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ABSTRACT

The well-known classical version of the online knapsack problem decides which
of the arriving items of different weights and values to accept into a capacity-
limited knapsack. In this paper, we consider the online fractional knapsack prob-
lem where items can be fractionally accepted. We present the first online algo-
rithms for this problem which incorporate prediction about the input in several
forms, including predictions of the smallest value chosen in the optimal offline so-
lution, and interval predictions which give upper and lower bounds on this small-
est value. We present algorithms for both of these prediction models, prove their
competitive ratios, and give a matching worst-case lower bound. Furthermore, we
present a learning-augmented meta-algorithm that combines our prediction tech-
niques with a robust baseline algorithm to simultaneously achieve consistency and
robustness. Finally, we conduct numerical experiments that show that our pre-
diction algorithms significantly outperform a simple greedy prediction algorithm
for the problem and the robust baseline algorithm, which does not use predic-
tions. Furthermore, we show that our learning-augmented algorithms can leverage
imperfect predictions (e.g., from a machine learning model) to greatly improve
average-case performance without sacrificing worst-case guarantees.

1 INTRODUCTION

In the classic online knapsack problem (OKP), the goal is to pack a finite number of sequentially
arriving items with different values and weights into a knapsack with a limited capacity such that
the total value of admitted items is maximized. In the online setting, the decision-maker should
immediately and irrevocably admit or reject an item upon its arrival without knowing the value and
weight of the future items. From a practical perspective, OKP captures a broad range of dynamic
pricing and resource allocation problems in application domains such as online advertising (Zhou
et al., 2008), cloud pricing and job scheduling (Zhang et al., 2017), and admission control and
routing in communication networks (Buchbinder & Naor, 2009).

The basic OKP and its variants have been studied in the context of competitive analysis. Under the
worst-case analysis, online algorithms are designed to minimize the competitive ratio (Borodin et al.,
1992), which is the worst-case ratio of the profits obtained from the offline optimum and the online
algorithm. It is well known that no deterministic online algorithms can achieve bounded competitive
ratios (Marchetti-Spaccamela & Vercellis, 1995) for the general integral OKP, where items are either
fully accepted or rejected. Due to this negative result, existing works mainly approach OKP in three
ways: (i) considering a sub-class of knapsack problems, e.g., unit density items (Ma et al., 2019),
small weight items (Zhou et al., 2008); (ii) switching to relaxed problem settings, e.g., removable
items (Böckenhauer et al., 2020), resource augmentation (Böckenhauer et al., 2014b); and (iii) mak-
ing additional assumptions on the input, e.g., assuming bounded value-to-weight ratios (Zhou et al.,
2008; Sun et al., 2021a; Yang et al., 2021).

In this paper, we focus on an important sub-class of OKP, the online fractional knapsack problem
(OFKP), where an algorithm can accept any fraction of an item. In practice, OFKP models signifi-
cant real-world applications in dynamic resource allocation scenarios where each item (i.e., request)
can be arbitrarily divided. Noted applications of OFKP include distributing online sequential tasks
with different computational requirements to available resources efficiently Liu et al. (2011), routing
varied-rate traffic through a network concerning capacity constraints Cao et al. (2022), and schedul-
ing energy in smart grids Sun et al. (2021b).
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From a theoretical perspective, fractional knapsack is well understood in the offline setting (Ishii
et al., 1977; Ferdosian et al., 2015), (where a greedy algorithm solves the problem optimally), but it
remains relatively understudied in the online setting. The most recent result by (Sun et al., 2021b)
shows that if we additionally assume that the unit values of all items are bounded within [L,U ], a
threshold-based algorithm for OFKP can achieve the optimal competitive ratio of O(ln(U/L)) (see
Section 2.2 for more detail). However, the bound on the unit values often gives rather coarse uncer-
tainty quantification for the instances of OFKP and leads to poor performance when the instance is
not adversarial.

Introduced by (Lykouris & Vassilvtiskii, 2018; Purohit et al., 2018), learning-augmented algorithm
design is a framework which has gained traction as a method to leverage machine-learned predic-
tions in algorithms without sacrificing worst-case competitive guarantees. Under this framework,
online algorithms are evaluated using the concepts of consistency and robustness, which give the
competitive performance when the advice is accurate or completely wrong, respectively. Recent
work (Im et al., 2021; Zeynali et al., 2021; Lechowicz et al., 2023b; Böckenhauer et al., 2014b) has
explored OKP with advice or machine-learned predictions (see Appendix A.1 for a comprehensive
review). However, to the best of our knowledge, none of the existing works consider OFKP with
prediction. The most relevant work Sun et al. (2021a) considers a special case of OFKP (referred
to as one-way trading) with predictions, in which the weights of items are all equal to the knapsack
capacity. In this case, a prediction of the maximum unit value is sufficient to guide the design of
the learning-augmented algorithm since the offline optimal only accepts the item with the maxi-
mum value. However, in OFKP, the admission of each item is upper bounded by the item’s weight
(revealed online); thus, the prediction model in Sun et al. (2021a) cannot be generalized to OFKP.

Acknowledging the existing research gap in the literature, this paper focuses on the design and
analysis of competitive algorithms for OFKP with advice. Our contributions are twofold. First, we
introduce a new prediction model (in the form of a simple prediction about a “critical unit value”) for
OFKP, and design an optimal algorithm with predictions that is shown to achieve a matching lower
bound (see Theorem 3.1 and Theorem 3.4). Further, we generalize this algorithm by considering
two imperfect prediction models for OFKP. The first such model considers predictions of an interval
(as opposed to a single critical value), and the second such model considers predictions which are
probabilistically correct. We show learning-augmented algorithms for both of these models that
use imperfect predictions to improve performance in the average-case while maintaining worst-
case guarantees (See Theorem 4.1 and Lemma 4.3). Besides theoretical analysis, we also evaluate
the empirical performance of our algorithms in numerical experiments compared against baseline
algorithms without prediction, showing that our algorithms significantly outperform baseline results
for OFKP and can gracefully handle errors in the prediction.

Further, we develop novel technical approaches in both algorithm design and analysis to achieve the
above theoretical results. Our proposed algorithm achieves constant competitive ratios in contrast
to the classic result O(ln(U/L)), which depends on the upper and lower bounds of the unit value.
To achieve this, we strategically utilize thresholds to limit the selection of high-value items and
reserve capacity for units with critical values, mimicking the choices made by an optimal algorithm.
Moreover, our approach goes beyond worst-case scenarios, attaining a competitive ratio approaching
1. We achieve this by employing a “prebuying” strategy. Initially, we prioritize high-value items,
and subsequently adjust the knapsack’s capacity to accommodate lower-value items. This allows us
to optimize selections by adapting our capacity allocation in favor of high-value items during the
initial stages.

2 PROBLEM FORMULATION, PRELIMINARIES, AND PREDICTION MODEL

2.1 ONLINE FRACTIONAL KNAPSACK PROBLEM

In the online fractional knapsack problem (OFKP), there is a knapsack with a capacity of 1 (WLOG,
since otherwise, all weights can be scaled down). Items arrive online, each with two properties: unit
value (vi) and maximum weight (wi). In the ith step, an online algorithm must select some portion
xi ≤ wi of the ith item to add to the knapsack. This decision must be based only on all items seen
so far, (v1, w1), . . . , (vi, wi), and is irrevocable. The algorithm obtains profit xivi if it admits an xi

portion of the item into the knapsack. The objective is to maximize the total profit subject to the
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Algorithm 1 TA: An online threshold-based algorithm for OFKP without prediction

1: input: threshold function ϕ(z);
2: output: online decision xi;
3: initialization: knapsack utilization z(0) = 0;
4: while item i (with unit value vi and weight wi) arrives do
5: if vi < ϕ(z(i−1)) then
6: xi = 0;
7: else if vi ≥ ϕ(z(i−1)) then
8: xi = min{ϕ−1(vi)− z(i−1), wi, 1− z(i−1)};
9: update z(i) = z(i−1) + xi.

knapsack’s capacity. The offline version problem can be formulated as the following linear program:

max
∑n

i=1
xi · vi, s.t.

∑n

i=1
xi ≤ 1 and 0 ≤ xi ≤ wi ≤ 1 ∀i ∈ [n]. (1)

We let U and L denote the maximum and minimum unit values for an instance. Note that these
bounds are unknown to our algorithms and only used for analysis. This is in contrast to most existing
works that assume U and L are known in advance (Zhou et al., 2008; Sun et al., 2021b).

2.2 PRIOR RESULTS: COMPETITIVE ALGORITHMS WITHOUT PREDICTION

Competitive ratio. OFKP has received considerable attention within the framework of competitive
analysis. The primary goal is to design an online algorithm that, on every possible input instance,
achieves a profit that is a large fraction of the optimum (Borodin et al., 1992). We denote OPT(I) as
the offline optimum on the input I, and ALG(I) represents the profit obtained by an online algorithm
(ALG) on that input. If ALG is randomized, then we define ALG(I) to be the expected profit on input
instance I. Formally, let Ω denote the set of all possible inputs, the competitive ratio (CR) of an
online algorithm is defined as CR = maxI∈Ω

OPT(I)/ALG(I). Observe that CR is greater than or equal
to one. The smaller it is, the more effectively the algorithm performs.

State-of-the-art results. OFKP has seen relatively little attention in the literature despite being a
classic relaxation of the integral knapsack problem. Most results for OFKP make different assump-
tions such as random ordering of the input (Giliberti & Karrenbauer, 2021) or introduce additional
components such as removable items (Noga & Sarbua, 2005). A recent result by Sun et al. (2021b)
is the closest to our setting, showing that if the unit value is bounded, i.e., vi ∈ [L,U ],∀i ∈ [n], a
threshold-based algorithm can achieve the optimal competitive ratio among all online algorithms.

The threshold-based algorithm is shown in Algorithm 1. This algorithm takes a threshold function
ϕ(z) : [0, 1] → [L,U ] as its input. Specifically, ϕ(z) can be understood as the pseudo price of pack-
ing a small amount of item when the knapsack’s current utilization (i.e. the fraction of knapsack’s
total capacity which is filled with previously accepted items) is z. The algorithm rejects an item i if
its unit value vi is smaller than the pseudo price ϕ(z(i−1)) at the current utilization z(i−1). Other-
wise, the algorithm will continuously admit the item until one of the following three cases occurs:
(i) the utilization reaches ϕ−1(vi) (i.e., the pseudo price reaches vi); (ii) the entire item is admitted;
or (iii) the knapsack capacity is used up. Notice the threshold function ϕ is the only design space for
Algorithm 1. Sun et al. (2021b) shows that the optimal competitive ratio can be attained when ϕ is
carefully designed as follows.
Lemma 2.1 (Theorem 3.5 & 3.6 in Sun et al. (2021b)). For OFKP, if the unit value of items is
bounded within [L,U ], Algorithm 1 is (1 + ln(U/L))-competitive when the threshold is given by

ϕ(z) =

{
L z ∈ [0, 1/(1 + ln(U/L)))

L exp((1 + ln(U/L))z − 1) z ∈ [1/(1 + ln(U/L)), 1]
. (2)

Further, no online algorithms can achieve a competitive ratio smaller than 1 + ln(U/L).

2.3 PREDICTION MODEL

We consider three prediction models for OFKP, each capturing a different prediction quality. All
prediction models are constructed based on a critical value in the offline optimal solution. Thus,
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we start by briefly describing the optimal offline solution for OFKP. Given that all item values and
weights are known, the offline algorithm sorts the items in non-increasing order of unit value, and
then greedily admits the sorted items until the knapsack capacity (See more detail in Appendix A.2).

Definition 2.2 (Minimum acceptable items (v̂, ω̂)). Given an instance for OFKP, let v̂ denote the
minimum unit value of items admitted by the offline optimum, and ω̂ denote the total weights of
items with the same unit value v̂. Then v̂ is defined as the critical value and (v̂, ω̂) is defined as the
minimum acceptable items for the instance.

Below, we present three prediction models which consider how perfect or imperfect knowledge of v̂
and ω̂ from Def. 2.2 allows us to recover the optimal solution.

Prediction Model I (Perfect Predictions). An exact point prediction of v̂, as defined in Def. 2.2 (the
minimum acceptable unit value), is given to the learning-augmented online decision maker.

In the perfect prediction model, we assume that the learning-augmented decision maker has access
to the exact minimum acceptable unit value v̂ for any given instance I ∈ Ω. Note that the optimal
offline solution will fully admit any item with a unit value strictly greater than v̂. However, it may
fractionally admit the item with value v̂. Hence, even with a perfect prediction of exact value v̂, the
online decision-maker cannot optimally solve the problem since it is unclear how much of the item
with value v̂ should be admitted.

In practice, however, one may argue that it it almost impossible to obtain a perfect prediction of the
exact value v̂. Hence, we propose two extended prediction models which are practically relevant.

Prediction Model II (Interval Predictions). Deterministic lower and upper bounds on the actual
value of v̂ (Def. 2.2), are given to the learning-augmented online decision maker. Denote these by ℓ
and u, respectively. Any such prediction satisfies ℓ ≤ v̂ ≤ u.

The second prediction model assumes that there is no exact prediction on v̂. Instead, the predictions
given to the algorithm are bounds on v̂, i.e., v̂ ∈ [ℓ, u]. The quality of prediction in this c u − ℓ
increases. In an extreme case of u = ℓ, the interval prediction degenerates to the aforementioned
perfect prediction. On the other hand, with u = U and ℓ = L, the problem degenerates to the classic
OFKP (see § 2.2) with prior knowledge on the unit value bounds.

Prediction Model III (Probabilistic Interval Predictions). As in Prediction Model II, the learning-
augmented online decision maker receives lower and upper bounds ℓ and u on v̂ (Def. 2.2), and this
prediction is probabilistically correct, i.e., P(v̂ ∈ [ℓ, u]) = 1− δ, where δ > 0.

Our last model relaxes the deterministic interval prediction into a probabilistic prediction such that
with probability of 1− δ, the critical value v̂ is lower and upper bounded by ℓ and u. This relaxation
allows us to analyze the case where predictions are untrusted and arbitrarily wrong.

In §3, we leverage the perfect prediction to design learning-augmented algorithms for OFKP and
show the algorithms achieve the optimal competitive ratios. In §4, we study learning-augmented
algorithms with imperfect prediction models and present an algorithm that utilizes the previously
described algorithms as sub-algorithms to achieve practical competitiveness.

3 ALGORITHMS WITH PERFECT PREDICTION

3.1 LOWER BOUND RESULTS

We first present a lower bound result showing that even with a perfect prediction of the critical value
v̂, no deterministic or randomized learning-augmented algorithm can solve OFKP optimally.

Theorem 3.1. Given an exact prediction on the critical value v̂, no online algorithm for OFKP can
achieve a competitive ratio smaller than 1 + min{1, ω̂}, where ω̂ is the total weight of items with
the critical value for all instances in Ω.

The above result implies a lower bound of 2 on the competitive ratio, even if the algorithm has a
perfect prediction of v̂. Even if we know that the optimal solution admits an item with critical value
v̂, it is unclear how much weight of the knapsack should be filled with items of unit value v̂.
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3.2 PERFECT-PREDICTION-BASED ALGORITHMS

In this section, we first present PPA-n, a naı̈ve perfect-prediction-based algorithm that can result
in arbitrarily large competitive ratios. Then, we present PPA-b, a basic perfect-prediction-based
algorithm for OFKP that achieves the competitive ratio of 2 given the exact prediction v̂. Then,
we present PPA-a, an advanced version of PPA-b that improves the competitive ratio to 1 + ω̂,
matching the lower bound value presented in Theorem 3.1. Recall that ω̂ is the weight of items with
value v̂ and unknown to all proposed algorithms.

PPA-n: A naı̈ve perfect-prediction-based algorithm: We first consider a naı̈ve “greedy” algorithm
that takes a prediction on v̂ as input. This algorithm rejects any items with unit value < v̂ and fully
accepts any item with unit value ≥ v̂ until the capacity limit. In Theorem 3.2, we show that PPA-n
fails to achieve a meaningful improvement in the worst-case competitive ratio (i.e., consistency since
we assume the prediction is correct).

Theorem 3.2. PPA-n that fully trusts the prediction is U/L-competitive in the worst case.

PPA-b: A basic perfect-prediction-based 2-competitive algorithm. We present an algorithm (Al-
gorithm 2) that, given the exact prediction of v̂, is 2-competitive for OFKP. The idea is to set aside
half of the capacity only for high-value items (whose unit value > v̂) and allocate the other half for
admitting minimum acceptable items with exact value v̂. By doing so, we will at least obtain half of
either part in the optimal solution. Furthermore, this competitive ratio is optimal since no algorithm
can achieve a competitive ratio smaller than 2 in the worst case as shown in Theorem3.1.

Algorithm 2 PPA-b: A basic 2-competitive algorithm for OFKP with perfect prediction

1: input: prediction v̂.
2: output: online decisions xi s.
3: while item i (with unit value vi and weight wi) arrives do
4: if vi < v̂ then
5: xi = 0;
6: else if vi > v̂ then
7: xi = wi/2;
8: else if vi = v̂ then
9: xi = min(wi/2, 1/2− z);

10: z = z + xi;

Theorem 3.3. Given a perfect prediction, PPA-b is 2-competitive.

Proof Sketch of Theorem 3.3. Assuming unique prices, PPA-b selects half of each item with a unit
value vi where vi ≥ v̂. Essentially, it allocates half of the knapsack’s capacity to items with values
above v̂ and the other half to items with values equal to v̂. This intuitive approach gives us at least
half the value of the offline optimal solution. The full proof is in Appendix A.3.3.

We note that most existing works for OFKP and related problems (Marchetti-Spaccamela & Ver-
cellis, 1995; El-Yaniv et al., 2001) make the assumption that item unit values are bounded, i.e.,
vi ∈ [L,U ],∀i ∈ [n], which is usually necessary to achieve non-trivial competitive bounds in the
setting without predictions. Subsequent competitive bounds in these works depend on U , L, and
the ratio between them (i.e., U/L). In our setting, the predictions allow us to achieve a constant
competitive ratio that is independent of U and L.

In the following, our goal is to propose a new algorithm that achieves a better parameterized com-
petitive ratio than that of PPA-b. This can be accomplished by modifying Algorithm 2 to introduce
a parameter, which represents the quantity we select when encountering v̂ (instead of fixed 1/2). This
parameter allows us to reserve a portion for more valuable items more effectively.

Under the assumption that the unit value vi of each item in the instance is unique, (i.e. i ̸= j →
vi ̸= vj ∀i, j ∈ [n]), we can further refine the above concept to achieve a competitive ratio of 1+ ω̂,
where ω̂ denotes the weight of the single item with critical value v̂. This modified algorithm can
exhibit high efficiency, particularly when dealing with small values of ω̂. For example, in scenarios
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Algorithm 3 PPA-a: An advanced (1 + ω̂)-competitive algorithm with perfect prediction

1: input: prediction v̂.
2: output: online decisions xis.
3: b = 0, s = 0
4: while item i (with unit value vi and weight wi) arrives do
5: if vi < v̂ then
6: xi = 0;
7: else if vi > v̂ and b = 0 then
8: xi = wi

9: s = s+ xi × vi
10: else if vi = v̂ then
11: b = 1
12: xi = max ((ω̂/(1 + ω̂)× v̂ − s× (ω̂/(1 + ω̂)))/v̂, 0)
13: else if vi > v̂ and b = 1 then
14: xi = wi/(ω̂ + 1)

resembling the k-search problem, where the weight of each item is 1
k , this modification yields a

competitive algorithm with a ratio of 1 + 1
k .

PPA-a: An improved (1 + ω̂)-competitive algorithm. PPA-a leverages the observation that we
can accept more than half of an item for values exceeding the prediction when ω̂ is low. However,
since we don’t have prior knowledge of ω̂, we exploit a “prebuying” strategy. Initially, we select all
items with unit values > v̂ and subsequently adjust our selections upon observing the prediction.
This adaptive approach ensures that we select an appropriate portion of the prediction to achieve
the desired competitive ratio. We note that here ω̂ represents the weight of a single item, since we
assume that each item have a unique unit value.

Theorem 3.4. Given perfect prediction, PPA-a achieves a competitive ratio of 1 + ω̂ for OFKP
with unique unit values.

Proof Sketch of Theorem 3.4. Let’s consider the scenario where we have knowledge of ω̂, and our
goal is to achieve a competitive ratio of 1/(1 + ω̂). One approach is to allocate 1/(1 + ω̂) of the
weight capacity for all items with vi > v̂ and an additional 1/(1 + ω̂) for items with the same value
as v̂. This strategy intuitively yields a (1 + ω̂)-competitive algorithm. We need to ensure that this
allocation is feasible, which can be demonstrated to be the case.

If we do not have prior knowledge of ω̂, we can employ a “prebuying” strategy for all items with
values higher than v̂. The extra capacity allocated to these items each has a higher unit value than
v̂, allowing us to reduce our selection from v̂ based on how much extra capacity we’ve allocated
in previous items. The challenge here is to confirm the feasibility of this algorithm and provide a
detailed analysis of its competitive ratio. The full proof is in Appendix A.3.4.

4 ALGORITHMS WITH (PROBABILISTIC) INTERVAL PREDICTION

In this section, we further consider deterministic and probabilistic interval predictions that can model
different levels of imperfect predictions. Our goal is to show that even with imperfect predictions,
it is possible to devise learning-augmented algorithms with competitive ratios better than classic
worst-case optimized algorithms that do not make use of any additional predictions.

4.1 DETERMINISTIC INTERVAL PREDICTION

We present an algorithm that uses a deterministic interval prediction [ℓ, u] for the critical value v̂.
IPA: An interval prediction-based algorithm. IPA draws inspiration from PPA-b and devises an
algorithm to solve OFKP with predictions represented as intervals. It allocates a dedicated portion
of the capacity for values higher than u, and employs another algorithm, such as TA, to solve OFKP
within the interval. The results are then combined to yield a competitive result with a competitive
ratio of α+ 1, where α represents the competitive ratio of the sub-algorithm.
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Algorithm 4 IPA: An interval-prediction-based algorithm for OFKP

1: input: interval prediction ℓ, u, robust algorithm A with competitive ratio α
2: Output: Online decisions xis;
3: initialize A
4: while item i (with unit value vi and weight wi) arrives do
5: if vi < ℓ then
6: xi = 0;
7: else if vi > u then
8: xi = 1/(α+ 1)× wi;
9: else if vi ∈ [ℓ, u] then

10: give item i to algorithm A ;
11: xi = α/(α+ 1)× xA

i ;

Theorem 4.1. Given a deterministic interval prediction [ℓ, u] and a robust algorithm for OFKP with
a competitive ratio of α, IPA achieves a competitive ratio of α+ 1 for OFKP.

Proof Sketch of Theorem 4.1. IPA resembles Algorithm 3. For unit values higher than u, this algo-
rithm allocates 1/(α + 1) of its weight. Within the range [ℓ, u], it employs a robust sub-algorithm,
denoted as A, which is α-competitive. Using α/(α + 1) of the results obtained from A intuitively
yields a (α + 1)-competitive solution for that range. The primary technical challenge is to demon-
strate that we maintain competitiveness across all ranges. The full proof is in Appendix A.3.5.

Corollary 4.2. IPA is 2 + ln(u/ℓ)-competitive for OFKP when the robust algorithm is given by
Algorithm 1 (TA), for interval [ℓ, u].

Proof. The result follows by observing that the TA algorithm presented in Algorithm 1 is ln(U/L)+1
competitive, where U and L are inputs to the algorithm. Letting U = u and L = ℓ, we have that
(α + 1) = 2 + ln(u/ℓ). This competitive ratio will be close to 2 if ln(u/ℓ) is small, and ln(u/ℓ)
becomes smaller as ℓ and u approach each other. For ℓ = u, we recover the same 2-competitive
result as PPA-b (Algorithm 2).

4.2 PROBABILISTIC INTERVAL PREDICTION

Algorithm 5 PIPA: A probabilistic-interval-prediction-based algorithm of OFKP

1: input: γ, Prediction model P , robust algorithm TAwithout predictions, algorithm A which uses
P as input

2: Output: Online decisions xis.
3: initialize TA and A(P)
4: while item i (with unit value vi and weight wi) arrives do
5: give item i to algorithm TA
6: give item i to algorithm A
7: xi = (1− γ)× xTAi + γ × xA

i ;

PIPA: A robust and consistent meta-algorithm. PIPA deals with imperfect predictions, such as
machine-learned predictions of v̂ or the interval prediction [ℓ, u]. This algorithm combines TA, the
robust algorithm which uses no prediction and achieves competitive ratio ln(U/L) + 1 (see Algo-
rithm 1) with one of the prediction algorithms presented so far (PPA-b or IPA). If the prediction is
correct, we say that the prediction algorithm is c-competitive.

For robustness purposes, we follow related work (Sun et al., 2021b; Marchetti-Spaccamela & Vercel-
lis, 1995; El-Yaniv et al., 2001) and assume that item unit values are bounded, i.e., vi ∈ [L,U ],∀i ∈
[n]. Note that L and U are not related to the predicted interval [ℓ, u]. We balance between the
sub-algorithms (TA and prediction ALG) by setting a trust parameter γ ∈ [0, 1]. Both algorithms
run in parallel – when an item arrives, PIPA receives as input an item with unit value vi, a weight
wi, and two decisions x̂i and x̃i, representing the decisions of the prediction and robust algorithms,
respectively. Then PIPA simply purchases xi = γx̂i + (1 − γ)x̃i fraction of the item. Note that
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(a) (b) (c)

Figure 1: Performance comparison of different algorithms: (a) The CDF plot of the empirical competitive
ratio of different algorithms; (b) The robust performance of PPA-a, PPA-b and IPA against TA when U/L
varies; and (c) The performance of PPA-b, PPA-a, and PPA-n against TA when ω̂ varies.

when γ = 1, PIPA will make the same decisions as the inner prediction algorithm, and when
γ = 0, PIPA will make the same decisions as the inner robust algorithm TA. We assume that the
inner prediction algorithm is chosen based on the type of prediction received, e.g. a point or interval
prediction.

Suppose that the predictions are correct with probability (1−δ) ∈ [0, 1]. With δ = 1, the predictions
are always incorrect, and with δ = 0, we recover the setting where the prediction is always correct.
In Lemma 4.3, we give bounds on the consistency and robustness of this meta-algorithm.

Lemma 4.3. PIPA is ln(U/L)+1
(1−γ) -robust and c

γ -consistent for any γ ∈ (0, 1), where c denotes the
competitive ratio of the inner prediction algorithm with an accurate prediction.

Proof Sketch of Lemma 4.3. We first calculate the expected payoff of PIPA based on the trust pa-
rameter γ and probability δ as E[PIPA[γ](I)] = γ · (1 − δ)A(I) + (1 − γ) · TA(I). To analyze
the consistency and robustness of PIPA, we consider two extreme cases for δ (i.e. when δ = 0, the
prediction is correct and we derive a consistency bound, and when δ = 1, the prediction is always
incorrect and we derive a robustness bound). The full proof is in Appendix A.3.6.

As a corollary, Lemma 4.3 shows that the expected payoff of PIPA is γ(1−δ)OPTc +(1−γ) OPT
1+ln(U/L) ,

even if δ is unknown. If the prediction has enough probability of being correct, e.g. 1 − δ ≥
c

ln(U/L)+1 , increasing γ will raise the expected payoff. Setting γ close to 1 will result in a competi-
tive algorithm with a ratio of approximately c/(1−δ). When using Algorithm 4, this competitiveness
increases to approximately 2 + ln(u/ℓ)/(1− δ), which is particularly practical for small intervals.

5 NUMERICAL EXPERIMENTS

Experimental setup and comparison algorithms. To validate the performance of our algorithms, we
conduct experiments using synthetically generated data, where the value and weight of items are
randomly drawn from a power-law distribution. Unless otherwise mentioned, the lowest unit value
is L = 1, and the highest unit value is U = 1000. Weights are drawn from a power law but normal-
ized to be within the range of 0 to 1. We report the cumulative density functions of the empirical
competitive ratios, which illustrate different algorithms’ average and worst-case performances.

To report the empirical competitive ratio of different algorithms, we implement the offline opti-
mal solution as described in Appendix A.2. We compare the results of the following online algo-
rithms under various experimental settings: (1) TA: the classic online algorithms without prediction
(Algorithm 1); (2) PPA-n: the naı̈ve prediction-based algorithm; (3) PPA-b: the basic prefect-
2-competitive algorithm (Algorithm 2); (4) PPA-a: the advanced (1 + ω̂)-competitive algorithm
(Algorithm 3); (5) IPA: the interval-prediction-based algorithm (Algorithm 4); and (6) probabilistic-
interval-prediction-based (Algorithm 5). For the IPA algorithm, we present the interval prediction
range u − ℓ as a percentage of range [L,U] and set it to three values of 15%, 25%, and 40%. For
PIPA, the value of 1-δ is set to 10%, 20%, and 50%, and it is labeled as PIPAδ . Similarly, PIPAγ

denotes that different variants PIPA under different values of the trust parameter γ, which in our
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(a) (b) (c)
Figure 2: Interval-prediction-based algorithms with different interval sizes, probabilities δ, and trust parame-
ters γ: (a) Competitive ratios of three interval widths in IPA against baseline TA; (b) Competitive ratio of three
probability δ values in PIPA against baseline TA. γ = 0.9 and interval 20%; and (c) Competitive ratio of three
γ values in PIPA against TA. δ = 50% and interval 20%.

experiment we vary using three values of 0.3, 0.5, and 0.9. Furthermore, for PPA-b, ω̂ is set to four
arbitrary values of 0.29, 0.45, 0.63, and 0.78.

Experimental results. Figure 1(a) reports the cumulative distribution function (CDF) of empiri-
cal competitive ratios for six different algorithms on 2000 synthetic instances of OFKP. The most
notable observations are: (1) among all prediction-based algorithms, PPA-a achieves the best per-
formance in both average and worst-case performance, verifying the theoretical results in Thm. 3.4.
(2) while the average performance of PPA-n outperforms most algorithms (except PPA-a), its
worst-case performance is even worse than TA, that do not leverage predictions in decision-making;
this observation verifies the poor consistency of PPA-n reported in Thm. 3.2. (3) even with imper-
fect prediction, IPA outperforms TA in both average and worst-case results. (4) while achieving a
bounded competitive ratio, TA performs on average worse than all prediction algorithms.

We now report the results of the impact of the parameters on the performance of different algorithms.
First, our theoretical results show that different from classic algorithms such as TA, the competitive
ratio of the prediction-based algorithms is independent of the ratio between the most and least valu-
able items, i.e., U/L. In Figure 1(b), we verify this theoretical observation by varying the value
U/L from 300 to 1000, 5000, and 20000. The results in Figure 1(b) show that the empirical com-
petitive ratio of TA drastically increases as U/L increases while other algorithms are robust to the
variations of U/L. In Figure 1(c), we change the values of ω̂, and the results show that, in contrast
to PPA-n, PPA-b, and TA, the performance of PPA-a substantially improves with smaller values
of ω̂ verifying the results in Thm. 3.4 on the dependence of the competitive ratio of PPA-a on ω̂.

In Figure 2(a), we evaluate the performance of IPA for different interval prediction widths, given as
a percentage (higher is worse). As shown in Theorem 4.1, we find that tighter prediction intervals
yield better empirical performance. Furthermore, all IPA algorithms outperform the baseline robust
TA algorithm. In Figure 2(b), we evaluate the performance of PIPA for imperfect predictions. We
test regimes where 1− δ (probability of correct prediction) is 10%, 20%, and 50%; we fix γ = 0.9,
and the interval is 20% of [L,U ]. We find that the performance of PIPA smoothly degrades, and
even bad predictions result in an algorithm that outperforms the robust baseline TA. Finally, in
Figure 2(c), we show a similar result for PIPA– we fix δ = 50% and vary the trust parameter
γ ∈ {0.3, 0.5, 0.9}, showing that when predictions are sufficiently good, PIPA performs better
when the predictions are trusted more (i.e., increasing γ). In Appendix A.4, we include additional
results which further contextualize the performance of our proposed algorithms.

6 CONCLUSION

We study learning-augmented algorithms for the online fractional knapsack problem (OFKP) under
predictions with varying quality. Given a perfect prediction, we have developed an online algorithm
that can leverage the prediction and achieve the optimal competitive ratio. When the prediction is
correct within an interval or probabilistically correct, we have further designed two algorithms that
can use such imperfect predictions and achieve consistency and robustness improving average-case
performance and giving worst-case guarantees, respectively. Through extensive numerical experi-
ments, we validate that our proposed algorithms outperform all existing benchmark algorithms.
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Hans-Joachim Böckenhauer, Juraj Hromkovič, Dennis Komm, Sacha Krug, Jasmin Smula, and
Andreas Sprock. The string guessing problem as a method to prove lower bounds on the ad-
vice complexity. Theoretical Computer Science, 554:95–108, 2014a. ISSN 0304-3975. doi:
https://doi.org/10.1016/j.tcs.2014.06.006. Computing and Combinatorics.
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A APPENDIX

A.1 RELATED WORK

This paper contributes directly to two lines of work: (i) work on online knapsack, one-way trad-
ing, and related problems, e.g., k-search, single-leg revenue management, and; (ii) work on online
algorithms with advice and learning-augmentation. We describe the relationship to each below.

Online Knapsack and Online Search Our work contributes to the literature on the classic (in-
tegral) online knapsack problem first studied in (Marchetti-Spaccamela & Vercellis, 1995), with
important results following in (Zhou et al., 2008). In the past few years, many works have consid-
ered variants of this problem, such as removable items (Cygan et al., 2016), item departures (Sun
et al., 2022), and generalizations to multidimensional settings (Yang et al., 2021). Closer to this
work, several studies have considered the online knapsack problem with additional information or
in a learning-augmented setting, including frequency predictions (Im et al., 2021), online learn-
ing (Zeynali et al., 2021), and advice complexity (Böckenhauer et al., 2014b). However, unlike our
work, most of these works do not generalize the problem to allow fractional item acceptance.

A few studies have considered online fractional knapsack under slightly different assumptions. Noga
& Sarbua (2005) explore “online partially fractional knapsack”, where items are removable. Gilib-
erti & Karrenbauer (2021) consider online fractional knapsack in the random order model, where
the arrival order of items is a random permutation (i.e. not adversarial). The setting in (Sun et al.,
2021b) is perhaps the closest to the problem we study here, although it also considers a further
generalization to the multiple knapsack problem. The study in (Sun et al., 2021b) motivates the
observation that online fractional knapsack is equivalent to the one-way trading problem with a rate
constraint for each online price.

The connection between OFKP and one-way trading (with a rate constraint) motivates a further con-
nection to another track of literature on problems broadly classified as online search, including prob-
lems such as 1-max /min search and one-way trading, both first studied by El-Yaniv et al. (2001),
k-max /min search, first studied by Lorenz et al. (2008), and single-leg revenue management, first
studied using competitive analysis by Ball & Queyranne (2009). In general, OFKP can be under-
stood as a “bridge” between work on online search and online knapsack. Follow-up works have
since considered applications of online search problems and additional variants, including cloud
pricing (Zhang et al., 2017), electric vehicle charging (Sun et al., 2021b), switching cost of changing
decisions (Lechowicz et al., 2023a), and learning-augmented versions of both one-way trading (Sun
et al., 2021a) and k-search (Lee et al., 2022). However, to the best of our knowledge, none of these
works consider the impact of rate constraints.

Learning-augmented algorithms Learning-augmented algorithm design is an emerging field that
incorporates machine-learned predictions about future inputs in algorithm designs, with the goal of
matching the good average-case performance of the predictor while maintaining worst-case com-
petitive guarantees. Introduced by (Lykouris & Vassilvtiskii, 2018; Purohit et al., 2018) in studies
on caching and ski rental, respectively, the concepts of consistency and robustness give a formal
mechanism to quantify the trade-off between following the machine learned predictions and hedg-
ing against adversarial inputs, particularly with respect to predictions which are very incorrect. This
framework has been applied to a number of online problems, including caching Lykouris & Vassil-
vtiskii (2018), ski-rental (Purohit et al. (2018); Wei & Zhang (2020); Antoniadis et al. (2021)), set
cover (Bamas et al. (2020)), online selection Jiang et al. (2021), online matching Antoniadis et al.
(2020b), convex body chasing (Christianson et al. (2022)), and metrical task systems (Antoniadis
et al. (2020a); Christianson et al. (2023)), just to name a few. Most relevant to our setting, it has
been explored in the context of online knapsack (Im et al. (2021); Zeynali et al. (2021)), one-way
trading (Sun et al. (2021a)), and single-leg revenue management (Balseiro et al. (2023)). However,
to the best of our knowledge, learning-augmented algorithms have not been shown for the online
fractional knapsack problem.

Learning-augmented algorithms are also closely related to the field of advice complexity, which
considers how the performance of an online algorithm can be improved with a specific amount of
advice about the input, where the advice is assumed to be correct and is provided by an oracle.
This field was first established for paging by Böckenhauer et al. (2009), with results following
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for many other online problems (Boyar et al. (2015); Böckenhauer et al. (2014a); Böckenhauer
et al. (2011); Komm et al. (2012)). Of particular interest to our setting, Böckenhauer et al. (2014b)
explore the online knapsack problem with advice, showing that a single bit of advice gives a 2-
competitive algorithm, but that Ω(log n) advice bits are necessary to further improve the competitive
ratio. A similar result was also recently shown for the k-search problem by (Clemente et al. (2022)).
However, to the best of our knowledge, there is no existing work considering the online fractional
knapsack problem with advice.

A.2 OFFLINE OPTIMAL ALGORITHM

The offline optimal solution to equation 1 () is straightforward to compute. The optimal solution
starts by selecting the item with the maximum unit value amongst all vi’s and adds the maximum
amount allowed (wi) to the knapsack. If there is any remaining capacity to fill, the optimal solution
then picks the item with the next highest unit value and adds the maximum amount allowed while
respecting the capacity constraint. This process is repeated until the knapsack is completely filled.

For ease of analysis, we let (v′i, w
′
i) denote the values and weights of the items sorted in descending

order. That is, v′1 ≥ v′2 ≥ . . . ≥ v′n.We let x′
i denote the portion of item (v′i, w

′
i) which is added to

the knapsack by some algorithm.

With this notation, the offline optimal solution to equation 1 can be written as:

x⋆ def
= (x⋆

1, . . . , x
⋆
n) =

(
w′

1, w
′
2, . . . , w

′
r−1, 1−

r−1∑
i=1

w′
i, 0, 0, . . .

)
. (3)

As seen in equation 3, the optimal solution selects all the weight of the most valuable items until the
knapsack capacity is filled. For lower values, it doesn’t acceptance anything. We refer to the last
item with a strictly positive acceptance as the pth item, which is the maximum value of j ∈ [1, n]

such that
∑j−1

i=1 w′
i < 1.

This optimal solution yields total profit:

OPT(I) =
p−1∑
i=1

w′
iv

′
i +

(
1−

p−1∑
i=1

w′
i

)
v′p. (4)

Both equation 3 and equation 4 hold if the sum of all wi is greater than or equal to 1, which consti-
tutes the majority of interesting OFKP instances.

In cases where the sum of wi is less than 1, the optimal solution selects all items, which cannot be
described by the above equations. To address this scenario, we introduce an auxiliary item denoted
as vn+1 with a corresponding weight wn+1, where vn+1 = 0 and wn+1 = 1. It’s important to note
that this additional item doesn’t affect the profit of any algorithm; rather, it simplifies and maintains
consistency in mathematical modeling. In the problematic case, where the sum of wi is less than 1,
p would be equal to n + 1, and both equation 3 and equation 4 would still remain valid. We note
that this case (where the knapsack can accept all items) is somewhat trivial, as the optimal policy
simply accepts all items. In the majority of the paper, we implicitly assume that the sum of all wis
is greater than 1.

A.3 PROOFS

A.3.1 PROOF OF THEOREM 3.1

Proof. Consider the following two special instances in Ω

I1 : n = 1, (v1, w1) = (1, ω̂), (5a)
I2 : n = 2, (v1, w1) = (1, ω̂), (v2, w2) = (U, 1− ϵ), (5b)

where U → +∞ and ϵ → 0. The offline optimal returns of the two instances are OPT(I1) = ω̂ and
OPT(I2) = (1− ϵ)U + ϵ, respectively.

For both instances, the first item is the critical one and thus we are given the same prediction of
the critical value 1. When we run an online algorithm over either instance, the algorithm makes the
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same decision for the first item since the first item is the same and the prediction is the same. Let
X ∈ [0, ω̂] denote the decision for the first item from a randomized algorithm, where X is a random
variable following a probability density distribution f(x). The expected returns of the randomized
algorithm over the two instances can be derived as

E[ALG(I1)] =
∫ ω̂

0

f(x)xdx = E[X], (6a)

E[ALG(I2)] ≤
∫ ω̂

0

f(x)[x+ (1− x)U ]dx = E[X] + (1− E[X])U, (6b)

where E[X] ∈ [0, ω̂]. As U → +∞ and ϵ → 0, the competitive ratio of the algorithm is

max

{
OPT(I1)

E[ALG(I1)]
,
OPT(I2)

E[ALG(I2)]

}
≥ max

{
ω̂

E[X]
,

1

1− E[X]

}
≥ 1 + ω̂. (7)

Thus, the competitive ratio of any online randomized algorithm is at least 1+ ω̂. This completes the
proof.

A.3.2 PROOF OF THEOREM 3.2

Proof. Denote the prediction received by the algorithm as v̂, for any valid OFKP instance I.

Consider the following special instance in Ω.

I : n = 2, (v1, w1) = (L, 1), (v2, w2) = (U, 1− ϵ), (8a)

where U → +∞ and ϵ → 0. Note that the offline optimal return of this instance is OPT(I) =
U(1− ϵ) + L(ϵ), and v̂ = L.

Observe that the naı̈ve algorithm will receive the exact value of v̂ and greedily accept any items with
unit value at or above v̂. Then the first item with (v1, w1) = (L, 1) will fill the online algorithm’s
knapsack, and the competitive ratio can be derived as

OPT(I)
ALG(I)

=
U(1− ϵ) + L(ϵ)

v̂
=

U(1− ϵ) + L(ϵ)

L
.

As ϵ → 0, the right-hand side implies that the competitive ratio is bounded by U/L. Since an accurate
prediction has v̂ ∈ [L,U ] by definition, this special instance also gives the worst-case competitive
ratio over all instances.

A.3.3 PROOF OF THEOREM 3.3

Proof. Before starting the proof, we define a new notation for the optimal offline solution. Let’s
assume that there are q − 1 items with strictly greater values v′i > v̂ and items q to p − 1 are items
with unit value v̂ (q can equal p− 1, implying there are zero such items) . We can rewrite equation 4
as follows:

OPT(I) =
q−1∑
i=1

w′
iv

′
i +

p−1∑
i=q

w′
iv̂ +

(
1−

p−1∑
i=1

w′
i

)
v̂. (9)

using the above notation we define ω̂ as:

ω̂ :=

r∑
i=q

w′
i. (10)

where r is largest number which v′i = v̂ and is greater or equal to p. Recall that v̂ := v′p.

With this notation in place, we can proceed with the proof.

As described in Algorithm 2, each item i with a value less than the prediction v̂ is ignored. If the
value is greater than the prediction, half of its weight is selected. If the prediction is equal to the
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value, we will select half of it and ensure that the sum of all selections with a value equal to the
prediction doesn’t exceed 1/2. We first show that Algorithm 2 outputs a feasible solution, i.e., that∑n

i=1 xi ≤ 1. We derive the following equation:

n∑
i=1

xi =

(∑
vi<v̂

xi

)
+

(∑
vi=v̂

xi

)
+

(∑
vi>v̂

xi

)
. (11)

The first sum is equal to zero, since the algorithm doesn’t select any items with vi < v̂. The second
sum considers vi = v̂, and the algorithm selects half of every weight wi unless ω̂ is greater than 1/2.
The algorithm ensures it doesn’t select more than 1/2 by definition in line 9, which checks whether
to take half of an item and not exceed the remaining amount from 1/2. For v′i ≥ v′p, Algorithm 2
sets xi to wi/2.

n∑
i=1

xi = 0 +min

(
ω̂

2
,
1

2

)
+

(∑
vi>v̂

wi

2

)
. (12)

The last sum is 1/2 times the of the sum of wis for any items with a value greater than v̂. If we look
at equation 9, all of these wi are completely selected in the optimal offline solution (in the first part
of the equation). Thus, their sum is less than or equal to 1, since the optimal solution is feasible:∑

vi>v̂ wi =
∑q−1

i=1 w′
i ≤ 1.

n∑
i=1

xi ≤
1

2
+

1

2
·

(∑
vi>v̂

wi

)
≤ 1

2
+

1

2
= 1. (13)

Equation 13 proves that the solution from Algorithm 2 is feasible.

We next calculate the profit obtained by Algorithm 2 and bound its competitive ratio. The profit can
be calculated using equation 1 as:

ALG(I) = min

(
ω̂

2
,
1

2

)
· v̂ +

(∑
vi>v̂

wi

2
· vi

)
. (14)

Looking at equation 9, we claim that the second part of equation 14 is 1
2 ·
∑q−1

i=1 w′
iv

′
i.

To calculate the competitive ratio, we give a bound on OPT(I)/ALG(I) by substituting equation 9
and equation 14 into the definition of CR (i.e. OPT/ALG), obtaining the following:

CR = max
I∈Ω

∑q−1
i=1 w′

iv
′
i +
∑p−1

i=q w′
iv̂ +

(
1−

∑p−1
i=1 w′

i

)
v̂∑q−1

i=1
w′

i

2 v′i +min
(
ω̂
2 ,

1
2

)
· v̂

, (15)

CR = max
I∈Ω

2 ·

∑q−1
i=1 w′

iv
′
i +
∑p−1

i=q w′
iv̂ +

(
1−

∑p−1
i=1 w′

i

)
v̂∑q−1

i=1 w′
iv

′
i +min (ω̂, 1) · v̂

 . (16)

Here we prove that the numerator is less than or equal to the denominator, which will give us
equation 17.

CR = max
I∈Ω

2 ·

∑q−1
i=1 w′

iv
′
i +
∑p−1

i=q w′
iv̂ +

(
1−

∑p−1
i=1 w′

i

)
v̂∑q−1

i=1 w′
iv

′
i +min (ω̂, 1) · v̂

 ≤ 2. (17)

We argue two cases: first, if ω̂ < 1, then Algorithm 2 will always select half of every item with
value v̂. Then, by rewriting the value of ω̂ we have:
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q−1∑
i=1

w′
iv

′
i +min (ω̂, 1) · v̂ =

q−1∑
i=1

w′
iv

′
i +

 u∑
i=q

w′
i

 v̂

=

q−1∑
i=1

w′
iv

′
i +

p−1∑
i=q

w′
iv̂ + w′

pv̂ +

u∑
i=p+1

w′
iv̂. (18)

Using the fact that the definition of x⋆
p in equation 3 and LP constraint equation 1, we claim 1 −∑p−1

i=1 w′
i = x∗

p ≤ wp. Thus, equation 18 is greater than the numerator in equation 17.

In the second case, if ω̂ ≥ 1, then the algorithm will stop selecting items with a value of v̂ after it
reaches a capacity of 1/2 for those items. The optimal offline solution is feasible, so

∑p−1
i=1 w′

i +

1− (
∑p−1

i=1 w′
i) ≤ 1, which implies that the following is also true:

∑p−1
i=q w′

i +1− (
∑p−1

i=1 w′
i) ≤ 1.

Using this, we can rewrite the numerator:

q−1∑
i=1

w′
iv

′
i +

p−1∑
i=q

w′
iv̂ +

(
1−

p−1∑
i=1

w′
i

)
v̂ ≤

q−1∑
i=1

w′
iv

′
i + 1 · v̂. (19)

Which subsequently implies that the numerator is less than or equal to the denominator.

Both cases have been proven, completing the proof of equation 17 – PPA-b is 2-competitive.

A.3.4 PROOF OF THEOREM 3.4

Proof. First, let’s verify the correctness and feasibility of the algorithm. Assume that the p′-th item
in the input instance was v̂. If items are sorted in descending order, w′

p is the weight of that item.
Since items are considered to be unique, ω̂ = w′

p ≤ 1. The sum of decision variables can be
expressed as follows:

n∑
i=1

xi =

(∑
vi<v̂

xi

)
+ xp +

(∑
vi>v̂

xi

)
. (20)

The third sum can be further rewritten as the sum of items before p′ and after p′:(∑
vi>v̂

xi

)
=

 ∑
vi>v̂,i<p′

xi

+

 ∑
vi>v̂,i>p′

xi

 . (21)

Using the definition of the algorithm to calculate each part, the result is as follows:

= 0 +max

((
ω̂

1 + ω̂
· v̂ − s · ω̂

1 + ω̂

)
· 1
v̂
, 0

)
+

 ∑
vi>v̂,i<p′

wi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂

 . (22)

Where s is (by definition in the algorithm) the sum of the profit of all items with vi > v̂ that came
before v̂, formalized as

∑
vi>v̂,i<p′ wi · vi. Now, let us consider two cases for the maximum term in

the above equation.
I. In case the left part of the maximum is negative, we have:

n∑
i=1

xi =

 ∑
vi>v̂,i<p′

wi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂

 <

(∑
vi>v̂

wi

)
< 1. (23)

This is clearly less than 1 since only values higher than the critical value are used, and the sum of
their wi is less than 1, as referenced in equation 3.

17



Under review as a conference paper at ICLR 2024

II. In case the left part of the maximum is positive, we have:
n∑

i=1

xi =
ω̂

1 + ω̂

−

 ∑
vi>v̂,i<p′

wi · vi

 · ω̂

1 + ω̂
· 1
v̂

+

 ∑
vi>v̂,i<p′

wi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂

 .

(24)

After simplification, we obtain:

n∑
i=1

xi =
ω̂

1 + ω̂
+

 ∑
vi>v̂,i<p′

wi ·
(
1− ω̂

1 + ω̂
· vi
v̂

)+

 ∑
vi>v̂,i>p′

wi

1 + ω̂

 . (25)

Now it can be observed that since vi > v̂, this results in the following inequality:

n∑
i=1

xi <
ω̂

1 + ω̂
+

 ∑
vi>v̂,i<p′

wi ·
(
1− ω̂

1 + ω̂

)+

 ∑
vi>v̂,i>p′

wi

1 + ω̂

 . (26)

Furthermore, it follows that the left sum entries are also equal to wi/(1 + ω̂):
n∑

i=1

xi <
ω̂

1 + ω̂
+

(∑
vi>v̂

wi

1 + ω̂

)
. (27)

Since the sum of wi for items with higher unit values is less than 1, as shown in equation 3, it can
be concluded that:

n∑
i=1

xi <
ω̂

1 + ω̂
+

1

1 + ω̂
= 1. (28)

This proves that the solution is feasible.

Now, we prove that the algorithm achieves a competitive ratio of 1+ ω̂. The profit can be calculated
in a straightforward manner based on xi decisions using equation 20, equation 21, and equation 22:

ALG(I) =max

((
ω̂

1 + ω̂
· v̂ − s · ω̂

1 + ω̂

)
, 0

)

+

 ∑
vi>v̂,i<p′

wi · vi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂
· vi

 .

(29)

Let us consider the same two cases for the maximum.
I. In case the left part of the maximum is negative, we have:

ALG(I) =

 ∑
vi>v̂,i<p′

wi · vi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂
· vi

 . (30)

which can be rewritten as:

ALG(I) =

 ∑
vi>v̂,i<p′

wi · ω̂
1 + ω̂

· vi

+

 ∑
vi>v̂,i<p′

wi

1 + ω̂
· vi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂
· vi

 . (31)

Using the definition of s, we can rewrite the left sum as:

ALG(I) = s · ω̂

1 + ω̂
+

 ∑
vi>v̂,i<p′

wi

1 + ω̂
· vi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂
· vi

 . (32)

18



Under review as a conference paper at ICLR 2024

Since we know that s · ω̂
1+ω̂ > ω̂

1+ω̂ · v̂, we conclude that:

ALG(I) > ω̂

1 + ω̂
· v̂ +

 ∑
vi>v̂,i<p′

wi

1 + ω̂
· vi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂
· vi

 . (33)

And a further simplification of equation 33 gives:

ALG(I) > 1

1 + ω̂
·

(
ω̂ · v̂ +

(∑
vi>v̂

wi · vi

))
. (34)

Since we can say that ω̂ ≥ 1−
∑

i<p′ w′
i, we claim that:

ALG(I) > 1

1 + ω̂
·

1−
∑
i<p′

w′
i · v̂ +

(∑
vi>v̂

wi · vi

) =
1

1 + ω̂
OPT(I), (35)

which implies that the competitive ratio is 1 + ω̂.

II. In case the left part of the maximum is positive, we have:

ALG(I) =
(

ω̂

1 + ω̂
· v̂ − s · ω̂

1 + ω̂

)
+

 ∑
vi>v̂,i<p′

wi · vi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂
· vi

 . (36)

Rewriting the middle sum as in equation 31 and equation 32 results in:

ALG(I) =
(

ω̂

1 + ω̂
· v̂ − s · ω̂

1 + ω̂

)

+ s · ω̂

1 + ω̂
+

 ∑
vi>v̂,i<p′

wi

1 + ω̂
· vi

+

 ∑
vi>v̂,i>p′

wi

1 + ω̂
· vi

 .

(37)

This equation is identical to equation 33. Therefore, the same bound is achieved, and this equation
is greater than wi

1+ω̂OPT(I), which confirms that the competitive ratio is 1 + ω̂.

A.3.5 PROOF OF THEOREM 4.1

Proof. First, we analyze the feasibility of the solution – we show that
∑n

i=1 xi ≤ 1.

n∑
i=1

xi =

(∑
vi<ℓ

xi

)
+

 ∑
vi∈[ℓ,u]

xi

+

(∑
vi>u

xi

)
. (38)

By substituting sub-algorithm selections, we have the following:

n∑
i=1

xi = 0 +

 ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i

+

(∑
vi>u

1

α+ 1
· wi

)
. (39)

Using the fact that the sub-algorithm is also a feasible algorithm, we can say that: ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i

 =
α

α+ 1
·

 ∑
vi∈[ℓ,u]

xA
i

 ≤ α

α+ 1
· 1. (40)
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Also, from equation 3, we know that the optimal solution will select every wi with vi > v̂, since
v̂ ∈ [ℓ, u]. We can say that wi for which vi > u implies vi > v̂. Moreover, equation 4 is a feasible
result, we know that

∑
vi>v̂ wi ≤ 1. So, we claim that:

(∑
vi>u

1

α+ 1
· wi

)
=

1

α+ 1
·

(∑
vi>u

wi

)
≤ 1

α+ 1
·

(∑
vi>v̂

wi

)
≤ 1

α+ 1
· 1. (41)

Substituting equation 41 and equation 40 into equation 39, we obtain:

n∑
i=1

xi = 0 +

 ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i

+

(∑
vi>u

1

α+ 1
· wi

)
≤ α

α+ 1
+

1

α+ 1
= 1, (42)

which completes the proof that the solutions are feasible.

We proceed to prove that the algorithm achieves a competitive ratio of α + 1 (given sub-algorithm
TA, which has a competitive ratio α). The profit can be calculated based on xi decisions, using
equation 39:

ALG(I) =

 ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i · vi

+

(∑
vi>u

1

α+ 1
· wi · vi

)
. (43)

For the first sum, we know that Algorithm TA guarantees α-competitiveness, which we show as
follows:

 ∑
vi∈[ℓ,u]

xA
i · vi

× α ≥ OPT(I′), (44)

where I′ is all items in I such that vi ∈ [ℓ, u]. Also, we claim that:

OPT(I′) =
∑

u>v′
i>ℓ,i<p′

w′
i · v′i + (1−

∑
u>v′

i>ℓ,i<p′

w′
i) · vI0p . (45)

Where vI0p represents the critical value for I′. We argue that vI0p ≤ v̂. If we denote v̂ as the pth
item in the sorted list, as defined in equation 4, and vI0p as the p′th item in the sorted list of the
instance I, we assert that p ≤ p′. The rationale behind this assertion is rooted in the definitions.
Specifically, p is defined as the largest number for which

∑p−1
i=1 w′

i < 1. Now, let us assume k is
the first item with a value less than or equal to u. By definition, p′ represents the largest number for
which

∑p′−1
i=k w′

i < 1. If we were to assume that p > p′, this would contradict the definition of p′
as the largest number, because changing p′ to p would yield a sum less than one, but we increased
from the p′ to another larger number. Consequently, it is not valid to claim that p > p′; instead, we
conclude that p ≤ p′. This implies vI0p ≤ v̂.
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Using this observation, we can now compare OPT(I) and OPT(I′):

OPT(I) =
p−1∑
i=1

w′
iv

′
i +

(
1−

p−1∑
i=1

w′
i

)
v̂,

=
∑
vi>u

w′
iv

′
i +

p−1∑
i=k

w′
iv

′
i +

(
1−

p−1∑
i=1

w′
i

)
v̂,

≤
∑
vi>u

w′
iv

′
i +

p−1∑
i=k

w′
iv

′
i +

p′−1∑
i=p

w′
iv

′
i +

1−
p′−1∑
i=k

w′
i

 vI0p ,

=
∑
vi>u

wivi + OPT(I′),

(46)

where equation 46 holds because if p = p′, then we have v̂ = vI0p , implying that the last sum of

OPT(I) (which is
(
1−

∑p−1
i=1 w′

i

)
v̂), is equal to (

∑p′−1
i=k w′

i)v
I0
p .

On the other hand, if p < p′, the last part of OPT(I) can be bounded by w′
pv

′
p, which is subsumed

within
∑p′−1

i=p w′
iv

′
i. This follows from the fact that 1 −

∑p−1
i=1 w′

i < w′
p due to the definition of a

feasible answer.

Using equation 44 and equation 46, we claim that:

 ∑
vi∈[ℓ,u]

xA
i · vi

 ≥ 1

α
· (OPT(I)−

∑
vi>u

wivi). (47)

Now, let us combine this with other parts in equation 43:

ALG(I) =

 ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i · vi

+

(∑
vi>u

1

α+ 1
· wi · vi

)

≥

(
α

α+ 1
· 1
α
(OPT(I)−

∑
vi>u

wivi)

)
+

(
1

α+ 1
·
∑
vi>u

wi · vi

)

=
1

α+ 1
OPT(I).

(48)

Thus, we conclude that IPA using TA as the robust sub-algorithm is α+ 1 competitive.

A.3.6 PROOF OF LEMMA 4.3

Proof. First, we denote the payoff of the solutions obtained by the prediction sub-algorithm and the
robust sub-algorithm by A and TA, respectively.

Given that the prediction is correct with probability (1− δ), we derive the expected payoff of PIPA
on an arbitrary instance I as follows:

E[PIPA[γ](I)] = γ · (1− δ)A(I) + (1− γ) · TA(I),

E[PIPA[γ](I)] = γ · (1− δ)
OPT(I)

c
+ (1− γ) · OPT(I)

1 + ln(U/L)
.

To analyze the consistency and robustness of PIPA, we then consider two extreme cases for δ.
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If δ = 1, the prediction is always incorrect and we consider the robustness of the meta-algorithm as
follows:

E[PIPA[γ](I)] ≥ (1− γ)
OPT(I)

1 + ln(U/L)
,

OPT(I)
E[PIPA[γ](I)]

≤ 1 + ln(U/L)

(1− γ)
.

On the other hand, if δ = 0, the prediction is always correct and we consider the consistency of the
meta-algorithm as follows.

E[PIPA[γ](I)] ≥ γ
OPT(I)

c
+ (1− γ) · OPT(I)

1 + ln(U/L)
,

≥ γ
OPT(I)

c
,

OPT(I)
E[PIPA[γ](I)]

≤ c

γ
.
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(a) interval: 20%;
γ: 0.9.

(b) 1-δ: 50%;
interval: 20%.

(c) 1-δ: 50%;
γ: 0.9.

Figure A1: Performance of the probabilistic-interval-prediction-based algorithm (PIPA) while vary-
ing parameters (probability of correct prediction (1−δ), trust parameter γ, and interval size) against
the robust online threshold-based algorithm (TA).

Figure A2: The performance of interval-
prediction-based algorithm (IPA) with three
intervals against online threshold-based algo-
rithm (TA).

Figure A3: The Performance of probabilistic-
interval-prediction-based algorithm
(PIPA) with different intervals against
online threshold-based algorithm (TA).
δ = 50%, γ = 0.9

A.4 ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we report additional experimental results of the performance of the proposed algo-
rithms.

In Figure A1(a), we evaluate the performance of PIPA for different values of 1 − δ. This plot is
a CDF plot version of Figure 2(b), which illustrates how increasing the probability of correct pre-
dictions (corresponding to empirically more accurate machine-learned predictions), we consistently
achieve a better competitive ratio, both on average and in the worst case.

In the second part, Figure A1(b), we examine the trust parameter γ with values 0.3, 0.5, 0.9 for
PIPA. This figure represents a CDF plot of Figure 2(c) and shows that as the algorithm increases
its trust in predictions (i.e. by increasing γ), the average competitive ratio improves. However, the
worst-case competitive ratio (represented in this plot by the tail of the CDF) will deteriorate faster
when placing more trust in predictions.

In Figure A2, which is a CDF plot of Figure 2(a), we evaluate the empirical competitive ratio of IPA
for various interval prediction widths, represented as a percentage (where higher values indicate
worse performance). We test values of 15%, 25%, and 40% of the “width” of the interval [L,U ].
Intuitively, reducing the interval size generally results in a better competitive ratio, because the upper
and lower bounds on the value of v̂ are tighter.
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(a) ω̂ = 0.29. (b) ω̂ = 0.45.

(c) ω̂ = 0.63. (d) ω̂ = 0.78.

Figure A4: The performance of naı̈ve greedy algorithm (PPA-n), basic 2-competitive algorithm
(PPA-b), and advanced (1 + ω̂)-competitive algorithm (PPA-a) against threshold-based algorithm
(TA) with varying ω̂.

Similarly, Figure A1(c) demonstrates that the width of the prediction interval (tested as 10%, 30%,
and 50% of the “width” of the interval [L,U ]) also has an slight effect on the average and worst-case
competitive ratio for PIPA– namely, tighter prediction intervals yield better empirical performance,
which aligns with our expectations.

Figure A3 is a box plot version of Figure 2(c), illustrating that PIPA’s average-case performance is
not significantly impacted by the width of the predicted interval, although tighter intervals are still
intuitively better.

Finally, in Figure A4, we vary the actual tested value of ω̂ in four CDF plots, one for each tested
value (0.29, 0.45, 0.63, and 0.78). In contrast to PPA-n, PPA-b, and TA, these results show that
the performance of PPA-a substantially improves with smaller values of ω̂, confirming the results
in Theorem 3.4, which establish that PPA-a’s competitive ratio depends on ω̂. These figures cor-
respond to the CDF plot of Figure 1(c). Another interesting observation is that as ω̂ decreases,
PPA-b’s empirical performance worsens, but for high ω̂ values, it improves. This occurs because
PPA-b is designed to target 2-competitiveness, but performs well when selecting more items in v̂
than the optimal solution. This occurs when ω̂ is high, as PPA-b chooses half of it.
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