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ABSTRACT

Peptides, short chains of amino acids capable of high-specificity protein bind-
ing, represent a powerful class of therapeutics. While deep generative models
have shown promise for peptide design, existing approaches are often structure-
centric and therefore generate sequences and structures in a decoupled manner,
failing to ensure that designs are simultaneously physically stable, evolutionar-
ily plausible, and internally coherent. To overcome this limitation, we intro-
duce PepTri, a novel diffusion framework that addresses this by jointly gener-
ating peptide sequences and 3D structures within a unified, SE(3)-equivariant la-
tent space. Our proposed model integrates three complementary guidance signals
during the generative process: (i) physics-informed guidance via differentiable
molecular mechanics to ensure structural stability and realism; (ii) evolutionary
guidance to bias sequences toward conserved, functional motifs; and (iii) mu-
tual information guidance to explicitly maximize sequence-structure coherence.
This tri-guided approach ensures the generative process is steered by biophysical
laws, biological priors, and information-theoretic alignment in tandem. Exten-
sive evaluations on challenging peptide-protein design benchmarks, cross-domain
(PepBench, LNR) and in-domain (PepBDB), demonstrate that PepTri substan-
tially outperforms strong baselines, achieving state-of-the-art results in binding
affinity, structural accuracy, and design diversity. Our results establish that inte-
grating these complementary signals directly into the denoising process is crucial
for generating viable, high-quality peptide medicines.

1 INTRODUCTION

The therapeutic potential of peptides—short chains of amino acids—is rapidly being realized, evi-
denced by over 100 approved drugs and a robust pipeline of hundreds more in development. (Kaygi-
siz et al.| [2025} |Zhai et al.}[2025). Their advantages over small molecules and biologics include high
specificity, low toxicity, and the ability to target “undruggable” proteins (Craik et al.,|2013};|Lai et al.,
2025). Yet rational design remains challenging: the sequence space is astronomical (20 possibil-
ities), peptides are highly flexible and often lack stable tertiary structure, and candidate sequences
must satisfy interdependent geometric, evolutionary, and physicochemical constraints (Muttenthaler
et al.,[2021).

Deep generative models have advanced peptide and protein design but remain incomplete. Structure-
aware generators produce plausible geometries yet neglect evolutionary constraints; evolutionary
sequence models capture conservation but ignore 3D stability; and physics-based checks are usually
applied post hoc rather than during generation (Ho et al., |2020; Kong et al., [2024). No existing
method ensures designs that are simultaneously physically stable, evolutionarily plausible, and se-
quence-structure coherent.

We introduce PepTri, a tri-guided diffusion framework integrating complementary signals during
training and sampling: (i) physics guidance with SE(3) awareness to ensure molecular stability;
(ii) evolutionary guidance via BLOSUM-derived embeddings and co-variation; and (iii) mutual-
information maximization aligning sequence and structure representations. Our contributions in-
clude a parameter-efficient architecture with compact latents, a dynamic guidance schedule bal-
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ancing stability and diversity, a unified diffusion objective combining physics, evolutionary, and
information-theoretic terms, and a robust training pipeline with mixed-precision and EMA stabiliza-
tion. Together, these enable PepTri to generate diverse peptides with physically plausible, energeti-
cally favorable structures.

2 RELATED WORK

Physics- and empirical design. Traditional pipelines—mutagenesis, phage display, and Rosetta-
based modeling—have succeeded in narrow settings but face limited sampling and costly exploration
of vast sequence spaces (Smith & Petrenko| |1997; [Leaver-Fay et al., [2011; [Kuhlman & Bradley,
2019).

Evolutionary sequence models. Potts/MSA-based models bias sequences toward biological plau-
sibility (Marks et al., [2011) but depend on homologs and do not enforce geometric or energetic
realism during generation.

Structure-aware generative modeling. Diffusion and flow-based models learn backbone or scaf-
fold distributions and generate diverse structures (Irippe et al. 2022; Watson et al., |2023; |Abdin
& Kiml 2024). While accurate predictors (e.g., AlphaFold) aid evaluation (Abramson et al., [2024),
they are not generative. For peptides, coupling sequence, structure, and domain constraints inside
the generative loop remains unresolved.

Peptide-focused baselines. PepGLAD uses latent diffusion with auxiliary geometry losses but
leaves energetics post hoc (Kong et al., [2024). PepFlow factorizes modalities via flow matching
but checks stability only after generation (Li et al.| [2024). UniMoMo unifies binders and pockets
but relies on heuristics (e.g., distance thresholds) that weaken fine-scale couplings (Kong et al.,
2025)). Across these, physics and evolutionary priors remain auxiliary rather than shaping denoising
dynamics.

Our position. Most existing models prioritize generating plausible 3D backbones but treat peptide
sequences as secondary, often decoupled from structure or checked only post hoc. This imbalance
leads to geometries that appear stable but in fact correspond to unrealistic or biologically implausible
sequences. PepTri addresses this by unifying sequence and structure in an SE(3)-equivariant latent
space and applying tri-guidance—physics, evolution, and information-theoretic alignment—during
training and denoising, as illustrated in Figure[I] By directly injecting physical guidance into gen-
eration and explicitly aligning sequence—structure latents, PepTri yields peptides that are not only
geometrically sound but also evolutionarily plausible and sequence—structure coherent.

3 METHODOLOGY

We adopt a two-stage framework: first, a VAE that compresses sequence—structure inputs into a
latent space while preserving full SE(3) geometry; second, a latent diffusion model augmented with
tri-guidance (physics, evolution, and mutual information) to generate biologically plausible peptides.

3.1 VAE WITH SE(3)-EQUIVARIANT ENCODING

The PepTri encoder employs SE(3)-equivariant graph neural networks, which enforce rotational and
translational symmetries while encoding both local residue-level interactions and global structural
dependencies. This design enables accurate modeling of protein conformations within a symmetry-
aware latent space, thereby facilitating downstream generative diffusion.

Graph construction. From sequence S € {0,...,19}%, coordinates X € REX¢*3 and mask
M, we form a residue graph with (i) sequential edges (i,7+1) and (ii) spatial edges within radius
reut- Node features come from S, X; edge features are strictly SE(3)-invariant. The encoder outputs
disentangled latents:

2, € REX (sequence), 2y € REXMaX3 (gtructure).
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Figure 1: PepTri architecture. An SE(3)-equivariant encoder E' maps sequence—structure inputs
(S, X) to latents (2, z); a decoder D reconstructs (S, X). In latent space, sampling runs as guided
reverse diffusion from zp (noise) to zy (sample), while training uses controlled corruption in the
forward direction. At each step, a tri-guidance term G, steers denoising: (1) physics-based guidance
acts on z,, (bonds/angles/clashes/van der Waals), (2) evolutionary guidance biases z;, (BLOSUM-
like prior), and (3) mutual-information guidance aligns z, and z,. The update follows z;_; =~
we(ze,t) — mGy + 04€. Gray surface: receptor; green: generated peptide; orange: ligand (receptor
shown for context; guidance is intra-peptide).

nie € N is the number of structural latent anchors (channels) per residue; each anchor carries 3D
coordinates.

SE(3)-equivariant message passing. We developed an enhanced version of adaptive multi-
channel EGNN (Kong et al., 2023). Invariant edge features include pairwise distances d;; and
averaged triplet angles 1);;. Updates are:

Xp =X+ Y Odij,hij, hiy hy)(xi — ),

JEN ()

Wy =tn | hi, D> m(hi, by, dij, i)
JEN(3)
All coefficients are invariant, and updates use only relative vectors, guaranteeing SE(3)-
equivariance.

Training objective. The VAE is trained to reconstruct both sequence and structure while enforcing
geometric invariance:

Lyan = CE(S,8) +[|1X = X3+ 8 Lt + Ageom|| D(X) = DY), M
where D(X) is the pairwise distance matrix. This enforces SE(3)-invariant structural consistency.

Thus, all inputs, features, and updates respect equivariance, and the encoder—decoder is strictly
SE(3)-equivariant. We use a VAE framework instead of a direct diffusion model to improve training
stability and allow for a more compact, structured latent space.

3.2 TRI-GUIDANCE DIFFUSION

As shown in Figure[I] we augment latent diffusion with three complementary signals: (1) physics-
informed structural guidance, (2) evolutionary sequence guidance, and (3) sequence—structure co-
herence via mutual information. These guide denoising to respect physical laws, evolutionary con-
straints, and sequence—structure alignment.
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3.2.1 PHYSICS-INFORMED STRUCTURAL GUIDANCE

When relying only on data, we found that generated coordinates often exhibit broken bond lengths,
unrealistic bond angles, or steric clashes that violate physical plausibility. To address this, we aug-
ment diffusion with physics-informed regularization. Our goal is to guide the model toward 3D
structures that are both consistent with the data and stable under physical principles.

Inputs and scope. We represent peptides in an all-atom format, X € REZ*E*3 with C channels
(backbone + sidechain), together with a binary design mask M € {0, 1}* indicating which residues
to optimize. For numerical stability, physics-guidance terms are computed on the C,, trace, while
the full atom tensor is propagated and decoded.

Physics parameterization. We use a composite energy over the designed region:

Ephys(X, S5 M) ij (X, S; M), )

with active terms: bond-length, bond-angle, van der Waals, electrostatics, clash prevention,
secondary-structure proxy, and diffusion smoothness. By averaging across all valid masked C,
interactions (excluding self-pairs and, for non-bonded terms, immediate neighbors), we obtain a
well-scaled and numerically stable energy landscape.

Gradient computation. Inspired by (Guo et al [2024), we treat ;s as an additional training-
time regularizer. At each training step, we:

1. Obtain predicted coordinates X for the designed region (C, trace) from the en-
coder/decoder stack.

2. Evaluate Ephys()?, S; M).

3. Backpropagate to obtain a masked gradient V ¢ Fp,,ys, which is propagated through the
encoder and diffusion network to update the model parameters.

This regularizes the denoiser toward physically plausible structures on designed residues. Because
the energy depends only on internal coordinates (distances, angles, and masked pairwise interac-
tions) rather than absolute positions, the resulting gradients naturally preserve SE(3)-invariance.

OpenMM coupling. We additionally add a differentiable force field term:

ACOpenMM = EOpenMM ()?a 57 M)7 (3)

computed via OpenMM. In our implementation, PepTri is coupled to the Amber14 all-atom force
field (amberi4-all.xml) (Case et al., 2023 |[Eastman et al., |2023) to evaluate Egpennim and its forces
on C, atoms in the designed region, contributing an additional physics-based training loss that
encourages realistic bond geometry, steric stability, and electrostatics.

In addition, we provide an optional test-time energy-guided sampler that performs energy-guided
denoising,
Er < & _’ertEOpenMM(xtv S)|M7 (4)

where € is the predicted noise at step ¢ and the gradient is restricted to designed residues. This
gently nudges the diffusion trajectory toward lower-energy conformations and acts as a physics-
aware correction during generation.

Physics loss.

Ephys = )\physEphys(X; S; M) + )\OpenMMEOpenMM- (5)
This module therefore enforces bond geometry, non-bonded interactions, and steric constraints while
remaining SE(3)-consistent, ensuring generated structures remain physically plausible.

Further details are provided in Appendix
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3.2.2 EVOLUTIONARY SEQUENCE GUIDANCE

Nature has already performed an enormous combinatorial search over protein space, leaving be-
hind patterns of conservation and co-evolution that encode which residues “work”. We inject this
evolutionary signal so generated peptides remain biologically plausible.

Inputs and scope. We begin with residue-level embeddings Hy € R¥*? from the VAE encoder
and a mask M. Evolutionary guidance contributes training losses on these clean embeddings; its
effect at sampling is implicit via the learned denoiser.

BLOSUM-like embeddings. We learn BLOSUM:-inspired matrix B € R2°*20 residue features

H=Hy+wdY BF; +b)F,+by, ¢=ReLU, w e Ry learnable. (6)

Y represents the one-hot encoded amino acid type, Y € RE*20 and F is a projection.

Residue dependency attention via multi-head self-attention. PepTri captures inter-positional
dependencies with residual multi-head self-attention. Let i denote the number of heads and d;, =
d/h. For head m,

HFQ(HFK)T

head,, = Softmax( m\/aT )]EIF%, MHA(H) = [head; || - - - [head}, ] FO, (D
h

and we set ~ B
Heoevo = H+ aMHA(H), «a > 0. (8)

Conservation and fitness heads. Because Softmax produces a probability vector over K classes,
the output lies on the (KX — 1)-simplex:

K
Softmax : R — AK-1 AE=L =1y e RE | p, >0, Zpazl}. 9)

a=1
With 20 amino acids (KX = 20), the output lies on

20
AY ={peR®|p, >0, p.=1} (10)

a=1
Hence, position-wise conservation preferences are produced by a small MLP. For each position i,
Proons;; = Softmax(V, ¢(F, Heoevo,i)) € A, (11)
and the self-supervised fitness score pools the designed region
F(Heoevo) = 0(v} ¢(Ff Pool(Heoevo, M))) € (0,1). (12)
Losses. In the current study, we do not use external MSA/PLM priors or MSA-depth gating. In-

stead, we combine a self-supervised evolutionary fitness target with entropy regularization of the
learned conservation distribution:

,Cﬁt = SmOOthLl(Fg(HCOCVO), ’Tﬁt), Tt — 08, (13)
1
Een =T s M’L Pcons,iAa lo Pcons,i,a ) (14)
F s 2 2 P o

so minimizing L., maximizes the entropy of P,.,s and encourages diversity. When decoder logits
pred,; are available, we additionally add a local alignment term

1
LK local = m Z M; KL(Gpred,i || Peons,i ) (15)
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The KL divergence term encourages the latent space to remain compact and well-structured, pre-
venting posterior drift and collapse. The total evolutionary objective is

Eevo = /\ﬁtﬁﬁt + /\entﬁent + AKLﬁKL-local . (16)

Taken together, evolutionary guidance biases peptide design toward conserved motifs and globally fit
sequences, narrowing the search space to biologically plausible candidates while still encouraging
diversity.

Further details are provided in Appendix [P.3]

3.2.3 MUTUAL INFORMATION REGULARIZATION

A functional peptide is not just a plausible sequence or a plausible structure — the two must be
aligned. Inspired by (Belghazi et al.| [2018), to ensure coherence, we maximize the mutual infor-
mation (MI) between sequence and structure embeddings. This encourages our model to generate
sequences that “make sense” in the structural context.

MINE objective and physics validity,. We pool embeddings from both sequence HCoeVO
and structure embedding zgyuct, then compute summaries s = fs(Pool(Heoevo, M)), 2 =
fu(Pool(2struct, M )). We train a critic Tp:

Ty = E[Ty(s, 2)] — log E[eTe ()], Ly = —1o. (17)
Additionally, we include an auxiliary head pp1ys that predicts whether a structure is physically valid

from its latent embedding z. This gives an extra push toward physically sensible outputs.

MI loss.
Laiitotal = AM1 Lm1 + AMiphys MSE (Pphys; 1)- (18)

Thus, MI regularization aligns sequence semantics with structural intent, reducing incoherent de-
signs and promoting functional alignment.

Further details are provided in Appendix [P.6|and Appendix [M]

3.2.4 LATENT INPAINTING DIFFUSION

We represent the latent at step ¢ as z; = (zp ¢,z x ), stacking sequence and structure components.
Redesign is localized by a binary residue mask M € {0, 1}%: noise and supervision are applied only
where M = 1. The denoiser conditions on positional encodings, atom features, and M, and predicts
€= (Emt, €x.t)-

Forward noising (masked inpainting). We use a variance-preserving cosine schedule with o, =
— t .
1—G;and oy = Hs:l a,. The forward process is

q(z¢ | 20) = VA 2o + V1 — Gy &y, er ~N(0,1), (19)

realized as latent inpainting by adding noise only where M = 1:

:MQ(\/O_thoJr\/l—dtst> +(1-M)oz. (20)

Masked diffusion loss. To supervise only redesigned residues, we broadcast M over latent di-
mensions:
My =M®1yxs Myp=Mel,,. @1

Fort~U{1,...,T} and &, ~N(0, I), the masked noise-prediction loss is

2 2
1 |(ere — €me) © Myl [|(ex.c — €x.0) © Mx]|
Laig(t) = = | Am : : 2+ Ax : : 2], @
o} [ M1 [ Mx |1
where 07 = 1;_5‘(;:1 B for the cosine schedule.
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Training the denoiser. We learn parameters by minimizing the diffusion loss together with
physics, evolutionary, and MI objectives.

* .
0" = arg min Etzo €t Ldiff (t) + [’phys + Eevo + EMI—total . (23)
0 —— ~~ ——
structure quality sequence viability sequence—structure consistency

Here, Laif () depends explicitly on the sampled diffusion timestep ¢, whereas Lpnys, Levos LMI-total
and are time-independent regularizers computed on decoded or pooled representations for each sam-
ple. .At inference, parameters are frozen, and we write

ét = &g~ (Ztv t) = (EH,G* (Ztv t)? €X,0* (Ztv t))?

so evolutionary and MI guidance act via 6*. The A ablation can be found in Appendix|[l]

Reverse diffusion with explicit physics guidance. Starting from 2z ~ N (0, I), we iteratively
update to zy. We apply a physics correction only to the structural component:

Emyt = emor (24, 1), 24)

éX,t = EX,0* (Zt7 t) Y 1- Qi Gg)hys’ Gghys = *)\phys szYtEphys()?ta S; M)a (25)

where )A(t is a partial decode of zx; (coordinates only). Because Epys depends only on internal
distances/angles, this guidance is SE(3)-consistent. We anneal Appys to strengthen physics late in
the trajectory. The Gaussian reverse transition is

1 1-—
Zi_1 = \/oTt(Zt - \/1_701;50 + 0. &, £~ N(0,1), (26)

where £ is an independent standard normal (resampled at each step) with the same shape as z;.

Stochasticity and context control. To confine randomness to redesigned residues, we optionally
mask the noise:
E— MoE = o0&+ (M.

To keep the context fixed, we clamp unmasked entries after each step:
Zi 1 MOz + (lfM)QZo. 27

Running equation @equationfor T steps yields (Hy, Xo) while preserving the unmasked struc-
tural context. Evolutionary and MI guidance influence sampling through 6*, whereas the explicit
physics term stabilizes local geometry and reduces clashes during generation.

Together, the proposed tri-guidance objective integrates diffusion with physical, evolutionary, and
MI regularization, producing peptides that are physically stable, biologically grounded, and se-
quence—structure coherent.

Further details are provided in Appendix

4 EXPERIMENTS

4.1 DATASETS

In our experiments, the dataset primarily consists of short peptides, with a substantial proportion
shorter than 30 amino acids. This characteristic highlights the model’s strength in generating such
sequences (Wei et al., [2024). Following the recommendations of (Kong et al.| |2024), we employed
two experimental setups: Cross-domain: To assess the model’s generalization capability, we trained
on the PepBench dataset, which contains 6,105 non-redundant protein—peptide complexes, and eval-
uated on the non-redundant dataset (LNR) from Tsaban (Tsaban et al., 2022)), comprising 93 pro-
tein—peptide complexes with canonical amino acids curated by domain experts. In-domain: Using
PepBDB (Wen et al.} 2019), which includes 7,014 complexes. We ensured that no protein target was
duplicated between the training and test sets, thereby preventing data leakage and enabling a fair
evaluation. To achieve this, we applied the MMseqs2 clustering technique.

Further details of the datasets are provided in Appendix [O]and Appendix
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4.2 EVALUATION METRICS

To rigorously assess the performance of the proposed methods against state-of-the-art (SOTA) mod-
els, we employed a comprehensive set of evaluation metrics capturing both structural quality and
functional relevance. These include: Success Rate (fraction of generated peptides with thermody-
namically stable binding, defined as AG < —5 REU from Rosetta (Alford et al., [2017)), Bind-
ing Free Energy (AG), DockQ (interface quality), GDT_TS (global structural similarity), Con-
tact_F1 (local interaction accuracy), Local RMSD (local structural precision), Clash_in (Ca in-
ternal clashes), Clash_out (Ca interface clashes), Bond-outlier rate (fraction of backbone bonds
deviating from ideal geometry), Sequence Diversity (BLOSUM®62 clustering), Sequence Validity
(fraction of generated sequences passing biochemical criteria), Structure Diversity (RMSD clus-
tering), and Consistency (Cramér’s V across multiple generations). To capture variability across
targets, we additionally report per-target standard deviations for six primary metrics.

Further details of evaluation metrics are provided in Appendix [Q}

4.3 SEQUENCE-STRUCTURE PEPTIDE CO-DESIGN TASK

During training and evaluation, peptide design was carried out in sifu within the receptor’s binding
pocket. The receptor was treated as a rigid scaffold, and all diffusion steps for the peptide sequence
and structure were conditioned on its local environment. This setup ensures that generated peptides
are evaluated in the same geometric and energetic context in which binding occurs. We report
each metric for before relaxation and after relaxation (shown in italics). Geometry refinement was
carried out using OpenMM energy minimization with the Amber14 force field, applied consistently
across our models and baseline models. To preserve backbone geometry, positional restraints with a
stiffness constant of 10.0 were applied to all non-hydrogen atoms. The minimizer was run with no
iteration cap (maximum iterations = 0), allowing convergence to a local minimum.

4.3.1 BINDING QUALITY, INTERFACE ASSESSMENT, AND STRUCTURAL ACCURACY

Table 1: Binding quality metrics on PepBench and PepBDB. Higher success rate and DockQ, lower
AG, are better. (without relaxation / with relaxation)

Dataset Method Success Rate (1) AG (REU) | DockQ (1)

PepBench ~ PepGLAD 0.2940.19/0.7940.17 -15.6348.51 /-34.48+12.44 0.60+0.15/0.5940.14
PepFlow 0.31i0_19 /0.74i0,13 '17-05i8.25 /'35'98i18.81 0.53i0_11 /0.42i0_09
UniMOMOSin gle 0.34:(:0_19 /0.79:(:0,13 -19.04:(:7,17 /-3().]9:(:9_55 0.57:(:0_23 /0.54:(:0_19
PepTri(Ours) 0.4040.19/0.8340.16 -19.394 7. 08 /-36.36414.27 0.631+0.16/0.6240.15

PepBDB PCPGLAD 0.15:&0,12 /0.67:&0,26 -14.48i9.91 /'31-22i13.28 0.43:&0420 /0.43:&0419
PepFlow 0.30;&0,15 /0.66:&0,31 -17.44i9,52 /-34.98:&25,97 0.41:&0,21 /0.31;&0,15
UniMoMosingte  0.30+0.22/0.744+0.25  -18.894+12.59/-34.054+18.80  0.4440.20/04310.18
PepTri(Ours) 0314+0.23/0.74+0.27 -18.154+11.92/-34.82+18.20 0494 0.21/0.4940.19

Table [T] summarizes binding success, thermodynamic favorability, and interface quality across both
cross-domain (PepBench) and in-domain (PepBDB) evaluations. PepTri achieves the strongest
overall performance, outperforming baselines in success rate and interface quality and maintain-
ing highly competitive AG values in both pre- and post-relaxation settings. This indicates robust
generalization and stable peptide-receptor interfaces even under relaxation. Relaxation improves
force-field energy but does not guarantee increased nativeness, often shifting poses toward lower-
energy basins with slightly reduced DockQ. PepTri’s guided denoising produces interfaces that
remain native-like after refinement, suggesting that its tri-guidance mechanism shapes physically
coherent structures rather than relying on post-hoc relaxation to correct them.

4.3.2 STRUCTURAL ACCURACY

Table [2| reports that PepTri consistently achieves the highest Contact_F1 and GDT_TS on both Pep-
Bench and PepBDB in both pre- and post-relaxation regimes. For local RMSD, PepFlow is slightly
better before relaxation, whereas PepTri attains the best post-relaxation RMSD on both datasets,
indicating that its conformations refine particularly well. Since GDT_TS > 0.5 indicates reasonable
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Table 2: Structural accuracy metrics on PepBench and PepBDB (without relaxation / with relax-
ation).

Dataset Method Contact_F1 (1) Local RMSD (&) (}) GDT_TS (1)

PepBench PepGLAD 0.80+0.26 /0.80+0.24 1.2240.49/1.214¢.43 0.724+0.20/0.73+0.19
PepFlow 0.8040.25/0.82+0.10 1.07+0.40/1.0610.48 0.741+0.20/0.74+0.21
UniMoMosingie  0.614+0.35/0.6710.32 1.9841.64/1.37£1.27  0.6210.27/0.6210.27
PepTl'i(Olll‘S) 0.83i0_23 /0.84ig_20 1.18i0.42 /1-10i0.46 0.75i0_13 /0.76;&0,19

PepBDB PepGLAD 0452i0.36 /0.60i0_35 1-92:&183 /].46;&0,48 O~52i0.26 /0.60i0_25
PCpFlOW 0-71i0.30/0-72i0.28 1.27i0_45/1.35i0_44 0.65i0_21 /0.63ig_22
UniMoMogingie  0.48+0.36/0.55+0.35  2.78+1.50/1.5210.65  0.48+0.24/0.56+0.24
PepTri(Ours) 0.75+0.29 /0.77 +0.26 1.3441.43/1.29+0.41 0.66-+0.20 / 0.67 +0.20

Table 3: Clash and geometry quality metrics on PepBench and PepBDB (without relaxation / with
relaxation). Lower is better for all metrics.

Dataset Method Clash_in | (%) Clash_out | (%) Bond Outliers | (%)

PepBench ~ PepGLAD 7.994+11.28/1.60+5.91 6.08+12.36/1.45+6.48 17.4149.32 /6.531+3.08
PepFlow 7~64i9.64 /0.70i2_35 7.82i14_o5 /0.69i3_74 19.64i12_77 / 7-20:E1.98
UniMoMosingle 5.99114.79 /1.08£4.47 5.554+11.35/0.89+£4.84 14.95111.22/5.7942.39
Pep’h‘i (Olll'S) 6.16i13‘65 /0.59;&4,59 473:&11.06 /0.54i3_54 15.60i10_4g /5.47:&1‘73

PepBDB PepGLAD 20.36i12,35 /5~44i6.07 8-52i16,64 /1-10:&6,81 37-13i8,39 /7.28:&2444
PEpFlOW 19-43i14.88 /2.48:&2,72 12.45:&13‘35 /]-70:t4.66 28.93:&4‘50 /5.]7:&1‘60

UHiMOMosingle 15-07i11.18 /0'83i6.45 7.82i17_4g / 145:&7.56 32.13i3_20 /4.46i1_95

Pep’h‘i (Olll‘S) 16-72i12,28 /1.25i7‘31 6-22i12.28 /0.71i5_19 28'27i8,54/ 4.70i1_10

structural similarity, these results confirm that our generated peptides remain globally faithful to
native folds, with the largest gains on PepBDB. Complementing these structural metrics, Table [3]
summarizes clash and covalent-geometry outlier rates (lower is better for all metrics). Energy mini-
mization substantially reduces clashes and bond-length violations for all methods, showing that the
predicted backbones lie close to valid local minima. After relaxation, PepTri attains the best or
near-best Clash_in, Clash_out, and bond-outlier rates across both datasets, yielding peptide struc-
tures that are not only accurate in terms of global fold but also highly clash-free and geometrically
well-formed.

4.3.3 DIVERSITY ANALYSIS AND SEQUENCE VALIDITY RATE

Table 4: Design diversity metrics on PepBench and PepBDB (without relaxation / with relaxation).

Dataset Method SegDiv (1) SeqValid() StrDiv(f) Consistency(1)

PepBench  PepGLAD 0.92 0.27 0.54/0.60 0.81/0.84
PepFlow 0.83 0.25 0.44/0.58 0.67/0.80
UniMoMogingie 0.92 0.21 0.62/0.65 0.79/70.84
PepTri (Ours) 0.93 0.27 0.44/0.63 0.80/0.86

PepBDB PepGLAD 0.92 0.24 0.81/0.82 0.94/0.96
PepFlow 0.67 0.20 0.58/0.71 0.74/0.82
UniMoMogingie 0.90 0.20 0.81/0.80 0.92/0.94
PepTri (Ours) 0.93 0.28 0.63/0.70 0.89/0.95

Table [] reports sequence and structure diversity, sequence validity, and sequence—structure consis-
tency. PepTri attains the strongest overall balance across these metrics, producing diverse yet bio-
logically plausible sequences and coherent sequence—structure pairs. While its structural diversity is
moderate, this reflects its tendency to generate low-energy, near-native conformational ensembles.
PepTri also achieves the highest or near-highest consistency after relaxation, indicating that evolu-
tionary guidance helps maintain coherence between sequence and fold while still supporting broad
sequence exploration.
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Practical implications. Results show a balanced, physics-constrained exploration that preserves
sequence diversity while converging to stable structural basins, benefiting peptide design and drug
discovery; Cross-domain robustness: our PepTri achieves state-of-the-art results on PepBench
binding metrics, evidencing tri-guidance under distribution shift; Refinement-friendly geometry:
best post-relax RMSD on both datasets indicates that SE(3)-aware latent modeling with physics
guidance reaches physically consistent minima; Diverse yet coherent designs: highest sequence
diversity alongside strong sequence—structure consistency validates mutual-information coupling of
sequence and structure latents.

5 ABLATION STUDY ANALYSIS

Setup. We quantify the contributions of four components: physics guidance, evolutionary guidance,
mutual information (MI) guidance, and all-atom modeling—using single-component removals (Ta-
ble[3)) and single-guidance variants (Table[7). Unless stated otherwise, higher values are better; for
Local RMSD_Mean and Sliding-AAR, lower is better. Our ablation study evaluates the high-level
contribution of each guidance type (physics, evolutionary, and MI) because these components are
designed to function as integrated modules. The full model, PepTri, achieves the strongest overall
performance, with leading scores in mean success rate, AG, DockQ, Contact F1, GDT-TS, sequence
validity, and consistency. Removing any component degrades at least one core dimension of quality,
underscoring the synergy between structural physics, evolutionary constraints, information-theoretic
coupling, and atomistic detail.

Table 5: Ablation study results comparing different settings when removing single components .

No_phys No.evo No.mi PepTripgckbone PepTri

Physics guidance (phys) v v v v
Evolutionary guidance (evo) v v v v
Mutual information guidance (mi) v v v v
All atom v v v v
Mean success rate (AG < 0) 0.401 0.443 0.545 0.397 0.583
AG (REU) | -15485  -16.501 -18.949 -16.961 -19.387
DockQ 0.621 0.618 0.633 0.578 0.633
Contact_F1 0.750 0.769 0.804 0.760 0.829
Local RMSD (A) | 1.432 1.418 1.154 1.260 1.179
GDT_TS 0.704 0.709 0.745 0.726 0.747
Sequence Diversity 0.917 0.915 0.920 0.917 0.926
Sequence Validity rate 0.256 0.250 0.259 0.260 0.273
Struct Diversity 0.465 0.427 0.431 0.499 0.436
Consistency 0.783 0.771 0.779 0.744 0.799
Sliding-AAR 0.352 0.361 0.354 0.347 0.342
TM-score 0.221 0.220 0.250 0.242 0.244

6 CONCLUSION

We introduced PepTri, a latent-diffusion framework for peptide co-design that operates in an SE(3)-
aware latent space with separate sequence and structure representations. Joint denoising preserves
geometric equivariance and enables efficient control over both modalities. PepTri incorporates three
complementary forms of guidance: physics-based gradients that enforce geometric plausibility, evo-
lutionary priors that encourage realistic sequences, and mutual-information regularization that pro-
motes coherent sequence—structure design. These components together produce stable sampling
behavior and high-quality peptide candidates. Overall, PepTri provides a principled way to inte-
grate physical and evolutionary priors into equivariant generative models, with clear opportunities
for extension to broader conditioning and to more complex protein—peptide systems.
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USE OF LARGE LANGUAGE MODELS

We used a large language model to (i) polish grammar and wording across drafts,(ii) assist with high-
level ideation and code, and (iii) find related works. All technical claims, equations, experiments,
and analyses were conceived, implemented, and verified by the authors. The model was not used to
generate data or run experiments. All citations and numerical results were manually checked by the
authors.

A  NOTATION

Table 6: Summary of notations used throughout the paper.

Symbol Meaning

S efo,..., 19}L Amino acid sequence of length L (20 canonical residues)
X € REXCOx3 All-atom 3D coordinates (C' = 14 channels: backbone + sidechains)
M e {0,1}F Binary mask for inpainting (M; = 1 redesigned, M; = 0 context)
hi, H Residue-level embeddings; H € RE*4

zp € REXn Latent sequence features (invariant)

2y € REXTaX3 Latent structural anchors (equivariant)

z, = (2w, 2x,)  Latent variables at diffusion step ¢

€0 Denoiser network parameterized by 6

€t Predicted noise at step ¢

Et Guided noise with physics correction

g, Be, 0y Diffusion schedule coefficients (cosine schedule)

o Variance term in reverse diffusion

3 Gaussian noise sampled at each diffusion step

Cijk Bond angle at residue j between atoms ¢ and k

Eohys Physics energy (bond, angle, vdW, electrostatics, etc.)
Gos Physics gradient guidance at step ¢

Peons,i Position-specific conservation distribution at residue ¢
F(Hcoevo) Global self-supervised evolutionary fitness score

LyaE VAE training loss (reconstruction + KL + geometry)

L gife Diffusion noise prediction loss

Lphys Physics-informed loss

Levo Evolutionary guidance loss

Lyt Mutual-information loss

0* Trained PepTri parameters

B THREE GUIDANCE DISCUSSIONS

B.1 PHYSICS GUIDANCE: ENFORCING ENERGETIC FEASIBILITY

Imposes molecular mechanics constraints so sampled conformations are sterically and energetically
plausible.

Ablation Impact (No_phys). This ablation causes the largest degradation in binding strength: mean
success rate drops by 31.2% (0.583 — 0.401) and AG weakens (—19.387 — —15.485). Contact-
level accuracy also declines (Contact_F1: 0.829 — 0.750; DockQ: 0.633 — 0.621).

Why indispensable. Physics guidance anchors generation to biophysical reality; without it, designs
drift toward energetically unstable states that are unlikely to bind.

B.2 EVOLUTIONARY GUIDANCE: MAINTAINING BIOLOGICAL PLAUSIBILITY

Uses conservation signals to steer designs toward foldable, functionally plausible sequence distribu-
tions.

14
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Table 7: Comparison of models with single guidance across evaluation metrics.

Noevo_Nomi Nophys_ Nomi Noevo_Nophys PepTri

Physics guidance (phys) v v
Evolutionary guidance (evo) v v
Mutual information guidance (mi) v v
All atom v v v v
Mean success rate (AG < 0) 0.534 0.363 0.369 0.583
AG (REU) | -18.535 -14.912 -15.134 -19.387
DockQ 0.531 0.532 0.539 0.633
Contact F1 0.803 0.738 0.722 0.829
Local RMSD (A) | 1.260 1.427 1.401 1.179
GDT_TS 0.745 0.704 0.701 0.747
Sequence Diversity 0.925 0.918 0.912 0.926
Sequence Validity rate 0.256 0.262 0.247 0.273
Struct Diversity 0.423 0.402 0.409 0.436
Consistency 0.797 0.742 0.716 0.799
Sliding-AAR 0.346 0.347 0.343 0.342
TM-score 0.256 0.214 0.208 0.244

Ablation Impact (No_evo). Removing evolutionary guidance harms interface and global fold met-
rics: Contact_F1 drops by 7.2% (0.829 — 0.769), GDT-TS by 5.1% (0.747 — 0.709), and consis-
tency decreases (0.799 — 0.771). Sequence validity decreases from 0.273 to 0.250.

Why indispensable. Evolutionary constraints curb exploration of physically permissible but bi-
ologically irrelevant sequences, improving validity and the reliability of the sequence—structure

mapping.

B.3 MUTUAL INFORMATION (MI) GUIDANCE: COUPLING SEQUENCE AND STRUCTURE

Maximizes MI between sequence and structure representations to promote coherent long-range de-
pendencies and stable folding.

Ablation Impact (Nomi). A nuanced trade-off: removing MI slightly improves Lo-
cal RMSD_Mean (1.179 — 1.154) and TM-score (0.244 — 0.250), but reduces success rate
(0.583 — 0.545), Contact_F1 (0.829 — 0.804), and consistency (0.799 — 0.779).

Why indispensable. MI guidance strengthens global residue-residue coherence and contact fidelity.
Even if local RMSD tightens marginally without MI, overall stability and reliability suffer.

B.4 ALL-ATOM REPRESENTATION: SIDE-CHAIN RESOLUTION FOR PRECISION

Goes beyond backbone constraints to capture side-chain packing that determines interface quality.
Ablation Impact (PepTripacknone)- The backbone-only variant underperforms across contact-
sensitive metrics (DockQ: 0.633 — 0.578, Contact_F1: 0.829 — 0.760) and consistency (0.799 —
0.744), highlighting the need for atomistic detail.

Why indispensable. Binding is dictated by side-chain chemistry; atom-level modeling is required
to evaluate and optimize interface specificity and packing.

B.5 SINGLE-GUIDANCE VARIANTS: NO SINGLE SIGNAL IS SUFFICIENT

Observation. Physics-only, Evo-only, and MI-only models (Table[7)) trail PepTri on nearly all met-
rics, especially DockQ, Contact F1, and consistency. For instance, the physics-only variant (No-
evo_Nomi) attains Contact F1 = 0.803 and DockQ = 0.531, below PepTri (0.829 and 0.633). This
confirms that no single guidance signal captures the multifaceted requirements of accurate, valid,
and stable design.
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B.6 TAKEAWAY

Synergy is non-negotiable for high-performance peptide design. Our ablation study demonstrates
that the integration of physical, evolutionary, and information-theoretic principles is paramount. For
practitioners, this provides a clear hierarchy for model design:

1. Anchor designs in physical reality. Physics-based guidance is the most critical single
component for predicting strong binding.

2. Model at atomic resolution. An all-atom representation is essential for achieving precise
interface quality.

3. Enforce global consistency. Mutual information guidance is key to ensuring sequences
reliably fold into their intended structures.

4. Constrain for function. Evolutionary guidance ensures designs are biologically plausible
and evolutionarily informed.

While the physics+atom foundation is essential, the full integration of all four components in PepTri
is required to simultaneously maximize binding affinity, structural accuracy, and biological validity.

C DISCUSSION

Our physics-guided peptide design model demonstrates a compelling and biologically meaningful
trade-off between structural quality and conformational diversity when compared to the state-of-the-
art PepGLAD. While achieving substantial gains across most structural and binding quality metrics,
our approach shows a moderate reduction in structural diversity—a result that offers valuable insight
into how physics-based constraints influence generative peptide design. These improvements indi-
cate that such constraints effectively guide the model toward energetically favorable and structurally
realistic peptide conformations.

PepTri currently models canonical residues and peptides predominantly shorter than 30 aa. The MI
estimator (MINE) can be high-variance; we mitigate this with EMA baselines and gradient clipping.
Reported energies are computational proxies (Rosetta/OpenMM) and may not perfectly correlate
with experimental affinities.

C.1 QUALITY VS. DIVERSITY: A BENEFICIAL TRADE-OFF

The observed trade-off between structural quality and conformational diversity in our physics-
guided peptide design model represents a beneficial optimization for therapeutic applications. The
substantial improvements in binding prediction, structural accuracy, and biological consistency sig-
nificantly outweigh the reduction in structural diversity. This finding supports the hypothesis that
physics-based constraints serve as valuable inductive biases for peptide design, guiding models to-
ward biologically relevant and therapeutically promising conformational space. (Ferruz et al., 2022
Dauparas et al.| 2022).

Biological Perspective — Natural peptides do not explore the entirety of conformational space;
instead, they preferentially adopt low-energy, functional conformations. Evolutionary pressures se-
lect for sequences that fold into stable, functional structures rather than maximizing conformational
diversity. For therapeutic peptides, specific binding conformations are often required, making struc-
tural quality and binding accuracy more critical than maximizing diversity.

Computational Perspective — Physics-based constraints serve as strong inductive biases, reducing
the exploration of unrealistic conformational space. By concentrating sampling efforts on physically
plausible structures, the model improves computational efficiency while preserving functional rele-
vance. In practice, improvements in structural quality and binding prediction directly translate into
better drug design outcomes .

C.2 ROLE OF EVOLUTIONARY GUIDANCE

Our ablation indicates that evolutionary guidance is a principal contributor to reliability and realism
in PepTri. In Table El, removing it (No_evo) reduces mean success rate (0.583 — 0.443, -24%
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rel.), weakens stability ( AG -19.387 — -16.501), and degrades contact accuracy and global fold
quality (Contact_F1 0.829 — 0.769; GDT_TS 0.747 — 0.709), while slightly affecting diversity. In
contrast, physics dominantly shapes stability and success, and MI adds modest but consistent gains
in coherence; the full model combines these effects most effectively.

We hypothesize that three mechanisms underlie these gains. First, evolutionary embeddings blended
via a learnable gate bias residue substitutions toward plausible regimes, reducing off-manifold pro-
posals. Second, residue dependency attention captures residue-residue couplings that sharpen con-
tact maps and local packing, improving Contact_F1 and GDT_TS. Third, a weak self-supervised
evolutionary fitness regularizer calibrates broad biochemical profiles (e.g., charge, hydropathy), aid-
ing foldability without collapsing diversity. A part of the Table [T1] also indicates that maximizing
evolutionary information benefits the model.

There are trade-offs and limits. No_evo shows a slight improvement in Sliding-AAR, suggesting
that evolutionary priors may occasionally down-weight rare but compatible chemistries. Benefits
can diminish when homologous information is sparse (shallow MSAs), and BLOSUM-like priors
may bias novelty if over-weighted.

C.3 LIMITATIONS AND FUTURE DIRECTIONS

C.3.1 LIMITATIONS
We highlight the main limitations of our current study:

* Computational cost. The all-atom representation combined with SE(3)-equivariant mes-
sage passing is compute- and memory-intensive; physics-guided sampling further increases
runtime relative to unguided diffusion.

* Rigid receptor & missing environment. Sampling assumes a fixed receptor. Induced-fit
effects and explicit environment (solvent/water, ions, pH) are not modeled, which can limit
realism at the interface. The known binding pocket information is required, which limits
applicability to discovering novel binding sites or cryptic pockets on target receptors.

* Length & multi-chain generalization. Training focuses on peptide-scale systems; scala-
bility to longer proteins and multi-chain assemblies remains untested.

 Evaluation coverage. Our docking/biophysics metrics (e.g., AG, DockQ) are computa-
tional proxies for binding and fold quality. Prospective experimental validation of binding
and function is outside the scope of this work.

C.3.2 OPTIMIZING THE QUALITY-DIVERSITY BALANCE

Future research could investigate strategies to retain quality improvements while recovering some
degree of structural diversity:

1. Adaptive Physics Weighting: Dynamically adjust the physics loss weights during training
to balance quality and diversity.

2. Multi-Objective Optimization: Simultaneously optimize for both quality metrics and di-
versity measures.

3. Ensemble Methods: Combine multiple physics-guided models with varying constraint
strengths.

4. Temperature Scaling: Use temperature-controlled sampling to fine-tune the explo-
ration—exploitation balance.

The success of our tri-guided approach highlights a clear pathway for further enhancement, particu-
larly in enhancing the biological realism and applicability of the evolutionary guidance component:

* Adaptive Evolutionary Guidance: Implement a dynamic guidance schedule that explic-
itly manages the exploration-exploitation trade-off during denoising. By annealing the in-
fluence of evolutionary priors, the sampler could initially explore a diverse sequence land-
scape before converging to evolutionarily fit and conserved regions, potentially increasing
the hit rate of functional designs.
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* Advanced Force Fields and Solvation Models: Enhance the physical realism of gener-
ated structures by integrating more sophisticated force fields, polarizable charge models,
and explicit solvation effects. This would provide a more accurate energetic landscape,
particularly for designing peptides that function in specific cellular environments or require
precise electrostatic interactions.

* Allosteric and Long-Range Constraints: Extend the physics-informed guidance to model
allosteric mechanisms and long-range interactions explicitly. Incorporating constraints de-
rived from molecular dynamics or elastic network models could capture the dynamic con-
formational changes essential for modulating protein function.

* Integration of Experimental Data: Incorporate experimental constraints (e.g., from NMR
spectroscopy, X-ray crystallography, or cryo-EM densities) as structural restraints during
the diffusion process. This would enable a closed-loop design pipeline where experimental
data directly refines and validates generative proposals.

* Richer evolutionary priors: Explore integrating MSA- or PLM-based conservation sig-
nals to capture stronger position-specific constraints, while addressing their data availabil-
ity and computational overhead. Developing lightweight or cached evolutionary features
that remain applicable to short peptides and novel targets is an important direction for future
work.

D CORRELATIONS AMONG STRUCTURAL, ENERGETIC, AND
SEQUENCE-LEVEL DESCRIPTORS

Metric Correlations (Spearman)
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Figure 2: The paired metric heat map of results from PepTri for relaxed cross-domain experiment.
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The pairwise correlation analysis shown in Fig. 2|reveals distinct patterns among geometric accuracy
metrics, energetic scores, and sequence-derived descriptors.

Structural quality metrics. DockQ emerges as the most reliable indicator of structural correct-
ness. It exhibits a nearly perfect inverse association with C, RMSD (p ~ —0.98), indicating that
lower backbone deviations directly translate to higher DockQ scores. DockQ also correlates strongly
with TM-score (p ~ +0.61) and GDT (p ~ +0.65), confirming that models with high DockQ not
only achieve accurate local geometry but also preserve global topology. Local RMSD statistics
(mean, min, max) show moderate associations with TM-score and GDT (p ~ +0.64), but weaker
alignment with DockQ, suggesting that localized backbone distortions contribute to global accuracy
without directly determining interface quality. Contact-based metrics (precision, recall, F1, overlap)
show only weak correlations with DockQ and RMSD (p < 0.32), indicating that recovering the
correct set of contacts is insufficient to capture either precise geometry or overall structural fidelity.

Energetics. Rosetta interface energy (AG) shows only a weak positive association with DockQ
(p = +0.28). However, AG correlates moderately and negatively with RMSD (p ~ —0.24), TM-
score (p ~ —0.33), and GDT (p ~ —0.35). Because more negative AG values represent more
favorable binding energies, this pattern suggests that globally accurate structures tend to have some-
what better energetic profiles. Nevertheless, the magnitude of these correlations is insufficient for
AG to serve as a primary ranking criterion.

Sequence-level descriptors. Most sequence-derived properties—including net charge, hydropa-
thy (GRAVY), isoelectric point, and instability index—show negligible correlations with 3D accu-
racy metrics (DockQ, TM-score, GDT, RMSD, and contact F1). The one consistent exception is
sequence length, which exhibits a negative correlation with DockQ (p =~ —0.68) and also with AG
(p = —0.46), indicating that longer sequences tend to produce models with lower DockQ and less
favorable interface energies. This effect likely arises because longer peptides form larger binding in-
terfaces, which increase conformational flexibility and thereby pose greater sampling challenges. To
avoid confounding effects, future analyses should explicitly control for sequence length, for example
by computing partial correlations or by stratifying models into length-matched bins.

Summary. Together, these results establish DockQ as the most robust single metric for assessing
structural quality, validated by its near-perfect correspondence with RMSD and strong agreement
with TM-score and GDT_TS. While Rosetta AG provides complementary information about ener-
getic plausibility, its weak correlation with DockQ limits its utility to secondary ranking. Sequence-
level properties generally fail to predict structural quality, with the important exception of sequence
length, which systematically influences both DockQ and AG and should be considered as a potential
confounder in downstream evaluations.

E PEPTRI POSITIONING VS PEPGLAD/PEPFLOW/UNIMOMO

Compared to PepGLAD, which relies on sequential decoding with auxiliary geometry losses, and
PepFlow, which factorizes sequence and structure into separate flows and applies energy evaluation
only after generation, PepTri integrates physics, evolutionary priors, and a sequence—structure cou-
pling term directly into the denoising process within a joint SE(3)-equivariant latent space. While
UniMoMo offers a domain-agnostic abstraction that facilitates cross-domain transfer, our approach
instead targets peptide-scale interactions within protein pockets, where in-loop physics and mutual
information bring clear benefits. On our benchmarks, under consistent relaxation and success cri-
teria, these design choices correlate with lower binding energies and higher success/DockQ scores,
though we also observe instances where baseline methods remain competitive on specific metrics.

F CASE STUDY

As shown in Fig. [3] and Fig. [4 a key outcome of our case study is that PepTri does more than
reproduce training data—it discovers energetically favorable conformations and outperforms base-
line models. Because the diffusion process is guided by differentiable physics terms, the model
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Table 8: Design dimensions for peptide co-design (v' = native; () = partial; — = not explicit).
Dimension GLAD Flow UniMoMo PepTri

Joint SE(3) latent O — O
In-loop guidance — — —
Evolutionary prior — — —
Seg-struct coupling (MI) — — —
Mask-aware inpainting O O O
Binder—pocket conditioning v v v
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Figure 3: PepTri case study. PepTri is able to generate peptide conformations with lower computed
physical energies than the experimentally resolved ground-truth structures. This suggests that Pep-
Tri’s physics-guided denoising does not merely replicate training data but can discover novel, ener-
getically favorable conformations that remain sequence—structure coherent. While energy functions
are approximations, this trend indicates that the model integrates physical principles in a meaningful
way. In this experiment, we picked the best AG structures for each target.

consistently generates peptide structures with more favorable (lower) computed energies than the
corresponding experimentally resolved conformations.

This observation highlights two important points:

* Physics-consistent learning — PepTri’s generated conformations are lower in energy vali-
dates that our physics-guided denoising is not simply curve-fitting to observed structures.
Instead, the model learns to navigate conformational space in a manner consistent with
molecular mechanics, uncovering stable regions that even ground-truth datasets may not
fully represent.

* Potential functional benefit — From a therapeutic design perspective, lower-energy confor-
mations are often correlated with increased in vivo stability. By biasing generation toward
such energetically favorable structures, PepTri improves the likelihood that designed pep-
tides will remain folded and functional under physiological conditions, which is a critical
property for drug-like candidates.

Taken together, these results indicate that PepTri embeds physical priors directly into its generative
process, yielding designs that are not only statistically plausible but also biophysically robust. This
positions PepTri as a practical framework for peptide drug discovery, where stability and functional
relevance are equally important.
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Figure 4: Comparative visualization of peptide—protein binding across ground truth and design
methods. Three representative complexes (PDB IDs: lee5, 4w50, 6qg8) are shown with peptides
bound to protein receptor surfaces (gray). (a) Native ground-truth peptides (pink). (b—e) Designed
peptides from PepTri (ours), PepGLAD, PepFlow, and UniMoMo, respectively (green). Sequences
and Rosetta binding energies are listed beneath each structure. PepTri consistently produces pep-
tides with tighter binding poses and substantially lower (more favorable) Rosetta energies compared
to baselines, demonstrating improved sequence—structure co-design and binding affinity.

G RESULTS FOR AG < 0( REU) THRESHOLD

Table 9: Comparison of success rates (without/with relaxation) in two thresholds of AG.

Dataset Method AG < —5(REU)t AG<O0(REU)?t

PepBench PepGLAD 0.294/0.790 0.459/0.862
PepFlow 0.308/0.742 0.437/0.815
UniMoMog;pg1e 0.339/0.791 0.532/0.839
PepTriygcibone 0.254/0.784 0.39770.849
PepTri (Ours) 0.404 /0.825 0.583/0.885

PepBDB  PepGLAD 0.154/0.670 0.441/0.753
PepFlow 0.299/0.659 0.467/0.725
UniMoMog;pgie 0.302/0.737 0.512/0.782
PepTriyacibone 0.245/0.724 0.407/0.793
PepTri (Ours) 0.313/0.742 0.530/0.805

In Table[9] PepTri consistently outperforms all baselines across both datasets, with especially strong
gains under the stricter binding threshold (AG < —5). While success rates are naturally higher
at the looser threshold (AG < —0), we report results at AG < —5 as it reflects more meaningful
binding affinity, making improvements more scientifically relevant and demonstrating the robustness
of PepTri under stringent conditions.
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H EFFECT OF RANDOM SEEDS ON PERFORMANCE METRICS

To evaluate the robustness of our protocol, we performed three independent runs using different ran-
dom seeds. The resulting performance metrics are summarized in Table In general, most of the
structural quality indicators, including RMSD(Cc), TM-score, GDT_TS, Contact_F1, Local RMSD,
and Dock(Q — exhibited very small standard deviations across the three runs. This indicates that the
structural models generated are consistent and largely independent of the random seed. Similarly,
amino acid recovery (Sliding-AAR), sequence diversity, and structural diversity values remained
stable across replicates, suggesting that the design tendencies of the protocol are reproducible.

In contrast, the mean success rate showed noticeably higher variability among the three seeds (0.583,
0.559, and 0.563 with a standard deviation of ~ 0.013). This difference arises because the success
rate is defined as a thresholded metric, where each model is categorized as either “success” or
“failure” according to preset quality cutoffs. Small differences in sampling due to the stochastic
nature of the Rosetta search process therefore lead to discrete changes in the number of models
meeting the success criterion. As a result, the success rate is inherently more sensitive to random
seeds than continuous measures such as RMSD or DockQ.

Overall, these results demonstrate that while most structural and energetic metrics are robust to the
choice of random seed, the success rate can fluctuate appreciably. This highlights the importance of
(1) performing multiple independent replicates, (ii) reporting averages together with standard devi-
ations, and (iii) relying on continuous metrics when possible. Increasing the number of trajectories
per seed would further reduce variance and yield a more reliable estimate of the true success proba-
bility.

Table 10: Performance variance across 3 independent runs of PepTri with different random seeds.

Metrics runl run2 run3 std

Mean success rate (AG < 0)  0.583 0.559 0.563  0.012858201
AG (REU) | -19.387 -19.365 -19.803 0.246773851
DockQ 0.633 0.640 0.628  0.006027714
Contact_F1 0.828 0.837 0.821  0.008020806
Local RMSD (A) | 1.179 1.176 1.157  0.011930353
GDT_TS 0.747 0.746 0.738  0.004932883
Sequence Diversity 0.926 0.918 0.920  0.004163332
Sequence Validity 0.273 0.269 0.262  0.005567764
Struct Diversity 0.436 0.407 0.459  0.026057628
Consistency 0.798 0.793 0.788  0.005000000
Sliding-AAR 0.342 0.357 0.355  0.008144528
TM-score 0.224 0.258 0.247  0.017349352

I GUIDANCE SCALE ABLATION STUDY

Ablation on guidance weights. Table |l 1|shows that up-weighting any single guidance to A = 1
degrades overall balance. Our default tri-guidance (PepTri) attains the strongest profile across bind-
ing and structure (mean success 0.583, AG = —19.39, DockQ 0.633, Contact_F1 0.829, GDT_TS
0.747), while preserving diversity (seq 0.926; struct 0.436) and the highest consistency (0.799).
Overweighting evolution (A\¢yo=1) slightly raises success (0.587) and improves local RMSD (1.158),
but lowers DockQ (0.530) and consistency (0.779); overweighting MI (A\yy=1) tightens energy (
AG = —19.82) yet reduces DockQ (0.530) and diversity. Overall, extreme single-term guidance
(A=1) harms docking and coherence, whereas moderate tri-guidance delivers the best joint gains in
binding (success, AG), docking (DockQ), contacts, and fold (GDT_TS) without sacrificing diversity.

J OUT-OF-DISTRIBUTION STRESS TEST

To further assess the robustness and generalization capability of our model, we conducted an out-of-
distribution (OOD) stress test. For this experiment, we constructed an OOD benchmark by combin-
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Table 11: Guidance-weight ablations where a single component is upweighted to 1.0. Higher is
better for all metrics except Local RMSD_Mean and Sliding-AAR (lower is better).

>\phys:1 Aevo=1 Avr=1 )\Opmm:]- PepTrl
Mean success rate (AG<0) 0.559 0.587 0.564 0.565 0.583

AG (REU) | -18.122  -19.363 -19.815  -18.238 -19.387
DockQ 0.525 0.530 0.530 0.535 0.633
Contact_F1 0.801 0.836 0.829 0.819 0.829
Local RMSD (A) | 1.211 1.158 1.197 1.201 1.179
GDT_TS 0.745 0.745 0.746 0.736 0.747
Sequence Diversity 0.919 0.924 0.916 0.921 0.926
Sequence Validity 0.256 0.278 0.274 0.276 0.273
Struct Diversity 0.427 0.418 0.401 0.434 0.436
Consistency 0.780 0.779 0.746 0.769 0.799
Sliding-AAR 0.347 0.353 0.344 0.346 0.342
TM-score 0.224 0.255 0.253 0.247 0.244

ing PepBench and PepBDB and removing duplicated receptors to ensure non-overlapping receptor
contexts. From PepBDB, we specifically selected complexes containing peptides longer than 45
amino acids. We additionally removed 15 complexes that overlapped with our training set, resulting
in an OOD test set of 114 complexes with substantially longer peptides (46—49 amino acids). The
model was retrained using only complexes with peptides shorter than 30 amino acids, allowing us
to directly evaluate how well it extrapolates to peptide lengths not observed during training.

Table[TI2]summarizes the peptide length statistics for the training and OOD test sets. As expected, the
test set exhibits a markedly different length distribution, with a mean nearly four times larger than
that of the training data and significantly reduced variance. This deliberate mismatch establishes a
stringent challenge for sequence and structure generation.

Statistic Train set Test set
Complex count 12,823 99
Minimum length 1 46
Maximum length 30 49
Mean length 12.68 46.93
Standard deviation 7.33 0.94

Table 12: Peptide length statistics for the training and out-of-distribution test sets.

We report generation and structural evaluation metrics for the OOD test set in Table [I3] after relax-
ation. Despite the substantial distribution shift, the model maintains reasonable performance across
both sequence-level and structure-level metrics. Notably, the mean success rate (AG < 0) remains
above 0.6, indicating that a majority of generated peptides still achieve favorable binding energies
even when extrapolating to much longer sequences. Structural quality metrics (DockQ, Contact F1,
GDT_TS, and Local RMSD) decrease compared to in-distribution performance, as expected under
this challenging regime, but remain within a meaningful predictive range. Diversity and consistency
metrics remain high, suggesting that the model continues to generate varied yet coherent peptide
candidates under OOD conditions.

K COMPARISON WITH RFDIFFUSION-GENERATED 3D PEPTIDE—BINDER
STRUCTURES

PepTri is preferable when accuracy and energetics are the main priorities, whereas RFDiffusion
offers major advantages in speed and global topology preservation. The two methods therefore
complement one another: PepTri as a precision tool for accurate designs, and RFDiffusion as a
high-throughput generator suitable for broad screening.
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Metric PepTri
Mean success rate (AG < 0) 0.624 (£ 0.208)
AG (REU) -45.878 (£ 51.937)
DockQ 0.152 (4 0.026)
Contact F1 0.296 (£ 0.048)
Local RMSD 1.938 (£ 0.988)
GDT_TS 0.150 (£ 0.037)
Sequence Diversity 0.999
Sequence Validity rate 0.128
Struct Diversity 1.0
Consistency 0.999
Sliding-AAR 0.189

Table 13: Performance metrics of the model on the out-of-distribution test set of long peptide—
receptor complexes.

Table 14: Comparison of 3D peptide—binder structure generation performance metrics between
RFDiffusion and PepTri (40 samples per target without relaxation).

Metric RFDiffusion PepTri
AG (REU) | -16.479 -19.387
DockQ 0.286 0.633
Contact F1 0.808 0.828
Local RMSD (A)) | 0.482 1.179
GDT_TS 0.812 0.749
Struct Diversity 0.401 0.436
Running Time (seconds per complex) | 60.224 5.821
Failed targets (Success rate = 0.0) | 33 1

Notes on RFDiffusion usage. Because the RFDiffusion model cannot be retrained for our specific
tasks, we directly applied its released checkpoints for inference on our LNR test sets. In practice,
the method failed on a substantial fraction of targets, particularly when attempting to generate very
short peptides. We found that RFDiffusion has difficulty producing peptides shorter than 8 amino
acids, which further restricts its applicability. For this reason, we do not report success rates for
RFDiffusion, as such values would be misleading; instead, we focus on metrics that provide a clearer
intuition for its performance relative to PepTri.

In Table PepTri provides more accurate and energetically favorable models, while also being
significantly faster. RFDiffusion, despite achieving better global fold preservation and lower local
distortions, is slower, inference-only, and limited in handling short peptides. In practice, PepTri
is better suited for accuracy- and efficiency-driven applications, whereas RFDiffusion may remain
useful for generating diverse scaffolds or when global topology is prioritized.

L OPENMM FORCE-FIELD SENSITIVITY

Table 15: Comparison of CHARMM?36 and Amber14 force fields. Amberl4 yields slightly more
favorable interface energies and a higher success rate, while DockQ, Contact_F1, and RMSD remain
nearly unchanged. This shows that performance is consistent across force fields.

Metric CHARMM36 Amberl4 Amb—Cha
Mean success rate (AG < 0) 0.842 0.884 +0.042
AG (REU) | -35.019 -36.364 -1.345
DockQ 0.618 0.610 -0.008
Contact_F1 0.845 0.837 -0.008
Local RMSD (A) | 1.047 1.101 +0.054
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We evaluated the effect of force-field choice by comparing CHARMM36 and Amber14 under identi-
cal protocols (Table[T3)). Switching from CHARMM36 to Amber14 produced more favorable inter-
face energies: the mean success rate increased from 0.842 to 0.884, and the binding energy decreased
from —35.0 to —36.4 REU. At the same time, structure-based measures of interface nativeness were
essentially unchanged, with DockQ and Contact_F1 differing by only —0.008 each. Local back-
bone accuracy also remained stable, with a modest RMSD increase of just 0.054 A. Taken together,
these results demonstrate that our conclusions are robust across force fields: Amber14 tends to yield
slightly stronger energetic scores, while geometry-based metrics remain consistent, indicating that
performance does not hinge on the specific choice of force field. Amber14 yields slightly more fa-
vorable binding energies because of differences in parameterization. In particular, its torsional and
nonbonded terms were tuned to reproduce peptide—protein interaction energies more closely, and its
solvation model tends to give stronger stabilization of side chains at interfaces. As a result, Amber14
generally reports more attractive peptide—protein energies and a higher success rate, even though the
underlying structural metrics (DockQ, Contact_F1, RMSD) remain nearly unchanged.

M CHOOSING THE MUTUAL-INFORMATION OBJECTIVE

We compare a contrastive objective (InfoNCE; (Oord et al., [2018))) with our mutual-information
objective (MI/MINE) under identical training and evaluation settings. Table [L6] reports aggregate
metrics and their differences MI—InfoNCE. For RMSD and Sliding-AAR, lower is better; for all
other metrics, higher is better. The MI objective directly strengthens global dependence between
sequence and structure latents—the factor that drives binding success, energetic stability, and pose
quality in peptides. By contrast, InfoNCE’s instance-discrimination with finite negatives tends to
emphasize local contact patterns and is sensitive to small batches and false negatives. In particular,

I(X;Y) > logN — Lncg, (28)

so the bound tightens only slowly as batch size N increases, while false negatives (biophysically
related pairs) corrupt the gradients. In peptide space, “negatives” are often related (shared motifs,
fold families, local geometry), causing InfoNCE to underestimate I(X;Y") and to over-penalize
useful similarities. Interestingly, PepTri trained with InfoNCE yields a slightly higher fraction of
valid sequences. Overall, for peptide co-design—short, flexible chains with tight sequence—structure
coupling—the MI objective provides a more suitable inductive bias. By reinforcing cross-modal
alignment, it consistently improves binding success, energetic favorability, and pose accuracy.

Table 16: Aggregate comparison of InfoNCE vs. MI (MINE) for cross-domain experiment.

Metric InfoNCE MI (MINE) MI—-InfoNCE
Mean success rate (AG < 0) 0.5634 0.5831 +0.0197
AG (REU) | -18.8915 -19.387 -0.4958
DockQ 0.6171 0.6331 +0.0161
Contact_F1 0.8567 0.8287 -0.0280
Local RMSD (A) | 1.1841 1.1798 -0.0043
GDT_TS 0.7465 0.7474 +0.0009
Sequence Diversity 0.9199 0.9261 +0.0062
Sequence Validity 0.2891 0.2734 -0.0157
Struct Diversity 0.4651 0.4363 -0.0288
Consistency 0.7794 0.7988 +0.0194
Sliding-AAR 0.3483 0.3428 -0.0055
TM-score 0.2430 0.2446 +0.0015

Handling Variance in MINE It is well established that the Mutual Information Neural Estimator
(MINE) exhibits substantial variance during optimization, frequently resulting in unstable conver-
gence and performance deterioration in later stages of training. To address these challenges, we
employed two complementary stabilization strategies:

* Learning rate decay — progressively reducing the step size helped dampen oscillations and
avoid divergence in later iterations.
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Figure 5: The smoothed validation comparison curve on the Cross-domain experiment between
InfoNCE and MINE on validation epochs.

* Exponential Moving Average (EMA) — smoothing the parameter updates improved robust-
ness against variance spikes.

Together, as shown in Figure [6] and Figure 5] these techniques not only stabilized training but also
accelerated convergence, allowing us to reach the early minima observed in our curves and sustain
better performance across sequence and structure losses.

N REPRODUCIBILITY

We trained the model using PyTorch 2.6 with CUDA 12.4 on 8 x A100 GPUs.

The code for data processing, model definition, training, testing, evaluation, and trained weights will
be made available at: [GitHub].

To compute the interface energy of generated peptides, we used PyRosetta. Please refer to the
official installation instructions: [GitHub]

For structural quality assessment, we employed DockQ: [GitHub]

N.1 HYPERPARAMETERS

Encoder-Decoder Hyperparameters. We trained the encoder—decoder with the AdamW opti-
mizer (learning rate 1.0 x 10~%) and applied a ReduceLROnPlateau scheduler (factor 0.8, patience
5 epochs, mode min, evaluated at validation epochs, minimum learning rate 5.0 x 10~%, max epochs
100).

Model configuration: embedding size 128, hidden size 128, latent size 8, latent channels 1, number
of layers 3, channels 14. Regularization: hierarchical KL weight 0.3, latent KL weight 0.5. Loss
weighting: coordinate loss ratio 0.5, with subcomponents:

e Lx: 1.0, Lcax:1.0
* Lopbond: 1.0, Lscbond: 1.0
* Lob-dihedra: 0.0,  Lgcchi: 0.5
Additional settings: relative position encoding disabled; anchor at Ca enabled; masking ratio 0.25;

additive noise scale 0.1. Stability controls: spectral normalization disabled; 1 residual block used;
gradient clipping at 1.0; exponential moving average enabled with decay 0.999.
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Figure 6: The smoothed validation comparison curve on the Cross-domain experiment between
InfoNCE and MINE on training steps.

N.2 DIFFUSION HYPERPARAMETERS

Optimization. We trained using AdamW (learning rate 1.0 x 107%) with a
ReduceLROnPlateau scheduler (factor 0.6, patience 3 epochs, mode = min, monitored
at validation epochs, minimum learning rate 5.0 x 10~9).

Model configuration. We used the LDMPepDesign backbone with hidden size 128, 3 layers,
100 denoising steps, 32 RBF kernels (cutoff 3.0), and distance-based RBF encoding (32 channels,
cutoff 7.0). Both sequence and positional transformations were modeled via diffusion.

Physics-guided loss. Physics loss was enabled with weight 0.15. The physics configuration in-
cluded:
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. Bon(}& constraints: bond length weight 1.2; ideal Ca—Ca distance 3.8A with tolerance
0.25A.

* Angles: bond angle weight 0.8; ideal 109.5° with tolerance 18°.
* Torsions: torsion weight 0.4; Ramachandran prior weight 0.6.

* Non-bonded: van der Waals weight 0.6 (¢ = 3.4A, ¢ = 0.12 kcal/mol); electrostatics
weight 0.5 with dielectric constant 78.0 and cutoff 10.0A.

+ Hydrogen bonding: weight 0.7, distance cutoff 3.4A, angle cutoff 25°.

* Secondary structure: total weight 0.4 (helix 0.3, sheet 0.3).

* Sterics: clash prevention weight 1.8, minimum distance 2.1A, soft clash threshold 2.7A.
* Solvent/hydrophobicity: SASA weight 0.3, hydrophobic weight 0.4.

* Diffusion regularizers: smoothness weight 0.25, temporal consistency weight 0.3.

Evolutionary guidance. Evolutionary priors were incorporated with fitness weight 0.05 and bias
weight 0.02, with conservation bias and coevolution enabled.

Information-theoretic regularization. Mutual information (MI) guidance was applied with
weight 0.1, and additional coupling to physics with weight 0.05.

OpenMM guidance. Force-field-based corrections were included with loss weight 0.01, guidance
scale 0.001, and force-guidance scale 0.0001.

SE(3)-aware diffusion. We enabled SE(3)-aware latent diffusion with enhanced latent dimension
17 (8 global + 9 local). Integration with base latent features was via concatenation. SE(3) regular-
ization weights were: rotation 0.1, translation 0.1, geometric consistency 0.1, scale invariance 0.05,
local frame consistency 0.08, invariant feature weight 0.05.

O DATA ANALYSIS

Short peptides—typically fewer than 30 amino acids—offer notable advantages in efficiency, re-
producibility, and overall experimental success. In this study, we focus on short peptides due to
their ease of synthesis, higher yields, and lower error rates compared to longer sequences. Their
smaller size also contributes to superior solubility and compatibility with high-purity purification
techniques such as High-Performance Liquid Chromatography (HPLC). Moreover, in mass spec-
trometry workflows, short peptides exhibit more reliable fragmentation and ionization, leading to
improved detection accuracy. These attributes make short peptides particularly well-suited for a va-
riety of applications, including MHC binding assays, epitope mapping, and peptide-based screening.

While long peptides may be necessary for certain complex immunological applications, their pro-
duction and handling present significant technical challenges. Notably, a review of FDA-approved
peptide drugs shows that the vast majority fall within the short peptide range: drugs like leuprorelin
(10 amino acids), ziconotide (25 aa), and difelikefalin (9 aa) are examples of clinically successful
therapies with short sequences. Comprehensive databases such as THPdb2 and analyses published
in peer-reviewed literature confirm that most approved peptide drugs fall well below the 30-amino-
acid thresholﬂ Therefore, prioritizing short peptide generation aligns with both technical feasibility
and biological relevance.

Following the suggestion from PepGLAD (Kong et al., 2024)), we used MMseqs2 to cluster the
entire dataset, enabling us to split it into training, validation, and test sets. As shown in Figures
and [8] there is no duplication between the targets in the training and test sets. More specifically, to
assess cross-target generalization, we adopt the large non-redundant (LNR) dataset introduced by
Tsaban et al. (Tsaban et al., 2022)) as the test set. The LNR, curated by domain experts, originally
comprised 96 protein—peptide complexes; after excluding entries with non-canonical amino acids,
93 complexes remained. These complexes were then clustered together with PDB data by receptor,

'Data  source: https://peptidesguide.com, https://www.sciencedirect.com/
science/article/pi1/S1359644624001727
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using a sequence identity threshold of 40%. In PepBDB experiment, we applied MMseqs?2 clustering
and then randomly partitioned the data into training, validation, and test sets based on the resulting
clusters. To construct the test set, one protein—peptide complex was randomly chosen from each
cluster, ensuring non-redundancy across samples.

Peptide Length (residues)

Frequency (%)

Table 17: Peptide statistics of PepBench by train/val/test split

Split Count Mean Median Max Unique Proteins Unique Peptides
Train 4157 11.17 10.0 25 2783 3504
Validation 114 13.26 13.0 25 94 111
Test (LNR) 93 10.15 10.0 26 93 93

train

10

10

Table 18: Peptide statistics of PepBDB by train/val/test split
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13.61
12.58

11
13
10

30
30
30

4394
226
142

4349
248
142

Dataset Distribution
(by Split)

test

Peptide Length
Comparison by Split

00000

Train Validation Test

Peptide AA Composition
Train vs Test

Train
Test

0
VI OETIRNOXVK LRQOO NS

Amino Acid

validation

4000

3500

3000

2500

Number of Samples
N
3
8
S

1500

1000

500

Split
Validation Train

Test

o
Y

Cumulative Frequency
°
:

Split Sizes
(PepBench)

3157

14 93

Train Validation Test

Protein Overlap
Between Splits

0 0 0
0 0 0
0 0 0
Train Validation Test
Split

Cumulative Peptide Length
Distribution by Split

—— Train
—— validation
—— Test

-~ PepBench limit
-~ PepBench limit

5 10 15 20 25 30
Peptide Length (residues)

Protein Length Distribution
by Spli

Peptide Length Distribution
by Split

Split
800
Train Train
1000 Validation Validation
Test 700 Test
=== PepBench limit
800 6001 —=- PepBDB limit
500
g g
§ o0 g
2 2 400
2 g
400 300
200
200
100
0 0
0 250 500 750 1000 1250 5 10 15 20 25 30
Protein Length (residues) Peptide Length (residues)
Peptide Overlap Protein AA Composition
Between Splits Train vs Test
o Train
Test
8
< 26
-] z
EE H
K s
s z
> o
)
= 2
@
0

Train

Split

Validation

Test

Length Percentiles
Train vs Test

(
[
5 N
o w

Peptide Length
<
&

Train
Test

25%

50%  75%

90%  95%

Validation

DA OETIRXGEVL LRGN
Amino Acid

Peptide AA Composition
Heatmap by Split

POOLK ORMENVINR 0FHAAN

Nw s U N @

Figure 7: The comprehensive analysis examines the PepBench dataset (train from PepBench + vali-
dation from PepBench + test from LNR).
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Figure 8: The comprehensive analysis examines the PepBDB dataset .

O.1 CLUSTERING TARGET ANALYSIS USING MMSEQS2

We performed clustering using MMseqgs2 based on three types of feature representations:
composition-based, physicochemical-based, and a combined representation.

The composition-based representation achieved consistent separation across both datasets, indicat-
ing stable performance regardless of peptide length or source. In contrast, the physicochemical-
based representation showed greater separation in the PepBench dataset, likely due to its shorter pep-
tide sequences, which emphasize physicochemical diversity. The combined representation yielded
the best overall clustering performance, effectively capturing both compositional and physicochem-
ical characteristics.

The average separation scores for each dataset further support these findings. For PepBDB, the
clustering achieved an average separation of 15.2 as shown in Figure [/} indicating good clustering
quality. In Figure [§| For PepBench, the average separation was 22.8, reflecting excellent clustering
quality.

As shown in Figure[9] these results confirm that both datasets exhibit well-separated train/test splits,
demonstrating the effectiveness of our feature engineering and clustering strategy.

These results indicate that both datasets exhibit well-separated train/test splits, validating the effec-
tiveness of our feature extraction and clustering approach.
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Figure 9: The Pepbench data experiment (up) and PepBDB data experiment (down) with MMseqs2
clustering for targets. Composition clustering: Catches sequences with similar AA recipes. Physic-
ochemical clustering: Catches functionally similar sequences. Combined clustering: Catches both
types of similarity. Our average separation scores (>10.0) across multiple feature representations
(composition, physicochemical, combined) show that our dataset splits are well-separated and min-
imize the risk of data leakage.

P TRI-GUIDANCE LATENT DIFFUSION DETAILS

P.1 VAE WITH SE(3)-EQUIVARIANT GRAPH ENCODING

Our autoencoder constructs a latent representation that functions as the interface for the diffusion
process, ensuring preservation of geometric consistency via graph-based message passing. The
PepTri encoder employs SE(3)-equivariant graph neural networks, which enforce rotational and
translational symmetries while encoding both local residue-level interactions and global structural
dependencies. This design enables accurate modeling of protein conformations within a symmetry-
aware latent space, thereby facilitating downstream generative diffusion.

Graph representation. We first represent peptides as molecular graphs where:

+ Nodes: Each residue i € {0,..., L — 1} with features h; € R? encoding amino acid type
and positional information

* Edges: Two types of connections:

— Sequential edges: Connect adjacent residues (4,4 + 1) along the backbone

— Spatial edges: Connect residues within cutoff distance r, = 10A

» Edge features: Distance-based radial basis functions (RBF) encoding 3D geometry

31



Under review as a conference paper at ICLR 2026

Inputs and outputs. Given sequence S € {0,...,19}" and coordinates X € REXC*3 with
mask M € {0, 1}%, we construct:

G = (V, Eeq U Epatial), (29)

hl(-o) = Embed(S;) + PosEmbed (%), (30)

eij = RBF(|| X7 — X7%(2), (31)

where Ca denotes a-carbon coordinates used for graph construction.

SE(3)-equivariant message passing with enhancements. We employ an enhanced Adaptive
Multi-channel EGNN (AMEGNN) that performs K layers of equivariant message passing. The
enhancement includes explicit SE(3)-invariant geometric features beyond basic distances:

Core equivariant operations (preserved from baseline):

ml(f) :w( )(h(@ 1) h([ 1)’d§f 1) Leii), (32)
h(z) h(e 1)+w(€) h(é 1) Z m(e) ’ (33)
JEN()
o =+ 3 @ =) D), (34)
JEN(3)

where d;; = ||x; — x;|| and ¢, : R? — R ensures scalar outputs.

SE(3)-invariant enhancements (new in enhanced version):

* Bond angles: For each triplet (¢, j, k):
Cijk = arccos ((xz = 25) - (@ = :c])> (35)

llzi — zj||[lox — 2]

* Dihedral angles: Four-body torsion angles 7;;1; along the backbone
* Global shape descriptors:

1
R, = ¥ Z |z; — Z||2 (radius of gyration) (36)

A1, A2, A3 = eigenvalues(S) (principal moments) (37
A=)\ — %()\2 + A3) (asphericity) (38)
where S is the gyration tensor. These are all SE(3)-invariant.
The enhanced message function incorporates these invariants:
m) = O RS R alTY (D T Ry, A esy) (39)

SE(3) guarantees. The architecture maintains strict SE(3)-equivariance through:

1. Invariant node features: All h; updates use only SE(3)-invariant inputs (never raw coor-
dinates)

2. Equivariant coordinate updates: Position changes use relative vectors (z; — z;) scaled
by invariant coefficients

3. Invariant aggregation: Summation over neighbors preserves equivariance
4. No global reference frame: All computations are relative or invariant

Theorem: For any rotation R € SO(3) and translation t € R3:
hEZ)(RX +t)= hl(-e) (X) (invariance) (40)
xl(.e)(RX +t) = sz@ (X)+t (equivariance) 41)
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Multi-channel processing. To handle all atoms (not just Ca), we extend to multi-channel coordi-
nates:

» Each node processes C' atom channels in parallel
* Channel-specific attention weights w,. € [0, 1] indicate atom presence

* All operations maintain per-channel SE(3) properties

Latent encoding. After K message passing layers, the encoder outputs disentangled latents:

2n = VAE;L(h(K ) [M]) € RIMIxdn (sequence features, invariant), (42)
Zg = VAEw(x(K ) [M]) € RIMIXmax3  (tructure anchors, equivariant), (43)

where VAE;, and VAE,, include reparameterization for variational learning,

Graph-aware training objective. The VAE is trained with geometric consistency:
£VAE = ['recon + B EKL + Ag,eom Egeom + /\graph ['graphv (44)

where all loss terms are SE(3)-invariant:

Leecon = CE(S, 5) + [|X — X3, (45)

Lyeom = | D(X) = D(X)|I3, (46)

Loapn = Y (lzi — xjlla — 12 — 25]2)% (47)
(,5)€E

Advantages of SE(3)-enhanced graph representation.

* Theoretical guarantees: Provable equivariance under rotations and translations
* Richer features: Explicit geometric descriptors complement learned representations
 Physical interpretability: Bond angles, dihedrals have direct structural meaning

» Improved generalization: SE(3) symmetry reduces sample complexity

P.2 GAUSSIAN REVERSE TRANSITION

We follow the DDPM formulation with a cosine variance schedule and apply explicit physics
guidance during sampling on the structural latent only (Huberman-Spiegelglas et al., [2024; [Meng
et al| 2023). Let p € {H, X} denote, respectively, the sequence and structure latents at step
t € {1,...,T}. We use a cosine schedule with small offset s = 0.01:

s B a
ft = COS2(§ (t/lj-;-): ), Qap = %a Bt = 1*@ tla o =1-7
t—

Forward diffusion (noising). For either latent p € {H, X }, sample ¢ ~ N (0,I) and form
q(pe | po) = N(Vaipo, (1—an)T).

Equivalently, p; = /a; po + v1 — &; €. In practice we apply noising only to positions to be
generated using a binary mask M (M = 1 for generated positions),

ptZMQ(@po+\/1—dte)+(1—M)®p07

and retain € as the supervision target for the denoiser.
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Noise-prediction training loss. Let éy(H;, X;,t) = (€y,€éx) be the predicted noises. We use
masked mean-squared error losses:

[(ex — ex) © Mx||;
| Mx |1 ’

Lx =

[(ér — err) © Ml

EH - ’
[ M|l

where the mask restricts the reduction to generated entries. These losses are combined with evolu-
tionary, mutual-information, and physics terms during training.

At sampling time, given a noise predictor €y and letting
1 ( _ ) 1-— (673
ci(ag, ) = ——=
\/OTt ) 1 ty, (¢ m )

the Gaussian reverse transition without guidance is

co(a) =

1 = co(p—créolpt)) + oz 2~ N, (48)
with variance
1—
ol = # B:  (cosine schedule).
1-— Qi

Physics guidance on structure. During sampling we incorporate differentiable molecular me-
chanics as an energy Ephys(X¢). In code, the predicted noise for X is modified as

€/)((Ht7 Xt, t) == gX(Hta Xt, t) + V ]. - dt VXtEphys(Xt)7 (49)
which corresponds to using guidance = —V x, Epy inside the denoiser and the update rule equa-

tion[48] The structural reverse step is therefore
—thl = Co (Xt —C1 €/)((Ht7Xt7t)) + 02

An optional weight Aypys can scale the guidance term (set to 1 in our implementation), and with the
OpenMM (if enable).

Thus, all three signals (physics, evolutionary, mutual information) shape the denoiser ég through
the training loss, while the physics contributes an explicit gradient term during sampling for the
structure latent.

P.3 LATENT INPAINTING DIFFUSION
Strengths. Our latent inpainting diffusion brings several practical advantages:

* Targeted controllability: Noise and supervision are masked (equation [2I)), so only de-
signed residues are modified while structural context is preserved via clamping (equa-
tion[27). This yields precise, locality-aware edits.

* SE(3) consistency: The explicit guidance uses energies over internal geometry (dis-
tances/angles), ensuring the correction in equation [23] is invariant to global rota-
tions/translations and remains compatible with the equivariant backbone.

» Physics-aware generation: The composite energy penalizes Ca: bond-length/angle vio-
lations, steric clashes, and poor non-bonded interactions, leading to fewer post-relaxation
artifacts and improved local geometry at sample time.

* Stable guidance design: Evolutionary/MI terms act only during training (shape ¢« ), while
sampling applies only physics gradients. This separation avoids double-counting objectives
and keeps inference stable.
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Algorithm 1 Latent Inpainting Diffusion

1: procedure LIDPG(S,zo, M, T, g, {cs }1_1)

2:

A A

10:
11:

12:

Broadcast M x, My using Eq. equation
Initialize noise: zp + M © &+ (1 — M) ® zg, & ~ N(0,1)
fort=T,T—1,...,1do
Predict noise: &; < g« (2¢,1)
Decode structure: X, < decode(zx ;)
Physics guidance: GP™® < —Apnys(t) sz,tEphys()?t, S; M)
Guided noise:

~ ~ ~ ~ — phys
Eme <+ E€Ht, ExpEéxi—V1—a Gy

Sample masked noise & ~ N(0, I), optionally &; < M © &
Reverse update z;_; using Eq. equation [26]
Clamp context: z;_1 + M ©z;—1 + (1 — M) ® 2z

return (Hy, X() < decode(zp 0,2x,0)

* Noise and context control: Optional masking of the per-step noise £ confines stochasticity
to redesigned sites, while context clamping guarantees exact preservation of the unmasked
scaffold over the whole trajectory.

* Late-stage refinement: A simple annealing of A,hys(t) emphasizes physical validity near
convergence without over-constraining early exploration.

* Efficiency: Guidance is computed on C,, (lightweight, numerically stable), with optional
OpenMM as a gated add-on. Gradients are obtained by differentiating through a partial
decode, reducing overhead.

 Compatibility: The reverse update (equation [26) supports both stochastic DDPM sam-
pling (o > 0) and deterministic DDIM-style sampling (o; = 0) without changing the
architecture.

* Interpretability and compositionality: The energy is a transparent sum of physically

meaningful terms with tunable weights, allowing principled trade-offs and easy integration
of additional constraints (motifs, distance restraints).

Limitations.

* Heuristic energies: Electrostatics (distance-dependent dielectric), LJ radii, and
secondary-structure proxies are coarse; weights w; require tuning and can interact
non-linearly.

* Training—sampling: Only physics is applied at sampling; evolutionary and MI act implic-
itly via 6*, which can drift under strong guidance (Ingraham et al., [2023)).
* Hyperparameter sensitivity: Performance depends on Appnys(t), schedule, masking of &,

and decode quality; poor settings cause over-smoothing or instability (Ho et al., 2020;
Dhariwal & Nichol, [2021)).

* Local minima/exploration: Energy guidance can trap samples in local basins; masking &
or using deterministic sampling reduces diversity (Jumper et al., [2021]).

* Scalability: Long peptides increase pair/triplet costs (non-bonded terms), stressing mem-
ory/time without sparse approximations (Shaw et al., 2021}

P.4 PHYSICS-INFORMED STRUCTURAL GUIDANCE

Motivation and scope. Physics guidance addresses specific structural defects observed in purely
data-driven generation:

* Local geometry violations: Incorrect bond lengths (e.g., C-N distances > 1.5A)
* Angular distortions: Unrealistic bond angles (e.g., N-Ca-C deviating from 109°)
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* Steric clashes: Atom overlaps violating van der Waals radii

* Unphysical conformations: Structures with high internal strain energy

* OpenMM: Plays a late-stage and selective role, closely aligned with the reviewer’s sug-
gestion to “apply it only near the end of the trajectory.

We represent peptides in an all-atom format, X € RE*14x3 where L is the sequence length. This
fixed-size representation allocates channels 0-3 for backbone atoms (N, Ce, C, O) and channels 4-13
for sidechain atoms following standard PDB atom ordering for each amino acid type. Residues with
fewer than 14 heavy atoms have unused channels padded with the mean position of that residue’s
existing atoms. An atom validity mask Myen € {0, 1}2*! tracks real atoms (1) versus padding
(0), while a separate design mask M € {0, 1}* indicates which residues to optimize. This uniform
tensor representation enables efficient batched processing across all 20 standard amino acids—from
glycine (4 atoms, channels 4-13 padded) to tryptophan (14 atoms, fully populated)—while preserv-
ing complete atomic detail for physics-based calculations.

Comprehensive physics energy function. We define a composite energy function that captures
multiple aspects of molecular physics:

7
Epnys(X, 8, M) =Y NE(X, 8; M), (50)
i=1
where each term addresses specific physical constraints.

1. Bond length constraints. Maintains ideal covalent bond distances:
2
Boona = > ks (loi — 25 — dY) (51)
(i.5)€B
where B is the set of covalent bonds, d?j is the ideal bond length for atom types (3, j), and k, = 100
kcal/mol / A2,

Typical values:
e N-Co: d° =1.46 A
¢ Ca-C:d’ =153 A
« C-N: d° = 1.33 A(peptide bond)
+ C=0: d° = 1.23 A(carbonyl)

2. Bond angle constraints. Enforces ideal bond angles for triplets of bonded atoms:
2
Buge = Y ka (Cijk — () (52)

(i,4,k)€A

where Cijlc = arccos (%) and k, = 50 kcal/mol/rad?.

Key angles:
* N-Ca-C: (% = 111.0 (tetrahedral)
« Ca-C-N: ¢° = 116.2
* C-N-Ca: ¢Y = 121.7 (peptide plane)

3. van der Waals interactions. Models non-bonded atomic interactions using the Lennard-Jones

potential:
E - dé; ) _ [ 53
- 12]: o Kﬂ‘j) (T'ij)‘| ey

li—7|>2
where 7;; = ||z; — ||, €;; = \/€¢€; (well depth), and o;; = (0; + 0;)/2 (collision diameter).

Parameters by atom type:
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Atom | o (A) | € (kcal/mol)
C 1.70 0.110
N 1.55 0.170
0 1.52 0.210
S 1.80 0.250

4. Electrostatic interactions. Coulombic interactions between charged residues:

ke 143
Eelec = Z ﬂ (54)

€rTij
i, rlij
li—j>4

where k. = 332.0 kcal-A/mol-e?, ¢, = 80 (water dielectric), and charges g; are:
* Asp,Glu: g = —1

e Lys, Arg: ¢ = +1
* His: ¢ = +0.5 (at pH 7)

5. Clash prevention. Hard sphere repulsion to prevent atomic overlaps:

4
Eclash = 5 kclash (Tclash - Tij) (55)
i,J
735 <Tclash

where 7ejah = 0.8 - (07 + 0;)/2 and kejasn = 1000 keal/mol / A%,

6. Secondary structure preferences. Encourages formation of regular secondary structures:
Eq==> > PudS)- fs(dit) (56)
i se{a,B}

where Ps(S;) is the propensity of residue .S; for structure s, and fs(¢,) is a Gaussian centered at
ideal Ramachandran angles:

* a-helix: (¢,) = (—60,—45)
* [-sheet: (¢, 1) = (—120, 120)

7. Hydrogen bonding. Promotes backbone hydrogen bonds:

Ehbond - Z —€h fangle(n) : fdist(rij) (57)
(i,7)EH
where:
_,.0)2
faise(r) = exp <—(r 207;;) > , 1 =28A (58)
fungie(n) = cos*(n), n=Z(N-H---0) (59)

with €, = 2.0 kcal/mol for backbone H-bonds.

SE(3)-invariance of physics energy. All energy terms are constructed to be SE(3)-invariant:

* Distances: ||x; — x;|| invariant under rotation and translation
* Angles: arccos(vy - vo/|v1||va|) invariant
* Dihedrals: Four-body angles invariant

* No absolute positions: All computations use relative coordinates

Therefore: Eppys(RX 4 t) = Eppys(X) for any R € SO(3),t € R?.
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Gradient computation and application. During diffusion sampling at timestep ¢:

1. Partial decoding:

of docoder, Rt o RLXOX3 (60)
2. Energy evaluation:

B! = By (X", 85 M) =Y NE(X*, S M) (61)

3. Gradient computation:

OE" X!

VZI Ephys = @ . 8Zi (62)

4. Guidance application:
gl =eg(2h,t) — VI — G - Aphys - Vs, Ephys (63)

Adaptive weighting and scheduling. The physics guidance weight Ay can be:

* Time-dependent: A\ () = Ao - (1 — ¢/T) (stronger near end)
* Energy-dependent: Ay (E) = Ao - tanh(E/Ey) (adaptive to quality)

* Component-specific: Different weights for each energy term

Computational optimizations. To make physics guidance tractable:

« Cutoff distances: Only compute interactions within 7, = 10A
* Neighbor lists: Pre-compute interaction pairs
* Approximations: Use smooth approximations for discontinuous potentials

* Gradient clipping: | VE|| < 7 to prevent instabilities

Role and feasibility of using OpenMM with Ca-level coordinates. In our implementation,
OpenMM is used in a restricted and coarse-grained way: Backbone-only topology and Ca coor-
dinates. At the (clean) end of each training step, our Amberl4 OpenMM wrapper constructs a
minimal peptide model containing only backbone atoms (N-Ca—C-O per residue, no side chains)
from the sequence and assigns standard Amber14 parameters to those backbone atoms. The posi-
tions we supply come from the model’s Ca outputs; for simplicity and efficiency we (i) evaluate the
Amber energy/forces on this backbone-only system and (ii) project the resulting forces back onto
the Ca channel used by the diffusion model.

Single, weak, clamped loss on clean structures. This OpenMM term is evaluated once per batch on
the clean structure, not at every diffusion timestep, and it is down-weighted by small energy/force
scales and an overall loss weight. We also explicitly clamp both energies and force magnitudes to
fixed bounds before using them in the loss.

As a result, the OpenMM contribution acts as a coarse, low-weight backbone regularizer rather than
a full high-fidelity all-atom simulation. We do not claim to obtain exact physical forces for detailed
side-chain conformations; instead, we use OpenMM only to inject a modest, physically motivated
signal that is numerically stable and compatible with our Ca-level training setup.

P.5 EVOLUTIONARY SEQUENCE GUIDANCE

Evolutionary guidance leverages billions of years of natural selection encoded in protein sequences
to guide peptide generation toward biologically viable designs. This component addresses a critical
limitation of purely physics-based approaches: while physics ensures structural validity, it doesn’t
guarantee biological function or evolutionary plausibility.
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Biological motivation. Natural proteins have been optimized through evolution for stability, func-
tion, and interaction specificity. By incorporating evolutionary signals, we bias generation toward
sequence patterns that have proven successful in nature. This is particularly important for:

* Functional motifs: Conserved patterns essential for biological activity

¢ Fold stability: Amino acid preferences that promote proper folding

 Interaction interfaces: Residue combinations favorable for binding

BLOSUM-based evolutionary embeddings. We initialize amino acid representations using the
BLOSUMSG62 substitution matrix, which captures evolutionary relationships between amino acids:

ePLOSM — BLOSUM; . € R*®, i€ {0,...,19} (64)
where each row represents substitution scores for amino acid i. These embeddings encode:
* Physicochemical similarity (e.g., hydrophobic: I-L-V)
* Functional equivalence (e.g., charged: D-E, K-R)

» Conservation patterns (high self-scores for W, C, P)

The BLOSUM embeddings are projected into the latent space:
hevo =h + - MLPevo(eBLOSUM [SD (65)

where « is a learnable weight balancing evolutionary and structural information.

Self-supervised evolutionary fitness scoring. We predict sequence viability using a self-
supervised evolutionary fitness network:

ftimess (zr) = o (MLPg(Pool(hey))) € [0,1] (66)
where o is sigmoid activation. The fitness score estimates the probability that a sequence is evolu-
tionarily viable, trained on:

* Natural sequences: fiarget =~ 0.8 — 1.0
* Random sequences: fiarger =~ 0.0 — 0.2
* Mutated sequences: fiarger OC stability

Position-specific conservation. We model position-specific amino acid preferences through a
conservation predictor:

Peons (Si]7, ) = softmax(Weons - hi + Bpogfi)) (67)
This captures:
* Structural constraints: Proline in turns, glycine in tight loops

* Hydrophobic core: Preference for I, L, V, F in buried positions
» Surface preferences: K, R, D, E in exposed regions

Residue dependency attention modeling. Correlated mutations reveal functional coupling be-
tween positions. We capture this through multi-head attention:

Q = hevoWQ; K = hCVOWK7 V= hevoWV (68)
KT

A = softmax (Q ) (69)
V.

hcoevo = hevo + AV (70)

The attention weights A;; identify co-evolving position pairs, such as:

« Salt bridges: (D/E)-(K/R) pairs
* Disulfide bonds: C-C pairs
» Hydrophobic clusters: coordinated I/L/V patterns
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Evolutionary energy function. The total evolutionary guidance combines multiple terms:

Eevo(zh) = —w1 fﬁmess + w2H(pcons) — w3 IOg DPcoevo (71)

where:

* fhmess: Overall sequence viability (maximize)
* H(peons): Conservation entropy (balance diversity)
* Peoevo: Residue dependency attention consistency score

Gradient computation. During diffusion sampling at timestep ¢:
vzh Eevo = —w1 vzh fﬁtness + wo vzhH - w3vzh log Peoevo (72)
This gradient is computed by:

1. Partially decode 2}, — S* (sequence probabilities)
2. Evaluate evolutionary scores

3. Backpropagate through the self-supervised evolutionary fitness and conservation networks

Advantages of evolutionary guidance.

* Biological relevance: Generated sequences resemble natural proteins
* Functional bias: Promotes sequences likely to fold and function
* Diversity: Conservation entropy prevents convergence to single solutions

* Interpretability: Attention weights reveal important interactions

P.6 MUTUAL INFORMATION FOR SEQUENCE-STRUCTURE CONSISTENCY

Theoretical motivation. In natural proteins, sequence fully determines structure (Anfinsen’s prin-
ciple). This deterministic relationship implies maximal mutual information: I(S;X) = H(X)
where H(X) is the structure entropy. During generation, we must maintain this tight coupling to
ensure:

 Foldability: Sequence can actually fold into the generated structure

» Uniqueness: Structure is the native fold for the sequence

* Stability: Sequence-structure pair is thermodynamically favorable
Information-theoretic foundation. Mutual information quantifies the reduction in uncertainty
about one variable given knowledge of another:

I(S;X)=H(S)+ H(X)—- H(S,X) (73)
For peptide co-design, we decompose this into latent space:

o) | o

0g ————~
p(2zn)p(22)
where zj, and z, are sequence and structure latents respectively.

I(zn;22) = Epay, 2,) [l

MINE estimator. Since direct computation of MI is intractable for continuous high-dimensional
variables, we employ the Mutual Information Neural Estimator (MINE):

(z1:22) > Ep(n, 5.)[T0(2h, 22)] — 108(Ep(a)p(an) €77 %)) (75)

where Ty : R% x R% — R is a neural network (statistics network) that learns to distinguish
between:

* Joint samples: (2, 2..) ~ p(zn, 2;) (matched pairs)

* Product samples: z;, ~ p(2p), z, ~ p(2z,) (independent)
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Statistics network architecture. The MINE statistics network processes sequence-structure pairs:

TG (Zh7 Zw) = MLPﬁnal(Concat[¢fL(Zh)a d)w (Z.'L‘)7 ¢(Zh © ZJL)]) (76)
where:
* ¢p: Sequence feature extractor (captures motifs, conservation)
* ¢,: Structure feature extractor (captures geometry, contacts)

¢ : Cross-modal interaction network

* ©: Element-wise product for capturing correlations

Training the MINE estimator. The statistics network is trained to maximize the lower bound:

Lyving = E(zhazm)"’pjoim [T9 (Zh7 Zw)] 7
~ Eapopn o p, [10g(1 + T 122))] (78)
where z, are structure samples shuffled across the batch to break sequence-structure correspon-

dence.

Q DETAILED METRICS CALCULATION

The pipeline calculates five critical metrics for evaluating peptide design quality. Each metric ad-
dresses different aspects of structural and functional prediction accuracy. This document provides
detailed mathematical formulations and biological significance for each metric.

Q.1 BINDING FREE ENERGY SUCCESS RATE
Q.1.1 DEFINITION
The Binding Free Energy Success Rate measures the percentage of predicted peptides that exhibit

favorable binding thermodynamics. To evaluate the best performance of the model. We calculate
the

Q.1.2 MATHEMATICAL FORMULATION

N
1
S Rate = — I[(AG; <0 79
uccess Rate = — ; ( ) (79)
1 ifzistrue
here [(z) = 80
where I(z) {0 otherwise 80)
The binding free energy AG is calculated using PyRosetta interface energy:

AG = Ecomplex - Ereceptor - Epeptide (81)

Q.1.3 CALCULATION PROCESS

1. For each predicted peptide structure, perform energy minimization using PyRosetta Fas-
tRelax

2. Calculate interface energy between receptor and peptide chains
3. Determine if AG < 0 or AG < —5 (favorable binding following criteria)

4. Compute success rate across all predictions
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Q.1.4 SIGNIFICANCE IN PEPTIDE DESIGN
* Thermodynamic Viability: Ensures predicted peptides can actually bind to target proteins
* Drug Development: Critical for therapeutic peptide design
* Functional Validation: Confirms structural predictions have biological relevance

* Design Optimization: Guides model training toward energetically favorable conforma-
tions

Report: To evaluate the best performance of the model, we report the median of the minimum AG
value for each target, as the median is more robust to outliers than the mean. To capture variability
across all test targets, we report the standard deviation. In practice, some failed complexes may yield
extreme values of REU.

Q.2 DOCKQ SCORE

Q.2.1 DEFINITION

DockQ is a continuous, bounded measure of docking model quality that combines three CAPRI-
style criteria—fraction of native contacts (F},,¢), interface RMSD (iRMSD), and ligand RMSD
(LRMSD)—into a single score in [0, 1]. Higher is better.

Q.2.2 MATHEMATICAL FORMULATION

DockQ normalizes iRMSD and LRMSD with saturating transforms and averages them with F},,:

1 1 1
DockQ = 3 <F“at + 1+ (iRMSD)2 T 14 (LRMSD)2> : (82)

1.5 8.5

The constants 1.5 A (for iRMSD) and 8.5 A (for LRMSD) follow the original DockQ calibration to
CAPRI categories.

Components.

#{native contacts recovered }
#{native contacts}
iRMSD = RMSD over interface C, atoms (CAPRI definition), (84)
LRMSD = RMSD of ligand (peptide) C\, atoms after superposition on the receptor. (85)

Fnat =

, (83)

Report: For each target, we report the mean DockQ value. To capture variability across all test tar-
gets, we report the standard deviation. Complexes that failed were assigned a score of 0. Backbone
models were calculated using C'«v settings.

Q.2.3 CONTACT AND INTERFACE DEFINITIONS

Native contacts (for F,,;) are residue pairs (one from each partner) that have any heavy-atom
distance < 5.0 A in the reference complex. We count a contact as “recovered” if the same residue
pair is within 5.0 A in the prediction.

Interface residues (for iRMSD) follow CAPRI practice: residues whose any heavy atom in the
reference complex lies within a chosen cutoff (typically 10 A) of any atom in the binding partner.
iRMSD is then computed as the RMSD over the interface C\, atoms after the standard superposition
(as in CAPRI).

Q.2.4 SIGNIFICANCE IN PEPTIDE DESIGN

* Interface nativeness: Dock(Q summarizes how well a predicted peptide—protein interface
matches the reference geometry (contacts and pose).

¢ Comparability: The bounded transforms make iRMSD/LRMSD commensurate with
Flat, enabling a single score.
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e Community alignment: DockQ correlates with CAPRI quality classes and is widely used
to compare docking methods.

Quality thresholds (commonly used):

e DockQ > 0.80: High quality (near-native)
* DockQ > 0.49: Medium quality

* DockQ > 0.23: Acceptable quality

* DockQ < 0.23: Incorrect

Q.3 GLOBAL DISTANCE TEST TOTAL SCORE (GDT_TS)

Q.3.1 DEFINITION

GDT_TS measures the percentage of residues that can be superimposed within multiple distance
thresholds after optimal structural alignment. It is superior to TM-score for short peptides.

Q.3.2 MATHEMATICAL FORMULATION

1
GDT_TS = (GDT; + GDT; + GDT, + GDTy) (86)
1 N
_ ref pred
GDTy = 5 31 (1l =) 12 < d) (87)

where:

d € {1,2,4, 8} are distance thresholds in Angstroms
T represents optimal superposition transformation (Kabsch algorithm)
o 71l P4 are reference and predicted coordinates for residue i

e NN is the number of residues

Q.3.3 INDIVIDUAL THRESHOLD INTERPRETATION

GDT] : Ultra-high precision (crystallographic quality) (88)
GDTy : High precision (functional accuracy) (89)
GDT4 : Good structure (correct fold) (90)
GDTs : Acceptable structure (gross topology) on

Q.3.4 SIGNIFICANCE IN PEPTIDE DESIGN

* Length Independence: No normalization bias for short peptides (unlike TM-score)

* Multi-scale Assessment: Captures both precision and overall fold quality

* Better Discrimination: More sensitive quality assessment for peptides < 50 residues
* Functional Relevance: Higher GDT_TS correlates with binding site accuracy

Q.3.5 QUALITY BENCHMARKS FOR PEPTIDES

* GDT_TS > 0.7: Excellent model (publication-worthy)
* GDT_TS > 0.5: Good model (functionally relevant)

e GDT_TS > 0.3: Acceptable model (some utility)

e GDT_TS < 0.3: Poor model (requires improvement)

Report: For each target, we report the mean of the maximum G DT _T'S value.
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Q.4 CoNTACT F1 SCORE
Q.4.1 DEFINITION

Contact_F1 measures the accuracy of predicting inter-residue contacts using the harmonic mean of
precision and recall.

Q.5 MATHEMATICAL FORMULATION

2 x Precision x Recall

Contact_F1 = — 92)
Precision + Recall
TP
Precision = TP7+FP (93)
TP
Recall = —— 94
T TP rEN Od
where:
TP = [{(i,§) : Ci¥f = LA CP* = 1} (95)
FP = [{(i,j) : Cif' =0 A CI =1} (96)
FN = [{(i,j) : C&' = 1 A CP* = 0} (97)

Q.5.1 CONTACT MAP DEFINITION
Contacts are defined with sequence separation constraint:

Cij =T(|lri = rjll2 <BOAA[i—j| > 2) (98)

Q.5.2 SIGNIFICANCE IN PEPTIDE DESIGN
* Local Interaction Accuracy: Measures spatial relationship prediction quality
* Functional Prediction: Contacts determine binding specificity and affinity
* Binding Site Assessment: Critical for peptide-protein interaction prediction

* Design Validation: High Contact_F1 indicates reliable interaction patterns

Q.5.3 PERFORMANCE INTERPRETATION:
» Contact_F1 > 0.6: Excellent contact prediction (highly reliable)
* Contact_F1 > 0.5: Good contact accuracy (useful for drug design)
* Contact_F1 > 0.4: Acceptable prediction (some functional value)

* Contact_F1 < 0.4: Poor contact accuracy (unreliable for design)

Report: We report the mean with standard deviation of the maximum GDT_T'S value for each
target.

Q.6 LocAL RMSD
Q.6.1 DEFINITION

Local RMSD measures regional structural accuracy using sliding window analysis, providing more
detailed assessment than global RMSD.
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Q.6.2 MATHEMATICAL FORMULATION

1 w
L IRMSDw = —_ ef Tw Pred 2 99
oca w};“”—% (risl3 99)
1 N—w+1
Local RMSD Mean = +-—-—— Z; Local RMSD,, (4) (100)

where:

e w = 5 is the window size (5 consecutive residues)

» T, is an optimal superposition transformation for window w
* N is total number of residues

* Window ¢ spans residues [i,7 + w — 1]

Q.6.3 ADDITIONAL STATISTICS

Local RMSD_Min = Nﬁifg " Local RMSD,, (i) (101)

Local RMSD_Max — Nﬁ{él; " Local RMSD,, (i) (102)
1 N—w+1

Local RMSD_Std = N owil Z (Local RMSD,, (i) — Mean)? (103)

i=1
Q.6.4 SIGNIFICANCE IN PEPTIDE DESIGN

* Regional Quality Assessment: Identifies well-predicted vs poorly-predicted regions

* Functional Region Analysis: Key binding regions may be accurate despite poor global
structure

* Design Optimization: Guides focused improvement of specific peptide regions
* Flexibility Analysis: Shows structural variation along peptide sequence

Q.6.5 QUALITY INTERPRETATION

* Local RMSD < 2.0 A: Excellent regional precision
* Local RMSD < 3.0 A: Good regional structure
* Local RMSD < 5.0 A: Acceptable regional quality
* Local RMSD > 5.0 A: Poor regional structure

Report: we report the mean and the standard deviation of the Local RM S D(M ean) value for each
target.

Q.7 Ca CLASH METRICS (PRIMARY GEOMETRY METRIC)

Q.7.1 DEFINITION

We use CA_Clash_in and CA _Clash_out as our primary geometry metrics, following the UniMoMo
definition. They quantify steric crowding at the Ca level:

* CA_Clash._in: fraction of ligand residues whose Ca atom is too close to another ligand Co
(internal clashes).

* CA_Clash_out: fraction of ligand residues whose Ccv atom is too close to any receptor Ca
(interface clashes).

A clash is defined by a Ca—Ca distance below a fixed threshold d,j,s, = 3.6574 A.
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Q.7.2 MATHEMATICAL FORMULATION

rec } Nrec

Let {x.® }f\iﬁ be ligand Ca coordinates (in sequence order), and {y7*} ;™

receptor Ca coordinates.

Internal clashes (CA_Clash_in). We ignore self-pairs and immediate sequence neighbors (7,7 +
1). A ligand residue 4 is in clash if

k¢ {i—100+1}: [ — x5]|2 < detash-
Then o )
#{clashing ligand residues}

CA_Clash_in =
Nlig

x 100 (%).

Interface clashes (CA_Clash_out). A ligand residue ¢ is in clash with the receptor if

lig  _rec

3.] ||XZ yj ”2 < dclash-

Then
#{ligand residues clashing with receptor}

Niig

CA Clash_out = x 100 (%).
Q.7.3 SIGNIFICANCE IN PEPTIDE DESIGN

* CA_Clash._in: detects over-packed or self-colliding peptide backbones.

* CA_Clash_out: measures whether the peptide backbone fits into the binding pocket with-
out penetrating the receptor.

* Model comparison: these two percentages are directly comparable across methods (e.g.,
UniMoMo vs ours).

Report: we report the mean and standard deviation of CA_Clash_in and CA_Clash_out across all
designs for each target.

Q.8 BACKBONE BOND LENGTH OUTLIERS
Q.8.1 DEFINITION

BondLength_Outlier fractions measure how often backbone bonds (N-CA, CA-C, C-O, C-N)
deviate from ideal lengths by more than a threshold 7'.

For each bond k:
1, A>T

_ ideal (T) _
Ap = |dp —d™|, I = {0 otherwise

M
1
. T (T)
Outlier_Frac(") = ME 1", T €{0.10,0.20,0.50} A.
k=1

We report these fractions globally and for the ligand backbone only, as mean =+ std across designs.

Q.9 SEQUENCE DIVERSITY

Q.9.1 MATHEMATICAL FORMULATION

BLOSUMBS2(S;, S,)

Similarityij = (104)
\/BLOSUM62(ST;, S;) x BLOSUM62(S,, S;)
Distance;; = 1 — Similarity,; (105)
Uni Clust
Sequence Diversity = ~fique *usters (threshold = 0.4) (106)

N
where, N is the number of generated complexes.
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Q.9.2 SIGNIFICANCE

Measures amino acid sequence space exploration. Higher diversity indicates better functional ex-
ploration and prevents mode collapse.

Q.9.3 INTERPRETATION

> 0.6 : Excellent exploration (107)
> 0.4 : Good diversity (108)
< 0.3 : Mode collapse concern (109)

Q.10 SEQUENCE VALIDITY RATE

Given N generated sequences and assay pH (default pH = 7.4),

n

Valid count = Z 1[NetChargeOK,; A GRAVY_OK; A Instability_ OK; A pI_OK,]
i=1

Valid count

Valid rate =
alid rate N

The four criteria are

NetChargeOK, <= net_charge,(pH) € [-2, 4],
GRAVY_OK; <= GRAVY; € [-1.0, 0.5],
Instability_OK; <= instability_index; < 40,
pl.OK; <= |pl, — pH| > 0.5.

Q.11 STRUCTURAL DIVERSITY

Q.11.1 MATHEMATICAL FORMULATION

L

1
RMSD;; = EZHxE’“) — 2|13 (110)
k=1
Unique Structure Clusters

(threshold = 4.0 A) (111)

Structural Diversity = N

(k)

where ;" are Car coordinates of residue £ in structure 7.

Q.11.2 SIGNIFICANCE

Quantifies conformational space coverage. Critical for binding versatility and allosteric mecha-
nisms.

Q.11.3 INTERPRETATION

> 0.5 : Excellent conformational exploration (112)
> 0.3 : Good structural variation (113)
< 0.2 : Limited conformational coverage (114)
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Q.12 CONSISTENCY
Q.12.1 MATHEMATICAL FORMULATION

Given sequence clusters Cyq and structural clusters Cigrycy:

Tij = {k : Cseqlk] = i A Cyruar[F] = 7} (115)
i,j v
2
Consistency = - (117)
Y N % (mln(nseqanstruct) - 1)

where F;; are expected frequencies under independence assumption.

Q.12.2 SIGNIFICANCE

Measures correlation between sequence and structural clustering using Cramér’s V. Tests biological
constraint preservation (similar sequences — similar structures).

Q.13 TM-SCORE

1 1
TM-score = max 5 (118)
ret (55 4 ((drset=ma(rre)i
do(Lret)
do(Leer) = max(0.5, 1.24 (Lyes — 15)1/3 — 1.8) (119)
where:
o pref r?red are C,, coordinates of the reference and predicted peptides.

» A s a residue-residue alignment (index pairs (4, j)); we choose the alignment that maxi-
mizes TM-score.

* 17 is the optimal rigid transform via Kabsch on aligned C,, pairs.

* L, is the reference sequence length; do(L,ef) is the length-dependent scale (with a 0.5 A
floor for very short peptides).

Q.13.1 DISCUSSION: TM-SCORE IN PEPTIDE DESIGN CONTEXT

TM-score is a global fold-similarity metric for full proteins, and it breaks down for short, flexible
peptides and interface design. It doesn’t reflect what actually matters in peptide design (pose at the
binding site, contacts, and energetics). TM-score isn’t great for ranking peptide binders, but we still
squeeze value out of it in a few very specific, low-stakes roles.

Q.14 SLIDING-AAR (AMINO ACID RECOVERY)
Q.14.1 DEFINITION

Sliding-AAR measures the maximum sequence identity between generated and reference peptides
across all possible alignments, accounting for potential positional shifts in the generated sequence.

Q.15 MATHEMATICAL FORMULATION

Sliding-AAR = max k € K (Sliding-AAR(S{k, Ser) ) (120)
L
Sliding-AAR(S), 55) = + 3 1(S4[1] = Sa1i]) (121)
g 1,02 I 2 1 2
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where:
K ={—(Lyer—1),..,0,...; Leana — 1} (122)
(k) - pad ifi —k<0ori—k > Leang
= 123
Seanal] {Scand [i — k] otherwise (123)

Q.15.1 ALIGNMENT PROCESS

The algorithm evaluates all possible alignments:
Alignments = {Seanalk : k + Lyef] : 0 < k < Leand + Lrer — 2} (124)

where the candidate sequence is padded with (Lf — 1) special tokens on each side.

Q.15.2 DISCUSSION: SLIDING-AAR IN PEPTIDE DESIGN CONTEXT

Sliding-AAR poorly suits peptide design because peptides require exact positioning for function.
Their short length (5-30 residues) means single-position shifts often destroy binding activity, making
alignment flexibility counterproductive. The metric’s fundamental flaw is the sequence-structure
disconnect: high Sliding-AAR doesn’t ensure functional similarity. Two peptides with 80% sliding
similarity may have entirely different structures and no binding activity. This creates dangerous false
positives where designed peptides score well but fail functionally. Structure-based metrics (Contact
F1, Local RMSD, binding energy) directly assess molecular recognition requirements and better
predict function. Sliding-AAR should remain supplementary, useful only for motif identification or
initial diversity screening, never as a primary validation metric for functional peptide design.
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