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Abstract

We present TwHIN-BERT, a multilingual001
language model trained on in-domain data002
from the popular social network Twitter.003
TwHIN-BERT differs from prior pre-trained004
language models as it is trained with not only005
text-based self-supervision, but also with a so-006
cial objective based on the rich social engage-007
ments within a Twitter heterogeneous informa-008
tion network (TwHIN). Our model is trained009
on 7 billion tweets covering over 100 distinct010
languages providing a valuable representation011
to model short, noisy, user-generated text. We012
evaluate our model on a variety of multilingual013
social recommendation and semantic under-014
standing tasks and demonstrate significant met-015
ric improvement over established pre-trained016
language models. We will freely open-source017
TwHIN-BERT and our curated hashtag predic-018
tion and social engagement benchmark datasets019
to the research community.020

1 Introduction021

The proliferation of pre-trained language models022

(PLMs) (Devlin et al., 2019; Conneau et al., 2020)023

based on the Transformer architecture (Vaswani024

et al., 2017) has pushed the state of the art across025

many tasks in natural language processing (NLP).026

As an application of transfer learning, these mod-027

els are typically trained on massive text corpora028

and, when fine-tuned on downstream tasks, have029

demonstrated state-of-the-art performance.030

Despite the success of PLMs in general-domain031

NLP, fewer attempts have been made in language032

model pre-training for user-generated text on so-033

cial media. In this work, we pre-train a language034

model for Twitter – a prominent social media035

platform where users post short messages called036

Tweets. Tweets contain informal diction, abbrevia-037

tions, emojis, and topical tokens such as hashtags.038

As a result, PLMs designed for general text cor-039

pora may struggle to understand Tweet semantics040

accurately. Existing works (Nguyen et al., 2020;041
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Figure 1: (a) This mock-up shows a short-text Tweet and
social engagements such as Faves, Retweets, Replies,
Follows that create a social context to Tweets and signify
Tweet appeal to engaging users. (b) Co-engagement is
a strong indicator of Tweet similarity.

Barbieri et al., 2021) on Twitter LM pre-training do 042

not address these challenges and simply replicate 043

general domain pre-training on Twitter corpora. 044

A distinctive feature of Twitter social media is 045

the user interactions through Tweet engagements. 046

As seen in Figure 1, when a user visits Twitter, 047

in addition to posting Tweets, they can perform 048

a variety of social actions such as “Favoriting”, 049

“Replying” and “Retweeting” Tweets. The wealth 050

of such engagement information is invaluable to 051

Tweet content understanding. For example, the 052

post “bottom of the ninth, two outs, and down by 053

one!!” would be connected to baseball topics by 054

its co-engaged Tweets, such as “three strikes and 055

you’re out!!!”. Without the social contexts, a con- 056

ventional text-only PLM objective would struggle 057

to build this connection. As an additional bene- 058

fit, a socially-enriched language model will also 059

vastly benefit common applications on social me- 060

dia, such as social recommendations (Ying et al., 061

2018) and information diffusion prediction (Cheng 062

et al., 2014; Sankar et al., 2020). 063
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We introduce TwHIN-BERT– a multilingual lan-064

guage model for Twitter pre-trained with social en-065

gagements. The key idea of our method is to lever-066

age socially similar Tweets for pre-training. Build-067

ing on this idea, TwHIN-BERT has the following068

features. (1) We construct a Twitter Heterogeneous069

Information Network(TwHIN) (El-Kishky et al.,070

2022) to unify the multi-typed user engagement071

logs. Then, we run scalable embedding and approx-072

imate nearest neighbor search to sift through hun-073

dreds of billions of engagement records and mine074

socially similar Tweet pairs. (2) In conjunction075

with masked language modeling, we introduce a076

contrastive social objective that enforces the model077

to tell if a pair of Tweets are socially similar or078

not. Our model is trained on 7 billion Tweets from079

over 100 distinct languages, of which 1 billion have080

social engagement logs.081

We evaluate the TwHIN-BERT model on both082

social recommendation and semantic understand-083

ing downstream evaluation tasks. To comprehen-084

sively evaluate on many languages, we curate two085

large-scale datasets, a social engagement predic-086

tion dataset focused on social aspects and a hashtag087

prediction dataset focused on language aspects. In088

addition to these two curated datasets, we also eval-089

uate on established benchmark datasets to draw090

direct comparisons to other available pre-trained091

language models. TwHIN-BERT achieves state-of-092

the-art performance in our evaluations with a major093

advantage in the social tasks.094

In summary, our contributions are as follows:095

• We build the first ever socially-enriched pre-096

trained language model for noisy user-generated097

text on Twitter.098

• Our model is the strongest multilingual Twitter099

PLM so far, covering 100 distinct languages.100

• Our model has a major advantage in capturing101

social appeal of Tweets.102

• We open-source TwHIN-BERT as well as two103

new Tweet benchmark datasets: (1) hashtag pre-104

diction and (2) social engagement prediction.105

2 TwHIN-BERT106

In this section, we outline how we construct train-107

ing examples for our social objectives and subse-108

quently train TwHIN-BERT with social and text109

pre-training objectives. As seen in Figure 2, we110

first construct and embed a user-Tweet engagement111

network. The resultant Tweet embeddings are then112

used to mine pairs of socially similar Tweets. These113

Tweet pairs and others are then used to pre-train 114

TwHIN-BERT, which can then be fine-tuned for 115

various downstream tasks. 116

2.1 Mining Socially Similar Tweets 117

With abundant social engagement logs, we (infor- 118

mally) define socially similar Tweets as Tweets that 119

are co-engaged by a similar set of users. The chal- 120

lenge lies in how to implement this social similar- 121

ity by (1) fusing heterogeneous engagement types, 122

such as “Favorite”, “Reply” , “Retweet”, and (2) 123

efficiently mining billions of similar Tweet pairs. 124

To address these challenges, TwHIN-BERT first 125

constructs a Twitter Heterogeneous Information 126

Network (TwHIN) from the engagement logs, then 127

runs a scalable heterogeneous network embedding 128

method to capture co-engagement and map Tweets 129

and users into a vector space. With this, social 130

similarity translates to embedding space similar- 131

ity. Subsequently, we mine similar Tweet pairs via 132

ANN search on the Tweet embeddings. 133

2.1.1 Constructing TwHIN 134

We define and construct TwHIN as follows: 135

Definition 1 (TwHIN) Our Twitter Heteroge- 136

neous Information Network is a directed bipartite 137

graph G = (U, T,E, ϕ), where U is the set of user 138

nodes, T is the set of Tweet nodes, E = U × T is 139

the set of engagement edges. ϕ : E 7→ R is an 140

edge type mapping function. Each edge e ∈ E 141

belongs to a type of engagement in R. 142

Our curated TwHIN (Figure 3) consists of ap- 143

proximately 200 million distinct users, 1 billion 144

Tweets, and over 100 billion edges. We posit that 145

our TwHIN encodes not only user preferences but 146

also Tweet social appeal. We perform scalable net- 147

work embedding to derive a social similarity metric 148

from TwHIN. The network embedding fuses the 149

heterogeneous engagements into a unified vector 150

space that’s easy to operate on. 151

2.1.2 Embedding TwHIN Nodes 152

While our approach is agnostic to the exact method- 153

ology used to embed TwHIN, we follow the ap- 154

proach outlined in (El-Kishky et al., 2022; El- 155

Kishky et al., 2022b). We perform training with 156

the TransE embedding (Bordes et al., 2013) ob- 157

jective to co-embed users and Tweets using the 158

PyTorch-Biggraph (Lerer et al., 2019) framework 159

for scalability. Following previous approaches, we 160

train for 10 epochs and perform negative sampling 161
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Figure 2: We outline the end-to-end TwHIN-BERT process. This three-step process involves (1) mining socially
similar Tweet pairs by embedding a Twitter Heterogeneous Information Network (2) training TwHIN-BERT using a
joint social and MLM objective and finally (3) fine-tuning TwHIN-BERT on downstream tasks.

Figure 3: Twitter Heterogeneous Information Network
(TwHIN) capturing social engagements between users
and Tweets.

both uniformly and proportional to entity preva-162

lence in TwHIN (Bordes et al., 2013; Lerer et al.,163

2019). Optimization is performed via Adagrad.164

Upon learning dense representations of nodes in165

TwHIN, we utilize the learned Tweet representa-166

tions to mine socially similar Tweets.167

2.1.3 Mining Similar Tweet Pairs168

Given the learned TwHIN Tweet embeddings, we169

seek to identify pairs of Tweets with similar so-170

cial appeal – that is, Tweets that appeal to (i.e.,171

are likely to be engaged with) similar users. We172

will use these socially-similar Tweet pairs as self-173

supervision when training TwHIN-BERT. To iden-174

tify these pairs, we perform an approximate nearest175

neighbor (ANN) search in the TwHIN embedding176

space. To efficiently perform the search over 1B+177

Tweets, we use the optimized FAISS1 toolkit (John-178

son et al., 2019) to create a compact index of179

Tweets keyed by their engagement-based TwHIN180

embeddings. As each Tweet embedding is 256-181

dimensional, storing billion-scale Tweet embed-182

dings would require more than one TB of memory.183

To reduce the size of the index such that it can fit184

1https://github.com/facebookresearch/fa
iss

on a 16 A100 GPU node with each GPU possess- 185

ing 40GB of memory, we apply product quantiza- 186

tion (Jegou et al., 2010) to discretize and reduce 187

embeddings size. The resultant index corresponds 188

to OPQ64,IVF65536,PQ64 in the FAISS index 189

factory terminology. 190

After creating the FAISS index and populating 191

it with TwHIN Tweet embeddings, we search the 192

index using Tweet embedding queries to find pairs 193

of similar Tweets (ti, tj) such that ti and tj are 194

close in the embedding space as defined by their 195

cosine distance. To ensure high recall, we query the 196

FAISS index with 2000 probes. Finally, we select 197

the k closet Tweets defined by the cosine distance 198

between the query Tweet and retrieved Tweets’ em- 199

beddings. These Tweet pairs are used in our social- 200

objective when pre-training TwHIN-BERT. 201

2.2 Pre-training Objectives 202

Given the mined socially similar Tweets, we 203

describe our language model training process. 204

To train TwHIN-BERT, we first run the Tweets 205

through the language model and then train the 206

model with a joint contrastive social loss and 207

masked language model loss. 208

Tweet Encoding with LM. We use a Trans- 209

former language model to encode each Tweet. Sim- 210

ilar to BERT (Devlin et al., 2019), given the tok- 211

enized text wt = [w1, w2, ..., wn] of a Tweet t, we 212

add special tokens to mark the start and end of the 213

Tweet: ŵt = [CLS]wt[SEP]. As the Tweets are 214

usually shorter than the maximum sequence length 215

of a language model, we group multiple Tweets and 216

feed them together into the language model when 217

possible. We then apply CLS-pooling, which takes 218

the [CLS] token embedding of each Tweet. These 219

Tweet embeddings are passed through an MLP pro- 220
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jection head for the social loss computation.221

[et1 , et2 , ...] = Pool
(
LM([ŵt1 , ŵt2 , ...])

)
(1)222

zt = MLP(et) (2)223

Contrastive Social Loss. We use a contrastive224

loss to let our model learn whether two Tweets are225

socially similar or not. For each batch of B so-226

cially similar Tweet pairs {(ti, tj)}B , we compute227

the NT-Xent loss (Chen et al., 2020) with in-batch228

negatives:229

Lsocial(i, j) = − log
exp(sim(zi, zj))/τ∑

NB(i) exp(sim(zi, zk)/τ)
(3)230

The negatives NB(i) of Tweet ti are the (2B − 1)231

other Tweets in the batch that are not paired with232

ti. We use cosine similarity for function sim(·, ·).233

τ is the loss temperature.234

Our overall pre-training objective is a combina-235

tion of the contrastive social loss and the masked236

language model loss (Devlin et al., 2019):237

L = Lsocial + λLMLM (4)238

λ is a hyperparameter that balances the social and239

language loss.240

2.3 Pre-training Setup241

Model Architecture. We use the same Trans-242

former architecture as BERT (Devlin et al., 2019)243

for our language model. We adopt the XLM-244

R (Conneau et al., 2020) tokenizer, which offers245

good capacity and coverage in all languages. The246

model has a vocabulary size of 250K. The max247

sequence length is set to 128 tokens. The detailed248

model setup can be found in Appendix B. Note that249

although we have chosen this specific architecture,250

our social objective can be used in conjunction with251

a wide range of language model architectures.252

Pre-training Data. We collect 7 billion Tweets253

in 100 languages from Jan. 2020 to Jun. 2022.254

Additionally, we collect 100 billion user-Tweet255

social engagement data covering 1 billion of our256

Tweets. We re-sample the data based on language257

frequency raised to the power of 0.7 to mitigate258

under-representation of low-resource languages.259

Training Procedure. Our training has two stages.260

In the first stage, we train the model from scratch261

using the 6 billion Tweets without user engagement.262

The model is trained for 500K steps on 16 Nvidia263

A100 GPUs (a2-megagpu-16g) with a total batch 264

size of 6K. In the second stage, the model is trained 265

for another 500K steps on the 1 billion Tweets with 266

the joint MLM and social loss. We use mixed pre- 267

cision during training. Overall pre-training takes 268

approximately five days for the base model and 269

two weeks for the large model. We refer readers to 270

Appendix B for the detailed hyperparameter setup. 271

3 Experiments 272

In this section, we discuss baseline model speci- 273

fications, evaluation setup, and results from two 274

families of downstream evaluation tasks. 275

3.1 Evaluated Methods 276

We evaluate TwHIN-BERT against the following 277

baselines. mBERT (Devlin et al., 2019) and XLM- 278

R (Conneau et al., 2020) are two popular general 279

domain multilingual language models trained with 280

gigantic datasets. BERTweet (Nguyen et al., 2020) 281

is the previous state-of-the-art English Tweet lan- 282

guage model. XLM-T (Barbieri et al., 2021) is 283

a multilingual Twitter language model based on 284

XLM-R (Conneau et al., 2020). 285

We include three variations of our model trained 286

on the same corpus: base and large sizes, and an 287

ablated base-MLM trained with only an MLM ob- 288

jective. All baselines are base variants (with be- 289

tween 135M to 278M parameters depending on the 290

size of the tokenizer). Our large model has around 291

550M parameters. 292

3.2 Social Engagement Prediction 293

Our first benchmark task is social engagement pre- 294

diction. This task aims to evaluate how well the pre- 295

trained language models capture social aspects of 296

user-generated text. In our task, we predict whether 297

users modeled via a user embedding vector will per- 298

form a certain social engagement on a given Tweet. 299

We use different pre-trained language models 300

to generate representations for Tweets, and then 301

feed these representations into a simple prediction 302

model alongside the corresponding user represen- 303

tation. The model is trained to predict whether a 304

user will engage with a specific Tweet. 305

Dataset. To curate our Tweet-Engagement dataset, 306

we select the 50 popular languages on Twitter and 307

sample 10,000 (or all if the total number is less than 308

10,000) Tweets of each language from a fixed time 309

period. All Tweets are available via the Twitter 310

public API. We then collect the user-Tweet engage- 311
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Table 1: Engagement prediction HITS@10 on high, mid, low-resource, and average of all languages.

High-Resource Mid-Resource Low-Resource All

Method en ja ar el ur nl no da ps Avg.

mBERT .0633 .0227 .0532 .0496 .0437 .0616 .0731 .1060 .0522 .0732
XLM-R .0850 .0947 .0546 .0628 .0315 .0650 .1661 .1150 .0727 .0849
XLM-T .1181 .1079 .1403 .0562 .0352 .0762 .1156 .1167 .0662 .1043

TwHIN-BERT
- Base-MLM .1400 .1413 .1640 .0801 .0547 .0965 .1502 .1334 .0600 .1161
- Base .1552 .2065 .2206 .0944 .0627 .1346 .1920 .1470 .0799 .1436
- Large .1585 .2325 .1989 .1065 .0667 .1248 .2118 .1475 .0817 .1497

ment records associated with these Tweets. There312

are, on average, 29K engagement records per lan-313

guage. We ensure that there is no overlap between314

the evaluation and pre-training datasets.315

Each engagement record consists of a pre-trained316

256-dimensional user embedding (El-Kishky et al.,317

2022) and a Tweet ID that indicates the user has318

engaged with the given Tweet. To ensure privacy,319

each user embedding appears only once, however320

each tweet may be engaged by multiple users. We321

split the Tweets into train, development, and test322

sets with a 0.8/0.1/0.1 ratio, and then collect the323

respective engagement records for each subset.324

Prediction Model. Given a pre-trained language325

model, we use it to generate an embedding for each326

Tweet t given its content wt: et = Pool
(
LM(wt)

)
327

We apply the following pooling strategies to cal-328

culate the Tweet embedding from the language329

model. First, we take [CLS] token embedding as330

the first part of overall embedding. Then, we take331

the average token embedding of non-special tokens332

as the second part. The two parts are concatenated333

to form the Combined embedding of a Tweet.334

With LM-derived Tweet embeddings, pre-335

trained user embeddings, and the user-Tweet en-336

gagement records, we build an engagement predic-337

tion model Θ = (W t,W u). Given a user u and a338

Tweet t, the model projects the user embedding eu339

and the Tweet embedding et into the same space,340

and then calculates the probability of engagement:341

hu = W T
ueu, ht = W T

t et342

P (t | u) = σ
(
hT
uht

)
343

We optimize a negative sampling loss on the344

training engagement records R. For each engage-345

ment pair (u, t) ∈ R, the loss is defined as: 346

log σ
(
hT
uht

)
+ Et′∼Pn(R) log σ

(
−hT

uht′

)
347

where Pn(R) is a negative sampling distribution. 348

We use the frequency of each Tweet in R raised to 349

the power of 3/4 for this distribution. 350

Our prediction model closely resembles classical 351

link prediction models such as (Tang et al., 2015b). 352

We keep the model simple, making sure it will not 353

overpower the language model embeddings. 354

Evaluation Setup and Metrics. We conduct hy- 355

perparameter search on the English development 356

dataset and use these hyperparameters for the other 357

languages. The prediction model projects user and 358

Tweet embedding to 128 dimensions. We set batch 359

size to 512, learning rate to 1e-3. The best model 360

on validation set is selected for test set evaluation. 361

In the test set, we pair each user with 1,000 362

Tweets: one Tweet they have engaged with and the 363

rest are randomly sampled negatives. The model 364

ranks the Tweets by the predicted probability of 365

engagement, and we evaluate with HITS@10. We 366

report median results from 6 runs with different 367

initialization. 368

Results. We show results for high, mid, and low- 369

resource languages (determined by language fre- 370

quency on Twitter) in Table 1. Language abbrevia- 371

tions are ISO language codes2. We also show the 372

average results from all 50 languages in the evalua- 373

tion dataset, and leave the details in Appendix D. 374

Our TwHIN-BERT model demonstrates significant 375

improvement over the baselines on the social en- 376

gagement task. Comparing our model to the ab- 377

lation without the social loss, we can see the con- 378

trastive social pre-training provides significant lift 379

over just MLM pre-training for social engagement 380

2https://www.iso.org/iso-639-language-c
odes.html
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Table 2: Text classification dataset statistics. ∗Statistics
for Hashtag shows the numbers for each language.

Dataset Lang. Label Train Dev Test

SE2017 en 3 45,389 2,000 11,906
SE2018-en en 20 45,000 5,000 50,000
SE2018-es es 19 96,142 2,726 9,969
ASAD ar 3 137,432 15,153 16,842
COVID-JA ja 6 147,806 16,394 16,394
SE2020-hi hi+en 3 14,000 3,000 3,000
SE2020-es es+en 3 10,800 1,200 3,000
Hashtag multi 500∗ 16,000∗ 2,000∗ 2,000∗

prediction. An analysis on all 50 evaluation lan-381

guages shows the large model to perform better382

than the base model on average, with more wins383

than losses. Additionally, we also observe that our384

method yields the most improvement when using385

the Combined [CLS] token and average non-special386

token embedding. We believe the [CLS] token em-387

bedding from our model captures social aspects of388

the Tweet, while averaging the other token embed-389

dings captures the semantic aspects of the Tweet.390

Naturally, utilizing both aspects is essential to bet-391

ter model a Tweet’s appeal and a user’s inclination392

to engage with a Tweet.393

3.3 Tweet Classification394

Our second collection of downstream tasks is Tweet395

classification. In these tasks, we take as input the396

Tweet text and predict discrete labels correspond-397

ing to the label space for each task.398

Datasets. We curate a multilingual Tweet hashtag399

prediction dataset (available via Twitter public API)400

to comprehensively cover the popular languages401

on Twitter. In addition, we evaluate on five exter-402

nal benchmark datasets for tasks such as sentiment403

classification, emoji prediction, and topic classifi-404

cation in selected languages. We show the dataset405

statistics in Table 2.406

• Tweet Hashtag Prediction dataset is a multi-407

lingual hashtag prediction dataset we collected408

from Tweets. It contains Tweets of 50 popular409

languages on Twitter. For each language, 500410

most popular hashtags were selected and 100k411

Tweets that has those hashtags were sampled. We412

made sure each Tweet will only contain one of413

the 500 candidate hashtags. Similar to work pro-414

posed in Mireshghallah et al. (2022), the task is415

to predict the hashtag used in the Tweet.416

• Sentiment Analysis. The English dataset Se-417

mEval2017 task 4A (Rosenthal et al., 2019), 418

Arabic dataset ASAD (Alharbi et al., 2020), 419

code mixed Hindi/Spanish+English datasets Se- 420

mEval2020 task 9 (Patwa et al., 2020) are three- 421

point sentiment analysis tasks with labels of “pos- 422

itive”, “negative”, “neutral”. 423

• Emoji Prediction. SemEval2018 task 2 (Bar- 424

bieri et al., 2018) is an emoji prediction dataset 425

in both English and Spanish. The objective is to 426

predict the most likely used emoji in a Tweet. 427

• Topic Classification. COVID-JA (Suzuki, 428

2019) is a Japanese Tweets classification dataset. 429

The objective is to classify each Tweet into one 430

of the six pre-defined topics around COVID-19. 431

Setup and Evaluation Metrics. We use the stan- 432

dard language model fine-tuning method as de- 433

scribed in (Devlin et al., 2019) and apply a linear 434

prediction layer on top of the pooled output of the 435

last transformer layer. Each model is fine-tuned for 436

up to 30 epochs, and we evaluate the best model 437

from the training epochs on the test set based on de- 438

velopment set performance. The fine-tuning hyper- 439

parameter setup can be found in Appendix B. We 440

report the median results from 3 fine-tuning runs 441

with different random seeds. Results are the eval- 442

uation metrics recommended for each benchmark 443

dataset or challenge (Appendix C). For hashtag 444

prediction datasets, we report macro-F1 scores. 445

Multilingual Hashtag Prediction. In Table 3, we 446

show macro F1 scores on selected languages from 447

our multilingual hashtag prediction dataset. We 448

also report the average performance of all 50 lan- 449

guages in the dataset, and leave detailed results in 450

Appendix E. We can see that TwHIN-BERT sig- 451

nificantly outperforms the baseline methods at the 452

same base size. Our large model is slightly better 453

than or on par with the base model, with a better 454

overall performance. On the English dataset, our 455

model outperforms the BERTweet monolingual lan- 456

guage model trained exclusively on English Tweets 457

and with a dedicated English tokenizer. Comparing 458

our model to the ablation with no social loss, the 459

two models demonstrate similar performance with 460

our model being slightly better. These results show 461

that while our model has a major advantage on so- 462

cial tasks, it retains high performance on semantic 463

understanding applications. 464

External Classification Benchmarks. As shown 465

in Table 4, TwHIN-BERT matches or outperforms 466

the multilingual baselines on the established classi- 467

fication benchmarks. BERTweet fares better than 468

6



Table 3: Multilingual hashtag prediction Macro-F1 on high, mid, low resource, and average of all languages.

High-Resource Mid-Resource Low-Resource All

Method en ja ar el ur nl no da ps Avg.

BERTweet 59.01 - - - - - - - - -
mBERT 54.56 68.43 38.48 44.00 36.44 39.75 46.09 59.54 29.41 50.05
XLM-R 53.90 69.07 37.85 43.94 37.56 40.85 48.94 60.35 34.92 50.86
XLM-T 55.08 70.55 42.27 44.15 39.22 41.01 49.22 59.97 33.27 51.74

TwHIN-BERT
- Base-MLM 58.38 72.66 43.08 46.89 41.53 42.36 49.60 61.00 35.37 53.66
- Base 59.31 73.03 44.24 47.59 42.81 42.69 51.11 60.33 36.21 54.62
- Large 60.07 72.91 45.41 47.43 43.39 44.80 51.34 61.56 38.24 55.23

Table 4: External classification benchmark results.

SE2017 SE2018 ASAD COVID-JA SE2020 Avg.
Method en en es ar ja hi+en es+en

BERTweet 72.97 33.27 - - - - - -
mBERT 66.17 27.73 19.19 69.08 80.57 66.55 45.31 53.51
XLM-R 71.15 30.94 21.05 79.09 81.67 69.59 48.97 57.49
XLM-T 72.01 31.97 21.49 80.70 81.48 70.94 51.06 58.52

TwHIN-BERT
- Base-MLM 72.10 32.44 21.79 80.48 82.12 72.42 51.67 59.00
- Base 72.30 32.41 22.23 80.73 82.37 71.30 54.32 59.38
- Large 73.10 33.31 22.80 81.19 82.50 73.08 54.47 60.06

our base model with its dedicated large English to-469

kenizer and monolingual training. Our large model470

outperforms all the baselines. Similar to hashtag471

prediction, TwHIN-BERT performs on par with or472

slightly better than the MLM-only ablation.473

3.4 Varying Downstream Supervision474

In this set of experiments, we study how475

TwHIN-BERT performs when the amount of down-476

stream supervision changes. We fine-tune our477

model and baseline models on the hashtag predic-478

tion dataset (Section 3.3). We select English and479

Japanese as they are the most popular languages on480

Twitter. We change the number of training exam-481

ples given to the models during fine-tuning. It is482

varied from 2 to 32 labeled training examples per483

class. We follow the same protocols as Section 3.3484

and report macro F1 scores on the test set.485

Figure 4 shows the results. TwHIN-BERT486

holds significant performance gain across differ-487

ent amount of downstream supervision. Note that488

when supervision is scarce, e.g., two labeled train-489

ing examples per class given, our model has a even490

larger relative performance improvement over the491

10 20 30
train label per class

0.2
0.3
0.4
0.5
0.6

English

10 20 30
train label per class

0.3
0.4
0.5
0.6
0.7
0.8

Japanese

TwHIN-BERT-base
XLM-T
XLM-R

Figure 4: Macro-F1 score on English and Japanese
hashtag prediction datasets w.r.t. number of labeled
training examples per class.

baselines. The results indicate that our model may 492

empower weakly supervised applications on Tweet 493

natural language understanding. 494

3.5 Feature-based Classification 495

In addition to language model fine-tuning experi- 496

ments, we evaluate TwHIN-BERT’s performance 497

as a feature extractor. We use the hashtag predic- 498

tion datasets (Section 3.3) and select three popular 499

languages with different scripts. We use our model 500

and the baseline models to embed each Tweet into 501

a feature vector and train a Logistic Regression 502

classifier with the fixed feature vectors as input. 503
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Table 5: Feature-based classification on hashtag predic-
tion datasets (Macro-F1).

Method en ja ar

XLM-R 30.88 41.14 21.55
XLM-T 41.66 51.56 32.46

TwHIN-BERT-base 51.16 64.12 37.20
TwHIN-BERT-large 54.12 64.03 38.78

Table 5 shows the results of our feature-based504

classification experiments. TwHIN-BERT outper-505

forms the baselines with a wide margin on all lan-506

guages. The results demonstrate a clear advantage507

of our model for unsupervised Tweet representa-508

tions, and shows its potential in other feature-based509

downstream applications.510

4 Related Works511

Pre-trained Language Models: Since their in-512

troduction (Peters et al., 2018; Devlin et al., 2019),513

pre-trained language models have enjoyed tremen-514

dous success in all aspects of natural language pro-515

cessing. Follow up research has advanced PLMs by516

scaling them with respect to number of parameters517

and training data (Micheli and Fleuret, 2021; Raffel518

et al., 2020; Shoeybi et al., 2019), and by improv-519

ing the training objectives (Yang et al., 2019; Clark520

et al., 2020; Meng et al., 2021). Despite these inno-521

vations in scaling and pre-training objectives, the522

vast majority of the work has focused on text-only523

training objectives applied to general domain cor-524

pora. In this paper, we deviate from most previous525

works by explore PLM training using solely Twit-526

ter in-domain data and training our model based on527

both text-based and social-based objectives.528

Tweet Language Models: While a majority of529

PLMs are trained on general domain corpora, a530

few language models have been proposed specif-531

ically for Twitter and other social media plat-532

forms. BERTweet (Nguyen et al., 2020) mirrors533

BERT training on 850 million English Tweets.534

TimeLMs (Loureiro et al., 2022) trains a set of535

RoBERTa (Liu et al., 2019) models for English536

Tweets on different time ranges. XLM-T (Barbi-537

eri et al., 2021) continues the pre-training process538

from an XLM-R (Conneau et al., 2020) checkpoint539

on 198 million multilingual Tweets. These meth-540

ods mostly replicate existing general domain PLM541

methods and simply substitute the training data542

with Tweets. However, our approach utilizes ad-543

ditional social engagement signals to enhance the 544

pre-trained Tweet representations. 545

Enriching PLMs with Additional Informa- 546

tion: Several existing works introduce addi- 547

tional information for language model pre-training. 548

ERNIE (Zhang et al., 2019) and K-BERT (Liu et al., 549

2020) inject entities and their relations from knowl- 550

edge graphs to augment the pre-training corpus. 551

OAG-BERT (Liu et al., 2022) appends metadata of 552

a document to its raw text, and designs objectives 553

to jointly predict text and metadata. These works 554

focus on bringing additional metadata and knowl- 555

edge by injecting training instances, while our work 556

leverage the rich social engagements embedded in 557

the social media platform for text relevance. Recent 558

work (Yasunaga et al., 2022) has utilized document 559

hyperlinks for LM pre-training, but does so with a 560

simple three way classification objective. 561

Network Embedding: Network embedding has 562

emerged as a valuable tool for transferring informa- 563

tion from relational data to other tasks (El-Kishky 564

et al., 2022a). With the introduction of heteroge- 565

neous information networks (Sun and Han, 2013) 566

as a formalism to model rich multi-typed, multi- 567

relational networks, many heterogeneous network 568

embedding approaches were developed (Chang 569

et al., 2015; Tang et al., 2015a; Xu et al., 2017; 570

Chen and Sun, 2017; Dong et al., 2017). However, 571

many of these techniques are difficult to scale to 572

very large networks. In this work, we apply knowl- 573

edge graph embeddings (Wang et al., 2017; Bordes 574

et al., 2013; Trouillon et al., 2016), which have 575

been shown to be both highly scalable and flexible 576

enough to model multiple node and edge types. 577

5 Conclusions 578

In this work we introduce TwHIN-BERT, a mul- 579

tilingual BERT-style language model trained on a 580

large Tweet corpus. Unlike previous BERT-style 581

language models, TwHIN-BERT is trained using 582

two objectives: (1) a standard MLM pre-training 583

objective and (2) a contrasting social objective. We 584

utilize our pre-trained language model to perform 585

a variety of downstream tasks on Tweet data. Our 586

experiments demonstrate that TwHIN-BERT out- 587

performs previously released language models on 588

not only semantic tasks, but also on social engage- 589

ment prediction tasks. We release this model to the 590

academic community to further research in social 591

media NLP. 592
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A Distribution of Languages in Training843

Dataset844

Figure 5 shows the distribution of languages in845

our pre-training dataset. Some languages with dif-846

ferent variations (e.g., Hindi and Hindi Roman-847

ized) are represented with the same ISO language848

code. We run fastText (Bojanowski et al., 2017)849

language identification model lid.176.bin3 to850

detect languages.851

We deem a language “high-resource” if we have852

more than 108 Tweets during pre-training after853

frequency-based re-sampling (Section 2.3); “mid-854

resource” if we have more than 107 and less than855

108 Tweets; “low-resource” if we have less than856

107 Tweets.857

B Hyperparameters for Pre-training and858

Fine-Tuning859

Table 6 shows the pre-training hyperparameters.860

The model architecture and hyperparameters not861

shown in the table are the same as RoBERTa (Liu862

et al., 2019).863

Table 7 shows the hyperparameters for classifica-864

tion fine-tuning. We do hyperparameter selection865

3https://fasttext.cc/docs/en/language-i
dentification.html

on the development datasets and share the same set 866

of hyperparameters for the base models, as we find 867

them to perform well with this setting. The weight 868

decay for base models is set to zero. A different 869

set of hyperparameters were necessary for the large 870

model because it behaves differently from the base 871

models in terms of convergence. 872

C Evaluation Metrics for External 873

Classification Benchmarks 874

The recommended evaluation metrics that we re- 875

port in Table 4 are as follows. Average recall for 876

ASAD, SemEval 2017 datasets; Macro-F1 for Se- 877

mEval 2018 English and Spanish datasets; Accu- 878

racy for COVID-JA, SemEval 2020 datasets. 879

D Engagement Prediction Results on 880

Additional Languages 881

Table 8 shows the engagement prediction results on 882

all available evaluation languages. Some languages 883

have more examples than other languages due to 884

data availability. 885

E Hashtag Prediction Results on 886

Additional Languages 887

Table 9 shows the hashtag prediction results on 888

all available evaluation languages. A small num- 889

ber of languages have less examples than shown 890

in Table 2 due to data availability. The Russian 891

language is not evaluated as the XLM-T baseline 892

fails on some Russian characters in our dataset. 893
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Figure 5: The number of Tweets in the pre-training dataset for each language. Languages are marked by ISO
language codes.

Table 6: Hyperparameters for pre-training TwHIN-BERT.

Hyperparameter TwHIN-BERT-base TwHIN-BERT-large

Max sequence length 128 128
Precision BF16 BF16

Stage 1: MLM
Total batch size 6K 8K
Gradient accumulation steps 1 4
Peak learning rate 2e-4 2e-4
Warmup steps 30K 30K
Total steps 500K 500K

Stage 2: MLM + Social
Total batch size 6K 6K
Gradient checkpointing No Yes
Peak learning rate 1e-4 1e-4
Warmup steps 30K 30K
Total steps 500K 500K
Contrastive projection head [768, 768] [1024, 512]
Contrastive loss temperature 0.1 0.1
Loss balancing λ 0.05 0.05

Table 7: Hyperparameters for fine-tuning TwHIN-BERT and the baselines for classification.

Hyperparameter Hashtag SE2017 SE2018 ASAD COVID-JA SE2020

Base models
Learning rate 4e-5 4e-5 1e-5 1e-5 2e-5 2e-5
Batch size 128 128 128 128 128 128

TwHIN-BERT-large
Learning rate 2e-5 2e-5 1e-5 1e-5 1e-5 1e-5
Weight decay 0 0 5e-4 5e-4 0 5e-4
Batch size 128 128 128 128 128 128
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Table 8: Social engagement prediction results (HITS@10) on all evaluation Languages.

TwHIN-BERT

Language mBERT XLM-R XLM-T Base-MLM Base Large

English (en) .0633 .0850 .1181 .1400 .1552 .1585
Japanese (ja) .0227 .0947 .1079 .1413 .2065 .2325
Turkish (tr) .0348 .0476 .1180 .1268 .1204 .0547
Spanish (es) .0575 .0704 .1103 .1204 .1618 .2055
Arabic (ar) .0532 .0546 .1403 .1640 .2206 .1989
Portuguese (pt) .0731 .1285 .1709 .1201 .1924 .1915
Persian (fa) .0556 .1621 .1754 .1903 .2065 .2097
Korean (ko) .0275 .1105 .1446 .1675 .3611 .3714
French (fr) .0488 .0635 .0805 .0700 .1030 .1053
Russian (ru) .0889 .1482 .1530 .0990 .1726 .1704
German (de) .0852 .1071 .3019 .2189 .3020 .2621
Thai (th) .0659 .1027 .1056 .1196 .2083 .2004
Italian (it) .0586 .0769 .1237 .1478 .1699 .1706
Hindi (hi) .0870 .0838 .1140 .1054 .1737 .1751
Indonesian (id) .0809 .0735 .0921 .1014 .1021 .1115
Polish (pl) .0867 .0835 .1031 .1402 .1696 .1633
Urdu (ur) .0437 .0315 .0352 .0547 .0627 .0667
Filipino (tl) .0610 .0653 .0877 .1045 .1332 .1400
Egyptian Arabic (arz) .0669 .0749 .1049 .0943 .1159 .1122
Greek (el) .0496 .0628 .0562 .0801 .0944 .1065
Serbian (sr) .1013 .1144 .1359 .1394 .1647 .1556
Dutch (nl) .0616 .0650 .0762 .0965 .1346 .1248
Hebrew (he) .0392 .0433 .0441 .0499 .0550 .0577
Ukrainian (uk) .0497 .0842 .0669 .0711 .0811 .0842
Catalan (ca) .1339 .1364 .1650 .1930 .1955 .1713
Swedish (sv) .0942 .0716 .1161 .1342 .1467 .1462
Tamil (ta) .0556 .0691 .0929 .1005 .1037 .1060
Finnish (fi) .0876 .1067 .1317 .1529 .1710 .1809
Czech (cs) .1155 .0904 .0766 .0997 .1062 .1308
Nepali (ne) .0421 .0555 .0486 .0589 .0787 .0851
Azerbaijani (az) .1561 .1148 .1702 .1576 .1712 .1839
Marathi (mr) .0506 .0600 .0519 .0597 .0780 .0906
Bangla (bn) .1361 .1350 .1320 .1601 .1649 .1675
Norwegian (no) .0731 .1661 .1156 .1502 .1920 .2118
Telugu (te) .0279 .0505 .0728 .0883 .1017 .1654
Pashto (ps) .0522 .0727 .0662 .0600 .0799 .0817
Danish (da) .1060 .1150 .1167 .1334 .1470 .1475
Vietnamese (vi) .0929 .1060 .1085 .1216 .1417 .1809
Central Kurdish (ckb) .0725 .0699 .0946 .1023 .1023 .1185
Gujarati (gu) .0666 .0676 .0676 .0793 .1054 .1057
Macedonian (mk) .0685 .0945 .0534 .0973 .1089 .1041
Cebuano (ceb) .1222 .1267 .1767 .1900 .2003 .2334
Romanian (ro) .1718 .1493 .1991 .2071 .2264 .2264
Kannada (kn) .0552 .1355 .0814 .1098 .1282 .2113
Latvian (lv) .0480 .0297 .0493 .0642 .0655 .0750
Bulgarian (bg) .1953 .0448 .0702 .1790 .2248 .2269
Sinhala (si) .0504 .0142 .0378 .0630 .0709 .0661
Icelandic (is) .0319 .0341 .0466 .0364 .0387 .0603
Sindhi (sd) .0619 .0288 .0553 .0885 .0951 .0973
Amharic (am) .0293 .0663 .0491 .0543 .0698 .0818

Average .0732 .0849 .1043 .1161 .1436 .1497
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Table 9: Hashtag prediction results (Macro-F1) on all evaluation languages.

TwHIN-BERT

Language mBERT XLM-R XLM-T Base-MLM Base Large

English (en) 54.56 53.90 55.08 58.38 59.31 60.07
Japanese (ja) 68.43 69.07 70.55 72.66 73.03 72.91
Turkish (tr) 42.87 46.37 47.14 48.72 49.31 51.12
Spanish (es) 42.48 43.80 45.85 48.41 48.59 49.88
Arabic (ar) 38.48 37.85 42.27 43.08 44.24 45.41
Portuguese (pt) 47.81 50.33 51.98 52.15 52.98 56.08
Persian (fa) 43.39 45.04 45.25 46.02 47.46 47.94
Korean (ko) 75.46 77.73 78.45 79.49 79.11 80.02
French (fr) 40.37 40.81 41.89 44.43 45.40 47.01
German (de) 40.80 41.42 41.11 41.32 41.38 42.59
Thai (th) 44.10 56.27 57.40 58.25 58.80 59.46
Italian (it) 42.36 41.82 42.76 45.11 44.18 45.72
Hindi (hi) 49.84 51.92 52.58 55.17 55.28 57.29
Chinese (zh) 72.88 72.54 72.40 73.85 73.94 72.30
Polish (pl) 48.97 50.20 50.50 51.20 51.81 54.49
Urdu (ur) 36.44 37.56 39.22 41.53 42.81 43.39
Filipino (tl) 52.96 52.99 54.86 56.76 57.33 59.43
Greek (el) 44.00 43.94 44.15 46.89 47.59 47.43
Serbian (sr) 42.50 42.32 40.71 44.22 45.95 47.45
Dutch (nl) 39.75 40.85 41.01 42.36 42.69 44.80
Catalan (ca) 48.61 47.85 48.79 51.72 52.60 52.90
Swedish (sv) 47.79 47.80 47.31 49.39 51.28 51.44
Tamil (ta) 48.04 49.67 50.65 52.85 54.14 54.92
Finnish (fi) 45.28 45.28 44.03 43.98 45.59 46.42
Czech (cs) 53.03 52.60 52.89 55.01 55.93 56.02
Nepali (ne) 44.58 47.00 46.94 49.83 51.57 51.12
Marathi (mr) 50.85 48.40 51.44 54.18 55.76 55.31
Malayalam (ml) 38.43 42.20 42.77 44.72 45.86 44.36
Bangla (bn) 57.79 57.08 56.74 59.11 60.32 60.92
Hungarian (hu) 60.29 59.94 60.08 61.86 63.81 62.68
Slovenian (sl) 58.79 59.68 59.13 61.18 62.34 62.74
Norwegian (no) 46.09 48.94 49.22 49.60 51.11 51.34
Telugu (te) 49.54 51.47 52.45 55.13 56.66 57.03
Pashto (ps) 29.41 34.92 33.27 35.37 36.21 38.24
Danish (da) 59.54 60.35 59.97 61.00 60.33 61.56
Central Kurdish (ckb) 40.28 37.59 39.06 42.89 45.65 45.26
Gujarati (gu) 52.55 54.09 54.24 57.36 58.59 58.54
Romanian (ro) 71.24 71.53 72.34 73.17 73.25 73.58
Kannada (kn) 54.19 55.76 56.68 59.09 61.34 60.19
Estonian (et) 57.81 58.10 59.00 61.95 61.22 62.61
Latvian (lv) 58.03 55.18 57.53 58.43 59.52 61.47
Bulgarian (bg) 65.20 65.52 66.45 67.42 66.94 68.35
Sinhala (si) 37.71 40.17 42.77 45.72 47.54 47.06
Icelandic (is) 51.32 48.53 50.16 53.39 55.53 54.61
Sindhi (sd) 27.28 26.46 31.08 32.42 35.05 35.28
Basque (eu) 58.55 56.55 56.78 59.56 60.62 61.04
Amharic (am) 24.10 28.57 35.01 34.20 37.47 36.87
Lithuanian (lt) 71.31 69.50 69.65 72.26 72.43 73.09
Welsh (cy) 58.36 58.50 57.56 59.66 59.95 60.24
Haitian Creole (ht) 68.13 67.05 67.97 70.70 71.33 71.41

Average 50.05 50.86 51.74 53.66 54.62 55.23
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