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ABSTRACT

We present a new machine learning (ML) benchmark for thermodynamic materi-
als stability predictions named Matbench Discovery. A goal of this bench-
mark is to highlight the need to focus on metrics that directly measure their utility
in prospective discovery campaigns as opposed to analyzing models based on pre-
dictive accuracy alone. Our benchmark consists of a task designed to closely
simulate the deployment of ML energy models in a high-throughput search for
stable inorganic crystals. We explore a wide variety of models covering multiple
methodologies ranging from random forests to GNNs, and from one-shot predic-
tors to iterative Bayesian optimizers and interatomic potential-based relaxers. We
find M3GNet to achieve the highest F1 score of 0.58 and R2 of 0.59 while MEG-
Net wins on discovery acceleration factor (DAF) with 2.70. Our results provide
valuable insights for maintainers of high throughput materials databases to start
using these models as triaging steps to more effectively allocate compute for DFT
relaxations.

1 INTRODUCTION

For nearly two decades, ever since the work of Behler and Parrinello (Behler & Parrinello, 2007)
who introduced a custom neural network for learning the density-functional theory (DFT) potential
energy surface (PES), material scientists have devoted significant effort to developing custom model
architectures for tackling the problem of learning the PES. Initially, most of these models were
trained and deployed as interatomic potentials to study known materials of interest which required
curating custom training data for each application (Bartók et al., 2018; Deringer et al., 2020). As
larger and more diverse datasets emerged from initiatives like the Materials Project (MP) (Jain et al.,
2013) or the Open Quantum Materials Database (OQMD) (Saal et al., 2013), researchers have begun
to train models that cover the full periodic table opening up the prospect of ML-guided materials
discovery.

Yet despite many advances in ML for materials discovery, it is unclear which methodology performs
best at predicting material stability. Recent areas of progress include one-shot predictors like Wren
(Goodall et al., 2022), universal force predictors such as M3GNet (Chen & Ong, 2022) that emu-
late density functional theory to relax crystal structures according to Newton’s laws, and Bayesian
optimizers like BOWSR that paired with any energy model treat structure relaxation as a black-
box optimization problem (Zuo et al., 2021). In this work, we aim to answer which of these is
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the winning methodology in a future-proof benchmark that closely simulates using ML to guide a
real-world discovery campaign.

2 RELATED WORK

2.1 USING STABILITY RATHER THAN FORMATION ENERGIES

In 2020, Chris Bartel et al. (Bartel et al., 2020) benchmarked 7 models, finding all of them able
to predict DFT formation energies with useful accuracy. However, when asked to predict stability
(specifically decomposition enthalpy), the performance of all models deteriorated sharply. This in-
sight meant that ML models are much less useful than DFT for discovering new solids than prior
studies had suggested. The paper identified two main reasons for the sharp decline in predictive
power: 1. Stability is a property not only of the material itself but also the chemical space of com-
peting phases it occupies. Current ML algorithms are given an input that only describes the single
material they are asked to predict, leaving them clueless of competing phases. 2. Unlike DFT, ML
models appear to benefit less from systematic error cancellation across similar chemistries.

Bartel et al. showed that to demonstrate the utility of ML for materials discovery, the vanity metric
of formation energy accuracy must be replaced with stability predictions. Moreover, the qualitative
leap in performance from Roost (Goodall & Lee, 2020), the best compositional model benchmarked,
to CGCNN (Xie & Grossman, 2018), the single structural model they tested, shows structure plays
a crucial role in determining the stability of materials. However, using the DFT-relaxed structure
as input to CGCNN renders the discovery pipeline circular as the input becomes the very thing we
aim to find. A true test of prospective utility requires using unrelaxed structures as the next most
information-rich input.

2.2 MATBENCH

As the name suggests, this work seeks to expand upon the original Matbench suite of property
prediction tasks (Dunn et al., 2020). By providing a standardized collection of datasets along with
canonical cross-validation splits for model evaluation, Matbench helped focus the field of ML for
materials, increase comparability across papers and attempt to accelerate the field similar to what
ImageNet did for computer vision.

Matbench released a test suite of 13 supervised tasks for different material properties ranging from
thermal (formation energy, phonon frequency peak), electronic (band gap), optical (refractive index)
to tensile and elastic (bulk and shear moduli). They range in size from ~300 to ~132,000 samples
and include both DFT and experimental data sources. 4 tasks are composition-only while 9 provide
the relaxed crystal structure as input. Importantly, all tasks were exclusively concerned with the
properties of known materials. We believe a task that simulates a materials discovery campaign by
requiring materials stability predictions from unrelaxed structures to be a missing piece here.

2.3 THE OPEN CATALYST PROJECT

The Open Catalyst Project (OCP) is a large-scale initiative to discover substrate-absorbate combi-
nations that catalyze key industrial reactions processing said absorbates into more useful products.
The OCP has released two data sets thus far, OCP20 (Chanussot et al., 2021) and OCP22 (Tran et al.,
2022), that can be used for training and benchmarking ML models.

However, the ambition and scale of OCP comes with limitations for its use as a benchmark. OCP20
is already 10x larger than the largest crystal structure data sets available imposing a high barrier to
entry for researchers without access to cloud-scale computing. In contrast, we believe the discovery
of stable materials is a problem where ML methods have matured enough to be usefully deployed at
scale after training for only O(102) GPU hours.
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3 DATA SETS

The choice of data for the train and test sets of this benchmark fell on the latest Materials Project
(MP) (Jain et al., 2013) database release (2021.05.13 at time of writing) and the WBM dataset (Wang
et al., 2021).

3.1 THE MATERIALS PROJECT - TRAINING SET

The Materials Project is a well-known effort to calculate the properties of all inorganic materials
using high-throughput ab-initio methods. At the time of access, the Materials Project database con-
tains approximately 154k crystals (providing relaxed+initial structure and the relaxation trajectory
for each of them) covering a diverse range of chemistries. For our benchmark, the training set is
all data available from the 2021.05.13 MP release. Models are free to train on relaxed and/or unre-
laxed structures or the full DFT relaxation trajectory. This flexibility is intended to allow authors to
experiment and exploit the large variety of data available.

3.2 WBM - TEST SET

The WBM data set (Wang et al., 2021) consists of ~257k structures generated via chemical
similarity-based elemental substitution of MP source structures followed by DFT relaxation and
convex hull distance calculation. Throughout this work, we define stability in terms of being on or
below the convex hull of the MP training set. ~42k out of ~257k materials in WBM satisfy this
criterion. As WBM explores regions of materials space not well sampled by MP, many of these
materials discovered that are stable w.r.t. MP’s convex hull are not stable with respect to each other.
Only around ~20k were found to remain on the convex hull when merging the MP and WBM hulls.
This observation highlights a critical aspect of this benchmark in that we purposely operate with an
incomplete convex hull. Only current knowledge is accessible to a real discovery campaign. Hence
our metrics are designed to reflect this.

Moreover, to simulate a discovery campaign our test set inputs are unrelaxed structures obtained
from element substitution of MP source structures but our target labels are the relaxed PBE formation
energies. This opens up the opportunity to explore how different approaches (one-shot, force-based
pseudo-relaxation, black-box pseudo-relaxation, etc.) compare for materials discovery.

4 MODELS

Our initial benchmark release includes 8 models. We present metrics for all in table 1 but focus on
the 6 best performers in fig. 1 for visual clarity.

Table 1: Regression and classification metrics for all models tested on our benchmark. The heat
map ranges from yellow (best) to blue (worst) performance. DAF = discovery acceleration factor
(see text), TPR = true positive rate, TNR = true negative rate, MAE = mean absolute error, RMSE =
root mean squared error
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1. Voronoi+RF (Ward et al., 2017) - A random forest trained to map a combination of
composition-based Magpie features and structure-based relaxation-invariant Voronoi tes-
sellation features (effective coordination numbers, structural heterogeneity, local environ-
ment properties, ...) to DFT formation energies.

2. Wrenformer (Goodall et al., 2022) - For this benchmark, we introduce Wrenformer which
is a variation on Wren (Goodall et al., 2022) constructed using standard QKV-Transformer
blocks to reduce memory usage, allowing it to scale to structures with >16 Wyckoff posi-
tions.

3. CGCNN (Xie & Grossman, 2018) - The Crystal Graph Convolutional Neural Network
(CGCNN) was the first neural network model to directly learn 8 different DFT-computed
material properties from a graph representing the atoms and bonds in a periodic crystal.

4. CGCNN+P (Gibson et al., 2022) - This work proposes a simple, physically motivated
structure perturbations to augment stock CGCNN’s training data of relaxed structures with
structures resembling unrelaxed ones but mapped to the same DFT final energy. Here we
chose P = 5, meaning the training set was augmented with 5 random perturbations of each
relaxed MP structure mapped to the same target energy.

5. MEGNet (Chen et al., 2019) - MatErials Graph Network is another GNN similar to
CGCNN for material properties of relaxed structures that also updates the edge and global
features (like pressure, temperature, entropy) in its message passing operation.

6. M3GNet (Chen & Ong, 2022) - M3GNet is a GNN-based universal (as in full periodic
table) interatomic potential (IAP) for materials trained on up to 3-body interactions in the
initial, middle and final frame of MP DFT relaxations. The model takes the unrelaxed input
and emulates structure relaxation before predicting energy for the pseudo-relaxed structure.

7. BOSWR + MEGNet (Zuo et al., 2021) - BOWSR uses a symmetry-constrained Bayesian
optimizer (BO) with a surrogate energy model (here MEGNet) to perform an iterative
exploration-exploitation-based search of the potential energy landscape. The high sample
count needed to explore the PES with BO makes this by far the most expensive model.

5 RESULTS

Table 1 shows performance metrics for all models considered in v1 of our benchmark. M3GNet
takes the top spot on most metrics and emerges as current SOTA for ML-guided materials discovery.
The discovery acceleration factor (DAF) measures how many more stable structures a model found
among the ones it predicted stable compared to the dummy discovery rate of 43k / 257k ≈ 16.7%
achieved by randomly selecting test set crystals, consequently the maximum possible DAF is ∼ 6.
This highlights the fact that our benchmark is made more challenging by deploying models on an
already enriched space with a much higher fraction of stable structures over randomly exploring
materials space. As the convex hull becomes more thoroughly sampled by future discovery, the
fraction of unknown stable structures decreases, naturally leading to less enriched future test sets
which will allow for higher maximum DAFs. The reason MEGNet outperforms M3GNet on DAF
becomes clear from fig. 1 right by noting that MEGNet’s line ends closest to the total number of
stable materials. The other models overpredict this number, resulting in large numbers of false
positive predictions that drag down their DAFs.

Figure 1 left visualizes a model’s reliability as a function of a material’s hull distance. The lower its
rolling MAE exits the shaded triangle, the better. Inside this area, the model’s mean error is larger
than the distance to the convex hull, making misclassifications likely. Outside the triangle even if the
model’s error points toward the stability threshold at 0 eV from the hull (the plot’s center), the mean
error is too small to move a material over the stability threshold which would cause a false stability
classification. M3GNet achieves the lowest overall MAE and exits the peril zone much sooner than
other models on the right half of the plot. This means it rarely misclassifies unstable materials that
lie more than 40 meV above the hull. On the plot’s left half, CGCNN+P exits the peril zone first,
albeit much further from the hull at more than 100 meV below. Essentially, all models are prone to
false negative predictions even for materials far below the known hull.

Despite their low accuracy in one-shot predicting relaxed energies from unrelaxed structures,
CGCNN and MEGNet achieve high F1 scores and DAFs. This can be explained by unrelaxed in-
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Figure 1: Left: Rolling MAE on the WBM test set as the energy to the convex hull of the MP
training set is varied. The white box in the bottom left indicates the size of the rolling window.
The highlighted ‘triangle of peril’ shows where the models are most likely to misclassify structures.
Middle: Cumulative precision over the course of a simulated discovery campaign. Right: Cumula-
tive recall over the course of a simulated discovery campaign.

puts being in higher energy configurations than their relaxed counterparts which makes them more
likely to be unstable with respect to the training set convex hull, even in cases where the relaxed
structure is stable. This biases one-shot GNNs towards predicting unrelaxed input structures as un-
stable, resulting in higher true negative rates that offset the lower true positive rates in the F1 and
DAF metrics. This phenomenon is expected due to the training and testing configuration mismatch
and explains the success of previous screening attempts that used such GNN models for screening
unrelaxed inputs Park & Wolverton (2020).

6 DISCUSSION

From table 1 we see several models achieve a DAF greater than 2 in this realistic benchmark sce-
nario. Consequently, the benefits of deploying ML-based triage in high-throughput computational
materials discovery applications likely warrant the time and setup required. The results obtained
from version 1 of our benchmark show that ML universal interatomic potentials like M3GNet are
the most promising methodology to pursue going forward, being both 20x cheaper to run than black
box optimizers like BOWSR and having access to more training structures than coordinate-free ap-
proaches like Wrenformer.

Although the task of discovery will necessarily become more challenging over time as currently
undersampled regions of materials space are explored, the path to making ML a ubiquitous discovery
tool appears straightforward and is one the field is already pursuing: training foundational IAPs on
significantly more data may get us there even without further algorithmic or model improvements.

We welcome further model submissions as well as data contributions for version 2 of this benchmark
to the GitHub repo at https://github.com/janosh/matbench-discovery.
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