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Abstract

The rapid advancement of large language models (LLMs) has blurred the line
between AI-generated and human-written text. This progress brings societal
risks such as misinformation, authorship ambiguity, and intellectual property
concerns, highlighting the urgent need for reliable AI-generated text detection
methods. However, recent advances in generative language modeling have re-
sulted in significant overlap between the feature distributions of human-written
and AI-generated text, blurring classification boundaries and making accurate
detection increasingly challenging. To address the above challenges, we pro-
pose a DNA-inspired perspective, leveraging a repair-based process to directly
and interpretably capture the intrinsic differences between human-written and
AI-generated text. Building on this perspective, we introduce DNA-DetectLLM,
a zero-shot detection method for distinguishing AI-generated and human-written
text. The method constructs an ideal AI-generated sequence for each input, it-
eratively repairs non-optimal tokens, and quantifies the cumulative repair effort
as an interpretable detection signal. Empirical evaluations demonstrate that our
method achieves state-of-the-art detection performance and exhibits strong ro-
bustness against various adversarial attacks and input lengths. Specifically, DNA-
DetectLLM achieves relative improvements of 5.55% in AUROC and 2.08% in F1
score across multiple public benchmark datasets. Code and data are available at
https://github.com/Xiaoweizhu57/DNA-DetectLLM.

1 Introduction

The rapid advancement of large language models (LLMs) has created increasingly human-like
textual content, substantially narrowing the distinguishable gap between AI-generated and human-
written text. While these improvements have catalyzed significant technological breakthroughs, they
simultaneously pose critical societal challenges, including misinformation dissemination, authorship
ambiguity, and threats to intellectual property rights [2, 1, 13]. Consequently, there is an urgent and
growing need for effective and reliable methods to accurately detect AI-generated text.

While significant research efforts have been dedicated to AI-generated text detection, existing method-
ologies typically adopt either training-based or training-free methods. Training-based methods
[28, 16, 12, 39, 11] depend upon large volumes of annotated data, limiting their scalability and
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Figure 1: Illustration of the Mutation-Repair Paradigm. The input sequence can be analogized to a
replicating strand, while the ideal AI-generated sequence corresponds to the template strand.

generalization to new domains. In contrast, training-free approaches [22, 4, 14, 36] leverage intrinsic
statistical differences to distinguish human-written and AI-generated texts. Both paradigms funda-
mentally operate by attempting to identify distinct, separable boundaries within the feature space.
However, recent advancements in generative language modeling have produced outputs increasingly
indistinguishable from human-authored content, causing these classification boundaries to become
progressively blurred. Empirical studies [7, 27] have highlighted substantial overlap regions in the
feature distributions of human-written and AI-generated texts, significantly undermining detection
accuracy in practical scenarios. Therefore, one capable of more precisely and intrinsically capturing
differences between the generative processes of AI and human writing is urgently needed.

In molecular biology, DNA’s double-helix structure ensures stable transmission of genetic information,
yet mutations during replication introduce variations that can lead to individual differences or even
diseases such as cancer. In a similar vein, an ideal AI-generated text sequence can be seen as a
“template strand”, representing the most probable token choices at each position. Human-written texts,
by contrast, resemble mutated strands, where token selections deviate from the optimal probabilities,
creating measurable differences. Inspired by this biological mechanism, we propose a new perspective
for AI-generated text detection: by analogizing to DNA base-repair processes, we iteratively “correct”
non-optimal tokens in a text and measure the difficulty of restoring it to the ideal AI-generated form.
This repair-based approach captures the intrinsic divergence between AI-generated and human-written
texts in a direct and interpretable manner.

Building on this intuition, we propose DNA-DetectLLM, a novel method for zero-shot detection of AI-
generated texts. For each input sequence, we first construct its corresponding ideal AI sequence—that
is, the sequence formed by greedily selecting the most probable token at each position under a
reference language model. We then perform a token-by-token repair process on the input sequence,
progressively modifying tokens toward their optimal choices until the sequence fully aligns with the
ideal AI sequence. To quantify the difficulty of this repair process, we introduce a repair score that
captures the cumulative effort required to complete the transformation. Finally, by comparing the
repair score against a calibrated threshold, DNA-DetectLLM robustly distinguishes AI-generated
texts from human-written ones, leveraging the fundamental differences in their deviation patterns
from ideal generation.

DNA-DetectLLM consistently achieves state-of-the-art performance across multiple datasets and
LLMs. In particular, it obtains relative improvements of 5.55% in AUROC and 2.08% in F1 score
on three public benchmark datasets. Additionally, the method exhibits notable robustness against
various adversarial attacks and across different input lengths. Efficiency experiments further indicate
rapid detection capability, processing each sample in under 0.8s.

Our contributions are summarized as follows:

• Inspired by the mutation and repair mechanisms of nucleotide bases in DNA replication, we
introduce the mutation-repair paradigm into AI-generated text detection.
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• We propose DNA-DetectLLM, a novel zero-shot method for detecting AI-generated text
that incrementally repairs mutated tokens within the input sequence until it perfectly aligns
with the ideal AI-generated sequence, subsequently quantifying the repair difficulty as a
metric for text detection.

• Extensive evaluations validate that DNA-DetectLLM offers a reliable, efficient, and broadly
generalizable solution for AI-generated text detection, with consistent gains across various
detection settings.

2 Related Works

Detecting AI-generated text is essential for enhancing public trust and preventing misuse, driving
growing interest from both academia and industry. Beyond watermarking techniques [20], which
embed identifiable markers during generation, current post hoc detection methods are broadly
categorized into training-based and training-free methods.

Training-based Methods. Such approaches typically involve training classification models to
distinguish between AI-generated and human-written texts. Specifically, early efforts by OpenAI
[28] employed RoBERTa-based models for training text classifiers. Subsequently, RADAR [16]
introduced adversarial learning to enhance the robustness against paraphrased texts. DeTeCtive [12]
utilized multi-level contrastive learning to map texts generated by different LLMs into corresponding
feature spaces, classifying them based on similarity metrics. DPIC [39] extracted deep textual features
by reconstructing prompts and regenerating texts. Biscope [11] proposed employing a bidirectional
cross-entropy loss to extract statistical features for binary classifier training. R-Detect [29] employs
a nonparametric kernel relative test to detect AI-generated text, thereby reducing the false positive
rate compared to two-sample tests. However, existing research [5, 32] indicates that training-based
methods consistently overfit to in-distribution features, resulting in poor generalization to out-of-
distribution (OOD) texts. Consequently, researchers have increasingly focused on developing more
universally applicable training-free methods.

Training-free Methods. These training-free methods emphasize exploiting probabilistic charac-
teristics of texts, constructing statistical scores based on specific hypotheses, and making decisions
according to the comparison of scores against thresholds. For example, LogRank [9], Likelihood
[15], and Entropy [17] calculate the average probability ranking, likelihood probabilities, and entropy
values to measure the uncertainty of AI-generated texts. DetectGPT [22] pioneered a paradigm
that uses perturbations to generate numerous contrast samples to evaluate the overall distribution.
Although methods such as DetectLLM-NPR [30] and DNA-GPT [37] have further developed this
paradigm, their efficiency limitations prevent real-time or large-scale detection implementations. Fast-
DetectGPT [4] has since updated sampling techniques to compute conditional probability curvature,
significantly improving detection efficiency and broadening potential applications. Binoculars [14]
achieved state-of-the-art classification performance by calculating cross-perplexity from dual-model
perspectives. Lastde++ [36] proposed focusing on local textual features by calculating Diversity
Entropy to optimize classification performance.

3 DNA-DetectLLM

3.1 Preliminary

This study primarily involves two statistical metrics: log-perplexity, which quantifies the average
token-level negative log-likelihood under a single model, and cross-perplexity, which captures the
average per-token cross-entropy between the probability distributions of two models:

log PPLM1(s) = − 1

L

L∑
i=1

logPM1
(xi|x<i),

log X-PPLM1,M2
(s) = − 1

L

L∑
i=1

PM1
(xi|x<i) logPM2

(xi|x<i),

(1)
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Figure 2: Overview of DNA-DetectLLM.

where s is the input sequence of length L, xi denotes the i-th token, and PM (xi|x<i) is the conditional
probability of xi given its preceding tokens under reference model M1 or observer model M2.
Furthermore, their ratio σ(s) has been empirically demonstrated to serve as an effective score for
distinguishing AI-generated text [14]. To quantify the effect of local token-level modifications on
these metrics, this work introduces the conditional log-perplexity and conditional score:

log PPLM1(s̃|s) = − 1

L

L∑
i=1

logPM1(x̃i|x<i), σ(s̃|s) = log PPLM1
(s̃|s)

logX-PPLM1,M2(s)
, (2)

where s̃ denotes the sequence obtained by modifying tokens in the input sequence s.

3.2 Overview of DNA-DetectLLM

The entire workflow of DNA-DetectLLM can be summarized in 3 key steps, shown in Figure 2.

Step 1: Obtaining the ideal AI-generated Sequence. We construct the ideal AI-generated sequence
for a given input by greedily selecting the most probable token at each position.

Step 2: Mutation Repair Mechanism. We perform iterative token-level modifications on the input
sequence until it fully aligns with the ideal AI-generated sequence.

Step 3: Repair Score-Based Detection. We introduce a repair score to quantify the difficulty of the
repair, which is compared against a calibrated threshold to determine the detection result.

3.3 Obtaining the ideal AI-generated Sequence

We propose the concept of an ideal AI-generated sequence ŝ, analogous to the error-free template
strand in DNA replication, where each token is selected by maximizing the conditional probability at
its position:

ŝ = {x̂1, x̂2, . . . , x̂L}, where x̂i = argmax
x̃∈V

PM1(x̃|x<i), (3)

with V denoting the vocabulary and x<i = {x1, . . . , xi−1} representing the preceding i−1 tokens of
the input sequence s.

3.4 Mutation Repair Mechanism

We treat non-max probability tokens as mutated tokens and max-probability tokens as ideal tokens.
Analogous to the mutation-repair paradigm in DNA, we propose a mutation repair mechanism aiming
to uncover fundamental differences in deviation patterns between AI-generated and human-written
texts. Under this mechanism, mutated tokens in the input sequence are iteratively repaired with their
ideal tokens step by step, until the input fully aligns with the ideal form:

xi ∈ s = {x1, x2, . . . , xL} → x̂i = argmax
x̃∈V

PM1
(x̃|x<i), if xi ̸= x̂i, (4)
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Figure 3: Variation of repair scores Across Different Repair Strategies.

3.5 Repair Score-Based Detection

We introduce the repair score R(s) to quantify the difficulty of the repair process, defined as the
average conditional score accumulated throughout the repair trajectory:

R(s) =
1

T + 1

T∑
t=0

σ(st|s) =
∑T

t=0 log PPLM1
(st|s)

(T + 1) logX-PPLM1,M2
(s)

, (5)

where st is the sequence after t repair steps, and T is the total number of mutated tokens to be
corrected.

Human-written texts typically exhibit more substantial mutations, resulting in greater repair difficulty.
In contrast, AI-generated texts are generally easier to repair. Accordingly, the detection result for the
input sequence is determined as:

D(s) =

{
Human-written Text, R(s) > τ

AI-generated Text, R(s) ≤ τ.
(6)

3.6 Sensitivity to Repair Order and Score Simplification

Figure 3 shows that different repair orders yield varying repair scores for the same input sequence,
due to the unequal impact of each mutated token on the conditional score. Mutated tokens can be
broadly categorized into high- and low-probability types. Repairing low-probability tokens typically
causes larger shifts in the conditional score, while high-probability tokens lead to smaller changes.
To systematically analyze the influence of repair order, we identify four types of principal repair
strategies as follows:

• High-to-low: Repairing high-probability tokens first, followed by low-probability ones,
results in a convex “repair curve” with a higher repair score.

• Low-to-high: Repairing low-probability tokens before high-probability ones yields a con-
cave “repair curve” with a lower repair score.

• Sequential Repair: Tokens are repaired in their original order of appearance in the input
sequence, regardless of their probability values.

• Random Repair: Tokens are repaired in a randomly chosen order. Averaging the repair
scores across multiple random repairs leads to a more stable estimate.

These findings highlight the sensitivity of the repair score to the chosen repair order. Performing
multiple random repairs effectively mitigates biases, resulting in a repair score close to the midpoint
between the initial and final scores. Consequently, we further derive that the average repair score
converges as the number of random repairs N approaches infinity. The derivation is as follows:

Let{δ1, δ2, . . . , δT } be a set of non-negative real numbers satisfying
∑T

i=1 δi = σ(s) − σ(ŝ|s).
Moreover, δt = σ(st−1|s)− σ(st|s) quantifies the impact of repairing the current token on the score.
Since the influence of each token repair on the conditional log-perplexity is independent and fixed, the
set {δ1, δ2, . . . , δT } consists of fixed values for a given input sequence, whose order varies depending
on the repair strategy. It further follows:

σ(st|s) = σ(s)−
t∑

i=1

δi for t = 1, 2, . . . , T, where σ(s) = σ(s0|s). (7)

5



For a specific permutation ϕ ∈ [1, N ], the corresponding repair score Rϕ(s) is:

Rϕ(s) =
1

T + 1

T∑
t=0

(
σ(s)−

t∑
i=1

δϕi

)
= σ(s)− 1

T + 1

T∑
i=1

δϕi · (T − i+ 1). (8)

Since each token is equally likely to be repaired at random, the expected value of δϕi appearing in the
i-th position across all permutations is 1

T (σ(s)− σ(ŝ|s). We further derive the expected value of the
repair score as follows:

E[R(s)] = σ(s)− 1

T + 1

T∑
i=1

E
[
δϕi

]
·(T − i+1) = σ(s)− 1

T + 1
· σ(s)− σ(ŝ|s)

T
· T (T + 1)

2
. (9)

Therefore, as the number of random permutations N approaches infinity, the average repair score
converges as follows:

lim
N→∞

1

N

N∑
n=1

R(n)(s) = lim
N→∞

1

N

N∑
n=1

(
1

T + 1

T∑
t=0

σ(n)(st|s)

)
=

1

2
(σ(s) + σ(ŝ|s)). (10)

We thus simplify the repair score to R(s) = 1
2 (σ(s) + σ(ŝ|s)), improving detection performance

while avoiding intermediate score computations during repair.

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate performance across diverse domains, we collect 4,800 human-written texts
from three representative tasks: news article writing (XSum [23]), story generation (WritingPrompts
[8]), and academic writing (Arxiv [24]). For each text, we construct task-specific prompts (see
Appendix C) and generate corresponding AI outputs using three advanced LLMs: GPT-4 Turbo,
Gemini-2.0 Flash, and Claude-3.7 Sonnet. We further sample 2,000 balanced examples from each of
three high-quality detection benchmarks—M4 [33], DetectRL [35], and RealDet [41]—to ensure fair
and comprehensive evaluation across real-world scenarios.

Metrics. We adopt the area under the receiver operating characteristic curve (AUROC [18]) and F1
score to evaluate detection performance, where higher values indicate better separability between
human-written and AI-generated texts.

Baselines. We compare DNA-DetectLLM with existing training-based and training-free methods.
For training-based methods, we include OpenAI-D [28], Biscope [11] and R-Detect [29]. For training-
free methods, we consider classic zero-shot detectors including Likelihood [15], LogRank [9], and
Entropy [17], along with several recent SOTA approaches such as DetectGPT [22], Fast-DetectGPT
[4], Binoculars [14], and Lastde++ [36]. More baseline comparisons are provided in Appendix E.

Implementation details. In real-world detection scenarios, the source and distribution of textual
data are often unknown, constituting an out-of-distribution (OOD) detection problem. To ensure
fairness for training-based methods, we exclusively train on the HC3 dataset [10], which is entirely
disjoint from the test sets. For training-free methods, the choice of LLM used for scoring can
introduce significant performance variation [3]. To eliminate this factor, we standardize the reference
(or scoring) model across all methods by employing Falcon-7B-Instruct [25] to compute token
generation probabilities. Moreover, Fast-DetectGPT, Binoculars, Lastde++, and DNA-DetectLLM
utilize Falcon-7B [25] as the observer (or sampling) model, while DetectGPT uses T5-3B [26].
During testing, the maximum input token length is capped at 1024. More details are in Appendix D.

4.2 Main Results

Table 1 compares the detection performance of DNA-DetectLLM against other baselines across
different writing tasks and various generation models. DNA-DetectLLM consistently achieves
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Table 1: AUROC (%) of detectors on human-written vs. AI-generated text across datasets and LLMs.

Detectors
XSum WritingPrompt Arxiv

Avg.GPT-4
Turbo

Gemini-2.0
Flash

Claude-3.7
Sonnet

GPT-4
Turbo

Gemini-2.0
Flash

Claude-3.7
Sonnet

GPT-4
Turbo

Gemini-2.0
Flash

Claude-3.7
Sonnet

Training-based Methods
OpenAI-D 60.51 68.93 62.96 50.94 59.47 57.28 49.63 51.40 68.57 58.85
Biscope 75.08 95.63 94.09 80.08 98.71 98.05 82.53 99.74 96.61 91.17
R-Detect 63.56 45.63 51.13 73.58 71.07 75.74 56.47 57.24 53.55 60.89

Training-free Methods
Entropy 72.26 54.85 74.90 87.85 90.36 91.17 45.60 79.96 80.42 75.26
Likelihood 70.03 69.50 70.39 80.82 95.52 85.85 57.87 93.60 86.24 78.87
LogRank 69.61 69.26 69.81 78.90 94.53 84.13 58.17 94.15 85.80 78.26
DetectGPT 61.50 68.09 61.36 72.80 89.33 78.17 56.10 92.18 90.27 74.42
Fast-DetectGPT 98.33 92.54 94.30 97.79 98.58 94.14 92.12 99.80 98.21 96.20
Binoculars 98.06 95.56 96.83 97.73 99.53 97.29 93.69 99.87 97.99 97.39
Lastde++ 97.25 90.87 92.77 95.12 98.19 92.36 90.43 99.54 97.57 94.90
DNA-DetectLLM 99.31 96.65 98.45 98.86 99.72 98.51 95.00 99.88 98.35 98.30

DNA-DetectLLM with Other Repair Orders
Low-to-high 98.94 94.98 97.31 98.29 99.41 97.77 92.48 99.75 97.91 97.43
High-to-low 99.14 97.22 98.40 98.63 99.81 98.37 94.67 99.77 97.44 98.16
Sequential Repair 98.90 97.82 98.37 96.80 99.77 98.55 95.78 99.91 98.21 98.23

Table 2: Detection performance (AUROC and F1 score) on public benchmark datasets.

Detectors M4 DetectRL Multi-LLM DetectRL Multi-Domain RealDet Avg.
AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

OpenAI-D 77.51 71.18 78.15 71.90 74.60 70.03 84.75 77.47 78.75 72.65
Biscope 79.74 73.08 79.97 73.20 76.52 71.64 92.88 86.90 82.28 76.21
R-Detect 61.91 67.14 67.40 66.56 79.19 73.38 65.93 67.72 68.61 68.70
Entropy 83.72 79.10 64.30 71.92 47.82 69.24 75.42 74.72 67.82 73.75
Likelihood 85.77 78.38 66.82 66.71 48.96 66.69 85.35 79.75 71.73 72.88
LogRank 87.50 80.70 67.30 66.71 50.55 66.69 86.28 80.69 72.91 73.70
DetectGPT 73.13 70.11 49.57 66.67 34.67 66.67 78.69 73.80 59.02 69.31
Fast-DetectGPT 89.77 84.12 82.26 75.93 74.98 68.91 93.25 90.00 85.07 79.74
Binoculars 90.00 87.40 83.21 82.87 77.45 80.20 93.64 90.51 86.08 85.25
Lastde++ 91.43 84.97 75.36 69.24 67.30 66.67 93.90 89.41 82.00 77.57
DNA-DetectLLM 91.74 87.72 88.97 84.85 88.23 84.94 94.48 90.58 90.86 87.02

state-of-the-art performance under all settings, with an average AUROC of 98.30%, representing
a relative improvement of 0.93%. Specifically, it yields relative gains of 1.36%, 0.87%, and
0.58% on the XSum, WritingPrompts, and Arxiv datasets, respectively, demonstrating strong cross-
domain generalization. This strong generalization can be attributed to DNA-DetectLLM’s ability to
dynamically capture generation discrepancies between domain-specific text and its ideal AI-generated
counterpart through the mutation-repair mechanism, enabling robust identification of human-written
versus AI-generated text across diverse domains.

Table 2 evaluates the real-world detection performance of all methods on three high-quality public
benchmarks. DNA-DetectLLM demonstrates superior reliability, with average AUROC and F1 score
improvements of 5.55% and 2.08%, respectively. Notably, it achieves significant AUROC gains
on the challenging DetectRL settings—6.92% on Multi-LLM and 13.92% on Multi-Domain. This
improvement can be attributed to the inherent difficulty of DetectRL, where both positive and negative
samples may include mixtures of texts with the same label due to the dataset’s construction. Such
complexity hinders traditional training-free methods that rely on fixed statistical scores. In contrast,
DNA-DetectLLM accurately computes repair scores for intricately constructed input texts by aligning
them with their respective ideal AI-generated sequences. This flexible repair-based scoring allows for
more accurate detection under distributional overlap and ambiguous cases, underscoring the practical
utility of DNA-DetectLLM in complex detection scenarios.

4.3 Robustness

4.3.1 Robustness against Various Attacks

Figure 4 illustrates the AUROC curves of DNA-DetectLLM and other baselines against various
attacks (see Appendix F for details). We conducted experiments on texts generated by GPT-4 Turbo,
Gemini-2.0 Flash, and Claude-3.7 Sonnet, incorporating two distinct attacks: token-level edits and
paraphrasing. Editing attacks involved random insertion, deletion, or substitution of tokens at rates of
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Figure 4: AUROC curves of DNA-DetectLLM and baselines under paraphrasing and editing attacks.
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Figure 5: Detection performance (AUROC) on input texts truncated to the target number of tokens.

1%. The paraphrasing attacks employed DIPPER [21] to rephrase AI-generated texts. To maintain
clean labels, attacks were exclusively applied to AI-generated texts.

The results demonstrate that DNA-DetectLLM exhibits strong robustness against a variety of adver-
sarial attacks. For instance, on GPT-4 Turbo-generated text, our method achieves relative AUROC
improvements of 6.65%, 3.17%, 6.62%, and 0.81% under insertion, deletion, substitution, and
paraphrasing attacks, respectively. Notably, the improvement is particularly pronounced under low
false positive rate (FPR) conditions. We attribute this robustness to the observation that although
token-level edits are limited in scope, they can substantially alter the generation probability dis-
tribution of the input sequence while having minimal impact on its ideal AI-generated sequence.
As a result, DNA-DetectLLM is still able to compute accurate repair scores for reliable detection.
Moreover, even under paraphrasing attacks using Dipper, the method effectively captures intrinsic
deviations from the ideal sequence and maintains a high AUROC of 97.23%. These findings highlight
DNA-DetectLLM’s capacity to detect adversarially manipulated AI-generated text, even when such
attacks are designed to evade detection.

4.3.2 Robustness on Different Lengths

Prior research [4, 31] indicates that token length significantly affects detection performance, with
shorter texts proving more challenging to detect. We investigate the impact by truncating the input
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Figure 7: Comparison of time costs for processing
a single sample for each method.

texts to various target tokens. Figure 5 presents the detection performance across varying lengths
for five methods: DNA-DetectLLM, Binoculars, Fast-DetectGPT, Lastde++, and Biscope. Results
show that DNA-DetectLLM consistently outperforms all baselines across varying lengths. On GPT-4
Turbo-generated text, it achieves an average AUROC improvement of 2.46%. While all methods
benefit from longer inputs, DNA-DetectLLM exhibits a greater advantage on shorter texts. At a
token length of 40, it surpasses the second-best method by 3.38%, 1.80%, and 3.27%, respectively.
These findings suggest that our method enables detection at shorter lengths by extracting more
discriminative features from limited textual input.

4.4 Ablation Studies

We further evaluated the importance of repair order and different base LLMs through two types of
ablation experiments. More detailed ablation studies are available in Appendix G.

Repair Score-based Detection under Various Repair Orders. Table 1 compares the detection
performance of DNA-DetectLLM under various repair orders. When the repair order is changed to
High-to-low, Low-to-high, or Sequential Repair, a slight performance drop is observed. Although
these strategies still outperform other baselines, they require recalculating the conditional score after
each mutated token repair, resulting in significantly increased computational cost. In contrast, the
simplified repair score (R(s) = 1

2 (σ(s) + σ(ŝ|s))) maintains strong performance while improving
efficiency by an order of magnitude, highlighting its necessity in practical deployment.

DNA-DetectLLM’s Performance with Different M1 and M2. Figure 6 evaluates four different
LLM combinations: “Falcon-7B-Instruct + Falcon-7B”, “Llama-3-8B-Instruct + Llama-3-8B”,
“Mistral-7B-Instruct + Mistral-7B”, and “Llama-2-7B + Llama-7B”. Results demonstrate that any
of these combinations significantly outperform existing baselines, with an average performance
improvement of 15.28%. Interestingly, the combination “Llama-2-7B + Llama-7B” slightly exceeds
the default combination “Falcon-7B-Instruct + Falcon-7B” used in our main experiments, achieving
AUROC of 92.4% and 90.7%. These findings highlight the inherent effectiveness of DNA-DetectLLM,
suggesting its robust detection performance is not reliant on any specific LLM combination, with
potential for further enhancement through better LLM pairings.

4.5 Efficiency Analysis

Efficiency is critical for AI-generated text detection, as slow detection speeds hinder large-scale
or real-time monitoring in practical scenarios. Figure 7 illustrates the average processing time per
sample for each method. To eliminate the confounding factor of text length, we randomly sampled
1,000 long texts from the RealDet dataset, truncated them to 300 tokens, and measured average
detection cost with a batch size of 1. We observe that training-based methods such as Biscope and
OpenAI-D were the fastest, requiring less than 0.1s per text, but these methods entail significant
training overhead. Among training-free methods, classical methods like Likelihood, Logrank, and
Entropy are faster, with inference times around 0.3s, but their detection accuracy did not meet our
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requirements. DNA-DetectLLM, Binoculars, and Fast-DetectGPT processed each sample in 0.8s,
with DNA-DetectLLM achieving the better detection performance.

5 Conclusion

In this paper, we introduce DNA-DetectLLM, a novel zero-shot AI-generated text detection method
via a DNA-inspired mutation-repair paradigm. Extensive experiments demonstrate that DNA-
DetectLLM consistently achieves SOTA detection performance while exhibiting strong robustness
across diverse scenarios. We hope our work offers new insights and perspectives for AI-generated text
detection and plan to further explore the mutation-repair paradigm to enhance detection performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The methodological pipeline and contributions of our approach, including the
dataset construction, are clearly outlined in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this study in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: A complete derivation of the simplified repair score, including all assumptions,
is provided in Section 3.6.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all information necessary to reproduce the main experimental
results, including but not limited to the details provided in Sections 3, 4, and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?
Answer: [Yes]
Justification: We have included the data and code in the supplementary material, along with
detailed instructions to facilitate reproduction of the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While we do not report error bars, we evaluate our method and all baselines
using AUROC and F1 scores.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational resources are described in detail in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly read the NeurIPS Code of Ethics and ensured compliance
in all aspects of our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential societal impacts of our work in Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not involved in misusing.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide proper citations for all baseline methods and datasets used in this
study.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All code, datasets, and models are well-documented and openly available
through access in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The LLMs used in this study are explicitly described in Sections 4.1 and 4.4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

Due to memory constraints, we were unable to scale up the batch size for evaluating method efficiency
under ample computational resources. As a result, this study does not fully explore performance
differences in real-world scenarios involving large-scale, real-time monitoring of AI-generated texts.
The reported efficiency results are based on relative comparisons under a uniform small-batch setting.

B Broader Impacts

The proposed DNA-DetectLLM contributes to the field of AI-generated text detection by improving
accuracy and introducing a novel detection perspective to the research community. Its enhanced
reliability may serve as a reference in socially relevant scenarios where auxiliary judgment is required.
However, we emphasize that detection inherently carries a risk of implication or accusation. While
our method demonstrates strong performance, we strongly oppose the use of its outputs as direct
evidence in punitive or disciplinary contexts. Regardless of its accuracy, such applications could lead
to serious consequences and misuse.

C Prompt Design for Main Data

Table 3: Examples of input prompts and corresponding outputs across different writing tasks, where
the outputs are sampled from GPT-4-generated texts.

Writing Task Input Prompt Output

News Article Writing A police source told the BBC that an
infiltrator from the Taliban had allowed
militants into the police station in the
regional capital of Lashkar Gah last

night. Please continue.

The militants, believed to be associated
with the Taliban, reportedly raided the

police station and engaged in a
prolonged gun battle with the officers...

Story Generation Two kids entered the Rockmount Zoo.
Please continue.

As they excitedly crossed the threshold,
their eyes widened at the sight of the
vibrantly colored parrots squawking

from the treetops...

Academic Writing Please write an abstract based on the
following title: “Pure Exploration and

Regret Minimization in Matching
Bandits”.

This paper delves into the field of pure
exploration and regret minimization in

the context of matching bandits
problems - an important area in

machine learning...

Table 3 presents the general-purpose prompts we designed for different writing tasks. Using these
prompts, we generated 4,800 AI-generated texts—corresponding to human-written texts—across
GPT-4 Turbo, Gemini-2.0 Flash, and Claude-3.7 Sonnet, which were used in our experiments. To
ensure reproducibility, we explicitly report the generation parameters for each API call (note that
Top-k is not manually configurable):

• GPT-4 Turbo: gpt-4-turbo-2024-04-09, Temperature = 1.0, Top-p = 1.0.

• Gemini 2.0 Flash: gemini-2.0-flash-001, Temperature = 1.0, Top-p = 0.95.

• Claude 3.7 Sonnet: claude-3-7-sonnet@20250219, Temperature = 1.0, Top-p = 1.0.

D Main Experiments Supplement

All experiments are conducted on a single NVIDIA A100 GPU with 80GB of memory. Unless
otherwise specified, default settings are used for temperature, top-k, and other generation parameters.
No additional hyperparameter tuning is involved in this study. For training-based methods (Biscope
and R-Detect), models are trained on 4,000 balanced samples from the HC3 dataset, and the best-
performing checkpoints are selected based on validation performance on a separate 2,000-sample
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validation set. In the main experiments, all reported F1 scores are the maximum values obtained by
selecting the optimal threshold based on the positive and negative scores of each method.

Table 4: Comparison of F1 score across public benchmark datasets.
Method M4 DetectRL Multi-LLM DetectRL Multi-Domain RealDet Avg.
OpenAI-D 68.01 70.55 67.89 70.41 69.22
Biscope 71.75 72.00 68.91 81.23 73.97
R-Detect 67.14 66.56 66.26 67.55 66.88
Entropy 75.39 70.10 55.04 60.33 65.22
Likelihood 66.82 66.62 66.60 66.87 66.73
LogRank 66.80 66.69 66.60 66.82 66.73
DetectGPT 54.53 42.41 30.79 66.59 48.58
Fast-DetectGPT 81.27 75.84 68.06 84.72 77.47
Binoculars 84.82 80.97 76.24 82.15 81.05
Lastde++ 82.74 69.17 61.72 84.59 74.56
DNA-DetectLLM 85.15 84.49 83.94 84.72 84.58

To ensure a fairer performance comparison, we select fixed thresholds for all methods based on
scores computed on a separate clean dataset (e.g., DNA-DetectLLM: 0.6533, Binoculars: 0.9366,
etc.). Subsequently, we recompute and report the F1 scores in Table 4 using these fixed thresholds.
The clean dataset used for threshold selection consists of over 3,000 samples generated by GPT-4,
Gemini, and Claude based on human-written texts sourced from XSum, WritingPrompt, and Arxiv.

E Additional Performance Comparisons

Table 5: Comparison of AUROC (%) across benchmark datasets.
Method XSum WritingPrompt Arxiv PubMedQA Avg.
Revise-Detect 39.73 65.54 95.31 – 66.86
GECScore 70.84 66.31 64.91 – 67.35
DNA-GPT 65.46 75.22 70.13 82.32 73.28
ImBD 88.07 93.06 91.06 92.59 91.20
GPTZero 99.01 98.54 94.42 88.48 95.11
DNA-DetectLLM 99.31 98.86 95.00 97.08 97.56

As shown in Table 5, we expanded our comparative experiments to include additional
baselines—Revise-Detect [40], GECScore [34], DNA-GPT [38], IMBD [6] (recent but non–state-of-
the-art methods), and GPTZero (a widely used commercial detector). We also incorporated results
on the biomedical short-text dataset PubMedQA [19], which further demonstrate the strong and
consistent performance of DNA-DetectLLM across diverse domains and detection settings.

F Robustness Experiments

In this study, we do not consider adversarial attacks on human-written texts, as evasion in such cases
is generally inconsequential. Instead, we focus on adversarial scenarios involving AI-generated texts,
introducing two common attack types: paraphrasing and token-level editing. For paraphrasing attacks,
we employ DIPPER with hyperparameters set to a lexical diversity of 60 and a syntactic diversity
of 60. This level of paraphrasing is sufficient to potentially bypass SOTA detectors. For editing
attacks, we tokenize the input using the GPT-2 tokenizer and apply random insertions, deletions, and
substitutions to 1% of the tokens. The inserted or substituted tokens are sampled uniformly from the
tokenizer’s vocabulary.

Table 6, Table 7, and Table 8 report the detection performance of all methods under various adver-
sarial attacks across different AI-generated texts. Notably, DNA-DetectLLM consistently achieves
strong performance across all adversarial scenarios, demonstrating robustness to both editing and
paraphrasing attacks. In contrast, training-free methods are significantly affected by token-level edits,
while training-based methods are more vulnerable to paraphrasing-based attacks.

22



Table 6: AUROC (%) for GPT-4 Turbo against various attacks.
Method Insertion Deletion Substitution Paraphrase

OpenAI-D 51.54 52.95 51.62 89.50
Biscope 60.75 62.66 58.59 41.16
R-Detect 61.71 61.27 61.08 57.49
Entropy 57.52 63.38 55.44 36.04
Likelihood 51.54 60.69 49.89 49.33
LogRank 52.19 60.69 50.45 50.48
DetectGPT 43.78 52.36 39.67 44.60
Fast-DetectGPT 86.16 92.05 85.89 96.70
Binoculars 87.55 93.32 87.28 97.23
Lastde++ 71.60 88.51 71.34 94.94
DNA-DetectLLM 93.37 96.28 93.06 98.02

Table 7: AUROC (%) for Gemini-2.0 Flash against various attacks.
Method Insertion Deletion Substitution Paraphrase

OpenAI-D 52.28 56.72 53.02 86.46
Biscope 95.48 95.79 95.15 52.61
R-Detect 56.40 56.37 56.84 52.97
Entropy 65.59 71.11 63.47 33.50
Likelihood 76.41 82.86 74.73 47.02
LogRank 76.79 82.93 74.98 47.65
DetectGPT 68.74 76.01 66.60 49.68
Fast-DetectGPT 95.39 96.57 95.23 95.27
Binoculars 97.41 98.06 97.35 96.78
Lastde++ 90.39 95.31 90.16 93.41
DNA-DetectLLM 97.72 98.16 97.69 97.80

Table 8: AUROC (%) for Claude-3.7 Sonnet against various attacks.
Method Insertion Deletion Substitution Paraphrase

OpenAI-D 57.99 60.50 57.80 83.62
Biscope 93.99 93.47 93.65 44.34
R-Detect 58.44 58.24 58.06 53.02
Entropy 73.32 78.29 70.87 35.93
Likelihood 64.11 73.01 61.93 42.80
LogRank 64.26 72.79 61.99 44.21
DetectGPT 60.39 68.81 57.54 45.37
Fast-DetectGPT 86.38 92.74 85.34 92.56
Binoculars 89.81 95.34 88.88 95.33
Lastde++ 73.47 89.85 72.54 90.43
DNA-DetectLLM 93.77 96.89 93.25 96.81

Table 9: F1 score (%) under paraphrasing and editing attacks

Method GPT-4 Turbo Gemini-2.0 Flash Claude-3.7 Sonnet Avg.
Insert Deletion Substitution Paraphrase Insert Deletion Substitution Paraphrase Insert Deletion Substitution Paraphrase

OpenAI-D 57.17 58.23 58.91 74.24 59.52 60.24 60.34 72.99 65.00 66.04 65.15 71.93 64.15
Biscope 54.31 55.19 50.76 27.09 86.46 86.34 86.30 42.42 86.09 85.80 85.80 32.73 64.94
R-Detect 66.46 66.46 66.46 66.50 66.16 66.16 66.16 66.16 66.63 66.63 66.63 66.63 66.42
Entropy 62.53 65.04 61.92 56.82 65.95 68.69 64.68 57.09 68.27 71.36 67.02 57.20 63.88
Likelihood 66.65 66.65 66.65 66.61 66.54 66.54 66.54 66.54 66.69 66.69 66.69 66.65 66.62
LogRank 66.61 66.61 66.61 66.61 66.57 66.57 66.57 66.50 66.65 66.65 66.65 66.65 66.60
DetectGPT 21.80 30.87 17.13 21.04 54.86 65.84 52.22 30.18 43.03 54.86 38.79 22.13 37.73
Fast-DetectGPT 77.10 84.28 76.24 89.38 87.90 89.04 87.85 88.03 77.00 85.22 75.81 84.80 83.55
Binoculars 81.33 87.16 81.15 91.50 92.44 93.08 92.28 91.65 83.15 88.71 82.36 88.78 87.80
Lastde++ 60.86 80.67 60.39 87.33 82.46 87.16 81.88 85.87 61.46 82.22 61.26 83.02 76.22
DNA-DetectLLM 86.74 90.36 86.01 93.09 94.22 94.94 93.91 93.63 87.28 91.58 86.81 91.06 90.80
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Table 9 reports the F1-score performances for the primary robustness experiments. Notably, DNA-
DetectLLM consistently exhibits superior robustness compared to other baselines in practical scenar-
ios.

G Ablation Study Supplement

Table 10: Ablation results across different repair strategies and datasets.
Setting XSum WP Arxiv M4 RealDet Avg. Time Cost (s)
Default 98.14 99.03 97.74 91.74 94.48 96.23 0.78
Low-to-High 97.08 98.49 96.71 92.42 94.71 95.88 14.11
High-to-Low 98.25 98.94 97.29 89.56 93.59 95.53 14.45
Sequential Repair 98.36 98.37 97.97 91.26 93.71 95.93 14.55

Table 10 compares the detection performance and inference time of DNA-DetectLLM under different
repair orders. The results show that the default setting achieves superior performance compared
to alternative strategies, while reducing computation time by nearly 20×, highlighting its practical
efficiency.
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