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ABSTRACT

Solving partial differential equations (PDEs) efficiently is essential for analyz-
ing complex physical systems. Recent advancements in leveraging deep learning
for solving PDE have shown significant promise. However, machine learning
methods, such as Physics-Informed Neural Networks (PINN), face challenges in
handling high-order derivatives of neural network-parameterized functions. In-
spired by Forward Laplacian, a recent method of accelerating Laplacian computa-
tion, we propose an efficient computational framework, Differential Operator with
Forward-propagation (DOF), for calculating general second-order differential op-
erators without losing any precision. We provide rigorous proof of the advantages
of our method over existing methods, demonstrating two times improvement in ef-
ficiency and reduced memory consumption on any architectures. Empirical results
illustrate that our method surpasses traditional automatic differentiation (AutoD-
iff) techniques, achieving 2x improvement on the MLP structure and nearly 20x
improvement on the MLP with Jacobian sparsity.

1 INTRODUCTION

Partial differential equations (PDEs) play a pivotal role in understanding and predicting the behavior
of physical systems. While classical numerical methods have proven effective in some cases, they
can be prohibitively challenging when dealing with complicated problems, e.g., turbulence in fluid
dynamics [1] and high dimensional equations [2]. Recently, the advent of deep learning[3] has
spurred a wave of innovations in leveraging neural networks (NN) for numerical solutions of PDEs.
These NN-based approaches have been applied to various problems, including fluid dynamics [4; 5],
high-dimensional optimal control problems [6; 7], and quantum many-body problems[8; 9]. Notable
works, such as the Physics-Informed Neural Network (PINN)[4; 10; 11] and Neural Operator [12;
13; 14; 15], showcase the potential of neural networks in capturing the underlying physics of systems
governed by PDEs.

Among these works, the central idea is to parameterize the solution as a neural network, and optimize
this expressive network with the guidance from PDE. The ever-growing AutoDiff packages[16; 17;
18] enables convenient calculation of associated quantities such as residual losses and derivatives,
avoiding discretization errors in classical methods. However, unlike most computer vision or natural
language processing tasks in which first-order derivatives are sufficient for optimizations, in PDE-
relevant problems one has to deal with high-order derivatives. This raises a significant challenge as
common AutoDiff packages are computationally intensive under this circumstance[19; 20]. There
have been attempts to address this issue [21; 22; 23; 24]. However, they resort to either randomized
methods[21; 22] or numerical differentiation[23; 24], which introduce unsatisfying statistical errors
and are limited in problems where high precision is not demanded.

Recently, Li et al. [25] proposed a computational framework, Forward Laplacian (FL). This frame-
work is designed specifically for accelerating Laplacian operator computation and thus can sig-
nificantly boost the computation of Laplacian-relevant PDE like Schrödinger equation in quantum
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chemistry[8]. Remarkably, Forward Laplacian is proven to be precision-preserved as it introduces
no statistical errors at all. Consequently, it is natural to ask whether the idea of FL can be leveraged
for other PDEs associated with high-order derivatives computation.

To fill this gap, we develop a new computational framework named Differential Operator with
Forward-propagation (DOF). DOF shares a similar computational procedure as FL, yet can be ap-
plied to compute general second-order differential operators. We demonstrate that DOF outperforms
conventional AutoDiff methods in memory and computational cost by a large margin, both theoreti-
cally and practically. In practice, DOF can accelerate NN-based solvers across a wide range of PDEs
such as the non-homogeneous heat equation and Klein-Gordon equation.

The contribution of this paper is summarized as follows:

• We generalize the Forward Laplacian method and propose DOF to precisely compute arbi-
trary second-order differential operators of neural networks (DOF).

• We demonstrate that DOF improves computation efficiency and memory consumption si-
multaneously, regardless of the architecture of neural networks, both theoretically and em-
pirically. The improvement can be significant in common architectures like MLP.

2 METHOD

In PINNs and many other NN-based PDE solvers, the solution of a PDE, ϕ(x), is parameterized as
neural networks, ϕ(x) := ϕ(x; θ), where θ represent the NN parameters. These methods necessitate
computing the high-order derivatives of a neural network. It has been shown that standard AutoDiff
methods are not efficient for the high-order derivatives calculation[19; 20].

In this work, we focus on the calculation of the second-order differential operators, which have the
form

L : ϕ(x) →
∑

1≤i,j≤N

aij(x)∂
2
ijϕ(x) +

∑
i≤N

bi(x)∂iϕ(x) + c(x)ϕ(x). (1)

Here, aij , bi, c : RN → R are coefficients in the second order operator, and N is the input dimension
(the time variable is comprised in x for evolution equations). In practice, the first term dominates
the computation cost. Thus, for brevity and clarity, we will only focus on the case when bi ≡ c ≡ 0
in the following discussions. We always denote the symmetric matrix

(
aij(x)

)
i,j

as A(x).

2.1 FORWARD LAPLACIAN

In standard AutoDiff packages, the second-order operator calculation is based on the Hessian matrix
H = (∂ijϕ(x))i,j . We call those methods Hessian-based methods. They use multiple Jacobian
calculations to derive the Hessian matrix, resulting in a huge computation cost. Recently, Li et al.
[25] proposed a new computational framework, Forward Laplacian (FL), which primarily focuses
on accelerating the calculation of Laplacian, i.e., A ≡ IN . Below we briefly review this method.

FL computes the Laplacian with one efficient forward pass, avoiding redundant calculation in the
Hessian-based approach. Following the notation in Li et al. [25], we describe FL in a computation
graph G. The node set V = {vi|i = 0, 1, ...,M} represents the operations or variables used in a
neural network. We use the abbreviation i → j if there is a directed edge from vi to vj in G, and we
denote operations as F , e.g., vj = Fj({vi : i → j}) for all j ≥ 0. Notice that the node indices are
arranged according to the topological order, i.e., for all i → j, we have i < j. The output of ϕ is
denoted by vM . In addition, ∇ and ∆ represent the gradient operator and Laplacian operator with
respect to the input, respectively. Detailed notations can be found in the appendix A.

Specifically, according to node dependency, FL sequentially computes the Laplacian tuple
(vi,∇vi,∆vi) associated with each node. In a simplified case where vi depends only on vi−1,
i.e., vi = Fi(v

i−1), the graph can be represented as a chain. We can compute the output tuple in a
forward pass:

(x,∇x,∆x) → (v0,∇v0,∆v0) → · · · → (vM ,∇vM ,∆vM ) (2)

The propagation rule of Laplacian tuple is derived through the chain rule:
vi = Fi(v

i−1), ∇vi = ∂vi−1Fi∇vi−1, ∆vi = ∂2
vi−1Fi|∇vi−1|2 + ∂vi−1Fi∆vi−1 (3)
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For the general computation graph, we can generalize eq. (3) to the following formula:

vj = Fj({vi : i → j}) (4)

∇vj =
∑
i:i→j

∂Fj

∂vi
∇vi (5)

∆vj =
∑
i,l

i→j l→j

∂2Fj

∂vi∂vl
∇vi · ∇vl +

∑
i:i→j

∂Fj

∂vi
∆vi. (6)

Then we can sequentially compute the Laplacian tuple for each node in the topological order ac-
cording to eqs. (4) to (6). As shown in Li et al. [25], this approach outperforms the Hessian-based
approach in numerous types of computational graphs. It has been successfully applied to solving the
Schrodinger equation, resulting in over a magnitude of acceleration.

2.2 DOF FOR THE SECOND-ORDER DIFFERENTIAL OPERATORS

We now formally propose DOF to efficiently compute all kinds of second-order operators. For
brevity, we denote A(x) as A and aij(x) as aij in the following discussion. To compute∑

i,j aij∂i∂jϕ(x), we first decompose the coefficient matrix A into L⊤DL such that D is a diagonal
matrix whose diagonal elements are all ±1 and 0. As A is a symmetric matrix, this decomposition
can be done easily. For instance, we can eigen-decompose A = S⊤ΣS, where S is an orthogonal
matrix and Σ is the diagonal eigenvalue matrix, and choose L = |Σ|1/2S and D = sgn(Σ).

During the computation, for each node vk, we compute tuple (vj ,gj , sj) := (vj , L∇vj ,Lvj). We
can derive the following formula by chain rule:

vj = Fj({vi : i → j}) (7)

gj =
∑
i:i→j

∂Fj

∂vi
gi (8)

sj =
∑
i,l

i→j l→j

∂2Fj

∂vi∂vl
gi⊤Dgl +

∑
i:i→j

∂Fj

∂vi
si (9)

We can derive Lϕ by sequentially applying this propagation rule to each node in the topological
order. We will prove that this method outperform the Hessian-based methods in both the memory
usage and computation cost for any neural network architecture:
Theorem 2.1. The computation cost (counted in FLOPs) of DOF is at most half that of Hessian-
based methods for any neural network architecture.
Theorem 2.2. The memory consumption of DOF (M1) is smaller than that of Hessian-based meth-
ods (M2) for any neural network architecture.

Specifically, M1 ≲ 2
LM2 for an L-layer MLP.

The proof for theorems 2.1 and 2.2 could be found in appendices B and D. We remark that the
memory and computation consumption of DOF can be further reduced in some specific network
architectures. See section 3.2 for details.

To better understand the DOF method, we discuss the implementation of DOF on two special classes
of second-order operators.

Elliptic Operator. For elliptic operator, the coefficient matrix A is positive so we have D = IN .
As a result, eqs. (7) to (9) are reduced to eqs. (4) to (6). The only difference between DOF and
Forward Laplacian here is the initial value of the tuple (i.e. the tuple at node vj for j = 0). Thus,
we utilize some existing Forward Laplacian package[26; 27] to compute the elliptic operator.

Low-rank Coefficient Matrix. It is well-known that computing the Hessian-vector product can
be faster than computing the entire Hessian matrix in the standard AutoDiff package. Namely,
computing Hessian-vector product takes O(1/N) cost of computing the entire Hessian matrix. Thus,
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Table 1: Comparison between DOF and Hessian-based method on the MLP

Operator GPU Memory Usage (MB) Time (ms)
Hessian DOF ratio Hessian DOF ratio

Elliptic 10421 3165 3.3 196.7 106.6 1.8
Low-rank 10427 2141 4.9 196.2 55.8 3.5
General 10429 3181 3.3 197.4 122.2 1.6

Table 2: Comparison between DOF and Hessian-based method on the MLP with Jacobian sparsity

Operator GPU Memory Usage (MB) Time (ms)
Hessian DOF ratio Hessian DOF ratio

Elliptic 21401 997 21.5 366.4 18.9 19.4
Low-rank 21401 869 24.6 366.2 12.7 28.9
General 21401 997 21.5 366.6 18.9 19.4

in the standard AutoDiff package, if the coefficient matrix is a low-rank matrix, the calculation of the
second-order operator can be accelerated through multiple Hessian-vector products. Similarly, the
DOF method also accomplishes this acceleration when dealing with a low-rank coefficient matrix.

If the coefficient matrix A is a rank-r matrix, we can eliminate the columns and rows associated
with the zero eigenvalues in L and D. Then we have L′ ∈ Rr×N and D′ ∈ Rr×r that still satisfy
A = L′⊤D′L′. Thus, while the propagation rule of DOF remains the same, the dimension of gk

is reduced from N to r. According to the analysis in the appendices B and D, this reduction in the
dimension will lead to an O(r/N) reduction in both the memory usage and the computation cost.

3 RESULTS

In this section, we compare DOF with the standard Hessian-based approach on different operators
and network architectures. We study three kinds of second-order operators: elliptic operator, el-
liptic operator with low-rank coefficient matrix, and general operator. As for the architecture, we
choose the standard MLP structure and the MLP with Jacobian sparsity. Details could be found in
appendix E.

3.1 COMPARISON ON THE MLP

The benchmark results for the MLP are shown in table 1. For both the elliptic and general operators,
DOF demonstrates significant efficiency improvements, halving the computation cost and reducing
memory usage by a third compared to the Hessian-based method, aligning with our theoretical
predictions. In the case of the low-rank operator, DOF achieves even greater acceleration, attributed
to the dimensionality reduction of g.

3.2 COMPARISON ON THE MLP WITH JACOBIAN SPARSITY

As discussed in Li et al. [25], the cost of Forward Laplacian method is significantly reduced when
the Jacobian of intermediate component is sparse. We notice that this sparse Jacobian property also
exists in some advanced PINN network architecture [28]. As a forward AutoDiff method, DOF
can also leverage this property to significantly accelerate the calculation. The memory and time
comparison are listed in table 2 and the architecture details can be found in appendix E. Compared
with the Hessian-based method, DOF can significantly reduce both the memory and computation
consumption in the MLP with Jacobian sparsity, showing a great potential in applying our method
to the advanced machine learning-based PDE solver.
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[9] Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the electronic
Schrödinger equation. Nature Chemistry, 12(10):891–897, 2020.

[10] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear par-
tial differential equations. Journal of Computational Physics, 378:686–707, 2019.

[11] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar
Raissi, and Francesco Piccialli. Scientific machine learning through physics–informed neu-
ral networks: Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

[12] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. Advances in Neural Information Processing Systems, 33:6755–6766,
2020.

[13] Gaurav Gupta, Xiongye Xiao, Radu Balan, and Paul Bogdan. Non-linear operator approxi-
mations for initial value problems. In International Conference on Learning Representations
(ICLR), 2022.

[14] Xiongye Xiao, Defu Cao, Ruochen Yang, Gaurav Gupta, Gengshuo Liu, Chenzhong Yin, Radu
Balan, and Paul Bogdan. Coupled multiwavelet neural operator learning for coupled partial
differential equations. In International Conference on Learning Representations (ICLR), 2023.

[15] Mohamed Ridha Znaidi, Gaurav Gupta, Kamiar Asgari, and Paul Bogdan. Identifying argu-
ments of space-time fractional diffusion: data-driven approach. Frontiers in Applied Mathe-
matics and Statistics, 6:14, 2020.

[16] James Bradbury et al. JAX: composable transformations of Python+NumPy programs, 2018.
URL http://github.com/google/jax.

5

https://openreview.net/forum?id=cy1TKLRAEML
http://arxiv.org/abs/1807.07014
http://arxiv.org/abs/1807.07014
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
http://github.com/google/jax


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

[17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[18] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for
large-scale machine learning. In Osdi, volume 16, pp. 265–283. Savannah, GA, USA, 2016.

[19] Tianyu Pang, Kun Xu, Chongxuan Li, Yang Song, Stefano Ermon, and Jun Zhu. Efficient
learning of generative models via finite-difference score matching. Advances in Neural Infor-
mation Processing Systems, 33:19175–19188, 2020.

[20] Chenlin Meng, Yang Song, Wenzhe Li, and Stefano Ermon. Estimating high order gradients
of the data distribution by denoising. Advances in Neural Information Processing Systems, 34:
25359–25369, 2021.

[21] Di He, Shanda Li, Wenlei Shi, Xiaotian Gao, Jia Zhang, Jiang Bian, Liwei Wang, and Tie-Yan
Liu. Learning physics-informed neural networks without stacked back-propagation. In Inter-
national Conference on Artificial Intelligence and Statistics, pp. 3034–3047. PMLR, 2023.

[22] Zheyuan Hu, Zekun Shi, George Em Karniadakis, and Kenji Kawaguchi. Hutchinson trace esti-
mation for high-dimensional and high-order physics-informed neural networks. arXiv preprint
arXiv:2312.14499, 2023.

[23] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving
partial differential equations. Journal of computational physics, 375:1339–1364, 2018.

[24] Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, and Yew-Soon Ong. Can-
pinn: A fast physics-informed neural network based on coupled-automatic–numerical differ-
entiation method. Computer Methods in Applied Mechanics and Engineering, 395:114909,
2022.

[25] Ruichen Li, Haotian Ye, Du Jiang, Xuelan Wen, Chuwei Wang, Zhe Li, Xiang Li, Di He,
Ji Chen, Weiluo Ren, et al. A computational framework for neural network-based variational
monte carlo with forward laplacian. Nature Machine Intelligence. URL https://www.
nature.com/articles/s42256-024-00794-x.

[26] Haotian Ye, Ruichen Li, and Du Jiang. Lapjax, 2023. URL https://github.com/
YWolfeee/lapjax.
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A PRELIMINARY

In this section, we briefly review computation framework in deep learning and auto differentiation,
and introduce the notations we will use in the following sections.

A.1 COMPUTATION GRAPH

The computation graph serves as a descriptive language of deep learning models across various deep
learning toolkits, including PyTorch [17], TensorFlow [18], and Jax [16].

In the computation graph G associated with a function ϕ(x), x = (x1, ...xN ) ∈ RN (we will always
use N for input dimension), the edges represent function arguments, and nodes represent operations
or variables. Note that G is always a directed acyclic graph. We use {v−1, ...v−N} to represent
the external nodes of G (i.e., the input x of the neural network-parameterized function ϕ), and use
{v0, ...vM} to represent the internal nodes, sorted in topological orders. A node can be referred to
as a neuron in the network. Specifically, we use vM to serve as the network output ϕ. We use the
abbreviation i → j if there is a directed edge from vi to vj in G. Furthermore, we denote operations
as F , e.g., vj = Fj({vi : i → j}) for all j ≥ 0.
Example A.1. Take Multi-Layer Perceptron (MLP) function ϕ(x) as an example.

ϕ has the form ϕ = FL ◦ FL−1 ◦ ... ◦ F0, where Fl = (Fl,1, ...Fl,Nl+1
) : RNl → RNl+1 are the

mapping in each layer with N0 = N and NL+1 = 1. Let ul = (ul
1, u

l
2, ...u

l
Nl
) ∈ RNl be the

vector consist of the neurons in the l-th layer, we have u0 = x and ul+1 = Fl(u
l) = σ(W lul + bl)

where W l ∈ RNl+1×Nl , bl ∈ RNl+1 are network parameters and σ is a nonlinear function operated
element-wise.

In this setting, the nodes {vi}i in the computation graph are

x1, ...xN , u1
1, ...u

1
N1

, u1.5
1 , ...u1.5

N1
, u2

1, ..., u
2
N2

, ..., uL+1
1 (= ϕ(x)), (10)

and the operations generating the node representing ul
i and ul−0.5

i are ul
i = σ(ul−0.5

i ) and
ul−0.5
i =

∑Nl−1

j=1 W l−1
ij ul−1

j + bl−1
i , respectively.

A.2 AUTO DIFFERENTIATION

In most machine learning toolkits, auto differentiation(AutoDiff) implemented with back propaga-
tion algorithm is applied to compute the derivatives of neural network functions.

For a function ϕ(x), this method first performs forward propagation to obtain the value of each
variable vj , and construct the computation graph G. Next, a backward process is employed by
creating a new computation graph Ĝ where node v̂i ∈ Ĝ represents the operation to calculate ∂ϕ

∂vi ,
i = M, ...,−N . The associated computations are

∂ϕ

∂vi
=

∑
j:i→j

∂Fj

∂vi
∂ϕ

∂vj
, i = M − 1, ...,−N. (11)
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B PROOF OF THEOREM 2.1

Our proof follows similar idea to what is discussed in section 4.2 in Li et al. [25], except that we
give the proof for general second order operator here.

Recall that we are going to compute eq. (1) and we only need to analyze the computation cost of
its first term. In the following, we will use the notation described in appendix A for computation
graphs.The previous auto differentiation method obtains Lϕ(x) through computing the Hessian ma-
trix and its inner product with A. It first performs forward propagation to obtain the value of each
variable vj . Next, a standard backward process is employed by creating a new computation graph
Ĝ where node v̂i ∈ Ĝ represents the operation to calculate ∂ϕ

∂vi , i = M, ...,−N . The associated
computations are

∂ϕ

∂vi
=

∑
j:i→j

∂Fj

∂vi
∂ϕ

∂vj
, i = M − 1, ...,−N. (12)

The Hessian matrix is then obtained through the following forward-mode Jacobian calculation along
G and Ĝ, respectively:

∇vi =
∑
j:j→i

∂Fi

∂vj
∇vj , i = −N, ...M (13)

∇v̂i = ∇ ∂ϕ

∂vi
=
∑
j,l
i→j
l→j

∂2Fj

∂vl∂vi
∂ϕ

∂vj
∇vl +

∑
j:i→j

∂Fj

∂vi
∇ ∂ϕ

∂vj
, i = M − 1, ...−N

(14)

where we always use ∇ to denote ∇x for simplicity.

The bottleneck of Hessian computation comes from eq. (13) and eq. (14).

For every connected nodes (j → i), it takes N float multiplication to yield ∂Fi

∂vj ∇vj . Therefore
eq. (13) takes N |E| floating point operations (FLOPs) if we only count multiplications, where E
denotes the set of edges in G. For eq. (14), the second term also takes N |E| FLOPs. To calculate
the computational cost of the first term in eq. (14), we first introduce two notations, T and R, which
are both sets of ordered tuples:

T = {(i, l, j)|i → j, l → j,
∂2Fj

∂vi∂vl
̸= 0},

R = {(i, l)|∃j s.t. (i, l, j) ∈ T}.
(15)

The AutoDiff method sums over j first to obtain
∑

j:i→j,l→j

∂2Fj

∂vl∂vi
∂ϕ
∂vj for all (i, l) ∈ R, and then sums

over l. For the first step, by leveraging the symmetry of Hessian matrix, it spends 1 FLOPS for a pair
of (i, l, j) and (l, i, j) in T . Thus it spends 0.5|T | FLOPs in total. For the second step, for any (i, l) ∈
R, it takes N FLOPs to multiply a vector ∇vl with a scalar. Thus this steps takes N |R| FLOPs in
total.Consequently, the total FLOPs for the previous method is about N(|R|+ 2|E|) + 0.5|T |.
Next we analyze the computation cost of DOF. For readers’ convenience, we repeat the propagation
scheme here:

During the computation, for each node vk, we maintain a tuple (vk,gk, sk) := (vk, L∇vk,Lvk).
The propagation rule of this tuple is:

vj = Fj({vi : i → j}) (16)

gj =
∑
i:i→j

∂Fj

∂vi
gi (17)

sj =
∑
i,l

i→j l→j

∂2Fj

∂vi∂vl
gi⊤Dgl +

∑
i:i→j

∂Fj

∂vi
si (18)

For the proposed DOF method, we perform forward propagation along G to obtain ϕ(x), L∇ϕ(x)
(recall that L is a matrix that comes from the decomposition of A) and Lϕ(x). The second term

8
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L∇ϕ(x) is calculated along G according to eq. (17). The third term, i.e., the target differential
operator, is calculated along G according to eq. (18).

The computational cost of the DOF method is dominated by eq. (17) and eq. (18). As previously
discussed, eq. (17) takes N |E| FLOPs. For the first term in eq. (18), we decompose its calculation
into two steps. First, we compute {gi⊤Dgl}i≤l, (i,l)∈R. Since D is a diagonal matrix only with
diagonal element in {0,±1}, this computation takes 0.5rank(D)|R| ≤ 0.5N |R| FLOPs in total.
Next, following the topological order of G, we sum over i ≤ l for each j, deriving the first term
in eq. (18). By leveraging the symmetry of the Hessian matrix and Gram matrix, we reduce this
computation by a factor of 2, which is 0.5|T | FLOPs. The computational cost of the second term is
negligible compared with the first term since si is a scalar.

Summing the computational cost of all the terms, we have that the DOF method uses at most
0.5N(|R|+ 2|E|) + 0.5|T | FLOPs.

In practice, a large percentage of operations are linear transformations, and for any linear operation
Fj , ∂2Fj

∂vi∂vl = 0 for any i → j, l → j. This means the value |T | is much smaller than N |R| and
N |E|. Thus, our method is about two times faster than the previous Hessian-based methods for
computing second order differential operators of general neural network functions.

9
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C CASE STUDY FOR MLP

In this section, we follow the notation in appendix A for an MLP ϕ and show that there is further
speedup comparing with the general 2x result stated in theorem 2.1.

For MLP, We could explicitly compute

|E| =
L∑

l=0

NlNl+1, |T | ≤
L∑

l=0

Nl+1Nl(Nl − 1), |R| =
L∑

l=0

Nl(Nl − 1). (19)

To compute the first term in eq. (18), note that

∂Fk,i

∂uk
j

= σ′(W kuk + bk)iW
k
ij (20)

∂2Fk,i

∂uk
j ∂u

k
l

= σ′′(W kuk + bk)iW
k
ijW

k
i,l, (21)

so we actually have ∑
j,l

∂2Fk,i

∂uk
j ∂u

k
l

(L∇uk
j )

⊤D(L∇uk
l ) (22)

=(
σ′′

σ′2 (W
kuk + bk))i(L∇uk+1

i )⊤D(L∇uk+1
i ). (23)

This gives an alternative way to compute the first term in (18), whose total computation cost is
reduced from r(D)|R| to r(D)

∑L
l=0 Nl+1 FLOPs, where r stands for rank.

Recall that the first term of (18) is one of the dominant calculations, this manner certainly boost the
efficiency.

10
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D PROOF OF THEOREM 2.2

We focus on the peak memory usage caused by the forward-mode Jacobian calculation, i.e., the
storage of ∇vi(or gi), which usually dominates the memory cost. In a typical forward-mode Jaco-
bian calculation, we write ∇vi into memory when the algorithm is applied to vi and remove it from
memory when all the direct subnodes of vi have been computed.

We denote
τ(i) := max{j : i → j}. (24)

Then at the moment our DOF forward propagation comes to the node vj , the memory consumption
is

C(j) := N
∑

i:i≤j≤τ(i)

1. (25)

If we further denote M1 to be the peak memory usage when executing the forward-mode DOF, we
have

M1 = max
j

C(j). (26)

From eq. (25) we clearly see that M1 ≤ N |V |, here V is the set of nodes in the computation graph
G. Furthermore, for any j < M, C(j) ≤ N(|V | − 1). As a result, M1 = N |V | if and only if
every nodes is pointing to the end node vM , which corresponds to either one-layer linear model or
a multivariate elementary function taking in input x and directly giving the output. These extreme
neural network functions rarely occur in deep learning literature.

By contrast, in the Hessian calculation in AutoDiff, the computation graph becomes a combination
of G and Ĝ. As suggested by eq. (14), the node v̂i is a direct subnode of vi. Consequently, at the
moment when ∇vM is written into memory, every ∇vi for vi ∈ G have been written into memory
and could not be released since v̂i have not been computed yet. As a result, the peak memory
usage(denoted as M2) is strictly larger than N |V |, and therefore larger than the peak memory of
Forward Laplacian.

In the specific case when ϕ is MLP. For any node uk
i , k ∈ 1

2N,

τ(#uk
i ) =

{
#uk+0.5

Nk+1
, k = l

#uk+0.5
i , k = l + 0.5, l ∈ N,

(27)

where # denotes the order index of the node representing certain neurons in G. Thus,

1

N
C(#uk

i ) =

{
Nl + 1, k = l

Nl−1 + i, k = l + 0.5, l ∈ N.
(28)

Thus we conclude that M1 ≤ N max
l

Nl +Nl−1 ≲ N 2
L

∑
l Nl = N 2

L |V | ≤ 2
LM2.

11
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E EXPERIMENTS SETTINGS

Hardware. All the results are evaluated on a single NVIDIA Tesla V100 GPU.

Network structure. We use the MLP and MLP with Jacobian sparsity to benchmark different
methods. The MLP with Jacobian sparsity means we split each data into some small blocks
x = (x1,x2, ...xk) and independently operate each block with an MLP. The output is a sum of
product of each MLP output, i.e.

output =
∑
d

k∏
i=1

[MLPi(xi)]d.

Here i refers to the index of block and d refers to the index of the output in each MLP. Detailed
hyperparameters can be found in table 3.

Table 3: Hyperparameters

MLP MLP with Jacobian sparsity

hidden dimension 256 256
input dimension 64 64
#layer 8 8
#blocks - 16
output dimension for each MLP - 8

Coefficient matrix used for each experiments. For the MLP structure, the coefficient matrix A
is a 64×64 matrix. For the MLP with Jacbobian sparsity, the coefficient matrix A is a 64×64 block
diagonal matrix. The coefficient matrices are listed in table 4. Here, (αij)i,j is a 64× 64 matrix and
(σij)i,j is a 4 × 4 matrix. Both αij and σij are drawn from a standard normal distribution. (δij)i,j
is the identity matrix such that δij = 0 if i ̸= j else 1. si = −1 if i = 0 else 1. .

Table 4: Coefficient matrix

Structure Elliptic Low-rank general

MLP aij =
∑64

k=1 αikαjk aij =
∑32

k=1 αikαjk aij = δijsi

MLP with sparsity ail,jm =

δlm
∑4

k=1 σikσjk

ail,jm =

δlm
∑2

k=1 σikσjk

ail,jm = δlmδijsi
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