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Abstract

Representative Selection (RS) is the problem of finding a small subset of exemplars1

from a dataset that is representative of the dataset. In this paper, we study RS for2

unlabeled datasets and focus on finding representatives that optimize the accuracy3

of a model trained on the selected representatives. Theoretically, we establish a4

new hardness result for RS by proving that a particular, highly practical variant of it5

(RS for Learning) is hard to approximate in polynomial time within any reasonable6

factor, which implies a significant potential gap between the optimum solution of7

widely-used surrogate functions and the actual accuracy of the model. We then8

study a setting where additional information in the form of a (homophilous) graph9

structure is available, or can be constructed, between the data points. We show that10

with an appropriate modeling approach, the presence of such a structure can turn a11

hard RS (for learning) problem into one that can be effectively solved. To this end,12

we develop RS-GNN, a representation learning-based RS model based on Graph13

Neural Networks. Empirically, we demonstrate the effectiveness of RS-GNN on14

problems with predefined graph structures as well as problems with graphs induced15

from node feature similarities, by showing that RS-GNN achieves significant16

improvements over established baselines on a suite of eight benchmarks.17

1 Introduction18

In the age of massive data, having access to tools that can select exemplar data points representative19

of an entire dataset is of crucial importance. Representative selection (RS) [35], finding a small subset20

of exemplars from an unlabeled dataset that transmits maximal information for a certain objective,21

has numerous applications in summarization, active learning, data compression, model training cost22

reduction, and many other domains (see, e.g., [8, 63, 78, 106, 114, 24, 66, 34]).23

We first study the computational complexity of a specific but widely-applicable formulation of the24

RS problem, where we attempt to find a fixed-size subset of representative exemplars from a dataset25

that can be used to train a model with the best possible accuracy on the entire dataset. We show it26

is impossible to provide a polynomial-time RS algorithm with an approximation factor better than27

ω(n−1/poly log log n), unless the Exponential Time Hypothesis (ETH) fails. ETH is a widely-believed28

assumption in the domain of parameterized complexity which states that the 3-SAT problem cannot be29

solved in subexponential time in the worst case. Note that ω(n−1/poly log log n) is almost polynomial,30

ruling out the existence of any constant approximation or even poly-logarithmic approximation.31

Our subconstant hardness result is of particular importance because several previous works find32

representatives by optimizing surrogate functions—these can be approximated well in theory—33

instead of the actual model accuracy. For instance, they consider a submodular surrogate function34

which can be approximated within a factor 1 − 1/e in polynomial time [47, 105, 83, 23, 31]. Our35

hardness result implies that, in the worst case, there is a significant gap between the optimum solution36
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of such surrogate functions and the actual accuracy of the model, rendering the surrogate functions37

poor estimators for the quality of the model. To the best of our knowledge, this is the first subconstant38

hardness result for the RS problem. This motivates us to deviate from directly defining proxy39

functions, and make use of learning-based approaches that discover the hidden structure of the data40

to guide the selection. This is in line with the recent attempts to solve computationally hard problems41

with neural networks, e.g., [107, 27].42

We therefore study a setting where besides having access to data point features, we also have access to43

additional information about the data points that can help guide the selection process. Specifically, in44

this paper we assume the extra information is in the form of a (homophilous) graph structure between45

the data points. We show empirically that with an appropriate modeling approach, the presence of46

such a graph structure can turn an originally hard RS problem into one that can be effectively solved.47

To this end, we develop RS-GNN: a learning-based model for Representatives Selection via Graph48

Neural Networks. We first demonstrate the effectiveness of RS-GNN for selecting representative49

nodes from datasets where a natural graph can be accessed, i.e., where edges may be specified by50

some natural property of the data (e.g., paper citations). Then, we demonstrate that even when51

a natural graph is not available, creating a similarity graph of the input data points and applying52

RS-GNN can still select high-quality representatives. We conduct experiments on eight datasets53

with different sizes and properties, and in both settings where we have and do not have access to54

a graph structure. Our results show that our model provides significant improvements over three55

kinds of baselines: 1) well-established baselines that optimize predefined surrogate functions, 2)56

learning-based methods utilizing graph clustering/pooling and 3) baselines based on active learning.57

Our main contributions are: 1) Providing a hardness result establishing that, under a standard58

computational-complexity assumption, RS is hard to approximate in polynomial time within any59

reasonable factor (this is the first subconstant hardness result for RS, to the best of our knowledge),60

2) Demonstrating empirically that the existence of additional information in the form of a graph61

structure can make hard RS problems effectively solvable, and 3) Developing RS-GNN for effective62

RS when one has access to such a graph structure and showing its merit for datasets with natural63

and/or similarity graphs.64

2 Related Work65

We group the existing work that relates to our paper as follows (see Appendix B for more).66

Active learning: In active learning [95, 26] we have an unlabeled set of data points that we can67

request to label. Since labeling is an expensive task, we usually have a limited budget, say, we can68

label up to k data points, which are then used to predict the labels of all data points. The goal is to69

select the set of data points to label in such a way as to maximize the accuracy of the final model. The70

data points can be iteratively selected in mini-batches (select a mini-batch, label the data points in the71

batch, update the model, and repeat), or in one-shot [54, 48, 19, 25, 5]. The latter is typically used72

when model training is time-consuming. RS can be used in the context of one-shot active learning,73

or for selecting the first mini-batch in the context of mini-batch active learning. In these contexts, a74

common approach to active learning is to use unsupervised surrogate functions such as KMediod75

[93] and MaxCover [53] to select a set of data points that maximally cover the dataset with respect to76

some objective. Moreover, active learning models have been developed for attributed graphs both77

for mini-batched labeling [17, 41] and for one-shot [109, 118]. We compare against many surrogate78

functions as well as one-shot graph active learning models in our experiments.79

Hardness of Clustering: The hardness problem studied in this work is distantly related to clustering,80

which has come in many flavors and shapes: flat vs. hierarchical, partitioning vs. overlapping, graph-81

based vs. embedding-based vs. time-series-based, supervised vs unsupervised, etc. The interested82

reader may refer to references (e.g., [50, 62, 39, 111, 58, 110, 32]) for further information. We do83

emphasize here, though, that the most similar clustering objectives to what we study here are the84

center-based clustering problems such as k-center and k-means. In these settings, the hardness results85

and known algorithmic guarantees (i.e., lower and upper bounds) are not far from each other. For86

example, while non-metric k-center cannot be approximated to within any constant, the metric special87

case (generalizing the ubiquitous Euclidean setting) admits a 2-approximation [45] and cannot be88

approximated to within better than a factor 2 [102]. On the other hand, the k-means objective admits89

a constant-factor approximation [4, 61] and the best hardness results are 1.0013 [7, 71]. In contrast90
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to all these results, we present a superconstant hardness for the RS problem, stressing the big gap91

between any optimizable surrogate function and the true objective.92

Graph clustering (community detection): Early approaches only considered the graph structure93

and disregarded the node features. These approaches typically learn an embedding for each node94

(e.g., the spectral features, random walk embeddings, or auto-encoder based embeddings) and then95

feed these node embeddings into a clustering algorithm such as kmeans (see, e.g., [18, 84, 46, 112]).96

Recently, approaches based on GNNs, which take both graph structure and node features into account,97

have gained more popularity and success [119, 91, 76, 104, 12, 60, 100]. RS and clustering are two98

highly related tasks: many models developed for RS can (in theory) be used for clustering and vice99

versa. However, due to the distinct properties of the two tasks, a model that works well for one task100

may not necessarily work well for the other. While our main focus is on RS, we also experiment with101

graph clustering and compare against several existing approaches.102

3 Notation & Problem Definition103

We use bold lowercase letters to denote vectors and bold uppercase letters to denote matrices. Let104

xi represent the ith element of x and Mi represent the ith row of M . For a function f : A 7→ B105

and a subset A′ ⊆ A, we use f |A′ to denote the restriction of the domain of f to A′. For a dataset,106

we use V = {v1, . . . , vm} to represent the set of data points (of size m) and X to represent the data107

matrix, such that Xi corresponds to the features of vi. When data points have class labels, we use c108

to represent the number of classes. First, we define a general framework for Representative Selection109

(RS) as follows:110

Definition 3.1 (RS). Given a set of data points V , their features X , a number 0 < k ≤ |V|, and a111

utility function u : 2V 7→ R, the representative selection problem is to select a subset S ⊆ V of k112

representatives that maximize the utility u(S).1113

The applicability and tractability of an RS problem depends on the utility function, u. Intuitively, u114

should capture the usefulness of the subset S as a representative of V; more precisely, if there is a115

particular application of the full dataset V , u quantifies the degree to which S can be used instead.116

This can vary with the particular application considered; in this paper we are mostly concerned with117

a particular utility model that associates representativeness with learnability. In the Representative118

Selection for Learning (RSL) problem, we get to see the labels of the selected representatives, based119

on which we aim to train a classifier with highest predictive performance on the entire dataset.120

Definition 3.2 (RSL). Let V be a set of data points with observed features X and with labels Y121

generated from an oracle function φ∗ : V 7→ {1, . . . , c}, and Φ be a class of predictor functions (not122

necessarily containing φ∗). Given V , X , Φ, y, and a number 0 < k ≤ |V|, the goal of RSL is to123

select a subset S of k representatives from V such that training a classifier φ ∈ Φ based on X and124

Y |S maximizes the normalized accuracy of φ on the entire set V .125

The model class Φ defines a suitable inductive hypothesis for the learning problem so that RS is126

well-defined. The predictor φ is chosen to maximize the normalized accuracy, defined as Acc =127

c(accuracy − 1/c), on the entire dataset; in other words it is a transductive learning problem [38].128

RSL is a natural problem that has multiple real-world applications in dataset selection, active learning,129

efficient ML and other areas (see section 7 for examples). Further, it can be expected to correspond to130

a general notion of the representativeness of a subset, even outside a learning use case. In the rest of131

this paper we will focus on this version of the RS problem, and defer generalizations to other utility132

models to future work.133

4 Theoretical Findings: Hardness Results for RSL134

We describe a theoretical finding that explains why the common practice of hand designing and135

optimizing surrogate functions may not be a good approach for RSL. In Definition 3.2, let u(S) =136

Acc(φ(S)) represent the normalized accuracy of the classifier φ when trained on a subset S of data137

points. Let S∗ = arg maxS u(S) be the optimal set of representatives. Ideally, one would optimize138

u(S) and find S∗. This may, however, be impossible without a-priori having access to the labels for139

1Note that V is implicit in the definition of u, hence in the definition of RS.
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all data points. Alternatively, most existing works on RSL (and RS in general) focus on defining an140

intuitive surrogate function Ω and find a solution SΩ by optimizing Ω(S) in the hope that u(SΩ) is a141

good approximator for u(S∗). In this section, we establish an inapproximability result demonstrating142

that u(SΩ) may not be a good estimator of u(S∗) for any polynomial-time-computable surrogate143

function Ω. We do this by showing that there are naturally defined learning tasks for which there144

exists a significant gap between u(SΩ) and u(S∗).145

We start by studying the computational hardness of RSL on an end-to-end binary classification146

task, from which the aforementioned claims follow. We say an RS algorithm A (e.g., optimizing147

a surrogate function) approximates the optimal solution with an approximation factor α if we can148

establish that u(SA) is within a multiplicative factor α of the optimal solution u(S∗) for any learning149

problem, where SA is the output of the RS algorithm.150

Under the Exponential-Time Hypothesis (ETH) assumption2, we show that there is no polynomial-151

time RS algorithm with an approximation factor better than ω(n−1/poly log log n). In other words,152

we show that there is an instance of RSL for which the gap between u(SA) and u(S∗) for any153

polynomial-time RSL algorithm A is at least ω(n−1/poly log log n), unless ETH fails. A similar154

approximation gap exists between the best polynomial-time and best exponential-time algorithm. Note155

that ω(n−1/poly log log n) is almost polynomial, ruling out the existence of any constant approximation156

or even poly-logarithmic approximation. Also note that the best solution may not give 100% accuracy,157

nor does it necessarily match the accuracy obtained by using all labels (since we only use k).158

Definition 4.1 (Fit-or-Not (FoN) Learning Problem). We have m data points and n binary features.159

Each feature is associated with one of two types: red or blue. The types are generated independently160

and uniformly at random, they are consistent across data points, and are hidden from the algorithm.161

Each data point has value 1 for two features and 0 for the rest. The label of a data point is 1 if the162

type of its features of value 1 are the same, and the label is 0 otherwise. The goal is to maximize the163

normalized accuracy for all the data points given labels only on selected data points.164
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Figure 1: An instance of the FoN
problem with m = 10 data points
and n = 5 binary features.

Figure 1 visually presents an instance of the FoN problem. Each165

row represents a data point and each column represents a feature.166

There are m = 10 data points, each having n = 5 binary167

features. Each data point has a value of 1 exactly for two of168

the features, and a value of 0 for the rest. The types of the first169

and the third features are blue and the types of the other three170

features are red. These types are hidden from the algorithm.171

For the first data point, the two values of 1 are for the first and172

second features. Since these features have different types, the173

label for this data point is 0. For the second data point, however,174

the two values of 1 are for the first and the third features that175

have the same type, therefore the label for this data point is 1.176

The labels of the other data points are determined similarly.177

The goal of the algorithm is to select a subset with k < m data178

points in such a way that a model trained on the labels of those k179

data points makes accurate predictions for all the m data points180

(i.e. it generalizes well to the other (m− k) data points).181

FoN can be naturally framed as RSL by defining the components182

from Definition 3.2 as follows: let V be the set of m data points,183

X ∈ Rm×n be the features matrix, Φ be the class of models that correspond to the data generation184

process in Definition 4.1 (i.e. constructed from particular partitions of features into red/blue etc.),185

k be the budget for selecting representatives, and let the labels φ∗ be as defined above; the latent186

information consists of the types of the n features. The simplicity of FoN shows that RS is hard in a187

very broad form. The next theorem is the main result of this section.188

Theorem 4.2. There is no polynomial-time RSL algorithm for FoN with an approximation factor189

better than ω(n−1/poly log log n), unless the exponential-time hypothesis fails.190

2A widely-believed assumption (e.g., see [2, 15, 16, 22, 21, 28, 56, 59, 79, 80]) in the domain of parameterized
complexity which states that 3-SAT cannot be solved in subexponential time in the worst case.
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(a) (b) (c)

Figure 2: A t-SNE visualization of an instance of the FoN problem (the colors show the classes)
when using (a) the original features, (b) adding a graph context and applying graph convolution,
and (c) adding a graph context and applying a variant of RS-GNN to embed the nodes and select
representatives (the yellow stars represent the selected representatives).

To the best of our knowledge, this is the first subconstant hardness result for any RS problem.191

This is of particular importance because several previous works have chosen to optimize surrogate192

functions—these can be approximated well in theory—instead of the actual model accuracy. For193

instance, previous work considers a submodular surrogate function which can be approximated within194

a factor 1− 1/e in polynomial time [47, 105, 83, 23, 31]. Our hardness result implies the following.195

Corollary 4.3. In the worst case, there is a significant gap of ω(n−1/poly log log n) between u(S∗)196

and the solution of any polynomial-time approximable surrogate function that estimates u(S∗).197

The corollary follows because such surrogate functions can be optimized or approximated in polyno-198

mial time, but Theorem 4.2 shows that even for simple learning problems, approximating the accuracy199

is not possible in polynomial time (assuming the ETH); therefore, there are certain instances of the200

problem where optimizing for the surrogate functions does not optimize for the learning accuracy201

within the given approximation factor.202

It is worth noting that many ML tasks are (known to be) hard to optimize, hence surrogate loss203

functions are commonly used in the context of deep learning: For example, finding a linear classifier204

with minimum 0-1 loss is NP-complete [81], and convex relaxations of this loss are typically used as205

surrogates in practice. What we show in this section is that fairly simple and natural instances of the206

representation selection problem are not only NP-complete but also hard to approximate. Thus the207

optimal solution of any surrogate function will be far from the actual optimum. This gap is prominent208

especially when we disentangle the task of finding the set to label from the task of training a model.209

We will see in the next sections that combining the two remedies the problem and produces very good210

results, which is in line with the applicability of surrogate loss functions within deep learning models.211

5 RSL in Presence of a Graph Structure212

In the previous section, we established the hardness of RSL by finding a natural problem called FoN213

for which RSL is hard to approximate in polynomial time within any reasonable factor. The hardness214

of RSL motivates seeking additional information about the problem that may help better guide the215

selection process. We next study whether the presence of additional information can help tackle the216

hard RSL problem effectively. In particular, we study the case where the additional information is217

provided in terms of graph structure of the data points with some degree of homophily; that is, nodes218

belonging to the same class are more likely to be connected to each other than nodes belonging to219

different classes. We present an algorithm for doing RSL in this setting and provide an empirical220

study and leave a theoretical analysis of this setting as well as settings with other types of additional221

information available as future work.222

Let us start by providing a visual understanding of the FoN problem. We construct a version of the223

FoN problem with m = 1000 data points n = 10 features, where we assume the first 5 features224

have type red and the next 5 features have type blue. For each data point, we select two of its225

features uniformly at random and set their values to a number from [0.9, 1.0] (other values are 0).226

In Figure 2(a), we present a visualization of the data points using t-SNE [101], where the colors227

represent the classes. From the visualization, we observe that there are 45 dense blocks of nodes228

(each having the same label) corresponding to
(

10
2

)
different ways of selecting the position for the229
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non-zero elements. The blocks are scattered in such a way that it is difficult for an RSL algorithm to230

select a small subset such that a model trained on the labels of the nodes in that subset generalizes231

well to the other data points.232

We now consider a variant of the FoN problem where an additional homophilous graph structure is233

available among the data points.234

Definition 5.1 (GFoN). GFoN is a variant FoN where for each pair of data points we add an edge235

between them with probability p if they belong to the same class and p′ if they belong to different236

classes. Letting p > p′ ensures the graph has some degree of homophily.237

A popular modeling choice to use when graph structure is available are graph convolution operations,238

where the features for each node are replaced by a weighted average of the features of their neighbors,239

with weights proportional to the degrees. If we apply a graph convolution operation on GFoN with240

p = 0.05 and p′ = 0.01, we get the updated node features in Figure 2(b). One can observe that241

the nodes from the two classes have a high overlap and so any RSL algorithm may still fail. To242

understand why this happens, consider four data points whose non-zero values are in positions 1 and243

2, 9 and 10, 1 and 9, and 2 and 10 respectively. The first two nodes will have a label of 1 and the244

other two nodes will have a label of 0. However, if we disregard the node degrees, aggregating the245

first two nodes will give the same representation as aggregating the second two nodes.246

According to Figure 2(b), in presence of a graph structure, a naive application of graph convolution247

may not necessarily work best, and motivates the development of better modeling techniques. We248

show in our experiments that this also holds for many existing graph clustering/pooling approaches.249

To better leverage the graph, in the next section we develop an approach that works by learning a250

mapping of the data points to a latent space where 1- we can group the nodes and select representatives251

that cover groups of nodes, and 2- we can better distinguish nodes belonging to each class. Figure 2(c)252

shows a t-SNE visualization of the data points in the latent space and the selected representatives.253

One can observe that with appropriate modeling, the presence of a homophilous graph structure turns254

the provably hard FoN problem into an RSL problem that can be effectively solved.255

We next describe our approach for taking advantage of the graph context in improving RSL. In our256

experiments, we show that even when such a graph is not available, a similarity graph of the input257

node features may still be quite effective. Our theoretical and empirical results motivate obtaining or258

constructing graph contexts for RSL problems when possible.259

6 RS-GNN: A Representation Learning-based Model for RSL260

In this section we develop RS-GNN, a representation learning-based approach for RS via GNNs.261

We start with defining notation and provide necessary background. We denote an attributed graph262

as G = {V,A,X} where V = {v1, . . . , vm} represents the set of nodes, A ∈ Rm×m represents the263

adjacency matrix, and X ∈ Rm×n represents the matrix of node features (m nodes and n features).264

Graph Neural Networks (GNNs) encode graph-structured data in continuous space [20]. Graph265

convolutional networks (GCNs) [67] are a powerful variant of GNNs. Let G = {V,A,X} be266

an attributed graph, Â = A + I be the adjacency matrix of G with self-loops included, and D267

be the degree matrix of Â, where Dii =
∑

j Âij and Dij = 0 for i 6= j. The lth layer of268

an L-layer GCN model with parameters ΘΘΘ = {W (1), . . . ,W (L)} can be defined as: H(l) =269

σ(D−
1
2 ÂD−

1
2H(l−1)W (l)), where H(l) represents node embeddings in the lth layer (H(0) = X),270

W (l) is a weight matrix, and σ is an activation function. In the rest of the paper, we use GCN(G;ΘΘΘ)271

to show the application of a GCN function with parameters ΘΘΘ on a graph G.272

Deep Graph Infomax (DGI) [103] is an approach for unsupervised representation-learning in273

attributed graphs. Given an attributed graph G, in each iteration DGI creates a corrupted graph G′274

from G. Then, it computes node embeddings H and H ′ for the two graphs by applying a GNN275

model on them, and a summary vector s based on the node embeddings H . Finally, a discriminator276

is simultaneously trained to separate the node embeddings of the original graph (i.e., H) from those277

of the corrupted graph (i.e., H ′) based on the summary vector s. We describe the details of each step278

later when we define our final model.279
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6.1 Representative Selection via GNNs280

An attributed graph G = {V,A,X} has two modalities, the node features X and the graph structure281

A. To be able to exploit both modalities in selecting good representatives, we employ a function282

EMB that combines the two modalities into a single embedding matrix of the graph. Concretely,283

EMB(G) = H , where H ∈ Rm×d and d represents the embedding dimension. We also employ a284

differentiable function SEL that receives H as input and selects k nodes as representatives. That is,285

SEL(H) = S. The two functions are optimized in a multi-task setting with the loss function L =286

LEMB +λLSEL, where LEMB encourages learning informative node embeddings and LSEL encourages287

selecting good representatives. One can create different RSL models with different choices of EMB,288

SEL, LEMB and LSEL. GNNs have prove effective in learning node embeddings, so we use GNNs289

as our embedding function EMB. For LEMB, we use the DGI objective which has shown to provide290

high-quality embeddings in unsupervised settings. For SEL, we consider a representative embedding291

matrix R ∈ Rk×d with learnable parameters where R is initialized randomly and Rj represents the292

embedding for the jth representative. We let: LSEL =
∑

i minj(Dist(Hi,Rj)), where Dist(Hi,Rj)293

is the distance between the ith node’s embedding Hi and the jth representative’s embedding Rj . We294

use Euclidean distance as the distance function. We select the representative corresponding to each295

Rj by finding the closest node embedding from H to Rj , i.e., argmini(Dist(Hi,Rj)).296

Algorithm 1 The training procedure of RS-GNN.
Input: G = (V,A,X), k

1: Initialize R, ΘΘΘ, and U
2: for epoch=1 to #epochs do
3: G′ = (V,A, shuffle(X))
4: H = GCN(G;ΘΘΘ), H ′ = GCN(G′;ΘΘΘ)
5: s = sigmoid( 1

n

∑
i Hi)

6: p = bilinear(H, s;U), p′ = bilinear(H ′, s;U)
7: LEMB = −

∑
i(log(pi) + log(1− p′i))

8: µµµ = 1
n

∑
i Hi, ζζζ = ‖H −µµµ‖

9: H̃ = CenterNorm(H) = (H −µµµ)/ζζζ

10: LSEL =
∑

i minjDist(H̃i,Rj)
11: L = LEMB + λLSEL

12: Compute gradients for L, upd. params.
13: Let R̂ and Ĥ be the representative and normalized

node embeddings with minimum L during training.
14: for j=1 to k do
15: The jth representative = argminiDist(Ĥi, R̂j)

With the above loss function, the model297

can trivially reduce LSEL by making the298

values in H arbitrarily small. That is be-299

cause multiplying H by a small constant300

may not change LEMB substantially, but it301

can make the distances between the nodes302

arbitrarily small, resulting in a low value303

for LSEL even for a random representative304

embedding matrix R. We next describe a305

normalization scheme, CenterNorm, that306

is applied to H before H is used, which307

helps avoid this problem.308

CenterNorm: As we show in Ap-309

pendix C, using the DGI loss function re-310

sults in corrupted node embeddings that311

form a dense cluster in some part of the312

embedding space, and node embeddings313

(from the actual graph) that arrange them-314

selves in subclusters around (and outside)315

this dense cluster of negative examples.316

Based on the this observation, we propose317

an `2 normalization of the node embeddings in H with respect to the center of the node embeddings:318

µµµ =
1

n

∑
i

Hi, ζζζ = ‖H −µµµ‖, H̃ = (H −µµµ)/ζζζ, (1)

where µµµ is the center of the embeddings H , ζζζ is the `2 norms of the nodes with respect to the center,319

and H̃ represents the normalized embeddings. With CenterNorm, the model can no longer decrease320

LSEL simply by making the values H smaller. Note that since the embedding clusters in H are at321

a large angle from each other (cf. supplementary material), `2 normalization has a low chance of322

collapsing two clusters. Furthermore, `2 normalization helps bring the nodes within one cluster closer323

to each other, which helps in identifying clusters and selecting representatives.324

The Final RS-GNN Model: The full RS-GNN model is described in Algorithm 1. The input is an325

attributed graph G = (V,A,X) and a number k corresponding to the number of representative nodes326

that must be selected from the graph. The model initializes R (the representative embeddings), ΘΘΘ327

(the GCN parameters), and U (the parameters for the DGI discriminator). Lines 3 to 7 compute node328

embeddings H using a GCN 3 model and compute a DGI loss as LEMB. Here, bilinear(H, s;U) =329

3While we use GCN for direct comparability to existing work, note that one can use any other GNN model
for RS-GNN. For example, for the FoN problem in Figure 2(c), we used a variant of the GraphSage [49] model
as it better matched the problem.
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sigmoid(HTUs) where HT indicates the transpose of H . Lines 8 and 9 apply CenterNorm. Lines330

10 to 12 compute LSEL and then L and update the parameters accordingly.331

We keep track of the epoch with minimum joint loss L. Let R̂ and Ĥ be the corresponding332

representative and normalized node embeddings in the best epoch. We select the jth representative to333

be the node whose normalized embedding is closest to the jth representative embedding. Lines 13 to334

15 select the representatives based on R̂ and Ĥ .335

7 Empirical Results336

We describe our baselines, datasets, and metrics, and defer implementation details to supplementary337

material4.338

Baselines: We compare against a representative set of baselines from different categories, as339

described below. The details for each baseline can be found in Appendix E. Random: Selects k340

nodes uniformly at random. Popular: Selects the k nodes with the maximum degree from the341

graph. Surrogate functions on node features: We test a representative set of surrogate functions:342

KMedoid, KMeans, Farthest First Search (FFS) [114] and (Greedy) MaxCover [53]. For KMeans, we343

select the closest node to each cluster center as a representative. For FFS and MaxCover, we select344

representatives sequentially. In FFS , the next representative is the node farthest away (by Euclidean345

distance) from the closest representative in the current set. In MaxCover , the next representative346

is the node that increases the coverage of the non-selected nodes the most. For MaxCover, we347

experiment with RBF kernel and cosine similarities; we use MC-RBF and MC-Cos to refer to the348

two versions respectively. Note that the sequential nature of FFS and MC makes them less amenable349

to parallelization. Surrogate functions on node embeddings: We use similar functions as above but350

apply them on DGI node embeddings as opposed to on the initial node features. Note that when we351

run these baselines using DGI embeddings as context, their selections are informed by both node352

features and the graph structure. Graph clustering/pooling/active learning: We compare against a353

number of graph clustering/pooling/active learning approaches from different categories. Specifically,354

we compare against MinCut [11] which is a well-established pooling approach, FeatProp [109] which355

is successful graph active learning approaches, SDCN [12] which is a well-established auto-encoder356

based graph clustering model, EGAE [36] and GCC [36] which are recent joint representation357

learning and clustering approaches, and DMoN [100] which is a state-of-the-art graph clustering358

approach based on modularity maximization.359

Datasets: We use eight established benchmarks in the GNN literature: three citation networks namely360

Cora, CiteSeer, and Pubmed [94, 55], a citation network named OGBN-Arxiv [55] which is orders of361

magnitude larger than the previous three, two datasets from Amazon products (Photos and PC) [97],362

and two datasets from Microsoft Academic (CS and physics) [97]. Supplementary material offers a363

more detailed description of datasets and their statistics. Our datasets have a wide range in terms of364

the number of nodes (from 2K to 170K), edges (from 4.5K to 1.1M), features (from 100 to 8.5K) and365

classes (from 3 to 40).366

Measures: We measure the quality of the selected representatives S ⊆ V using the following367

transductive semi-supervised node-classification problem. We train a GCN model on the dataset368

where the parameters of the GCN are learned only based on the labels of the nodes in S. Note that369

this GCN is completely independent of the internal GCN model used in RS-GNN. We randomly split370

the remaining nodes into validation and test sets. The validation set is used for early stopping. The371

classification accuracy on the test set is used as the metric for measuring the quality of the selected372

representatives. Considering a validation set for early stopping reduces the chances of overfitting for373

the classifier and makes the reported test accuracy mainly a function of the quality of the selected374

representatives.375

RSL in the Presence of a Graph Structure: The results are presented in Table 1. For the results376

in this table, we set k for each dataset to be 2c, where c represents the number of classes. We377

found this to be a small enough number for a meaningful comparison of the quality of the selected378

representatives 5, and high enough for the classification GCN model to learn appropriate functions of379

4The code is available at: https://github.com/google-research/google-research/rs_gnn
5Note that if k ≈ n, all models may perform equally well.
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Table 1: For each dataset, each algorithm selects 2c representatives. Then, we train a GCN model
on the labels of the selected representatives. The reported metric is the test accuracy of the GCN
models. Bold numbers indicate statistically significant winner(s) following a t-test (p-value=0.05).
The color-codes and symbols represent C surrogate functions on features, < surrogate functions on
embeddings, and ¦ attributed graph clustering/pooling or active learning approaches.

Selector Cora CiteSeer Pubmed Photos PC CS Physics Arxiv Avg.

Random 49.1±6.9 33.1±8.3 52.0±8.1 70.2±6.4 65.4±6.1 72.9±5.0 73.6±6.8 49.0±1.4 58.2
Popular 59.2±1.3 35.5±0.8 63.3±0.3 34.9±0.5 49.9±2.1 73.1±1.1 50.5±0.0 31.3±0.8 49.7

C KMedoid 53.7±5.4 40.3±2.8 53.2±1.0 65.8±1.2 66.9±1.8 51.8±1.0 66.6±1.6 43.9±1.5 55.3
C KMeans 32.5±5.8 35.4±1.2 50.6±0.5 72.5±0.9 70.9±1.0 66.5±0.5 73.0±1.4 48.4±0.5 56.2
C FFS 48.5±8.0 39.3±6.8 43.1±4.9 80.0±5.0 71.5±3.4 54.6±2.2 76.6±2.8 45.2±0.8 57.3
C MC-RBF 45.5±2.7 25.8±3.7 53.0±0.2 78.4±1.2 65.5±0.9 66.4±1.2 58.1±0.3 51.4±0.6 55.5
C MC-Cos 49.7±9.5 50.2±3.1 66.6±0.5 77.2±1.0 74.0±3.7 87.3±1.4 81.3±3.4 47.6±1.6 70.0

< KMedoid 48.4±4.4 34.1±1.9 60.9±5.3 81.5±2.6 69.8±3.4 82.5±2.9 81.2±7.0 OOM —
< KMeans 62.6±9.3 42.7±6.3 60.5±6.3 83.6±2.9 74.8±2.7 86.9±1.8 90.6±2.4 51.2±1.0 69.1
< FFS 62.6±4.5 50.4±5.7 46.7±7.2 73.4±5.7 63.5±6.4 84.8±5.3 83.4±5.0 48.6±2.2 64.2
< MC-RBF 66.3±2.6 35.3±4.5 54.9±5.3 37.4±3.7 50.7±2.5 65.2±1.2 59.8±5.1 41.2±1.6 51.4
< MC-Cos 67.3±5.2 49.0±4.1 67.3±1.1 84.4±1.0 74.0±3.7 87.3±1.4 81.3±3.4 47.6±1.6 70.0

¦ MinCUT 51.9±7.5 37.3±8.0 59.5±6.1 14.4±7.5 18.3±8.7 85.5±1.4 86.0±3.3 32.4±5.2 48.2
¦ FeatProp 56.6±1.7 37.8±1.6 65.2±0.6 78.2±1.8 68.5±1.1 74.7±0.3 81.4±0.6 47.8±1.0 63.8
¦ SDCN 41.6±9.5 33.8±9.3 47.8±8.5 61.0±10.8 54.2±8.7 66.4±6.7 77.5±9.2 38.4±4.4 52.6
¦ EGAE 64.4±3.8 45.0±5.8 57.7±5.1 83.5±3.0 75.4±3.2 79.9±3.2 80.4±4.0 50.6±1.0 67.1
¦ GCC 68.7±2.2 49.3±6.0 63.9±5.1 84.2±1.4 72.1±2.1 85.8±1.5 89.6±0.9 52.1±1.4 70.7
¦ DMoN 58.0±7.1 40.5±7.4 55.3±7.5 78.6±9.2 70.3±3.3 84.3±1.4 85.9±3.8 52.5±1.9 65.7

RS-GNN 72.4±3.7 54.7±3.9 65.8±3.0 86.3±1.4 74.3±1.7 89.3±0.8 90.0±2.6 52.6±1.2 73.2

the data. Since c is different for each dataset, making k a function of c also provides the opportunity380

to compare performance not only in terms of variation in the datasets, but also in terms of variation in381

the number of selected representatives.382

RS-GNN performs well across all datasets and consistently outperforms (or matches) the baselines383

(with the exception of Pubmed). It has a low variance across different runs making it a reliable model.384

Among the surrogate functions, MC-Cos and KMeans perform best. We found FFS to be sensitive385

to outliers. We also found it difficult to select a set of hyperparameters for MC-RBF that work well386

across datasets. Among graph clustering/pooling and active learning approaches, we found GCC to387

perform best and be the only model that (overall) outperforms surrogate functions when applied on388

DGI embeddings. Many of the other graph clustering/pooling or active learning approaches even fall389

short of the MC-Cos model when applied on the node features alone, thus showing the importance390

of developing appropriate models for taking advantage of the graph structure and confirming our391

finding in Figure 2. MinCut produced degenerate solutions for Photos and PC datasets in many runs392

(assigning all nodes to one cluster), hence performing poorly on them.393

More results, analysis, and visualizations is provided in Appendix A.394

8 Conclusion395

In this paper, we studied the representative selection (RSL) problem theoretically and empirically.396

We proved new hardness results showing it is impossible to provide a polynomial-time algorithm for397

RSL with an approximation within any reasonable factor, unless the exponential time hypothesis fails.398

The hardness result explains the significant gap between the accuracy of models trained on optimal399

representatives and the widely-used surrogate functions for RS problems, and, in turn, justifies new400

techniques to solve this problem. In light of this result we proposed RS-GNN to optimize the RSL401

task via graph neural networks, and showed its effectiveness on a suite of different datasets and tasks.402
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A More results718

A.1 Selecting More Representatives719

We already presented results for the case where we select 2c representatives from each dataset, where c720

is the number of classes. Here, we present more results for the case where we select 5c representatives721

from each class. We limit our baselines to the ones that were either more competitive/informative722

or took less time to run. The results are in Table 2. We can observe that the performance for all723

models improves when more representatives are selected. We can also observe that the gap between724

the models shrinks when more representatives are selected (even the random baseline now shows725

a competitive performance). Nevertheless, RS-GNN shows a similar trend as when we selected 2c726

representatives and outperforms the baselines when averaged across datasets.727
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Table 2: For each dataset, each algorithm selects 5c representatives. Then, we train a GCN model on
the labels of the selected representatives. The reported metric is the test accuracy of the GCN models.
Surrogate function selectors mark in blue use DGI embeddings.

Selector Cora CiteSeer Pubmed Photos PC CS Physics Arxiv Avg.

Random 66.3±4.6 47.3±6.6 62.0±8.3 84.0±3.5 76.8±3.4 83.9±2.3 84.4±5.8 54.6±1.2 69.9
Popular 64.1±0.6 43.2±1.4 63.4±0.9 43.9±1.1 54.1±1.4 78.6±0.5 50.5±0.0 42.6±1.4 55.0

KMedoid 62.2±1.3 42.1±3.1 60.8±0.3 78.8±0.6 74.4±1.2 63.9±1.7 64.3±0.6 50.6±0.5 62.1
KMeans 66.7±1.1 53.8±1.3 71.6±0.5 84.8±1.0 81.4±0.7 76.7±1.0 80.6±0.3 56.8±0.3 71.6
MC-Cos 71.3±2.8 59.0±2.8 64.8±0.3 87.5±0.4 78.3±0.7 88.4±0.2 92.4±0.4 56.2±0.5 74.7
KMeans 74.9±3.1 54.3±4.8 69.3±3.2 89.4±1.3 82.0±1.4 89.2±0.8 92.1±0.7 55.1±1.1 75.8
MC-Cos 75.8±1.7 59.8±2.5 70.6±2.4 90.0±1.2 82.3±1.1 89.4±0.8 86.1±1.9 55.8±0.7 76.2

MinCUT 66.8±4.3 48.7±6.6 69.0±4.2 16.7±8.1 16.5±10.2 88.6±1.2 92.3±1.0 55.3±7.5 56.7
DMoN 70.1±3.8 54.9±4.6 70.2±4.0 86.7±2.4 74.8±5.8 89.7±0.7 90.9±1.8 57.1±1.0 74.3

RS-GNN 77.3±1.9 62.7±2.3 68.7±2.4 90.6±0.5 83.0±1.6 90.1±0.6 92.4±0.8 56.6±1.2 77.7

A.2 Results: RSL in the Absence of a Graph Structure728

In several applications, a natural graph may not be available. For semi-supervised node classification,729

it has recently been shown that even without a natural graph, one can still leverage GNNs by learning730

both a graph structure and GNN parameters simultaneously [33]. We extend the aforementioned731

results to the RSL problem. In particular, we assume we have access only to the node features of our732

datasets, and not to their graph structures. The baselines select representatives only based on the733

node features. For RS-GNN, we first create a kNN similarity graph between the nodes and then run734

the model on the node features and the created graph. The kNN graph is computed once and then735

fixed during training; we leave further experiments with learning the graph structure as future work.736

Notice that all models have access to the same context.737

Once the representatives are selected, we train GCN classifiers on the labels of the selected nodes.738

For the baselines, we run our classification GCN in two settings: (1) the only edges in the graph are739

self-loops, (2) the edges in the graph are those from a kNN similarity graph. We call the former a740

multi-layer perceptron (MLP) and the latter a (kNN-)GCN. We report results for the top baselines741

that operate on node features only.742

Since operating without graph structure reduces the signal in the datasets, we allow each model to743

select 5c representatives for the experiments in this section. The results are presented in Table 5.744

The results show that selecting representatives using RS-GNN performs consistently well on all745

datasets and provides a boost compared to our baselines on many of the datasets. This confirms that746

even a similarity graph can still be helpful in improving RSL and that RS-GNN is an effective RSL747

algorithm for datasets where a graph structure is not available.748

A.3 Label Coverage749

Once a set of representatives are selected from a dataset, we define a specific class label to be covered750

if at least one of the representatives belongs to that class. We define label coverage as the percentage751

of class labels that are covered by the selected representatives. In Table 3, we report the label coverage752

results for the baselines and our model when selecting k = 2c representatives. RS-GNN performs753

well in terms of selecting points that cover all labels, with a coverage of 100.0% on four of the754

datasets. We observe an interesting phenomenon on the Arxiv dataset where (unlike other datasets)755

many baselines outperform RS-GNN in terms of label coverage (especially GCC), but RS-GNN756

shows a higher accuracy compared to the baselines. We believe this is due to the high label imbalance757

in this dataset (the largest class has 27321 examples and the smallest has 29 examples). Future work758

can extend our work for optimizing macro accuracy across classes.759

A.4 Visualization760

In Figure 3(a), we use UMAP [82] to visualize the learned embeddings and the selected representatives761

of RS-GNN for the Cora dataset. The colors in the plot represent the class to which the node or the762
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Table 3: Label coverage of different RS algorithms when k = 2c. The surrogate function selectors
marked in blue use DGI embeddings.

Selector Cora CiteSeer Pubmed Photos PC CS Physics Arxiv

Random 86.4±10.8 84.2±12.7 85.0±17.0 80.6±11.1 64.0±9.4 72.7±9.4 75.0±14.3 55.0±4.9

Popular 85.7±0.0 50.0±0.0 66.7±0.0 37.5±0.0 30.0±0.0 66.7±0.0 20.0±0.0 15.0±0.0

KMedoid 100.0±0.0 100.0±0.0 66.7±0.0 87.5±0.0 80.0±0.0 73.3±0.0 60.0±0.0 50.0±0.0

KMeans 100.0±0.0 83.3±0.0 100.0±0.0 75.0±0.0 70.0±0.0 46.7±0.0 60.0±0.0 65.0±0.0

FFS 84.3±11.3 88.3±9.5 71.7±12.2 93.1±8.6 74.5±9.4 36.3±3.4 67.0±9.8 63.0±2.3

MC-RBF 100.0±0.0 100.0±0.0 66.7±0.0 75.0±0.0 60.0±0.0 66.7±0.0 60.0±0.0 52.5±0.0

MC-Cos 97.1±5.9 98.3±5.1 100.0±0.0 75.0±0.0 80.0±0.0 66.7±0.0 100.0±0.0 55.2±0.8

KMedoid 79.3±11.8 58.3±10.1 93.3±13.7 100.0±0.0 80.0±9.2 83.7±7.0 87.0±14.9 OOM
KMeans 100.0±0.0 90.0±8.4 100.0±0.0 96.9±5.5 82.5±6.4 99.3±2.0 100.0±0.0 54.2±5.0

FFS 96.4±6.3 86.7±10.3 66.7±18.7 77.5±7.7 65.0±6.1 97.0±3.4 95.0±8.9 52.0±5.1

MC-RBF 71.4±0.0 81.7±5.1 66.7±0.0 75.0±0.0 60.0±0.0 52.0±4.6 85.0±8.9 28.1±4.0

MC-Cos 100.0±0.0 100.0±0.0 100.0±0.0 87.5±0.0 82.5±5.5 93.7±1.5 85.0±11.0 37.5±2.4

MinCUT 78.6±8.7 83.3±15.3 95.0±12.2 12.5±0.0 10.0±0.0 85.7±5.0 99.0±4.5 42.2±4.6

FeatProp 85.7±0.0 83.3±0.0 100.0±0.0 100.0±0.0 70.0±0.0 60.0±0.0 80.0±0.0 45.0±0.0

SDCN 85.7±9.5 86.7±10.5 93.3±14.0 82.5±8.7 67.5±10.4 72.7±9.1 87.5±10.4 56.7±2.9

EGAE 98.6±4.5 93.3±8.6 86.7±17.2 88.8±4.0 85.0±8.5 76.7±11.4 86.0±9.7 59.2±5.8

GCC 100.0±0.0 95.0±8.0 100.0±0.0 87.5±0.0 85.0±7.1 92.7±3.8 100.0±0.0 72.5±3.4

DMoN 90.0±9.4 90.0±10.0 91.7±14.8 87.5±5.7 76.0±9.9 90.3±4.6 97.0±7.3 60.2±6.3

RS-GNN 100.0±0.0 90.0±8.4 100.0±0.0 98.8±3.9 82.5±9.7 100.0±0.0 100.0±0.0 54.8±3.6
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Figure 3: (a) A UMAP visualization of the node embeddings and the selected representatives for
Cora (colors represent the class to which the nodes/representatives belong), (b) for CiteSeer, (c)
RS-GNN results on Cora for different values of λ.

representative belongs. According to the visualization. the nodes from each class have formed one763

or more dense clusters and our model has selected a representative from (almost all of) these dense764

regions of points. More visualizations can be found in supplementary material.765

A.5 Time Complexity and Memory Scalability766

Let m represent the number of nodes, d represent the average degree of nodes, n represent the767

number of features (and, for simplicity, the embedding dimension), and k represent the number768

of representatives. The time complexity of each epoch in Algorithm 1 is goverened by O(mnd)769

for computing graph convolusions, O(mn2) for computing node projections and bilinear functions,770

and O(mnk) for assigning nodes to representatives. Overall, this gives a time complexity of771

O(mn(d + n + k)) for each epoch. For large datasets where a large number of representatives is772

needed (i.e. k > n and k > d), the time complexity becomes O(mnk). The memory complexity is773

O(mk) for constructing and storing the matrix of distances from each node to its representatives.774

When m and k are both large, Algorithm 1 may exhaust the accelerator memory due to its O(mk)775

complexity. To reduce the memory usage and allow for applying RS-GNN to such settings, we776

modify Algorithm 1 to Algorithm 2 (in the Appendix). The main modifications include: 1- as is777

common in the GNN scalability literature (see, e.g., [37]), we replace the GCN modules with a778
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Table 4: Ablation study results for RS-GNN.

Ablation Cora CiteSeer PubMed Photos PC CS Physics Avg.

NoNorm 61.6±7.7 41.5±3.5 59.6±4.7 82.5±2.1 71.3±2.8 86.6±2.4 90.8±1.5 70.6
ConstNorm 59.3±6.9 44.3±4.2 61.7±3.9 84.2±1.4 75.0±3.1 86.7±1.3 90.5±2.1 71.7
Full Model 72.4±3.0 54.7±3.9 65.8±3.0 86.3±1.4 74.3±1.7 89.3±0.8 90.0±2.6 76.1

Table 5: Classification accuracies when a graph structure is not provided as input. Selecting 5c repre-
sentatives. Bold numbers indicate statistically significant winner(s) following a t-test (p-value=0.05).

Selector Model Cora Citeseer Pubmed Photos PC CS Physics Avg.

Random MLP 41.9±2.9 37.4±4.0 51.9±5.0 57.5±4.0 55.2±4.4 76.1±2.7 76.7±5.2 56.7
Random GCN 57.7±4.1 57.7±4.5 59.6±4.6 79.2±3.4 71.8±4.4 84.8±2.2 86.0±2.9 71.0
KMedoid MLP 39.3±0.9 33.4±0.7 46.1±1.0 40.6±0.9 47.5±0.8 62.8±1.6 67.0±0.8 48.1
KMedoid GCN 52.5±1.4 57.4±0.8 55.0±0.7 72.3±0.6 63.4±1.8 66.2±2.9 70.8±0.3 62.5
KMeans MLP 42.4±0.9 40.1±1.1 58.5±1.3 70.0±1.0 63.7±0.8 68.5±0.7 77.4±0.3 60.1
KMeans GCN 56.5±0.8 55.9±0.8 72.7±0.3 80.9±0.6 75.8±0.6 80.0±0.4 83.7±0.8 72.2
FFS MLP 39.2±3.7 44.0±3.1 43.1±3.0 60.2±3.8 55.8±1.9 56.3±0.9 77.7±2.5 53.8
FFS GCN 56.9±2.6 62.3±3.7 48.8±3.9 80.7±2.0 74.8±2.5 59.8±2.5 84.0±2.1 66.8
MC-Cos MLP 46.5±2.2 47.5±2.3 52.1±0.7 54.0±2.4 58.2±1.2 83.0±0.5 86.8±0.7 61.2
MC-Cos GCN 62.0±1.7 63.0±2.5 59.3±1.3 79.5±0.5 75.4±1.1 87.6±0.3 92.8±0.3 74.2

RS-GNN GCN 64.6±2.4 64.3±2.1 65.1±3.0 82.2±2.0 75.5±2.1 88.3±1.6 89.9±1.9 75.7

SGC module [108] and pre-compute the graph convolutions F for the original graph, 2- we create779

corrupted graphs nCorrupt times and pre-compute the graph convolutions F ′ for the corrupted graphs,780

3- at the beginning of each epoch, we randomly select a subset F ′′ of F ′ to make the size match781

that of F , 4- we batch the data and compute the loss and gradients for each batch separately and782

then aggregate the gradients and update the parameters. Assuming the batch size is b, the memory783

complexity for Algorithm 2 reduces to O(bk) as each batch can be computed separately. Moreover,784

Algorithm 2 is also amenable to parallelization on multiple accelerators by distributing the batches785

across the accelerators.786

Note that computing the loss separately for each batch corresponds to approximating s and µµµ with787

the batch data as opposed to the entire data, but the approximation is expected to be close to the788

true value if the batch sizes are large enough. To this end, the batch size can be set to the largest789

number that does not exhaust the memory. We tested the Algorithm 2 version of RS-GNN on the790

Arxiv dataset when setting nCorrupt to 10 and b = m/8 (distributing over 8 accelerators). In terms791

of performance, we obtained an accuracy of 52.9 ± 1.6 (compared to 52.6 ± 1.2 for the original792

algorithm) showing that the approximations do not result in a performance degradation.793

A.6 Ablation Study: CenterNorm and the Value of λ794

We conduct an ablation study to verify the role of CenterNorm. To ablate CenterNorm, we run our795

model under two settings: (1) we do not normalize (we refer to this as “NoNorm”), and (2) we796

divide all the values in the embedding matrix by a constant number corresponding to the mean of the797

`2-norms of the embeddings (we refer to this as “ConstNorm”). According to the results in Table 4,798

our model benefits from CenterNorm and CenterNorm is more effective than ConstNorm because the799

per-node `2 normalization of CenterNorm helps bring the nodes within one cluster closer to each800

other which helps in identifying clusters and selecting representatives.801

To verify the sensitivity of RS-GNN to the value of λ used in equation ??, we ran RS-GNN on Cora802

with different values for λ. The results are presented in Figure 3(b). When λ = 0, the representatives803

will not receive gradients and hence the model ends up selecting random representatives. Therefore,804

the accuracy is quite low. For non-zero values of λ, we observe that the model is not highly sensitive805

to the value of λ and achieves good results for values in a large range. The model reaches its highest806

performance around λ = 0.001, and then the performance starts to slightly decrease for larger values807

of λ.808
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Table 6: Normalized mutual information (NMI) scores between the ground-truth labels of nodes and
their cluster assignments. We take the results of the baselines from [100]. Bold numbers indicate the
winners. We use — to indicate that the results were not reported (either because the model did not
converge, or because the model did not scale to the dataset, or because the model was not tested on
the dataset).

Selector Context Cora CiteSeer Pubmed Photos PC CS Physics Avg.

KMeans X 18.5 24.5 19.4 28.8 21.1 35.7 30.6 25.5
SBM A 36.2 15.3 16.4 59.3 48.4 58.0 45.4 39.9
MinCut X,A 35.8 25.9 25.4 — — 64.6 48.3 —
AGC X,A 34.1 25.5 18.2 59.0 51.3 43.3 — —
DAEGC X,A 8.3 4.3 4.4 47.6 42.5 36.3 — —
SDCN X,A 27.9 31.4 19.5 41.7 24.9 59.3 50.4 36.4
NOCD X,A 46.3 20.0 25.5 62.3 44.8 70.5 51.9 45.9
DMoN X,A 48.8 33.7 29.8 63.3 49.3 69.1 51.9 49.4

RS-GNN X,A 55.4±0.8 41.3±1.0 26.1±3.6 58.3±1.6 50.1±0.9 75.8±1.2 56.9±3.3 52.0

Attributed Graph Clustering: RS-GNN can also be used for attributed graph clustering: we cluster809

the nodes in each dataset into c groups (recall that c is the number of classes) by assigning each810

node to its closest representative. While our main motivation is RSL, for completeness we show the811

performance of our model for attributed graph clustering as well. We note that different works on812

attributed graph clustering use different settings that are not directly comparable (e.g., some works use813

the same hyperparameters for all datasets, whereas some other works optimize the hyperparameters814

for each dataset and report the best test performance). Since our setting is similar to that of [100]815

and the results for many models have been provided in that work, we compare RS-GNN against the816

model proposed in [100] and their baselines. This includes KMeans, SBM (this works by estimating817

[90] a constrained Stochastic Block Model [99] with given number of k clusters), MinCut, AGC818

[119], DAEGC [104], SDCN, NOCD [96], and DMoN [100].819

Table 6 shows a comparison of RS-GNN with the baselines in terms of the normalized mutual820

information (NMI) score (an established score for measuring and comparing clustering algorithms)821

between the cluster assignments and the node labels. From the results, we can observe that RS-GNN822

also shows a good performance for attributed graph clustering.823

B More Related Work824

Other works that are related to our work can be grouped as follows.825

Feature selection: RS and feature selection are transposed views of a similar problem when it826

comes to compressing or summarizing datasets. Both have been studied extensively via filter and827

wrapper methods: an evaluation based on final task performance or on some proxy metric such828

as correlation, redundancy, coverage (or more general submodular functions), or the distance of829

selected entities [73, 86, 13, 9] as well as their mutual information or correlation with the prediction830

labels [29, 85]. While these methods tackle the diversity of the sample set [1, 57, 116, 10], there has831

also been extensive attention on taking fairness constraints into account as well [69, 92, 72, 98, 6].832

Supervised data subset selection: Given a large dataset of labeled training examples, a class of RS833

models aim at selecting a small representative set from the dataset to reduce training time without834

substantially sacrificing model accuracy (see, e.g., [65, 64, 105, 63, 30, 88, 83]). For example, [65]835

aim at selecting a set of training data points such that a model trained on these examples generalizes836

well to the validation set and [83] aim at selecting a set of training data points whose gradients837

approximate the gradient of the full dataset. These models have been also applied to mini-batch active838

learning where a small set of labeled data points are assumed to be initially provided and then the839

next batches are selected based on pseudo-labels predicted by the model trained on the data available840

so far. While these models assume the data labels are available when selecting representatives, in this841

paper we assume no labels are provided as input.842

Graph pooling: A technique commonly used in graph representation learning (especially for learning843

a representation for the entire graph) is graph pooling [75], where the nodes of the graph are iteratively844
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coarsened into “super-nodes”. The parameters for the pooling operation are trained with the rest of the845

model parameters either to minimize a supervised loss (e.g., graph classification) or an unsupervised846

loss (e.g., graph reconstruction) [40, 43]. Graph pooling techniques can be classified into two847

categories: 1- clustering pooling (these are in the same vein as the graph clustering algorithms848

discussed earlier) and 2- node drop pooling. Clustering pooling approaches [113, 70, 115, 3, 11, 77]849

employ a differentiable graph clustering algorithm and consider each cluster to be a super-node;850

these approaches can be re-purposed for RS by selecting the node closest in the latent space to each851

super-node as a representative. Node drop clustering approaches [40, 74, 87, 117, 42] operate by852

dropping unimportant nodes and retaining the important nodes as the super-nodes. Graph pooling853

approaches have been mostly developed for smaller-sized graphs such as molecules that exhibit854

specific properties. For example, many of these approaches employ a GNN that assigns importance855

scores to each node, and then select the top-k most similar nodes. Such an approach assigns similar856

importance scores to highly similar nodes and results in sampling only from some parts of the graph.857

While this might be a reasonable approach for molecule classification tasks (as it makes the model858

focus on a few important sub-structures), it may not select a subset of the nodes that cover the entire859

graph (which is the desired property in our work). Nevertheless, in our experiments, we compare860

against several graph pooling approaches from both categories, both for RS and clustering tasks.861

C CenterNorm Motivation862

With the joint loss function used in the main text, the model can trivially reduce LSEL by making the863

values in the embedding matrix H arbitrarily small. That is because multiplying a small constant to864

H may not change LEMB substantially, but it can make the distances between the nodes arbitrarily865

small, resulting in a low value for LSEL even for a random representative embedding matrix R.866

One way to avoid the aforementioned problem is by normalizing the embedding matrix H before867

using it for selection. However, one should be careful about the choice of the normalization to avoid868

losing useful information. Before explaining how we normalize the embeddings, we describe a869

property of DGI embeddings that motivates our normalization.870

Figure 4(b) shows a UMAP plot of the DGI embeddings H for the nodes in the original graph of Cora871

and the embeddings H ′ for the nodes in a corrupted Cora graph (red). The H ′ embeddings form a872

large cluster that is mostly in between the H embeddings and the H embeddings form small size873

clusters that are placed around the large cluster of H ′. To understand why this happens, notice that874

when we shuffle the node features for creating corrupted graphs for DGI training, the node features875

of the neighbors of each node are a random subsample of the node features in the graph. Therefore,876

the GNN aggregation function applied on the projected node embeddings makes the embeddings go877

toward the mean of projected embeddings. This makes the corrupted node embeddings H ′ form a878

large cluster in the middle and the embeddings H be placed outside and around this cluster.879

Besides visual inspection, we also cluster the node embeddings H for Cora into 7 clusters using880

KMeans (7 is the number of classes in Cora; this provides good clusters with a normalized mutual881

information of 55.95 with the node labels). Then we compute the distance between each cluster882

center and the mean of these centers and obtain the following seven distances: 1.4, 1.2, 1.3, 1.2, 0.6,883

1.4, 1.5. All cluster centers are at a good distance from the mean and, with the exception of one884

cluster, they are at a similar distance from the mean. We then subtract the mean and compute the885

angle between the cluster centers. We observe that the minimum angle between two cluster centers is886

60.1 degrees and the average angle is 76.6 degrees.887

The above analysis motivates the CenterNorm normalization outlined in the main text. Furthermore,888

the analysis shows that DGI is a good candidate for RSL as it groups data points into small-sized889

dense clusters in the latent space, thus an RSL algorithm can select representatives from each of the890

dense clusters.891

D Proof of the Theorem892

Theorem D.1. There is no polynomial-time representative selection algorithm for FoN with an893

approximation factor better than ω(n−1/poly log log n), unless the ETH fails.894

21



Figure 4: A UMAP plot of the DGI node embeddings for the nodes in the original graph of Cora
(green) and the nodes in a corrupted Cora graph (red).

We start with two lemmas before proceeding to prove this result. We use (i, j) to represent a data895

point in the FoN problem with value 1 on features i and j.896

Lemma D.2. Let S be the set of data points selected by an RSL algorithm. Let (i, j) be a data point897

such that for all t we have (i, t) /∈ S, or for all t we have (t, j) /∈ S. Then the label of (i, j) is898

independent of the labels of S .899

Proof. Let S be the set of data points selected by an RSL algorithm. Let (i, j) be a data point such900

that for all t we have (i, t) /∈ S. This means that the labels of data points in S are independent901

of the type of feature i. Recall that the type of feature i is chosen independently and uniformly at902

random. Hence, conditioned on the labels in S , the label of (i, j) is 0 with probability 1/2 and 1 with903

probability 1/2. Similar argument holds when for all t we have (t, j) /∈ S.904

Lemma D.3. Let (i0, i1), (i1, i2), (i2, i3), . . . , (il−1, il) be a sequence of data points such that for905

all t ∈ {1, . . . , l} we have (it−1, it) ∈ S. Given the labels of the data points in S we can infer the906

label of (i0, il).907

Proof. Consider two data points (i, j) and (j, t). If the labels of both data points are 1, then the908

features i, j and t have the same type. Hence, the label of (i, t) is 1 too. If the labels of both of them909

are 0, then the type of features i and j are different, and the type of features j and t are different.910

Hence, the type of features i and t are the same, which means the label of (i, t) is 1. A similar911

argument shows that if either (i, j) or (j, t) has label 1 and the other has label 0, then the label of912

(i, t) is 0. Thus, knowing the labels of (i, j) and (j, t) determines the label of (i, t). Applying this913

inductively proves the lemma.914

Proof of Theorem 4.2. The proof goes by reducing the densest k-subgraph problem to FoN. In the915

densest k-subgraph problem, we have an unweighted graph G, and the goal is to find a subgraph of916

G with k vertices and the maximum number of edges. We say an algorithm is an α-approximation917

algorithm for the densest k-subgraph problem if it returns a subgraph with k vertices where the918

number of edges is at least α times that of the densest k-subgraph. It is known that there is no919

ω(n−1/poly log log n)-approximation polynomial-time algorithm for the densest k-subgraph problem920

unless ETH fails [80].921

Next, we show how to transform an input of the densest k-subgraph problem to an input of FoN,922

and then show how to transform an approximate solution for FoN to an approximate solution923

for the densest k-subgraph problem while only increasing the approximation factor by a constant.924

Therefore an ω(n−1/poly log log n)-approximation polynomial-time algorithm for the FoN implies an925

ω(n−1/poly log log n)-approximation polynomial-time algorithm for the densest k-subgraph problem,926

which does not exist unless ETH fails.927

Let G = (V,E) be an input to the densest k-subgraph problem.6 For each vertex in G we define928

a feature and for each edge in G we construct a data point. For each data point corresponding to929

an edge (u, v), the value of the features corresponding to vertices u and v are 1 and the value of all930

other features are 0. As defined in the FoN problem the type (red or blue) of each feature is chosen931

independently and uniformly at random.932

6Note that graph G is not an attributed graph, rather a simple graph which is an input to the densest k-subgraph
problem.

22



Let H = (VH, EH) be a densest k-subgraph of G and let F be a maximal spanning forest of H.933

Note that since there is no cycle in F, the number of edges in F is at most k − 1. Moreover, since934

F is a maximal forest of H, for each edge e in H, there is a path between the endpoints of e in F935

(otherwise we could add e to F). Hence, if we query the data points corresponding to the edges of F,936

by Lemma D.3, we can determine the label of all the edges in H, which is an |EH|
|E| fraction of all data937

points. This gives us a solution with Acc ≥ Ω
( |EH|
|E|
)
.938

Let S be the set of data points selected by an α-approximation RSL algorithm, and VS be the set939

of vertices adjacent to the edges corresponding to the data points in S. By Lemma D.2, if the edge940

corresponding to a data point has one (or two) endpoints in V \ VS , then the label of that data point941

is independent of the labels of S. Hence, the number of data points whose label is not independent942

of the labels in S is at most the number of edges induced by VS . We denote this edge set by ES .943

Recall that S is an α-approximate solution, i.e., |ES | = Ω(α|EH|). On the other hand, |S| ≤ k and944

hence |VS | ≤ 2k. One can decompose the induced subgraph of VS into
(

4
2

)
= 6 subgraphs each with945

k vertices, and pick the one with the maximum number of edges. This gives an Ω(α)-approximate946

solution to the densest k-subgraph problem.947

E Implementation Details948

Algorithm 2 Memory-Efficient RS-GNN.
Input: G = (V,A,X), k

1: Initialize R, ΘΘΘ, and U
2: F = GC(G), F ′ = []
3: for i=1 to nCorrupt do
4: G′ = (V,A, shuffle(X))
5: F ′ = concat(F ′,GC(G′))
6: for epoch=1 to #epochs do
7: F ′′ = subsample(F ′, len(F ))
8: ∇ = 0
9: for F (b),F (b′′) ∈ batch(F ,F ′′) do

10: H = WF (b) , H ′ = WF (b′′)

11: Compute LEMB based on H and H ′

12: µµµ = 1
n

∑
i Hi, ζζζ = ‖H −µµµ‖

13: H̃ = CenterNorm(H) = (H −µµµ)/ζζζ

14: LSEL =
∑

i minjDist(H̃i,Rj)
15: L = LEMB + λLSEL

16: Compute gradients for L and add to ∇
17: Update parameters based on∇
18: Let R̂ and Ĥ be the representative and normalized node

embeddings with minimum L during training.
19: for j=1 to k do
20: The jth representative = argminiDist(Ĥi, R̂j)

Baselines: For KMeans, we select the949

closest node to each cluster center as950

a representative. For FFS and Max-951

Cover, we select representatives se-952

quentially. In FFS , the next repre-953

sentative is the node farthest away (by954

Euclidean distance) from the closest955

representative in the current set. In956

MaxCover, the next representative is957

the node that increases the coverage of958

the non-selected nodes the most. Note959

that the sequential nature of FFS and960

MC makes them less amenable to par-961

allelization. Also note that when we962

run surrogate function baselines us-963

ing DGI embeddings as context, their964

selections are informed by both node965

features and the graph structure. For966

DMoN and MinCut models, we com-967

pute cluster centers by averaging the968

node embeddings with respect to the969

(hard) cluster assignments, and then970

select the closest point to each cluster971

center as a representative.972

We implemented our model and the973

baselines in Jax/Flax [14, 52] and974

used the Jraph library [44] for our975

GNN operations. Our experiments were done on a JellyFish TPU for all datasets except for the Arxiv976

dataset where we used a DragonFish TPU as the experiments with the Arxiv dataset require more977

memory. For our DGI model, we used a single-layer GCN model with SeLU activations [68]. For978

the experiments that had access to the original graph structure, we set the DGI hidden dimension to979

512 for all datasets except for the Arxiv dataset where we set it to 256 to reduce memory usage. For980

the experiments with no access to the original graph structure, we set the DGI hidden dimension to981

128 as there exists less signal in this case. We trained the DGI models for 2000 epochs both for our982

model and the baselines. For KMeans and KMedoid, we used the implementation in scikit-learn [89]983

and scikit-learn-extra7 respectively. To reduce the quadratic time complexity of MaxCover, we apply984

MaxCover on a k-nearest neighbors similarity graph in the input features/embeddings as opposed985

7https://github.com/scikit-learn-contrib/scikit-learn-extra
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Table 7: Dataset statistics.
Dataset Nodes Edges Features Classes

Cora 2,708 5,278 1433 7
Citeseer 3,312 4,536 3703 6
Pubmed 19,717 44,324 500 3
Amazon Photo 7,650 119,081 745 8
Amazon PC 13,752 245,861 767 10
Coauthor CS 18,333 81,894 6,805 15
Coauthor PHY 34,493 247,962 8,415 5
OGBN-Arxiv 169,343 1,157,799 128 40

to the full graph. We used different hyperparameters for the RBF kernel (in the case of MaxCover986

with RBF similarities) and kNN and reported the values that resulted in the best overall accuracy987

across models. For MinCUT and DMoN, we used the implementation from the DMoN paper. For988

our model, we set λ in the main loss function to 0.001 for all datasets. Also, for the experiments989

where a graph structure is not provided as input, to create a kNN graph we connect each node to its990

closest 15 nodes for all the datasets. For the one-shot graph active learning models, unfortunately we991

did not find the code to be able to test the models in our setting. Therefore, we For the graph active992

learning baseline, unfortunately we did not find source codes to be able to test them in our setting.993

Therefore, we re-implemented FeatProp [109] and included the results of our implementation in the994

experiments. For SDCN, EGAE, and GCC, we used the public codes released by the authors to select995

representatives.996

For the classification GCN model, we used a two-layer GCN model with PReLU activations [51] and997

with a hidden dimension of 32. We added a dropout layer after the first layer with a drop rate of 0.5.998

The weight decay was set to 5e−4. The GCN is trained based on the nodes in the selected set S of999

representatives. We randomly split the remaining nodes in (V − S) into validation and test sets by1000

selecting 500 nodes for validation and the rest for testing.1001

We ran all the experiments 20 times (except for Arxiv where we ran it 10 times) with different random1002

seeds and reported the mean and standard deviation of the runs. Our code will be released upon the1003

acceptance of the paper.1004

F Datasets1005

We used eight established benchmarks in the GNN literature. A summary of our dataset statistics1006

are provided in Table 7. The first three datasets are Cora, Citeseer, and Pubmed [94, 55]. These1007

datasets are citation networks in which nodes represent papers, edges represent citations, features1008

are bag-of-word abstracts, and the labels represent paper topics. The next two datasets are Amazon1009

Photo and Amazon PC [97]. These two datasets correspond to photo and computers subgraphs of the1010

Amazon copurchase graph. In these graphs, the nodes represent goods with an edge between two1011

nodes representing that they have been frequently purchased together. Node features are bag-of-word1012

reviews and class labels are product categories. The next two datasets are Coauthor CS and Coauthor1013

Physics [97]. These are co-authorship networks for the computer science and physics fields based on1014

the Microsoft Academic Graph respectively. The nodes in these two datasets represent authors, edges1015

represent co-authorship, node features are a collection of paper keywords from author’s papers, and1016

he class labels are the most common fields of study. Our last dataset is OGBN-Arxiv [55] which is1017

also a citation dataset similar to Cora, Citeseer, and Pubmed, but orders of magnitude bigger than the1018

three. The features in this dataset are average word embeddings of the paper abstracts.1019

G Limitations1020

We identify the following limitations with our current work:1021

• Both our model and baselines optimize for micro-average classification accuracy; optimizing for1022

macro-average classification accuracy may require extra terms in the loss function or architectural1023

modifications.1024
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• While optimizing for micro-average accuracy is common in various domains, it raises the risk of1025

being unfair to smaller sub-populations by not selecting any representatives from them. One must1026

be cautious when using our model or any other model that optimizes for micro-average accuracy1027

in applications when such a fairness is important.1028
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