4
Batch Split (Image / Video) 100%/0% 50%/50% 50%/50% 25%/75%
Total Iterations 200k 200k 80k 50k
Learning Rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Optimizer AdamW AdamW AdamW AdamW
Weight Decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Warmup Iterations 10k 10k 5k 2k

Long Video (4) Long Video (5) Long Video (6) Long Video (7)

Batch Size 64 16 8 4
Blocks 16 64 128 256
Batch Split (Image / Video) 25%/75% 25%/75% 25%/75% 25%/75%
Total Iterations 10k 1k 500 200
Learning Rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Optimizer AdamW AdamW AdamW AdamW
Weight Decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Warmup Iterations 1k 200 100 25

C DATA CURATION DETAILS

Image Data We use COYO-700M (Byeon et al., 2022) for our text-image data. We filter out images
with less than 256 × 256 images. After accounting for stale links, we are left with roughly 350M

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

text-image pairs. For better text correspondance, we further generate synthetic captions for each
image using the mooondream2 model.

Video Data To collect our video data, we first scrape Common Crawl to collect video links. After
deduplication, we download each video and split then into individual scenes using PySceneDetect.
For each scene we run various filtering metrics, such as OCR detection, NSFW scoring, motion score,
and aesthetic scoring. Filtering metrics are aggregated over each scene in a video, and used to select
a final subset of 6M videos ranging from 4 seconds to 2 minutes in length.

D RECONSTRUCTION EXAMPLES BY MSE

We include the reconstructed images at different Mean Squared Error (MSE) loss thresholds in
Figure 10 as a reference for how the images appear at various MSE thresholds.

0.0040.0070.010.020.04

GT Recon With MSE

Figure 10 Comparison of reconstructed image quality at varying MSE thresholds. The ground
truth (GT) image is displayed on the left, followed by reconstructions at different MSE thresholds
(0.04, 0.02, 0.01, 0.007, and 0.004), showing progressive improvement in fidelity as the threshold
decreases.

E DETAILS ON NEURAL REGRESSION MODEL

To collect training data, we first run inference with the tokenizer for a pre-defined noise target of
0.003 on 100K sequences to get pairs of image/video and token lengths. To train the neural regression
model, we augment the pretrained encoder model with alternating downsampling and transformer
blocks. We downsample by a factor of 4 over sequence each time each time using a simple size 4
stride 4 1D conv, and each set of transformer blocks consists of 4 layers. The final output is pooled,
and fed through a 2 hidden layer MLP to output a single scalar per block. The regressor is optimized
using MSE loss, and regresses to a normalized token length in the range [−1, 1].

F FURTHER EXPERIMENTS

Table 3 Performance of ElasticTok-VAE on videos. Values in the table show the percentage of
reconstructed video blocks that satisfy a given reconstruction threshold. The baseline is a 50% fixed
token baseline, and our method uses variable token lengths with an average of 50% token usage over
the dataset.

Threshold
0.001 0.003 0.015

Baseline 40% 78% 99%
Ours 50% 88% 99%

Table 3 above shows the same metrics as Fig 4 but on our continuous variant ElasticTok-VAE model.
Similar to ElasticTok-FSQ, the VAE variant can reliably encode more videos to satisfy a given

15

https://huggingface.co/vikhyatk/moondream2
https://www.scenedetect.com/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

reconstruction threshold while using the same number of tokens (on average) as a FLOPs identical
continuous variant baseline.

Table 4 Quality baseline comparison with ElasticTok-FSQ on videos. Values shown in the table
represent the average percentage of tokens used by each model to achieve the same worse-case MSE
(compute MSE over each video block, and take the max MSE over the all blocks in the video). Our
method uses fewer tokens to acheive the same worse-case reconstruction as the baseline.

Threshold
0.001 0.003 0.015

Baseline 78% 57% 15%
Ours 75% 37% 9.4%

Table 4 above shows running a quality baseline comparison between our method and a baseline. For
our method, we encode each evaluation video using a given reconstruction threshold, and compute
the average percentage of tokens per frame. For the baseline, we find the needed fixed tokens per
frame such that the worse-case reconstruction MSE over the whole video matches the worst-case
MSE of ElasticTok’s reconstruction. Intuitively, fixed token baselines perform worse due to allocated
a fixed number of tokens per video block, and must optimize for the worst-case scenario. In contrast,
ElasticTok can save tokens when the videos transition to simpler to encode scenes while allocating
more tokens to more complex scenes.

Table 5 Ablation comparing with and without encoder conditioning on the masked tokens.
Values in the table show the percentage of reconstructed video blocks that satisfy a given reconstruc-
tion threshold under the constraint that both models use the same average percentage of tokens.

Threshold
0.001 0.003 0.015

With Enc Cond 36% 79.6% 98.5%
Without Enc Cond 33.1% 75.3% 98.4%

Table 5 shows a comparison of ElasticTok with and without encoder conditioning on the mask.
ElasticTok with conditioning slightly outperforms the model without conditioning. As such, it may
be more efficient to train the model without encoder conditioning depending on expected size of the
downstream models - as this present a trade-off in terms of slightly better encoding quality at the cost
of 2x slower inference speed.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

G MORE PROGRESSIVE RECONSTRUCTION EXAMPLES

Figure 11 Progressive reconstruction of a given images as you increasing the number of tokens
(left-to-right in the encoding). Images are in raster scan order, and the number of tokens used is in the
bottom right of each image (from 256 - 4096 interpolated with 20 values on a log scale)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 12 Progressive reconstruction of a given images as you increasing the number of tokens
(left-to-right in the encoding). Images are in raster scan order, and the number of tokens used is in the
bottom right of each image (from 256 - 4096 interpolated with 20 values on a log scale)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 13 Progressive reconstruction of a given images as you increasing the number of tokens
(left-to-right in the encoding). Images are in raster scan order, and the number of tokens used is in the
bottom right of each image (from 256 - 4096 interpolated with 20 values on a log scale)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 14 Progressive reconstruction of a given images as you increasing the number of tokens
(left-to-right in the encoding). Images are in raster scan order, and the number of tokens used is in the
bottom right of each image (from 256 - 4096 interpolated with 20 values on a log scale)

20

	Introduction
	Background
	Blockwise RingAttention

	Method
	Training
	Inference

	Experiments
	Experimental Setup
	Main Results
	Downstream Tasks
	Inference
	Frequency Analysis

	Related Work
	Discussion and Conclusion
	Model configuration
	Training Details
	Data curation details
	Reconstruction Examples by MSE
	Details on Neural Regression Model
	Further Experiments
	More Progressive Reconstruction Examples

