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ABSTRACT

Over the past few years afterward the birth of ResNet, skip connection has become
the defacto standard for the design of modern architectures due to its widespread
adoption, easy optimization, and proven performance. Prior work has explained
the effectiveness of the skip connection mechanism from different perspectives. In
this work, we deep dive into the model’s behaviors with skip connections which
can be formulated as a learnable Markov chain. An efficient Markov chain is
preferred as it always maps the input data to the target domain in a better way.
However, while a model is explained as a Markov chain, it is not guaranteed to be
optimized following an efficient Markov chain by existing SGD-based optimizers
prone to getting trapped in local optimal points. In order to move towards a more
efficient Markov chain, we propose a simple routine of penal connection to make
any residual-like model become a learnable Markov chain. Aside from that, the
penal connection can also be viewed as a particular model regularization and can
be easily implemented with one line of code in the most popular deep learning
frameworks. The encouraging experimental results in multi-modal translation and
image recognition empirically confirm our conjecture of the learnable Markov
chain view and demonstrate the superiority of the proposed penal connection.

1 INTRODUCTION

Over the last decade, deep learning has been dominant in many tasks, including image recogni-
tion (Voulodimos et al., 2018), machine translation (Singh et al., 2017), speech recognition (Zhang et
al., 2018), etc. Many SGD-based methods and excellent network structures come to the fore (Alom
et al., 2019). Among them, skip connection (He et al., 2016) is a widely-used technique to im-
prove the performance and the convergence of deep neural networks. Aided by the skip connection,
models with very deep layers can be easily optimized by SGD-based methods (Amari, 1993), e.g.,
vanilla SGD (Cherry et al., 1998), Momentum SGD (Sutskever et al., 2013), Adagrad (Lydia and
Francis, 2019), Adam (Kingma and Ba, 2014).

Recently, many theoretical explanations of how it works have been largely underexplored (Li
and Yuan, 2017; Allen-Zhu et al., 2019). In this work, we continued to explore the behaviors
of the model with skip connection and view it as a learnable Markov chain (short for Markov
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chain) (Gagniuc, 2017) . To our best knowledge, it is the first time to analyze from this perspective.
In the conception of the Markov chain, the output of a residual block is noted as the predicted di-
rection with respect to the input. For better elaboration, we introduce another term ideal direction.
The ideal direction always points to a more accurate direction than the predicted direction, which
can translate an input to the target domain in a more efficient way. Then, we define an indicator ε to
reflect how efficient a learned Markov chain is, based on the angle between the predicted and ideal
direction. In contrast to the original predicted direction, an efficient Markov chain with an ideal
direction is preferred since it always maps the input to the target domain in a better way. However,
we are aware that existing SGD-based optimizers are quite lazy to update the model following an
efficient Markov chain, which hinders the upper bound performance.

To train a more efficient Markov chain, we propose a very simple routine of penal connection to
convert a residual-like model to a Markov chain by just adding one line of code in existing deep
learning frameworks. On the one hand, the penal connection is capable of enforcing the optimizer
to update the model following the rules of the efficient Markov chain. On the other hand, it can
be viewed as a type of additional model regularization, which alleviates over-fitting and enhances
generalization. Compared with the original residual-like model, the Markov chain also has more
benefits in deeper networks that suffer from performance degradation corresponding to more learn-
able parameters. The experimental results in multi-modal translation and image recognition not
only demonstrate the feasible analysis of regarding a residual-like model as a Markov chain but also
examine the superiority of the proposed penal connection throughout the optimization process.

Our main contributions can be summarized in two folds. First, we present a new perspective to
understand the skip connection model as a learnable Markov chain and carry out exhaustive theory
analysis and experimental verification. Second, we propose the penal connection, a simple method
to enable a network to be optimized within a more efficient Markov chain, which can substantially
improve performances both in the fields of NLP and CV.
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Figure 1: A model M with L skip connections can be recognized as a Markov chain C consisting
of L nodes. The forward pass is corresponding to a Markov process. As shown in Fig. 1(a), a skip
connection along with a residual-like block fθl(·) builds up a Markov chain node nl (the gray dash
box in middle). The input of nl is xl−1, i.e., the output of the previous Markov node. The output of
nl can be formulated by xl = xl−1 + zl|xl−1, where zl|xl−1 = fθl(xl−1) is the predicted direction
by residual-like block. As shown in Fig. 1(b), guided by zl,l∈1,··· ,L, the input data x0 ∈ A can
gradually shift to the target label y ∈ B along the learned Markov chain. The red dashed arrow
dl|xl−1 is the ideal direction with respect to xl−1 and zl.

2 METHOD

In this section, we first reformulate the residual-like model as a Markov chain and introduce ε
to reflect the efficiency of a learned Markov chain. Then, we also define a δ-convex chain and
make the convergence proof based on it. Before exploring the optimization algorithm, the dilemma
between the behavior of an efficient Markov chain and existing backward-propagation algorithms is
thoroughly discussed. Lastly, we propose a penal connection mechanism to boost the performance
of the Markov chain.
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2.1 THE LEARNABLE MARKOV CHAIN

Similar to the definition of a traditional Markov chain in Gagniuc (2017), a learnable Markov chain
can be defined as:

Definition 1 (The learnable Markov chain: CL). A learnable Markov chain CL is a stochastic
model with learnable parameters {θ1, · · · , θL} describing a sequence of L possible events in which
the state xl of the current event only depends on the state xl−1 attained in the previous event.

Inefficient but easy to learn Efficient but hard to learn

(a) The influence of efficient/inefficient Markov chain. (b) A toy model to demonstrate the importance of a
suitable ε.

Figure 2: A simple task to show the performance difference between plain net, skip net, and our
proposed Markov net. In this task, we build a model which consists of three fully connected layers
with 28 learnable parameters to shift coordinate (x, y) to a target distribution, which can be formu-
lated as x2−y2. More details are listed in supplementary materials. We update the model with SGD
optimizer for 10000 steps. As shown in Fig.2(b), Markov net can better complete this task.

As shown in Fig. 1(a), ML indicates a model with L residual-like blocks, and can also be considered
as a learnable Markov chain CL with L nodes since the output state (i.e. output feature map of a
residual block) xl of node nl only depends on the state xl−1 from the previous node nl−1. As a
result, a forward pass through ML can be viewed as a Markov process, as shown in Fig. 1(b). In a
bit more detail, the corresponding Markov chain with respect to the input data x0 ∈ A is formulated
as:

CL(x0 → xL) := x0
+z1|x0−−−−→ x1 → · · ·xl

+zl|xl−1−−−−−−→ xl+1 → · · ·xL−1
+zL|xL−1−−−−−−→ xL (1)

where fθl is a feature transformation function by i-th residual-like block in ML, and is also the i-th
chain node in CL with learnable parameters θl. zl|xl−1 = fθl(xl−1) is the predicted direction for
previous state xl−1 in node nl. Correspondingly, the ideal direction dl|xl−1 with respect to xl−1

and zl can be defined as:

Definition 2 (The ideal direction: dl|xl−1). Assume the function ℓ measures the distance between
two variables, and if ℓ(a, c) ≥ ℓ(b, c), then ℓ(a, c) ≥ ℓ(µa+(1−µ)b, c) ≥ ℓ(b, c), where µ ∈ [0, 1].
dl|xl−1 is an ideal direction with respect to xl−1 and zl as long as:

ℓ(xl−1 + ηdl|xl−1, y) ≤ ℓ(xl−1 + ηzl|xl−1, y). (2)

where η is a small step size.

Obviously, given xl−1, zl and ℓ, the ideal direction dl is still not unique because anyone who can
outperform the predicted direction zl under the measurement of ℓ is qualified, as Eq. 2 holds. We
collect all the ideal directions for xl−1, zl under ℓ as Dℓ,zl|xl−1

.

Lemma 1 If dl ∈ Dℓ,zl|xl−1
, then d′l = µdl + (1− µ)zl ∈ Dℓ,zl|xl−1

, where µ ≥ 0.
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Proof 2.1 Since dl is an ideal direction, then:
ℓ(xl−1 + ηdl, y) ≤ ℓ(µ(xl−1 + ηdl) + (1− µ)(xl−1 + ηzl), y)

= ℓ(xl−1 + η(µdl + (1− µ)zl︸ ︷︷ ︸
d′
l

), y)

≤ ℓ(xl−1 + ηzl, y), (3)
thus, d′l = µdl + (1− µ)zl is an ideal direction with respect to zl and xl−1.

Different function fθl takes discrepant effects on the set Dℓ,zl|xl−1
. fθl is used to be a sequence

of convolutions (e.g. residual block in ResNet (He et al., 2016))or a popular Transformer intro-
duced in Vaswani et al. (2017), as long as it can make CL shift input x0 ∈ A to the target domain
B correctly. Importantly, we next devise an intuitive indicator ε to reflect how the efficiency of
CL(x0 → xL):

Definition 3 (The efficiency of Markov chain: CL(x0 → xl)). The efficiency indicator ε measures
an average cosine similarity between zl|xl−1 and dl|xl−1:

ε :=
1

L

L∑
l=1

cosαl =
1

L

L∑
l=1

⟨z⃗l, d⃗l⟩. (4)

where v⃗ is the normalized tensor of v, defined as v⃗ := v/∥v∥2. ∠αl is the angle between zl|xl−1

and dl|xl−1.

From the definition, a larger ε indicates a smaller ∠αl between the predicted direction zl and the
ideal direction dl, mirroring a more efficient Markov chain and vice versa. More specifically, if zl
always has a positive fraction on dl for all nodes, we call this is a convex chain which formally
defined as follows:

Definition 4 (δ-convex chain). If ∃δ > 0, ∀nl ∈ CL(x0 → xL), ⟨zl, dl⟩ > δ∥dl∥22, then C(x0 →
xL) is dubbed as a δ-convex chain.

Lemma 2 If CL(x0 → xL) is δ-convex, ε > 0.

Proof 2.2 Since CL(x0 → xL) is δ-convex, then for all l:

⟨zl, dl⟩ = ⟨∥zl∥2z⃗l, ∥dl∥2d⃗l⟩ = ∥zl∥2∥dl∥2⟨z⃗l, d⃗l⟩ > δ∥dl∥22 > 0 (5)

It is noteworthy that ∥zl∥2∥dl∥2 > 0, thus ∀nl, ⟨z⃗l, d⃗l⟩ > 0, which yields ε = 1
L

∑L
l=1⟨z⃗l, d⃗l⟩ > 0.

Lemma 2 tells that if CL(x0 → xL) is δ-convex, it must be an efficient Markov chain, while the
reverse is not necessarily true. As shown in Fig. 1(b), the plotted chain is an efficient Markov
chain, but it is not a δ-convex chain since there does not exist a non-negative δ making ∠α1 satisfy
Definition 4.

If CL(x0 → xL) is δ-convex, then in every node nl, a positive fraction of the predicted direction
zl, i.e., zl cos∠αl, is pointing to the same direction as dl. Given an appropriate step size η, the
input could eventually arrive at the target domain, despite along with a winding path. Fig. 2(a) also
illustrates a simple model to verify it. The source input gets closer to target domain B in every step
while moving along a δ-convex Markov chain (visualization in brown).

Formally, we have concluded the following lemma for ensuring convergence.

Lemma 3 For each chain node nl ∈ CL(x0 → xL), consider the forward process xl = xl−1 + zl,
where E[zl] = dl,E[∥zl∥2F ] ≤ Z2. Suppose for all nodes, xl is always inside the δ-convex region
with diameter D, i.e., ∥xt−y∥F ≤ D. Then, for any a > 0 and any L such that La logL ≥ D2δ2

(1+a)Z2 ,

we have E[∥xL − y∥2F ] ≤
(1+a) logLZ2

δ2L .

The proof of Lemma 3 appears in Appendix B. Notably, Lemma 3 does not imply that xL equals to
y. It only describes that xL is sufficiently close to y if zl can predict the correct direction for xl−1.
For a longer chain (i.e. deeper network with larger L), the xL will be restricted closer to target y
with a relatively less error. Taken together, Lemma. 3 guarantees that a Markov chain CL can shift
source input x0 ∈ A to target domain B through L nodes in an efficient way if CL is δ-convex. Until
now, we can trustingly settle down to optimize ML from the conception of CL.
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2.2 MARKOV CHAIN OPTIMIZATION

Before exploring the optimization method of a Markov chain, it is necessary to have a careful dis-
cussion about the efficiency of a Markov chain taking effect in the optimization process. According
to aforesaid Lemma. 3, if all parameters θl are optimized in a way that makes CL(x0 → xL) al-
ways be a δ-convex chain for any input x0, the convergence speed for optimization appears to be
substantially improved, and the final performance as well. However, we caution that a δ-convex
chain is not guaranteed by existing SGD-based optimizers, such as SGD and Adam. Actually, the
existing optimizers prefer towards to an efficient or even an inefficient Markov chain, where the
land scope of the loss is more smooth, instead of a δ-convex one. After discovery and practice, we
find SGD-based optimizers have the potential to bridge the gap which will be discussed later. The
diagrammatic sketch of efficient and inefficient Markov chain is illustrated in Fig. 2(a), which can
better help to understand.

Intuitively, while ε → 1, an efficient Markov chain acts more like a δ-convex chain and can obtain
its good properties. However, a too large ε is a disaster for existing optimizers, resulting in hard
convergence. Hence, the main idea to optimize a Markov chain is to train a “reasonable” efficient
Markov chain, i.e. let ∥ε∥22 no larger than a given threshold ρ. In this way, the objective function
can be formulated as:

L = LML
(xL, y) + λ∥ε∥22. (6)

The first item of Eq. 6 is the original loss function of the model ML and the second item is the
additional penalization with λ to hold ∥ε∥22 ≤ ρ. If set λ = 0 in Eq. 6, the objective function
degenerates into a plain mode without any remedy toward forming a more efficient Markov chain.
Instead, if set λ > 0, the penalization will take effect, suggesting enable to obtain a more efficient
Markov model. The toy example in Fig. 2(b) visualizes the significant effect of this penalization
term over the plain net (MLPs) and skip net (MLPs with skip connection).
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Markov chain node.

Figure 3: A visualization of ideal direction computed based on gxl
in Fig. 3(a). It is worth noting that

x′
l can be viewed that we update xl by gxl

with a small learning rate η. The backward propagation
of gradients within a Markov chain node is plotted in Fig. 3(b). Compared with the residual-like
model, we only add an additional gradient gzl while computing the gradient with respect to fθl .

In order to solve Eq. 6, the correct ideal direction dl with respect to xl−1 is required to figure out.
As discussed previously, dl is not unique, thus the different definition of ℓ leads to a different set of
dl. Actually, since the feature space of xl always lies in very high dimension space, it would be a
great challenge to find a suitable ℓ to define an ideal direction dl.

As for a chain node nl, we reuse the target loss function LML
to build a valid ℓ function:

ℓ(xl, y) := LML
(CL(xl → xL), y). (7)

xl is forward along the rest chain nodes nl+1, · · · , nL, and the final output xL is taken to compute
the loss between y by LML

. This way, the gradient with respect to xl is:
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gxl
:=

∂ℓ(xl, y)

∂xl
=

∂LML
(xL, y)

∂xl
(8)

Hence, gxl
can be obtained while the backward propagation during the training process and an ideal

direction d′l based on gxl
is zl − ηgxl

, where η is a small step size, as shown in Fig. 3(a).

Proof 2.3 Since xl = xl−1 + zl and ℓ(xl − ηgxl
, y) < ℓ(xl, y) always holds, set d′l := zl − ηgxl

,
then

ℓ(xl−1 + d′l, y) = ℓ(xl−1 + zl − ηgxl
, y) = ℓ(xl − ηgxl

, y) < ℓ(xl, y) = ℓ(xl−1 + zl, y) (9)

Thus, d′l = zl − ηgxl
is an ideal direction for xl−1.

From Lemma 1, we known that dl = µd′l + (1 − µ)zl = zl − ηµgxl
is also an ideal direction,

i.e., zl − ηµgxl
∈ Dℓ,zl|xl−1

. Assume ∥gxl
∥2 ≥ 1, then we can set µ = 1

∥gxl
∥2

∈ [0, 1], yields

dl = zl − ηg⃗xl
. Since η is small, d⃗l can be approximately expressed as z⃗l − ηg⃗xl

, and ε can be
reformulated as:

ε =
1

L

L∑
l=1

⟨z⃗l, d⃗l⟩ ≈
1

L

L∑
l=1

⟨z⃗l, z⃗l − ηg⃗xl
⟩ = 1

L

L∑
l=1

⟨z⃗l, z⃗l⟩+ ⟨z⃗l,−ηg⃗xl
⟩

=
1

L

L∑
l=1

1 + ⟨z⃗l,−ηg⃗xl
⟩ = 1 + η

1

L

L∑
l=1

⟨z⃗l,−g⃗xl
⟩︸ ︷︷ ︸

ε′

(10)

where ε′ will be used in the following experiments instead of ε as it indicates the same efficiency
properties of the Markov chain but is easier to understand (a larger ε′ indicates a more efficient CL).

Then, the gradient to zl can be computed as:

gzl :=
∂LML

(xL, y)

∂xl

∂xl

zl
+

∂λ∥ϵ∥22
∂zl

= gxl

∂(xl−1 + zl)

∂zl
+ λ

∂∥
∑L

l=1 1 + η⟨z⃗l,−g⃗xl
⟩∥22

∂zl

≈ gxl
+ λ

∂
∑L

l=1∥1 + η⟨czl,−g⃗xl
⟩∥22

∂zl
(11)

= gxl
+ λ

∂∥1 + η⟨czl,−g⃗xl
⟩∥22

∂zl
= gxl

+ 2λ(−ηg⃗xl
)(1 + ⟨czl,−ηg⃗xl

⟩)
= gxl

+ 2λ(−ηg⃗xl
) + 2λcη2zl

= (1− 2λη

∥gxl
∥2

)gxl
+ 2λcη2zl

≈ gxl
+ τzl (12)

where τ is a hyper-parameter and c = 1
∥zl∥2

in Eq. 11 can be regarded as a constant value to simplify
the gradient derivation process. The analysis of this estimation can be found in Appendix C. Despite
lots of hyper-parameters introduced for facilitating derivation, e.g., λ, η, c, ρ, we only need to specify
a single hyper-parameter τ in the final formulation, which relieves the heavy burden from a hyper-
parameter sweep. We dubbed this special optimization method as penal connection, which seems to
add a simple penalization on the norm of zl as a type of model regularization. The compute graph
has been plotted in Fig. 3(b), and it can be easily implemented based on the PyTorch framework by
adding one line of code (see Algo. 11).

1Tips: zl.register hook(lambda gxl : gxl + τzl) is not allowed which could lead to a memory leak.
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Algorithm 1 Pseudo code of penal connection in a PyTorch-like style.

zl = fθl(xl−1)
# Only following line is added to register a hook
zl.register hook(lambda gxl

, zl=zl.detach().clone(): gxl
+ τzl)

xl = xl−1 + zl

Lastly, due to the various choice of ℓ, the gradient to zl is correspondingly discrepant. Further
community exploration about more reasonable and effective ways to compute the ideal direction is
of great value so continually push forward the performance of the Markov chain.

3 EXPERIMENTS

In this section, we conduct intensive experiments to demonstrate the superiority of the Markov chain
in the field of Natural Language Processing and Computer Vision. Unless otherwise specified, all
the residual-like blocks in M are converted to a Markov chain node nl in C.

Specifically, in transformer block (Vaswani et al., 2017) which consists of a multi-head self-attention
module (MSA) and a feed-forward network (FFN), we convert it as two chain nodes as both MSA
and FFN employ skip connection respectively.

For simplicity, we set τ the same for all nodes in a Markov chain. All experiments are carried out by
publicly available projects implemented by PyTorch (Paszke et al., 2017) on a device equipped with
8 NVIDIA-A100 GPUs. More experimental details can be found in the supplementary materials.

3.1 MULTI-MODAL TRANSLATION

Multi-modal translation requires a model to be capable of translating the text information from the
source language A to the target language B. How the efficient/inefficient Markov chain performs
during the training process can be clearly observed in this experiment.
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Figure 4: The testing curve across different epochs on WMT16 English to Germany translation tasks
(Germany to translation curve can be found in supplementary materials).

Dataset. WMT16 (Bojar et al., 2016) is a widely used translation dataset based on the data from
statmt.org, which contains various interesting translation tasks on specified domains. Here, we are
focusing on the news translation tasks between English and Germany. The text for all the test sets is
drawn from news articles.
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Settings PPL Accuracy(%)
Task WarnUp Total Trans. Markov. Improv. Trans. Markov. Improv.

WMT-16 DE/EN (Q) 35 200 33.3 7.9 ↓ 25.4 36.4 70.0 ↑ 33.6
WMT-16 DE/EN (S) 350 2000 17.3 11.3 ↓ 6.0 66.4 70.4 ↑ 4.0
WMT-16 EN/DE (Q) 35 200 31.8 6.3 ↓ 25.5 43.1 71.8 ↑ 28.7
WMT-16 EN/DE (S) 350 2000 13.4 8.5 ↓ 4.9 68.7 72.8 ↑ 4.1

Table 1: Testing PPL (the lower the better) and accuracy (the higher the better) of Trans-
former (Trans.) and counterpart Markov chain (Markov.).

Model Baseline 3× 10−9 3× 10−8 3× 10−7 3× 10−6 Improv.
ResNet50 79.2 79.0 79.4 79.2 79.3 +0.2
ViT-S/16-224 77.8 78.0 78.1 78.0 77.8 +0.3
DeIT-S/16-224 79.9 79.9 80.1 80.0 79.8 +0.2
Swin-S/4-7-224 83.3 83.2 83.5 83.3 83.1 +0.2

Table 2: The top-1 accuracy on ImageNet-1k on different architectures with different τ .

Implementation details. We adopt the most widely used benchmark Transformer (Vaswani et al.,
2017) as our strong baseline. The embedding size demb is 512, and the source and target embed-
ding layers are shared. We empirically set τ to 3 × 10−4, which generalizes well to all translation
tasks. Here, we opt for the mutual translation tasks between English and Germany for validation.
All the models are trained using Adam optimizer with β1 = 0.9, β2 = 0.98. We use a batch size
of 1024 and weight decay of 0.05 and other recipes for training are identical to the original imple-
mentation (Vaswani et al., 2017). We set up two regular training settings, Q and S separately (see
Table 1).
Result analysis. From Fig. 4 and Tab. 1, a few patterns can be observed. One is that the Markov
chain with penal connection converges faster than the residual counterpart. Surprisingly, the Markov
chain training with 200 epochs can outperform the baseline model well-training with 2000 epochs
(10× training schedule), demonstrating the good merits of the proposed method. It is worth noting
that the transformer model does not saturate without adequate training schedule length. The ε′ value
plotted in Fig. 4 may illustrate this phenomenon. From the curve, we find that the transformer model
is more likely to be an inefficient Markov chain whose ε′ is always negative. Aided by the proposed
penal connection, it becomes an efficient Markov chain whose ε′ is mostly positive. Furthermore,
we observed that at the early training stage, CL is an inefficient chain, which is even worse than
the baseline. After several epochs, it conversely turns to become a δ-convex chain (with a large ε′).
After that, CL decays to a less efficient Markov chain with a small positive ε′. This phenomenon
also confirms our analysis in the method section: Moving along with a δ-convex chain can help
converge to the target in the most efficient way. However, it may not be the best way under the
existing optimizer. In order to achieve higher performance, the model will be pushed to be a less
efficient chain. As for the baseline model, we find that it always acts as an inefficient Markov chain
which more easily gets trapped in local minima.

3.2 IMAGE CLASSIFICATION

Different from translation tasks, the gradient for image classification is quite sparse and the re-
dundant parameters often guarantee the optimizer towards to an effective Markov chain, even to a
δ-convex chain, suggesting that even without the penal connection, the model can also be optimized
efficiently. Despite that, we still observe a slight τ (smaller than 10−7) can further improve the final
accuracy by a non-trivial margin. This benefit is at least partly due to the model regularization effect
of τ which alleviates over-fitting.

Dataset. We conduct a series of experiments on the task of image classification using the ImageNet-
1K dataset (Deng et al., 2009), which consists of 1.28 million training images across 1000 classes
and 50k images for validation.
Implementation details. There are many variants of residual-like models used in the image classifi-
cation task. We conduct experiments on three representative types of models, i.e. ResNet (He et al.,
2016), ViT (Dosovitskiy et al., 2020) (and its variants, e.g., DeIT (Touvron et al., 2021), Swin (Liu
et al., 2021)). During experiments, we find that all these models can learn an efficient Markov chain
or even δ-convex chain, so that only a very small τ (less than 10−6) is applied. All the models
are trained for a 10-epoch linear warmup and a cosine decaying schedule afterward for 290 epochs.
More details can be found in the supplementary materials.
Result analysis. As listed in Tab. 2, despite that the baseline models have already achieved a satu-
rated accuracy, a suitable τ with penal connection routine can further push forward this performance
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# layers 18 20 32 34 44 50 56 101 152
CIFAR10

ResNet - 92.1 92.6 - 93.2 - 92.2 - -
Markov. - 92.3 93.2 - 93.4 - 93.4 - -

CIFAR100
ResNet 76.3 - - 77.6 - 78.5 - - -
Markov. 76.7 - - 78.0 - 79.1 - - -

ImageNet1k
ResNet - - - - - - - 80.7 81.1
Markov. - - - - - - - 81.1 81.4
Improv. +0.4 +0.2 +0.6 +0.4 +0.2 +0.6 +1.2 +0.4 +0.3

Table 3: The accuracy of ResNet over different depths on CIFAR10, CIFAR100 and ImageNet1K.

by a non-trivial margin. Across our experiments, a large τ usually does hurt the mode performance.
This observation reflects another effect of penal connection, that is τ not only engages the model to
learn an efficient Markov chain, but it also limits the Markov chain to be too efficient, keeping the
Markov chain away from a δ-convex chain. We think it is also reasonable because a δ-convex chain
may lead to hard optimization, and a slight τ can take effect in this situation. In other words, the pe-
nal connection can also be viewed as a model regularization that can improve the final performance
via alleviating over-fitting from a new standpoint.

3.3 MODEL DEGRADATION

One of the main reasons that residual-like models become widely used across various tasks is their
capacity to counter the problem of model degradation in deeper networks. Model degradation refers
to the phenomenon that with the increasing depth of model ML, the performance will no longer
be improved and even worse. We find that by converting a residual-like model ML to a Markov
chain CL, the model degradation problem can be solved better. With the aid of the penal connection
routine, a deep model can arrive at a higher performance than the original counterpart.

Dataset. CIFAR10 2 dataset consists of 60k 32x32 color images in 10 classes. There are 50k training
images and 10k test images. The CIFAR100 dataset is identical to CIFAR-10, except the number of
classes is 100.
Implementation details. We take ResNet He et al. (2016) for comparison. In order to investigate
the performance trend of models over different depths, we build seven models with different depths,
i.e., L ∈ {18, 20, 32, 34, 44, 50, 56}. We used a momentum SGD optimizer with a batch size of
128 and a weight decay of 0.0001 for CIFAR10 and 0.0005 for CIFAR100. The τ is 3 × 10−9 for
all experiments. We trained all the models for 200 epochs from an initial learning rate of 0.1. The
learning rate decayed by a factor of 10 at epochs 100, and 150 for CIFAR10, and at epochs 60, 120,
and 160 for CIFAR100.
Result analysis. The results are listed in Tab. 3. All the Markov chain models significantly advance
baseline residual models. In particular, as the model goes deeper, the performance of baseline mod-
els saturates first and decay afterward. On the contrary, the Markov chain with penal connection
consistently achieves stable gains. This evidence confirms that our proposed method can further
alleviate the model degradation problem, motivating future scaling efforts in depth.

4 CONCLUSIONS

In this work, we introduce the conception of a learnable Markov chain for the residual-like model,
and propose a simple routine of penal connection to boost the model performance and alleviate the
model degradation in deep depth as well. Adequate theoretical analysis and comprehensive exper-
iments on the different types of architectures across a spectrum of tasks jointly demonstrate the
rationality and effectiveness of the learnable Markov chain. While these initial results are encourag-
ing, many challenges remain. For example, a better way to compute the ideal direction of Markov
chain would likely lead to further improved performance. We expect more research would pay more
attention to this new perspective which will inspire future work.

2https://www.cs.toronto.edu/˜kriz/cifar.html
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A RELATED WORKS

The model with skip connection. In recent years, a large number of skip connection mechanisms
have been used for neural network design (Liu et al., 2020). Highway network (Zilly et al., 2017)
built a skip connection with a learnable gating mechanism from the input to the output. He et
al. (2016) proposed the identity skip connections in ResNet, which have already become an indis-
pensable building module in modern architecture design. This type of model with skip connections
can be summarized as a residual-like model. In the field of natural language processing, Trans-
former (Vaswani et al., 2017) made use of skip connection to build the multi-head self-attention
module and the feed-forward network. Recently, Transformer has attracted extensive attention in
computer vision and various variants (Han et al., 2022) have been proposed which achieve superior
performance against traditional CNNs. In this work, we aim to improve the performance of most
existing residual-like models from the perspective of a learnable Markov chain.
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Markov chain. A Markov chain or Markov process is a stochastic model describing a sequence of
possible events in which the probability of each event depends only on the state attained in the pre-
vious event (Gagniuc, 2017). Informally, it can be thought of as “What happens next depends only
on the state of affairs now.”. Markov chains have many applications for statistical models (Karlin,
2014), such as studying cruise control systems in motor vehicles, queues or lines of customers ar-
riving at an airport, currency exchange rates, and animal population dynamics (Meyn and Tweedie,
2009). Markov processes are the basis for general stochastic simulation methods known as Markov
chain Monte Carlo, which are used for simulating sampling from complex probability distributions,
and have found application in Bayesian statistics, thermodynamics, statistical mechanics, physics,
chemistry, economics, finance, signal processing, information theory and speech processing (Gamer-
man and Lopes, 2006). Recently, the notation of the Markov chain also plays an important role in
reinforcement learning (Otterlo and Wiering, 2012), image generation (Ho et al., 2020) and other
deep learning-related fields (Mardt et al., 2018). Shwartz-Ziv and Tishby (2017) regards the feed-
forward process of a neural network as a Markov chain and explains the behavior of the neural
network in the optimization process from the perspective of Shannon Information Theory.

B PROOF OF LEMMA. 3

Proof B.1 According to the forward pass, we have

E[∥xl+1 − y∥2F ] = E[∥xl − y + zl+1∥2F ] (13)

= E[∥xl − y∥2F ] + 2⟨xl − y, dl+1⟩+ ∥zl+1∥2F
≤ E[∥xl − y∥2F ] + 2⟨xl − y, dl+1⟩+ Z2

≤ (1 + 2δ)E[∥xl − y∥2F ] + Z2. (14)

Now if δE[∥xl − y∥2F ] ≥ Z2,3 we know the E[∥xl − y∥2F ] will decrease by a factor of (1 + δ) for
every chain node. Otherwise, although it could increase, we know

E[∥xl − y∥2F ] ≤
Z2

δ
. (15)

We know after L nodes, either E[∥xL − y∥2F ] is already smaller than Z2

δ = (1+a) logLZ2

δ2L , or it is
decreasing by factor of (1 + δ) for every node, which means

E[∥xL − y∥2F ] ≤ E[∥x0 − y∥2F ](1 + δ)L

≤ D2eδL = D2e(1+a) logL =
D2La

L

≤ (1 + a) logLZ2

δ2L
. (16)

The last inequality holds since

La logL ≥ D2δ2

(1 + a)Z2
(17)

Thus, E[∥xL − y∥2F ] will be smaller than (1+a) logLZ2

δ2L .

C ANALYSIS OF ESTIMATION gzl

Here, we give a detailed analysis of the estimation error of gzl in Eq. 12.

Firstly, we strictly follow the chain rule to derive the accurate formula of gzl :

3In order to simplify the derivation process, we use the F-norm function to measure the distance between
each state xl and the target y without losing the generality.
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gzl :=
∂LML

(xL, y)

∂xl

∂xl

zl
+

∂λ∥ϵ∥22
∂zl

= gxl

∂(xl−1 + zl)

∂zl
+ λ

∂∥
∑L

l=1 1 + η⟨z⃗l,−g⃗xl
⟩∥22

∂zl

= gxl
+ λ

∂(∥1 + η⟨z⃗l,−g⃗xl
⟩∥22)

∂zl

= gxl
+ λ

∂(∥1 + η⟨ zl
∥zl∥2

,−g⃗xl
⟩∥22)

∂zl

= gxl
+ 2λ(1 + ⟨ zl

∥zl∥2
,−ηg⃗xl

⟩)
∂⟨ zl

∥zl∥2
,−ηg⃗xl

⟩
∂zl︸ ︷︷ ︸
:=A

(18)

where

A :=
∂⟨ zl

∥zl∥2
,−ηg⃗xl

⟩
∂zl

=
∂ ⟨zl,−ηg⃗x+l⟩

∥zl∥2

∂zl

=
(−ηg⃗xl

)∥zl∥2 + ∥zl∥−1
2 zl⟨zl,−ηg⃗xl

⟩
∥zl∥22

= −cηg⃗xl
+ c3⟨zl,−ηg⃗xl

⟩zl. (19)

c := 1
∥zl∥2

is defined in Eq. 11. Then we substitute Eq. 19 into Eq. 18:

gzl := gxl
+ 2λ(1 + ⟨ zl

∥zl∥2
,−ηg⃗xl

⟩)(−cηg⃗xl
+ c3⟨zl,−ηg⃗xl

⟩zl)

= gxl
+ 2λ(1 + ⟨czl,−ηg⃗xl

⟩)(−cηg⃗xl
+ c3⟨zl,−ηg⃗xl

⟩zl)
= gxl

+ 2λ(1− cηt)(−cηg⃗xl
− c3ηtzl) (20)

where t := ⟨zl, g⃗xl
⟩. Eq. 20 can be further reformulated as:

gzl := gxl
+ 2λ(1− cηt)(−cηg⃗xl

− c3ηtzl)

= (1− 2cηλ
1− cηt

∥gxl
∥2

)gxl
+ 2ηλc3t(cηt− 1)zl (21)

Hence, the estimated error term ϵ can be calculated by subtracting Eq. 12 from Eq. 21, which is:

ϵ := −2cηλ
1− cηt

∥gxl
∥2

gxl
+ (2ηλc3t(cηt− 1)− τ)zl. (22)

Since λ and η are very close to zero, the influence of the first term in right can be ignored, so the
second term mainly contributes to the estimation error. When we choose a suitable hyper-parameter
τ that makes τ = 2ηλc3t(cηt − 1) hold, the estimation error ϵ could be abysmally close to zero.
Empirically, the value of τ varies significantly across different tasks.

D THE QUALITY OF THE PROPOSED IDEAL DIRECTION

There are many ways to define an ideal direction. As shown in Fig. 5, our proposed ideal direction
calculation approach will satisfy the definition in most situations.
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Figure 5: The difference between ℓ(xl − ηgxl
, y)− ℓ(xl, y) during training in the toy model. Under

more than 70.0% of situations, ℓ(xl − ηgxl
, y) < ℓ(xl, y strictly holds.
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Figure 6: Advantage of ResNet over VGG under Markov chain’s guide. As long as CL(x0 → xL)
is a δ-convex chain, the chain formed by ResNet is more efficient than the one formed by VGG.

E ADVANTAGE OF RESNET OVER VGG UNDER MARKOV CHAIN’S GUIDE

Lemma 4 If CL(x0 → xL) is δ-convex, the chain C′ formed by ResNet is more efficient than the
chain C′′ formed by VGG, formally:

ϵ′ ≥ ϵ′′ (23)

where ϵ′ is the efficiency of ResNet chain and ϵ′′ is the efficiency of VGG chain.

Proof E.1 Without losing generality, we will discuss only one node here. As shown in Fig. 6, since
C is δ-convex, xl will always get closer to the target compared with xl−1 and the original point.
Hence,

⟨x⃗l−1, d⃗l⟩ ≥ 0 (24)

holds. Suppose the parameters θl are the same for ResNet and VGG, then:

x′
l = zl + xl−1 (25)

x′′
l = zl, (26)

where zl := fθl(xl01). x′
l and x′′

l are the next chain node for ResNet and VGG respectively.

As for chain node xl−1, the estimated direction for ResNet is z⃗l and the estimated direction for VGG
is z⃗l − x⃗l−1. Therefore,

ϵ′ = ⟨zl, dl⟩ (27)

ϵ′′ = ⟨zl − xl−1, dl⟩. (28)
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According to Eq. 24, we have:

⟨xl−1, dl⟩ ≥ 0

⇒ ⟨zl, dl⟩ − ⟨zl, dl⟩+ ⟨xl−1, dl⟩ ≥ 0

⇒ ⟨zl, dl⟩ − ⟨zl − xl−1, dl⟩ ≥ 0

⇒ ⟨zl, dl⟩ ≥ ⟨zl − xl−1, dl⟩
⇒ ϵ′ ≥ ϵ′′ (29)

Proofed.

Lemma. 4 indicates that ResNet can form a more efficient Markov chain compared with VGG, and
leads to better performance.

F MORE DISCUSSION ON MODEL DEGRADATION

As shown in Fig. 7, the randomly initialized Markov chain is prone to move in zigzags and even
turn back as the chain goes longer (i.e. the model going deeper), which hinders the model from
fitting target distribution efficiently, probably resulting in worse performance. When we apply penal
connection to enforce the network to be an efficient Markov chain, the turn-back chain nodes do not
exist so each node takes at least a non-negative effect whatever how long the chain is. As a result, it
could alleviate the model degradation problem.

(a) Folding Markov chain. (b) Unfolding Markov chain.

Figure 7: Structural comparison between a folding Markov chain (a) and an unfolding Markov chain
(b).
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