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ABSTRACT

In response to the continuous influx of 3D point clouds encountered in practical
training scenarios, we propose a novel incremental learning and classification
approach designated as 3DPAN-CIL, specifically tailored for 3D point cloud data.
This method initially establishes the 3D category prototype that encapsulates the
feature embedding of point clouds within a latent space. Then, we wisely construct
an optimal transport strategy on this prototype space for the migration of 3D
category prototypes. This alignment ensures that the distribution of new category
prototypes adheres as closely as possible to the relative spatial distribution of
old category prototypes, significantly reducing the catastrophic forgetting in the
training model. Additionally, to tackle the challenge of imbalanced old and new
samples, we introduce a prior-guided knowledge distillation strategy aimed at
addressing the model’s preference for new knowledge. We conduct a series of
experimental evaluations on both synthetic datasets and real scanning datasets,
demonstrating that our method surpasses existing state-of-the-art approaches in
terms of average accuracy and average forgetting rate. Notably, in the context
of average scene partitioning, our method achieves improvements of 4.5% in
average accuracy and 1.47% in average forgetting rate compared to other top-
performing methods. The model and code are available at: https://github.
com/FlRiver/3DPAN-CIL.

1 INTRODUCTION

Nowadays, notable advancements have been made in areas such as autonomous driving, scene analysis,
and robotics, positioning 3D object classification with continual learning as one of paramount tasks
within the realm of 3D visual technology (Chen et al., 2023). The rapid development of 3D acquisition
devices, such as LiDAR, has facilitated the proliferation of point cloud data, which is distinguished
by its straightforward representation and accessibility. Consequently, extensive research has been
undertaken on classification utilizing incremental data derived from raw point clouds, significantly
advancing data-driven deep learning methods (Liang et al., 2024a).

When dealing with large-scale 3D point cloud data, the transfer learning approach has been proposed
to mitigate challenges such as extended training durations and the scarcity of new data, demonstrating
its efficacy in tasks with significant relevance. Furthermore, the application of pre-trained point cloud
models effectively addresses a majority of classification problems. Nevertheless, when confronted
with incrementally emerging data streams, existing models often suffer from catastrophic forget-
ting (Yu et al., 2022; Pang et al., 2022), characterized by a rapid adaptation to new classes at the
cost of previously acquired knowledge. Conversely, an excessive focus on alleviating catastrophic
forgetting may impede the adequate assimilation of new class data, diminishing the classification
performance for new categories.

Recent advancements in continual learning for images have been notable (Zhu et al., 2022; Yan et al.,
2021; Pham et al., 2021). However, models designed for 3D point clouds have not demonstrated
satisfactory performance in class-incremental learning, primarily due to three key factors. First,
during the training process, models tend to overfit the distribution of the current data, which result
in the model forgetting the distribution of previous data. While distinguishing between old and
new tasks through the training network extension appears to be a viable strategy, the model’s size
tends to increase with the number of tasks, which poses challenges for the deployment and practical
application of learning models. Second, although the distribution of old category prototypes is
maintained, there is a significant disparity of prototypes between new and old categories in the
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training model, which adversely impacts the model’s generalization capabilities concerning new
categories. Furthermore, a considerable amount of current research employs a replay-based approach
to address the issue of forgetting in class-incremental learning. This method involves allocating a
limited memory space to retain data from old categories. However, it could result in an imbalance
between the quantities of new and old sample data, leading the model’s classifier to favor the new
category.

In this study, we propose a novel incremental learning and classification network (3DPAN-CIL),
aimed at mitigating the significant performance degradation when confronted with continuous streams
of 3D point clouds. The primary contributions of this research are: (1) We propose an effective
class prototype space construction (the first use in 3D incremental learning). It applies point cloud
position and normal with Transformer blocks to solve the unorderness and irregularity of 3D models
with noise and partial missing (specific to 3D models). (2) We for the first time introduce the
optimal transport (OT) on this prototype space and successfully solve catastrophic forgetting in
3D incremental learning by utilizing old class prototype space as a directional guide and adjusting
the class prototype migration in new prototype space. (3) We derive prior guided knowledge and
apply dynamic weighting to address the data bias inherent in the training model. Subsequently, by
distilling knowledge from both balanced labels and soft labels, we enhance the new model’s ability to
assimilate established knowledge from the previous model.

2 RELATED WORK

2.1 3D Point cloud classification. The evolution of 3D point cloud acquisition technologies has
resulted in the creation of various models (e.g., PointNet (Qi et al., 2017a), PointNet++ (Qi et al.,
2017b)) that directly analyze raw point cloud data. Models such as PointCNN (Li et al., 2018),
PointConv (Wu et al., 2019a), and DGCNN (Wang et al., 2019) have followingly emerged, with other
methods increasingly emphasizing enhancements through attention mechanism, Transformer and
Mamba (Liang et al., 2024a). For instance, PCT (Guo et al., 2021) encodes point cloud features into
higher-dimensional spaces and employs multi-layer self-attention and biased attention modules to
capture multi-scale semantic similarities for classification. Point-BERT (Yu et al., 2022) introduces
a masked point modeling to train point cloud Transformers, while utilizing an additional dVAE to
generate discrete token representations of point clouds. Point-MAE (Pang et al., 2022) processes point
clouds within the masked autoencoder, relying exclusively on Transformers without supplementary
frameworks. PointGPT (Chen et al., 2023) employs a hierarchical Transformer architecture that
integrates dynamic graph neural networks to enhance feature representations for downstream analysis.
However, these methods are not readily applicable to class-incremental learning tasks involving
3D point clouds, as they are susceptible to catastrophic forgetting when faced with the continuous
introduction of new 3D point clouds.

2.2 Class-incremental learning. Class-incremental learning has recently attracted considerable
scholarly interest. To tackle the issues of plasticity and catastrophic forgetting in models, four primary
strategies have been proposed: regularization-based methods, knowledge distillation-based methods,
network architecture-based methods, and replay-based methods. The predominant approaches tend
to emphasize knowledge distillation and replay strategies. Kirkpatrick et al. (2017) introduced an
elastic weight consolidation (EWC) model, which can alleviate catastrophic forgetting by constraining
critical parameters. Li & Hoiem (2017) developed a learning without forgetting (LwF) model that
incorporates the knowledge distillation loss as a fundamental element in numerous continual learning
frameworks. Rebuffi et al. (2017) introduced a replay-based incremental learning method iCaRL,
which selects a certain number of samples, and then combines the preserved samples with new data
for joint training. Zhu et al. (2021) proposed a prototypical augmented self-supervised (PASS)
method, which maintains class prototypes for each category and enhances the training dataset by
incorporating Gaussian noise. Furthermore, it employs a self-supervised learning strategy to mitigate
the risk of the feature extractor overfitting to new classes.

2.3 Incremental learning of 3D point clouds. Current investigations in class-incremental learning
primarily concentrate on image domains, presenting significant challenges when attempting to 3D
point clouds. Liu et al. (2021) introduced an L3DOC model, which disaggregates feature extraction
modules on a layer-wise basis to effectively capture shared point knowledge, thereby addressing the
issue of catastrophic forgetting. Chowdhury et al. (2021) developed an LwF-3D model which utilizes
class semantic embeddings from previous models to generate soft labels that guide updates in new
models. Dong et al. (2021) proposed an I3DOL model, which constructs geometry-aware centroids
through attention mechanisms to selectively identify local regions and maintains an optimal exemplar
set to mitigate forgetting. Zamorski et al. (2023) introduced a RCR model which employs the
compressed point cloud sampling for replay and integrates the reconstruction loss as a regularization
term. Xu et al. (2025) provided an enhanced 3D few-shot class-incremental learning by applying
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the vision-language models. But it is related to the pre-training which greatly increases the model
complexity. In contrast to these methods, our 3DPAN-CIL enhances the learning of new categories
by optimizing model updates through alignment in the latent prototype space, which can significantly
reduce catastrophic forgetting while preserving robust plasticity for the incorporation of new classes.

3 METHODOLOGY

3.1 Problem definition. Given a specific task sequence T ∈ {1, 2, · · · , t}, the training samples
are denoted as DT ∈ {d1, d2, · · · , dt}. The samples and corresponding labels utilized for model
training are restricted to the currently accessible data, denoted as dt ∈ {xi

t, y
i
t}. In this context, dt

represents the training dataset at the t-th stage, xi
t signifies the i-th data within the t-th stage of the

task, yit indicates the i-th label associated with the t-th stage of the task, and xi ∈ X, yi ∈ Y . In
contrast to conventional training methods that permit access to the entirety of the training dataset,
class-incremental learning is constrained to the utilization of a minimal set of training samples
pertinent to the current phase. Furthermore, the memory capacity M allocated for samples from
old categories adheres to |M | ≪ ND, where ND denotes the total number of examples within the
training dataset.

3.2 Overview of overall framework. The overall framework of our 3DPAN-CIL is illustrated in
Figure 1. In the context of the incremental t-task phase, the model is restricted from utilizing the
data associated with the previous categories (D0, · · · , Dt−1), which is maintained in a consistent
manner with the feature extraction component of Point-BERT (Yu et al., 2022). Subsequently, these
samples are transformed into feature embeddings through Mini-Point (Qi et al., 2017b), resulting
in a dimensionality with Z ∈ Rg×k. Then we develop a dual-branch feature extractor comprising
both an old model and a new model. The new model is initialized based on the parameters of the
old model, which remains static during the feature extraction process. The extraction of features Z
is achieved through a feature extractor f that incorporates standard Transformer blocks (Vaswani
et al., 2017) and combined poolings. It can effectively solve the unorderness and irregularity of 3D
models with noise and partial missing. Initially, we establish category prototypes to encapsulate the
representative features of each class of point clouds. An optimal transport loss is then calculated to
facilitate the migration within the category prototype space, which effectively regulates the updates
to the new model. Given the challenge posed by data imbalance between old and new samples in
practical scenarios, we apply weights to the predicted labels informed by prior knowledge regarding
the sample sizes of both old and new stages. Furthermore, we implement a distillation strategy to
facilitate the transfer of knowledge from the old model to the new model.

3.3 Spatial migration of 3D category prototypes. Presently, numerous methods in class-incremental
learning aim to minimize the disparity between old and new models by employing KL divergence
across each feature extraction layer in both models. However, this sample-level distillation is hindered
by the off-centre distillation issue (Tang et al., 2020). In response, we propose a category space-level
distillation approach to mitigate the bias problem, emphasizing that the overall distribution of the new
task’s category space should align with that of the old task. Furthermore, in high-dimensional spaces,
the direction of migration can vary among different category prototypes throughout the migration
process. To ensure that each category prototype attains its optimal position, we implement an optimal
transport strategy that progressively aligns each category prototype with the category distribution of
the old task, illustrated in Figure 1(a).

3.3.1 3D category prototype of point clouds. We define the category prototype set of 3D point
clouds as P = {p1,p2, · · · ,pN}, where each category prototype is designed to represent each type
within 3D point clouds, based on a specified set of high-dimensional features P ∈ RN×k. In the
context of incremental tasks, we posit that the category prototype associated with the old task, t− 1,
is represented as Pt−1 ∈ Rnt−1×k, while the category prototype for the current task, t, is denoted as
Pt ∈ Rnt×k. The category increment for the new task is identified as nt −nt−1, which encompasses
both the old category prototype Pold

t and the new category prototype Pnew
t , collectively referred to

as Pt. Subsequently, we employ the optimal transport method to assess Pold
t and to ascertain the

variance between Pold
t and Pt−1. For Pnew

t , it is imperative to maintain the relative spatial relationship
with Pold

t , which necessitates the adjustment of the appropriate position in accordance with Pold
t .

3.3.2 Optimal transport for 3D category prototypes of point clouds The objective of this study
is to incorporate the OT method into our model for mitigating catastrophic forgetting through the
transfer of category prototypes. When the OT method is employed to quantify the disparity between
distributions of 3D point clouds, the core task is to calculate the minimum total cost required to
convert the difference between two distributions using Wasserstein distance. Cuturi (2013) proved
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Figure 1: Overall framework of 3DPAN-CIL. The base model is the main structure of the framework,
where ft−1 and ft are feature extraction modules in previous and current stages respectively. Among
them, ft−1 is frozen and used to guide the training of ft. Memory bank stores samples from time
t− 1 and combines the sample size at time t to jointly calculate prior knowledge. (a) represents the
OT process for class prototypes, where the update direction is guided by the OT loss Lk-3DCPOT. (b)
represents the knowledge distillation process guided by prior knowledge, where prior knowledge is
used for weighting predicted logits to address the issue of imbalanced training data, and LPGKD loss
is used to guide the model training.

that when two distributions are represented in a discrete form, the Sinkhorn distance can be used as a
convenient computational form to obtain an approximate optimal solution. In fact, we can prove that
in a more general case, when two distributions are represented in a continuous form, the Sinkhorn
distance still satisfies the distance axiom condition for the approximate optimal solution of the OT
problem. Please refer to Appendix A for the detailed proof.

For two point cloud distributions, denoted as up ∈ Rk and vp ∈ Rk, the difference between them is
articulated through the Sinkhorn distance associated with up and vp, as follows

W p
ϵ,p(up,vp) = inf

π∈Πϵ(up,vp)

∫
Rk×Rk

d(up,vp) dπ, (1)

where π denotes the joint distribution function corresponding to up and vp, Πϵ(up,vp) represents the
set of all joint distributions whose marginal distributions are up and vp respectively, which satisfies
the KL divergence constraint (Kim et al., 2021) as

Πϵ(up,vp) = {π | KL(π∥up ⊗ vp) ≤ ϵ, π ∈ Π(up,vp)} , (2)

KL(π∥up ⊗ vp) =

∫∫
π ln

(
π

upvp

)
dxdy. (3)

d(up,vp) is the transport cost function from up to vp, formulated as the Euclidean distance.

In the context of class-incremental learning, we conceptualize the distributions associated with two
incremental stages, t− 1 and t, as distributions u and v within two distinct latent spaces. Here, the
distribution u at stage t− 1 is designated as the shared category distribution, whereas the distribution
at stage t encompasses both the shared categories and newly introduced categories. Accordingly, we
articulate the decomposition of the spatial distribution v at stage t in a manner of v = vnew ⊕ vold,
where ⊕ signifies the dimensional splicing of categories, vnew indicates the distribution of the new
categories at stage t, and vold denotes the distribution of the old categories at time t, which is shared
with u. The objective of our study is to minimize the discrepancy between vold and u, which can be
conceptualized as an OT problem.

In the context of utilizing deep features Zt−1 and Zt derived from the dual branch, we proceed to
calculate their respective category prototypes, denoted as Pt−1 and Pt. Given that the new category
samples of point clouds are employed during the new task phase and are absent in the previous task
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phase, we accordingly partition Pt into Pold
t and Pnew

t , which is represented as Pt = Pold
t ⊕Pnew

t ,
where the dimensions of Pold

t and Pt−1 are equivalent to Rnt−1×k, and the dimension of Pnew
t is

represented by R(nt−nt−1)×k.

During the training process, due to the substantial size of the dataset and the constraints imposed by
the memory capacity, we employ a batch processing approach. This entails loading only a subset
of the training samples into memory for processing at any given time. Consequently, obtaining the
point cloud distribution Pt at a specific time t becomes challenging, necessitating the use of an
accumulated approximation to address this issue. Initially, we define the category prototype of point
clouds for the old task phase as follows

pi
t−1 =

1

Ni

∑
j∈yi

old

ft−1(x
i
j), pi

t−1 ∈ Pt−1, (4)

where ft−1 represents the feature extractor utilized in the old model to obtain deep features, Ni
denotes the quantity of features associated with class i. Subsequently, the corresponding category
prototype, denoted as pi

t−1, is derived by averaging all these deep features. Following this, we
introduce our OT method (3DCPOT), specifically designed for the category prototype of point clouds:

3DCPOT(Pt−1,Pi) ≜ OT(Pt−1,P
old
t ) = min

π∈Πϵ(µ,ν)

nt−1∑
k=0

nt−1∑
l=0

πkld(p
i
t−1, ft(x

i
j)), (5)

where ft serves as the feature extraction module. The cost function is formulated based on the
distance cost metric d(pi

t−1, ft(x
i
j)), and a cost matrix is established utilizing the distance cost

metric d, which is designed to quantify the expense associated with transporting each category in the
spatial distribution of existing categories to corresponding categories in the new spatial distribution.

Despite the fact that our 3DCPOT is designed for category prototypes within two stages, we encounter
a considerable limitation in memory capacity, which restricts our ability to process training samples
in a single batch throughout the training phase. In response, we enhance the 3DCPOT by maintaining
the category prototype of point clouds from the old stage in a fixed state. Specifically, we denote the
current training sample size as N and the batch size as B, leading to the number of iterations being
represented as K = N/B. We define Qi as the category prototype derived from the i-th batch of
randomly selected sample data during the iteration, ensuring that there is no overlap between samples
in each batch for the computation of Q. Consequently, the optimal transport of the batch point cloud
category prototype(k-3DCPOT) can be expressed as

k-3DCPOT(Pt−1,Pi) ≜
1

K

K∑
i=1

OT(Pt−1,Qi), (6)

In pursuit of minimizing the disparity between Pt−1 and Pold
t , we propose a 3D category prototype

loss function (Lk-3DCPOT) for training, which is articulated as

Lk-3DCPOT = min
F

Fk-3DCPOT(Pt−1,P
old
t ), (7)

3.3.3 Category prototype migration. Due to the absence of corresponding prototypes for Pnew
t in

the latent space during the old task phase, and considering the spatial relationship between Pnew
t and

Pold
t throughout the training process, we initiate the migration of latent features for Pnew

t associated
with category prototypes. Specifically, we update the position of Pnew

t to maintain the relative
positional relationship between old and new categories in the new task phase. As we know, for
Pold

t , each old category prototype is assigned a distinct direction for updating. However, there is a
lack of precise guidance for each new category prototype in pnew

t . We can regard the old category
prototype distribution Pold

t as a reference for the whole latent space distribution to describe the
guidance migration, which can easily convert the migration of new category prototypes in Pnew

t into
the migrating process along with Pold

t in the latent space.

Given that category prototypes of 3D point clouds exist in a high-dimensional space, where each
dimension corresponds to a distinct direction, we employ a distance metric that encompasses all
dimensions of each prototype in Pold

t . This feature-level metric computation in each dimension
ensures that Pnew

t more accurately approximates the optimal migration of Pold
t . Specifically, we
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posit that Pt−1 comprises nt−1 category prototypes and Pt encompasses nt category prototypes, all
sharing the same dimensionality k. Consequently, our transport cost function is articulated as

d =
1

nt−1
1nt−1

(Pold
t −Pt−1), d ∈ Rk, (8)

where 1nt−1 is an nt−1-dimensional row vector consisting entirely of ones, and d is the comprehen-
sive optimal transport metric vector that indicates the average update direction for all old category
prototypes within dimension k. Ultimately, d is employed to update Pnew

t as a migration reference.
Specifically, for each prototype j in Pnew

t , the update is conducted as P̃new
t,j = Pnew

t,j + β · d, where
β is the weight adjustment parameter utilized in the update direction. Upon the completion of the
migration process, we combine P̃new

t and Pold
t to form P̃t, which subsequently serves as a guiding

framework for model training at the subsequent time t+ 1, denoted as P̃t = Pold
t ⊕ P̃new

t .

3.4 Priori guided knowledge distillation. In the context of incremental learning, the phase associated
with new tasks lacks access to samples from previous categories and is restricted to utilizing a limited
number of old samples retained in memory. This situation results in an imbalance between the
quantities of samples from old and new stages, which is likely to lead to a classifier that prioritizes the
acquisition of knowledge related to the new task and consequently results in the erosion of previously
acquired knowledge pertaining to old categories. To mitigate this imbalance, we propose leveraging
the quantities of old and new samples as a form of priori knowledge.

3.4.1 Old and new sample size as a priori. When quantifying the number of new samples (Nnew)
during the training phase and the number of old samples (Nold) stored in the computer’s memory,
we introduce λ =

√
Nold/Nnew to represent the sample size-based prior knowledge. Given that

the memory capacity is constant and the representation of each category of old samples within this
memory diminishes over time, we establish a concept of prior knowledge σ = 1− e−λt, which serves
to effectively mitigate the impact of temporal changes.

3.4.2 Dynamic weighting. For the classifier Ct designed for the new task, given that Nold ≪ Nnew,
the output logits are predominantly influenced by the training of new category samples. This situation
leads to an issue of imbalanced data distribution throughout the model training process. We apply
weighting to the predicted logits in order to recalibrate the model’s emphasis on both old and new
categories, as illustrated in Figure 1(b). We denote the output of Ct as Snew ∈ Rnt and the output
of Ct−1 as Sold ∈ Rnt−1 . Due to the differing dimensions of Snew and Sold, Snew is divided into two
components as Snew = S′

new ⊕ S′′
new, where S′

new and S′′
new represent the logit probabilities associated

with old and new categories produced by Ct. Subsequently, we employ the sample size prior σ for
S′

new and S′′
new to achieve a balanced emphasis within the model on both old and new categories,

which is expressed as S̃new = σS′
new ⊕ (1− σ)S′′

new.

3.4.3 Priori guided knowledge distillation loss. Like established methods (Wen et al., 2024; Kang
et al., 2022; Shang et al., 2023), we incorporate a knowledge distillation loss (Hinton et al., 2015) to
mitigate the problem of knowledge forgetting. Nonetheless, prior methods in knowledge distillation
have overlooked the issue of sample imbalance, opting instead to utilize KL divergence for soft and
predictive labels. This oversight would lead to challenges such as overfitting and underfitting in
training. We propose a priori guided knowledge distillation loss, which preserves the retention of
old knowledge by formulating the predictive label S̃new with dynamical weighting as a form of prior
knowledge. Note that the dimensionality of Sold derived from the previous model is less than that
of S̃new, rendering direct application of knowledge distillation for loss calculation unfeasible. In a
similar vein, we concatenate the components of S′′

new and Sold to ensure the dimensional consistency
S̃old = Sold ⊕ S′′

new. Finally, we define a priori guided knowledge distillation loss as follows

LPGKD = LKL(S̃new, S̃old), (9)

where the KL divergence is used to measure the gap between S̃new and S̃old.

3.5 Loss function and parameter setting. In the initial phase of model training, we employ the
cross-entropy loss (LCE) as the primary loss function within the foundational incremental stage of
our model. In the subsequent training phase, we incorporate losses Lk-3DCPOT and LPGKD alongside
loss LCE to facilitate the co-optimization of the model training as denoted by

L = LCE + α1Lk-3DCPOT + α2LPGKD, (10)
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where LCE is the cross-entropy loss, Lk-3DCPOT is the optimal transport loss associated with the cate-
gory prototype of point clouds as detailed in Eq. 7, and LPGKD refers to the priori-guided knowledge
distillation loss discussed in Eq. equation 9. αi (i = 1, 2) is the hyperparameter corresponding to
each loss, in which we set α1 = α2 = 5 across all experimental conditions. The main procedure of
our 3DPAN-CIL is delineated in Appendix B. In addition, we provide the complexity analysis of our
model, which is described in Appendix C.

The experiments are conducted on an NVIDIA RTX A6000 GPU server. In alignment with established
point cloud classification methods (Yu et al., 2022; Pang et al., 2022; Liang et al., 2024b), the
experiments utilize the original point cloud data, with the dataset being segmented according to the
incremental learning task for class categories. The AdamW optimizer is employed to optimize the
neural network, with a learning rate fixed at 0.001, and the CosLR learning rate scheduler is utilized
to adjust the learning rate. A batch size of 256 is established, with training conducted over 100
iterations for each incremental stage and global random seed of 1229 is applied. The dataset loading
is configured in accordance with the Point-BERT model (Yu et al., 2022), and the parameter tuning
for αi is elaborated in Appendix D.1.

4 EXPERIMENTAL RESULTS

4.1 Datasets. The experimental dataset utilized in this study comprises five commonly used datasets:
ModelNet (Wu et al., 2015), ShapeNet (Chang et al., 2015), ScanObjectNN (Uy et al., 2019),
ScanNet (Dai et al., 2017) and CO3Dv2 (Reizenstein et al., 2021). Among these, ModelNet and
ShapeNet are classified as synthetic datasets, whereas ScanObjectNN, ScanNet and CO3Dv2 are
categorized as real scanning datasets. The detailed dataset description is provided in Appendix D.2.
We establish a benchmark for dividing the dataset according to incremental categories. This process
involves the implementation of two distinct experimental scenarios: the category averaging principle
(e.g., ModelNet40-avg) and the over half partitioning principle (e.g., ModelNet40-half). The latter
principle is further examined in the context of ablation experiments. Under the category averaging
principle and over half principle, we perform five related tests respectively. The detailed dataset
partitioning description with averaging principle is depicted in Appendix D.3.

Figure 2: Method comparison and memory space size ablation on different datasets.

4.2 Comparison method. We employ the method comparison to evaluate prevalent approaches of
incremental learning within the context of 3D point clouds. Additionally, recognizing that certain
research has concentrated on experimental frameworks involving 2D images, we also juxtapose our
model against these methods, as long as we replace the features extracted from the image by 3D point
cloud features as data input. A total of 11 advanced methods have been selected for this comparative
analysis, including LwF-3D (Chowdhury et al., 2021), I3DOL (Dong et al., 2021), LwF (Li & Hoiem,
2017), iCARL (Rebuffi et al., 2017), EEIL (Castro et al., 2018), BiC (Wu et al., 2019b), WA (Zhao
et al., 2020), GeoDL (Simon et al., 2021), CafeBoost (Qiu et al., 2023), EASE (Nishikawa et al.,
2022) and DECO (Luo et al., 2024). Furthermore, we present two benchmark comparisons (Li &
Hoiem, 2017): Joint-Training and Fine-Tuning. Joint-Training allows the model to maintain access
to all previously encountered categories, thereby mitigating the risk of catastrophic forgetting, albeit
at a computational cost. In contrast, Fine-Tuning involves updating the model exclusively with new
class data, without retaining any prior samples, which can result in significant catastrophic forgetting
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due to the lack of rehearsal mechanisms. These benchmarks serve to delineate the upper and lower
limits of incremental learning performance, respectively.

4.3 Result comparison. We assess our model utilizing the standard class-incremental protocol (Re-
buffi et al., 2017) across above datasets. The comparative ACC results are presented in Table 1,
Figure 2(a)-(b), supplementary Figure S2(a)-(b), Tables S1, S2, S3 and S4, with each task comprising
a balanced subset of classes from the respective dataset. Notably, in the context of average parti-
tioning (ModelNet40-avg, ShapeNet-avg, ScanObjectNN-avg, ScanNet-avg and CO3Dv2-avg), our
model demonstrates the superior average accuracy compared to state-of-the-art methods, achieving
improvements of 4.5%, 3.47%, 2.6%, 1.25% and 0.55%, respectively. Furthermore, the average
forgetting rate (AFR) is reduced by 1.47%, 0.89%, 0.25%, 0.58% and 0.04%, respectively. In the
case of synthetic datasets, our proposed 3DPAN-CIL exhibits significant enhancements. Particularly
on the CO3Dv2 dataset, challenges such as noise, data incompleteness, and point cloud sparsity in
real-world data hinder the ability of most existing models to effectively extract features from point
clouds, thereby limiting the performance improvement. In contrast, our model excels on real datasets,
attributed to the implementation of optimal transport-based feature prototype migration.

Table 1: Result comparison on ModelNet40-avg and partial ablation results (%).

Method Number of visible categories in incremental phases Accavg AFR4 8 12 16 20 24 28 32 36 40
Joint-Training 99.51 97.46 96.53 95.95 93.51 92.44 91.30 90.10 89.99 88.53 93.53 0.69
Fine-Tuning 99.50 54.07 42.00 33.06 26.62 21.15 17.96 15.79 14.32 12.97 33.74 9.77
LwF 97.78 90.12 83.53 72.43 68.55 63.89 59.38 57.52 52.45 47.26 69.29 8.12
iCaRL 98.77 94.70 89.24 82.32 76.95 71.93 69.35 65.14 62.51 57.62 76.85 7.28
EEIL 97.60 93.81 87.53 81.67 78.21 74.72 69.22 62.42 56.81 48.12 75.01 7.15
BiC 99.26 94.38 89.16 81.75 77.63 74.05 70.48 68.54 67.53 64.49 78.73 6.98
WA 99.01 94.57 88.62 79.56 77.39 73.81 70.20 67.80 66.49 63.55 78.10 7.15
GeoDL 99.13 93.16 88.89 81.68 79.96 75.33 72.56 68.96 67.59 63.09 79.04 6.41
CafeBoost 99.37 95.12 90.86 83.02 79.32 77.08 73.98 70.16 67.90 63.43 80.02 6.58
EASE 98.48 94.75 92.30 86.23 84.21 79.54 74.39 71.46 66.42 64.45 81.22 6.93
DECO 99.31 95.89 93.56 86.03 84.28 80.69 75.33 72.81 65.87 66.74 82.05 6.38
LwF-3D 98.42 92.35 89.37 81.41 79.79 76.26 73.17 70.02 68.01 64.23 79.30 6.53
I3DOL 99.26 95.49 90.71 83.03 81.72 77.34 74.05 71.07 68.88 65.95 80.75 5.49
Ours-w/o all 99.25 96.44 94.19 87.91 85.65 81.49 75.63 73.44 70.33 65.80 81.01 4.98
Ours-w/o PAN 99.26 96.83 94.36 89.47 86.23 82.02 76.38 75.24 73.22 67.42 84.04 4.79
Ours-w/o PGKD 99.26 96.95 94.40 88.01 86.77 82.36 76.51 75.15 73.45 67.34 84.02 4.45
3DPAN-CIL 99.26 97.63 94.80 91.79 89.68 83.75 77.68 75.95 74.01 67.96 85.25 4.02

4.4 Ablation experiment.
4.4.1 Module ablation. To assess the efficacy of the prototype assisted network (PAN) module and
the prior guidance knowledge distortion (PGKD) module in our 3DPAN-CIL model, we conduct
a series of experiments utilizing above five datasets for module ablation analysis. The results are
presented in Table 1 and supplementary Tables S1, S2, S3 and S4. Note that Ours-w/o all, Ours-w/o
PAN and Ours-w/o PGKD correspond to the model’s performance when PAN and PGKD modules are
excluded, the PAN module is omitted, and the PGKD module is omitted, respectively. The findings
indicate that the absence of PAN during the incremental learning process hinders the model’s ability
to receive appropriate guidance during backpropagation, resulting in misalignment due to shifts in
the category prototype space. We observe an average performance decline of 1.21%, 1.67%, 1.96%,
0.84%, 1.79% for ACC and 0.77%, 1.72%, 1.2%, 1.94%, 0.31% for AFR. Furthermore, the exclusion
of PGKD leads to a lack of prior knowledge regarding the ratio of new and old samples, causing the
model to favor new categories. This results in an average performance reduction of 1.23%, 1.97%,
1.29%, 2.33%, 1.63% for ACC and 0.43%, 1.02%, 2.01%, 1.51%, 0.79% for AFR. In comparison
to the Ours-w/o all configuration, our 3DPAN-CIL demonstrates a significant ACC enhancement
ranging from 4.24% to 8.16% across these experiments, alongside an average improvement from
0.96% to 5.43% in AFR.

4.4.2 Memory space size ablation. To examine the influence of memory space size on our 3DPAN-
CIL framework, we vary the memory space size parameter M and assess the effect of the quantity of
retained historical samples on the model accuracy. We conduct experiments within the ModelNet-avg
scenario, modifying the original memory space size to 400, 600, 800 and 1000 features, respectively.
As illustrated in Figure 2(c), an increase in memory space size correlates with a gradual enhancement
in the model performance. Furthermore, the 3DPAN-CIL approach consistently outperforms other
methods across the experiments conducted with memory sizes of 400, 600, 800 and 1000, thereby
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supporting the assertion that 3DPAN-CIL effectively mitigates the issue of catastrophic forgetting in
our model when confronted with varying memory space sizes.

Figure 3: Incremental stage number ablation and category increment mode ablation.

4.4.3 Incremental stage number ablation. It is conducted to assess the efficacy of 3DPAN-
CIL across varying numbers of incremental tasks, with the results illustrated in Figure 3(a)-(b).
Specifically, Figure 3(a) depicts the experimental setup for ModelNet40-avg-20S, wherein the dataset
is partitioned into 20 tasks, with the introduction of 2 new categories at each stage. Figure 3(b)
presents the ShapeNet-avg-11S scenario, which divides the dataset into 11 tasks, incorporating 5
new categories at each stage. The experiments on other three datasets are provided in Appendix D.4.
The performance curves depicted in these figures indicate that the 3DPAN-CIL method consistently
outperforms alternative approaches across various incremental stages. Furthermore, the performance
metrics in the final stage remain optimal, thereby underscoring the robust adaptability of our model.

4.4.4 Category increment mode ablation. It is observed that a significant proportion of categories,
specifically more than half, remain in the foundational stage of continuous learning. In response
to this, we evaluate the performance of our 3DPAN-CIL under the over half principle in the class-
incremental learning. The detailed analysis is delineated in Figure 3(c) and Appendix D.5. We also
find our approach outperforms existing methods on the accuracy and AFR indices.

5 CONCLUSION

We introduce a novel approach (3DPAN-CIL) for class-incremental learning of 3D point clouds. The
core of this work is to employ a category migration strategy based on optimal transport in the latent
prototype space to effectively address the issue of catastrophic forgetting. Furthermore, we implement
a knowledge distillation strategy informed by prior knowledge to counteract the classification bias that
may arise from the imbalance between new and old data. Our method has rigorously been evaluated
across multiple datasets, demonstrating superior performance compared to existing state-of-the-art
methods. Furthermore, our model has a generality advantage which can be extended and applied in
other 3D tasks (such as segmentation and registration), in addition to 2D image domain.

The current study acknowledges certain limitations that could be addressed in future endeavors.
Although our model demonstrates improvements over other advanced methods when applied to
the real point cloud dataset CO3Dv2, it still encounters issues related to catastrophic forgetting,
resulting in a decline in performance, particularly when dealing with sparse and incomplete point
clouds for the incremental learning task associated with small sample classes. Additionally, for newly
introduced 3D point clouds, it is worth combining with the pre-training vision-language model such
as CLIP to solve the few-shot class-incremental learning. Finally, although we have successfully
provided the proof of Sinkhorn distance in the continuous form for the first time, how to introduce
more mathematical analyses (such as metric geometry and convex analysis theory) for theoretical
understanding of OT and promote a deep and wide exploration of OT application will be one of our
future work.
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APPENDIX

A PROOF

When two distributions are represented in a continuous form, the Sinkhorn distance still satisfies the
distance axiom condition for the approximate optimal solution of the OT problem.

For two distributions denoted as up ∈ Rk and vp ∈ Rk, the difference between them is articulated
through the Sinkhorn distance associated with up and vp, as follows

W p
ϵ,p(up,vp) = inf

π∈Πϵ(up,vp)

∫
Rk×Rk

d(up,vp) dπ, (A.1)

where π denotes the joint distribution function corresponding to up and vp, Π(up,vp) represents the
set of all joint distributions whose marginal distributions are up and vp, respectively, and satisfies the
KL divergence constraint Kim et al. (2021) as follows

Πϵ(up,vp) = {π | KL(π∥up ⊗ vp) ≤ ϵ, π ∈ Π(up,vp)} , (A.2)

KL(π∥up ⊗ vp) =

∫∫
π ln

(
π

upvp

)
dxdy. (A.3)

d(up,vp) represents the transport cost function from point up to vp, formulated as the Euclidean
distance.

We firstly denote H(π) as the entropy of the joint distribution π, which is expressed as

H(π) = −
∫∫

Rk×Rk

π log π dxdy. (A.4)
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It is easy to know that

KL(π∥up ⊗ vp) = −H(π) +H(up) +H(vp). (A.5)

Lemma 1. Let ϵ > 0, and let u, λ, and v be three probability distributions. Let π1 ∈ Πϵ(u,λ) and
π2 ∈ Πϵ(λ,v) be the optimal transport plans from u to λ and from λ to v, respectively. Define

π(x, z) =

∫
π1(x, y)π2(y, z)

λ(y)
dy, (A.6)

then π(x, z) ∈ Πϵ(u,v).

Proof. First, we verify that the marginal distribution conditions are satisfied:∫
π(x, z)dz =

∫
π1(x, y)

λ(y)

∫
π2(y, z)dz dy =

∫
π1(x, y)dy = u(x), (A.7)

∫
π(x, z)dx =

∫
π2(y, z)

λ(y)

∫
π1(x, y)dx dy =

∫
π2(y, z)dy = ν(z). (A.8)

Hence, π ∈ Π(u, ν).

Next, we prove that
H(π) ≥ H(u) +H(ν)− ϵ. (A.9)

Since π1 ∈ Πϵ(u, λ), we have

I(u, λ) = H(u) +H(λ)−H(π1) ≤ ϵ. (A.10)

For three random variables x, y and z, since x → y → z forms a Markov chain, the Data Processing
Inequality (DPI) holds, and

H(u) +H(ν)−H(π) ≤ I(u, λ) ≤ ϵ. (A.11)

Therefore, π ∈ Πϵ(u, ν).

Theorem 1. 1(u̸=ν) ·W p
ϵ,p(u, ν) is a distance satisfying three axiom conditions, where

1(u̸=ν) =

{
1, u ̸= ν,
0, u = ν.

(A.12)

Proof. By the definition of W p
ϵ,p(u, ν), we have W p

ϵ,p(u, ν) ≥ 0. For the transport plan π constructed
in Equation (A.6) of Lemma 1, we have

W p
ϵ,p(u, ν) ≤

∫∫
d(x, z) dπ ≤

∫∫∫
(d(x, y) + d(y, z))

π1(x, y)π2(y, z)

λ(y)
dy dx dz

≤
∫∫

d(x, y) dπ1(x, y) +

∫∫
d(y, z) dπ2(y, z) = W p

ϵ,p(u, λ) +W p
ϵ,p(λ, ν). (A.13)

Since the cost function d(x, y) and the coupling π(x, y) are symmetric, it follows that W p
ϵ,p(u, ν) is

symmetric. At last, it is easy to know that

1(u̸=ν) ·W p
ϵ,p(u, ν) = 0 if and only if u = ν. (A.14)

B PROCEDURE OF 3DPAN-CIL

We provide the main procedure of our 3DPAN-CIL model in the following Algorithm 1.
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Algorithm 1 Procedure of our 3DPAN-CIL model.
Input: Task number T , training data {D0, · · · , DT−1}, empty memory M
Output: Feature extractor ft, Classifier Ct

1: if t = 0 then
2: Initialize parameters of feature extractor f0 and classifier C0

3: Train f0, C0 on D0 by minimizing LCE

4: if memory M is used then
5: Update memory M by D0

6: end if
7: end if
8: for t in {1, · · · , T − 1} do
9: Update classifier Ct

10: Calculate priors knowledge σ by Section. 3
11: Calculate old prototypes by Eq.equation 4
12: Calculate Lk−3DCPOT by Eq.equation 7
13: Calculate LPGKD by Eq.equation 9
14: Train ft, Ct on Dt ∪M by Eq.equation 10
15: Update memory M by Dt

16: end for

C TIME COMPLEXITY ANALYSIS

The overall time complexity of our proposed model consists of three main components: the feature
extraction module, the optimal transport module, and the prior guided knowledge distillation module.
The detailed analysis of each component is as follows:

• Feature Extraction Module: This module is based on the Vision Transformer (ViT)
architecture. For each Transformer encoder layer, the time complexity is O(GK2 +G2K),
where G is the number of sub point clouds and K is the feature dimension. With L layers in
the Transformer encoder, the overall complexity becomes

O
(
L · (GK2 +G2K)

)
• Optimal Transport Module: This module involves three steps:

1. Constructing the class prototype of the point cloud with complexity O(NDK), where
N is the number of classes and D is the number of training samples per class.

2. Developing the optimal transport strategy for the class prototype using the Sinkhorn
distance, with complexity O(TN2K2), where T is the number of iterations.

3. Guiding the migration of new prototypes according to optimal transport, with complex-
ity O(NK +MK), where M is the number of newly added categories.

The overall complexity of this module is

O(NDK + TN2K2 +NK +MK)

• Prior Guided Knowledge Distillation Module: This module includes a classifier and
knowledge distillation:

– The classifier consists of 3 MLP layers with complexity O(KH1 +H1H2 +H2N),
where H1 and H2 are the dimensions of the intermediate layers.

– The knowledge distillation uses KL divergence with complexity O(N).

The overall complexity is

O(KH1 +H1H2 +H2N +N)

Therefore, the total time complexity of our 3DPAN-CIL model is the sum of the complexities of all
modules

O
(
L · (GK2 +G2K) +NDK + TN2K2 +NK +MK +KH1 +H1H2 +H2N +N

)
14
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Considering the dominant terms, the overall complexity can be simplified to

O(TN2K2)

Although the introduction of the optimal transport computation increases the time complexity com-
pared to other models, it remains within an acceptable range for general point cloud model training.

D SUPPLEMENTARY EXPERIMENTAL RESULTS

D.1 HYPERPARAMETER SETTING IN LOSS FUNCTION

We perform the parameter tuning on two hyperparameters (α1, α2) of Lk-3DCPOT and LPGKD within the
loss function of our model to ascertain the optimal combination of hyperparameters. The experimental
range for these values is set to [3, 7]. The ModelNet10 dataset is utilized for the comparative analysis
of the hyperparameter settings. The incremental stage number is designated as 5, and the memory
capacity is set to 300. The dataset partitioning method employed is the average partitioning, with all
other settings consistent with those used in the ModelNet40-avg experimental configuration, referred
to as ModelNet10-avg. The experimental results are illustrated in Figure S1. Our finding indicates
that in the ModelNet10-avg experiment, the optimal combination of hyperparameters for the loss
function is designated as α1 = α2 = 5, resulting in the model achieving an average performance
peak of 78.25%. Furthermore, in various other experimental contexts, we observe that the model’s
average performance also reaches its optimal level when this hyperparameter configuration is applied.

Figure S1: Comparison of hyperparameter settings for loss function.

D.2 THE DETAILED DESCRIPTION OF DATASETS USED IN THE EXPERIMENT

The experimental dataset comprises five commonly used datasets: ModelNet Wu et al. (2015),
ShapeNet Chang et al. (2015), ScanObjectNN Uy et al. (2019), ScanNet Dai et al. (2017) and
CO3Dv2 Reizenstein et al. (2021). Among them, ModelNet is derived from uniform sampling of 3D
CAD models, encompassing 9,843 training samples and 2,468 test samples across 40 categories. In
contrast, ShapeNet represents a more extensive 3D model dataset, featuring 55 categories with a total
of 35,037 training samples and 5,053 validation samples. ScanObjectNN comprises approximately
15,000 point cloud samples, representing 15 common objects. ScanNet includes over 1,500 real
indoor environments, categorized into 17 groups. Lastly, CO3Dv2 presents a more complex 3D
dataset derived from real scans, encompassing 50 categories, with around 30,000 training samples
and 5,000 testing samples.
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D.3 THE DETAILED DESCRIPTION OF DATASET PARTITIONING WITH AVERAGING PRINCIPLE

For five datasets, ModelNet40-avg organizes 40 categories into 10 incremental stages, introducing
4 new categories at each stage. In a similar vein, ShapeNet-avg categorizes 55 classes into 9
incremental steps, with 6 new categories added at each stage, culminating in the addition of 7 new
categories in the final incremental stage. ScanObjectNN-avg divides 15 categories into an average
of 5 incremental stages, incorporating 3 new categories at each stage. Additionally, ScanNet-avg
segments 17 categories into 6 incremental stages, with 3 new categories introduced at each stage
and 2 new categories added in the final stage. Lastly, CO3Dv2-avg partitions 50 categories into an
average of 10 incremental stages, with 5 new categories added at each stage.

D.4 INCREMENTAL STAGE NUMBER ABLATION FOR OTHER THREE DATASETS

Figure S3(a) illustrates the ScanObjectNN-avg-7S experiment, characterized by the division of the
dataset into 7 tasks, with 2 new categories added at each stage and an additional 3 new categories
introduced in the final task stage. Figure S3(b) outlines the ScanNet-avg-8S experiment, which
similarly divides the dataset into 8 tasks, adding 2 new categories at each stage and 3 new categories
in the final task stage. Lastly, Figure S3(c) details the CO3Dv2-avg-7S experiment, where the dataset
is segmented into 7 tasks, with 7 new categories added at each stage and 8 new categories in the final
task stage.

Figure S2: Different method comparison on ScanNet and ScanObjectNN datasets.

Table S1: Comparison on ShapeNet-avg and partial ablation results (%).
Method Number of visible categories in incremental phases Accavg AFR6 12 18 24 30 36 42 48 55
Joint-Training 95.60 91.63 89.58 87.99 87.28 86.51 86.43 86.37 85.62 88.56 0.48
Fine-Tuning 95.60 71.62 62.37 57.66 54.03 50.20 47.31 45.64 43.44 58.65 9.81
LwF 93.28 84.24 74.46 69.41 66.75 61.41 59.21 53.06 53.27 68.34 4.15
iCaRL 93.10 86.89 77.62 72.05 68.64 63.87 60.96 56.99 55.56 70.63 4.87
EEIL 93.59 87.24 77.57 73.62 69.98 66.72 65.39 60.51 55.82 72.27 5.29
BiC 93.83 87.11 77.75 74.07 70.66 68.73 65.73 63.91 60.31 73.57 5.72
WA 93.96 87.07 77.12 74.90 71.30 68.43 65.69 63.46 59.76 73.52 4.67
GeoDL 92.77 87.22 79.20 77.03 74.30 71.03 65.61 63.18 56.05 74.04 3.68
CafeBoost 93.24 88.40 80.68 76.28 72.72 69.89 65.85 61.91 53.54 73.61 3.84
EASE 93.64 88.32 78.32 76.38 72.36 72.13 66.67 62.37 53.29 73.72 3.25
DECO 93.26 87.16 79.54 76.21 72.64 72.76 66.42 62.18 55.42 73.95 3.16
LwF-3D 93.12 85.18 79.23 75.32 72.38 72.35 65.98 62.37 55.35 73.48 3.42
I3DOL 94.71 86.79 78.84 76.86 73.28 71.53 67.98 62.69 55.63 74.26 2.03
Ours-w/o all 95.60 84.47 75.30 71.73 67.57 65.29 62.41 52.38 51.34 69.57 6.57
Ours-w/o PAN 95.60 86.15 80.38 76.48 72.80 71.20 69.67 68.64 63.60 76.06 2.86
Ours-w/o PGKD 95.60 85.07 81.08 74.09 72.85 70.86 69.71 68.17 64.38 75.76 2.16
3DPAN-CIL 95.60 89.02 81.21 78.15 74.63 72.59 70.77 69.99 67.60 77.73 1.14
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Table S2: Comparison on ScanObjectNN-avg and partial ablation results (%).
Method Number of visible categories in incremental phases Accavg AFR3 6 9 12 15
Joint-Training 90.43 88.69 83.42 80.23 79.23 84.40 0.42
Fine-Tuning 90.43 64.16 54.82 44.95 30.76 57.02 9.77
LwF 89.88 71.65 69.50 60.23 51.24 68.50 6.99
iCaRL 89.93 74.89 68.58 59.88 51.63 68.98 7.16
EEIL 89.92 76.03 68.23 59.21 52.12 69.10 5.38
BiC 90.02 75.36 68.40 60.26 53.25 69.46 6.37
WA 90.44 73.60 68.34 58.15 51.75 68.46 3.68
GeoDL 89.82 75.58 68.33 58.96 52.46 69.03 4.29
CafeBoost 89.99 77.68 68.60 58.79 51.77 69.37 5.81
EASE 90.32 77.39 69.42 59.41 51.21 69.55 2.99
DECO 89.86 77.35 69.76 59.25 50.11 69.27 3.15
LwF-3D 89.96 76.58 70.11 60.24 50.32 69.44 3.68
I3DOL 90.34 78.74 71.02 61.34 52.67 70.82 2.89
Ours-w/o all 90.53 72.34 67.98 59.69 50.76 68.26 6.25
Ours-w/o PAN 90.53 81.29 70.99 62.36 52.12 71.46 3.84
Ours-w/o PGKD 90.53 81.72 71.31 62.74 54.36 72.13 4.65
3DPAN-CIL 90.53 82.32 72.36 63.18 58.69 73.42 2.64

Table S3: Comparison on ScanNet-avg and partial ablation results (%).
Method Number of visible categories in incremental phases Accavg AFR3 6 9 12 15 17
Joint-Training 96.56 91.36 88.99 86.37 84.82 80.31 88.07 1.99
Fine-Tuning 96.56 73.25 68.39 60.36 55.31 48.36 67.04 8.97
LwF 94.36 82.33 75.10 70.11 69.21 62.36 75.58 7.26
iCaRL 95.68 83.65 75.23 70.47 68.04 64.33 76.23 6.47
EEIL 95.68 83.24 76.85 72.13 72.02 68.21 78.02 6.56
BiC 95.47 83.23 77.55 74.41 71.62 70.16 78.74 5.06
WA 96.12 83.47 77.86 74.70 71.51 69.84 78.92 6.10
GeoDL 96.06 86.15 80.39 76.28 71.73 70.07 80.11 5.18
CafeBoost 96.33 86.54 80.41 76.80 72.48 69.85 80.40 6.35
EASE 96.33 86.35 81.27 76.27 72.32 67.52 80.01 5.68
DECO 96.42 86.39 81.36 76.21 72.12 68.99 80.25 4.49
LwF-3D 96.32 85.66 80.12 76.01 72.95 69.54 80.10 3.61
I3DOL 96.57 86.58 82.08 77.05 73.26 69.27 80.80 2.76
Ours-w/o all 96.55 82.01 74.32 70.64 71.48 64.32 76.55 6.92
Ours-w/o PAN 96.55 87.92 82.11 76.27 75.49 68.92 81.21 4.12
Ours-w/o PGKD 96.55 86.23 79.53 74.68 73.66 67.69 79.72 3.69
3DPAN-CIL 96.56 88.42 82.77 78.01 76.10 70.45 82.05 2.18

Table S4: Comparison on CO3Dv2-avg and partial ablation results (%).
Method Number of visible categories in incremental phases Accavg AFR5 10 15 20 25 30 35 40 45 50
Joint-Training 89.14 88.01 87.00 84.13 83.24 82.73 80.44 79.84 79.89 78.25 83.27 1.84
Fine-Tuning 88.78 42.80 33.72 24.76 20.79 17.58 15.22 14.02 12.10 10.49 28.03 12.9
LwF 87.04 68.36 59.33 53.32 46.28 41.35 37.41 31.88 28.42 26.12 47.95 7.68
iCaRL 87.62 69.96 59.82 54.87 46.55 41.95 38.54 32.10 29.54 26.26 48.72 7.24
EEIL 87.20 68.36 60.28 54.35 46.67 41.47 38.24 33.28 29.62 26.43 48.59 6.68
BiC 87.65 68.49 61.54 54.98 46.85 42.32 37.41 31.69 29.41 25.41 48.58 6.53
WA 87.06 70.98 62.24 55.62 47.25 44.88 38.15 35.16 30.20 25.33 49.69 5.69
GeoDL 87.06 71.70 60.76 55.64 47.12 43.47 38.64 34.98 30.68 26.89 49.69 5.24
CafeBoost 87.07 71.21 60.44 54.99 46.63 43.69 38.24 35.64 31.14 26.82 49.59 6.84
EASE 87.68 70.67 61.97 55.64 46.41 43.84 39.12 35.87 31.33 27.22 49.98 7.28
DECO 87.04 72.36 62.39 56.02 47.21 44.85 39.01 36.47 30.58 27.34 50.33 6.18
LwF-3D 87.13 73.20 61.20 55.87 47.55 44.71 39.31 36.42 31.11 27.52 50.40 5.94
I3DOL 87.14 73.55 62.67 56.12 47.68 45.01 39.41 36.23 31.33 28.34 50.75 5.34
Ours-w/o all 87.07 60.61 57.45 52.18 44.35 40.39 36.35 32.49 27.82 22.82 46.15 8.42
Ours-w/o PAN 87.07 74.08 61.42 52.82 46.76 43.06 38.30 34.71 30.44 26.41 49.51 5.51
Ours-w/o PGKD 87.07 73.62 60.79 53.41 47.86 43.47 38.35 34.76 30.56 26.82 49.67 5.99
3DPAN-CIL 87.07 75.09 63.71 56.28 48.83 45.40 39.72 36.71 31.74 28.48 51.30 5.20
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Figure S3: Ablation experiments at different incremental stages on ScanObjectNN, ScanNet, and
CO3Dv2 datasets.

D.5 CATEGORY INCREMENT MODE ABLATION UNDER THE OVER HALF INCREMENTAL
PRINCIPLE

In the ModelNet40-half dataset, the foundational stage comprises 20 out of 40 categories, with
the remaining 20 categories distributed evenly across 5 incremental stages, each introducing 4 new
categories, culminating in a total of 6 stages. The memory capacity for this configuration is set at
600. Similarly, in the ShapeNet-half dataset, the foundational stage includes 25 categories, while the
remaining 30 categories are divided into 6 incremental steps, each adding 5 new categories, resulting
in a total of 7 stages, also with a memory capacity of 600. In the ScanObjectNN-half dataset, the
foundational stage consists of 9 categories, with the remaining 6 categories divided into 3 incremental
steps, each contributing 2 new categories, leading to a total of 4 stages and a memory capacity of 100.
The ScanNet-half dataset follows a similar structure, with 9 foundational categories and 8 additional
categories divided into 4 incremental steps, each adding 2 new categories, resulting in 5 stages and
a memory capacity of 100. Lastly, the CO3Dv2-half dataset features 25 foundational categories,
with the remaining 25 categories divided into 5 incremental steps, each introducing 5 new categories,
for a total of 6 stages and a memory capacity of 600. Throughout this process, all categories are
randomly shuffled. The AFR comparison of category increment mode ablation for different methods
is provided in Figure S4. We find our approach outperforms existing methods on the AFR index.

Figure S4: AFR comparison of category increment mode ablation for different methods.
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