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Abstract

Document-level event extraction (DEE) ex-001
tracts structured information of events from a002
document. Previous studies focus on improving003
the model architecture. We argue that exploit-004
ing data characteristics is also important. We005
propose to utilize coreference information to006
obtain better document-level entity representa-007
tions, and propose the concept of core roles to008
adjust the schema structure to alleviate error009
propagation. Experiments demonstrate that our010
data exploitation methods significantly improve011
the performance of existing models on both the012
role-level and record-level metrics. Our code is013
available at this link.014

1 Introduction015

Document-level event extraction (DEE) aims to016

detect events and extract event arguments from a017

document. DEE has attracted much attention cur-018

rently (Yang et al., 2018a; Du and Cardie, 2020;019

Du et al., 2020). There are two main challenges for020

DEE: multiple events and argument scattering. Fig-021

ure 1 demonstrates this where there are two Equity022

Pledge event records, and the event arguments of023

each record scatter across sentences.024

To address these challenges, recently an end-to-025

end model Doc2EDAG (Zheng et al., 2019) has026

been proposed to perform the DEE task over finan-027

cial documents. Doc2EDAG transforms the event028

table into a directed acyclic graph (DAG) and iter-029

atively extracts each event role. For example, in030

Figure 1, the first event record is extracted from A031

to B to H in the DAG structure. When extracting032

a role, such as PledgedShares, the model applies a033

memory tensor to gather information from preced-034

ing event arguments A, B, and C.035

DEE is a relatively new NLP task. Current re-036

searches on DEE (Zheng et al., 2019; Xu et al.,037

2021; Yang et al., 2021) overlook some critical038

data characteristics, including various coreferen-039

tial mentions in the document, as well as the de-040

pendence and independence among roles in an 041

event schema. We propose the DEE model with 042

Coreference Aggregation and Schema Structure 043

ADjustment Extraction (CAD) to exploit these data 044

characteristics as follows. 045

First, we leverage more coreference informa- 046

tion to enhance entity representations. Though 047

entity mentions scatter across sentences, some of 048

them may refer to the same entities. Utilizing such 049

coreference is especially critical to document-level 050

extraction. For example, in Figure 1, a company is 051

referred to as its full name Guannong Group Co., 052

LTD. and its abbreviated name Guannong Group. 053

The former only appears once in sentence [3], while 054

the latter appears in sentences [3,4,5,8,9], which is 055

conducive to extracting the two event records. How- 056

ever, as the popular DEE dataset ChFinAnn (Zheng 057

et al., 2019) is constructed through distant super- 058

vision, only the full-name mention of an entity is 059

annotated as the event argument. Previous methods 060

only utilize this kind of mention and rely on the 061

neural encoder to implicitly capture mention inter- 062

actions. We introduce a coreference aggregation 063

module, which first detects coreferential mentions 064

using vary simple patterns and then encodes them 065

to get better document-level entity representations. 066

Second, we leverage the “core role” concept to 067

alleviate the error propagation problem. Previous 068

methods extract arguments of an event in sequence, 069

and each depends on the information of previously 070

extracted arguments. Arguments at the back of 071

the path have long pre-paths, thus errors from pre- 072

ceding arguments may propagate and accumulate 073

along the path and influence the succeeding ex- 074

tractions. For example, when extracting the last 075

argument of the upper record in Figure 1, they use 076

the information of A, B, C, E, G. However, an Eq- 077

uity Pledge event can be uniquely determined by 078

the first four roles. So, we only need the informa- 079

tion of A, B, C, E to extract H in this case. We 080

introduce the concept of core roles which is the 081
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Event Table of Equity Pledge

Core Role Non-core Role

Pledger StartDate Pledgee PledgedShares TotalHoldingShares TotalPledgedShares

Guannong Group Co., 
LTD. (A)

Oct 30, 2018 (B) Lvyuan Group 
Co., LTD (C)

33M shares (E) 320M shares (G) 32M shares (H)

Guannong Group Co., 
LTD. (A)

Oct 30, 2018 (B) Xinrong Trade 
Co., LTD (D)

45M shares (F) 320M shares (G) 32M shares (H)

Event
Role

Event
Record

Memory

Event
Argument

Pledger StartDate Pledgee Pledged
Shares

TotalHolding
Shares

TotalPledged
Shares

A B

C

D

E

F

G H

G H

DAG Structure

A B C ESA B C ESA B CSA BS

ASS

A B D FSA B DSA BS A B D FS

Entity
Mention

Document

[3] On Oct 30, 2018, the Company received a notice from the
controlling shareholder Guannong Group Co., LTD. (here-
inafter referred to as Guannong Group). [4] Guannong Group
and the pledgee Lvyuan Group Co., LTD have gone through
the re-gistration procedures for the pledge of 33M shares. [5]
In addition, Guannong Group and the pledgee Xinrong Trade
Co., LTD have gone through the registration procedures for

the pledge of 45M shares. … [8] As of the date of this
announ-cement, the number of shares of our company held by
Guannong Group is 320M shares. [9] After the above equity
pledge, the total number of shares pledged by Guannong
Group is 32M shares, accounting for …

Figure 1: An example (translated) from the ChFinAnn dataset Zheng et al. (2019). Document part shows sentences
[3] to [9]. The Event Table of Equity Pledge part shows two event records described in this document. Event
arguments are marked with different colors. The Document part highlights mentions of these arguments with the
same colors and the abbreviations are shown in italic. The DAG structure part shows the DAG transformed from
the event table in which arguments are denoted using capital letters for brevity. Below each node, we illustrate its
memory state during extraction. "S" denotes the initial memory.

signature of an event record that uniquely deter-082

mines a record, and non-core roles, on the contrary,083

only provide accessory information. In Figure 1,084

we show the core roles of the Equity Pledge in the085

orange background. By utilizing the core role, we086

propose to adjust the schema structure and apply087

a shallower memory to discard the information of088

non-core roles to alleviate the error propagation.089

Experiments on a large dataset show that our090

proposed methods can significantly improve model091

performance, especially on record-level metrics.092

Such improvement may inspire people to think093

about why sophisticated models can not capture094

such simple data patterns, and guide future model095

design.096

2 Related Work097

Most of the previous EE approaches focus on the098

sentence-level event extraction (SEE) (Liu et al.,099

2018; Yan et al., 2019; Liu et al., 2020; Ahmad100

et al., 2021). In recent years, some researchers have101

shifted their attention to DEE, which is common102

and important in real-world scenarios. Yang et al.103

(2018b) propose a two-stage framework that can104

extract document-level events through heuristic-105

based argument completion. It pays attention to106

the argument scattering challenge but ignores the107

multiple events challenge. Zheng et al. (2019) ob-108

tain a large-scale dataset ChFinAnn through distant109

supervision on Chinese financial documents, which110

paves the way for later researches. They also pro- 111

pose an end-to-end framework named Doc2EDAG 112

which can extract multiple events in a document. 113

Xu et al. (2021) extend the Doc2EDAG with a GNN 114

to model mention interactions and a tracker mod- 115

ule to capture the interdependency among extracted 116

events. Besides the EDAG framework, Yang et al. 117

(2021) introduce a multi-granularity decoder to ex- 118

tract structured events in a parallel manner. These 119

researches focus on the model architecture. To the 120

best of our knowledge, there is no work to improve 121

DEE from the perspective of data exploitation. 122

3 Method 123

Our CAD method contains two main steps. Entity 124

encoding step extracts mentions from sentences 125

and aggregates coreferential mentions to get en- 126

tity embeddings (Sec 3.1). Then, EDAG gener- 127

ation step takes these entities as candidates and 128

iteratively extracts event roles as a DAG (Sec 3.2). 129

This framework follows Doc2EDAG (Zheng et al., 130

2019). But we introduce the whole framework to be 131

self-contained. Our methods focus on coreference 132

utilization and schema structure adjustment. 133

Before introducing the details of the model, we 134

first clarify some key notions (refer to Figure 1): a) 135

event role: an event role is a predefined field of the 136

event table; b) event argument: an event argument 137

is an entity that plays a specific event role; c) event 138

record: an event record contains event arguments 139
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that describe an event. Given a document D=140

{si}ni=1, where sentence si={wj}|si|j=1 is a sequence141

of tokens, DEE extracts all event records from the142

document with a pre-defined event schema.143

3.1 Entity Extraction and Encoding144

Sentence-level encoding. We extract entity men-145

tions on each sentence with a sequence labeling146

model. Given a sentence si={wj}mj=1 ∈ D, we147

encode it into a sequence of vectors {vj}mj=1 using148

a transformer (Vaswani et al., 2017) (encoder-1).149

We leverage a conditional random field (CRF) layer150

to identify entity mentions. Then, for each entity151

mention, we output an embedding by max-pooling152

over its covered token embeddings. For each sen-153

tence si, we apply the max-pooling over all token154

embeddings to get the sentence embedding ci.155

Document-level encoding. We further jointly156

encode all entity mention embeddings and sen-157

tence embeddings in the document to capture158

document-level interactions with another trans-159

former (encoder-2), and get {cd1, ..cdn,md
1, ..m

d
k},160

where cdi s are document level sentence embeddings161

and md
i s are the document level mention embed-162

dings, and k is the number of mentions.163

Coreference detection and aggregation. Previ-164

ous methods only regard mentions with the same165

surface name as arguments. We propose to incor-166

porate more coreferential mentions. As a prime at-167

tempt, we apply hand-crafted patterns. Specifically,168

we find two simple but effective patterns: "[Full169

name], hereafter referred to as [short name]" and170

"[Full name] (referred to as [short name])". Apply-171

ing more advanced coreference detection methods172

may be interesting future work. Then, we use the173

max-pooling over coreferential mentions (same ex-174

pression or abbreviation) of an entity to get a single175

embedding edi for each entity.176

Finally, the entity encoding step outputs177

document-level sentence embeddings C={cdi }ni=1178

and entity embeddings E={edi }
|E|
i=1.179

3.2 EDAG Generation180

We first identify what types of events are described181

in a given document, and then extract event records182

for each event type.183

Event type detection. First, we take the max-184

pooling over sentence embeddings C to get the doc-185

ument embedding. Then we stack a linear classifier186

to detect event types (multi-label classification).187

Event Record Extraction. The event records188

are extracted by several path expanding sub-tasks. 189

For each detected event type, we extract the 190

event roles iteratively following a predefined role 191

order, as shown in Figure 1. For example, when 192

extracting the Pledgee role of the Equity Pledge 193

event, there is only one pre-path A-B. We con- 194

catenate embeddings of sentences and preceding 195

entities, [cd1, · · · , cdn, edA, edB], as memory tensorM 196

and feed [M, E ] into a transformer (encoder-3) to 197

get {eo1, ...eo|E|}. Then, a linear classifier classifies 198

each eoi into positive or negative class. In the exam- 199

ple, entities C and D are positive. So we get two 200

paths A-B-C and A-B-D, and we need to predict 201

the next role for each path. 202

Schema structure adjustment. During the path 203

expanding procedure, the memory tensor M is 204

used to gather the path history information and in- 205

dicate the state of the procedure. Previous methods 206

store all entities in the pre-path into M, which 207

exists the error propagation risk. 208

We propose to adjust the schema structure to ad- 209

dress this issue. We first manually distinguish the 210

core roles for each event type with expert knowl- 211

edge and adjust the role order so that the core roles 212

are in front of the non-core roles. When extract- 213

ing non-core roles, we only include embeddings 214

of core roles in the memory, as they have already 215

uniquely determined an event and non-core roles 216

should not affect each other. This is demonstrated 217

in the memory of node H in Figure 1. 218

4 Experiments 219

4.1 Experimental Setup 220

Dataset. We evaluate our model on the public 221

dataset ChFinAnn proposed by Zheng et al. (2019), 222

which is constructed from real-world Chinese finan- 223

cial documents. It contains 32040 documents and 224

focus on five event types: Equity Freeze (EF), Eq- 225

uity Repurchase (ER), Equity Underweight (EU), 226

Equity Overweight (EO) and Equity Pledge (EP), 227

with 35 different kinds of event roles in total. 228

We strictly follow the experiment settings of 229

Doc2EDAG (Zheng et al., 2019). 230

Metrics. we evaluate models on the role-level 231

and record-level micro-averaged F1 scores. The 232

record-level F1 score indicates that an event record 233

can be counted as true positive only if all predicted 234

roles are consistent with the gold event record. 235

Real-world applications focus on how many cor- 236

rect records can be extracted, which is reflected by 237

record-level metrics. 238
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Model Role-level Record-level

P. R. F1 P. R. F1

Doc2EDAG 84.6 70.7 77.1 36.3 33.1 34.6
DE-PPN - - 77.9 - - -
GIT 82.3 78.4 80.3 42.0 41.7 41.8

D2E* 80.5 72.8 76.4 34.5 33.5 34.0
D2E*+SA 80.5 73.9 77.0 37.9 36.5 37.2
CAD-D2E* 82.4 76.7 79.4 38.9 37.8 38.3

GIT4 84.4 73.8 78.7 36.5 34.5 35.5
CAD-GIT4 84.2 78.9 81.4 43.8 42.6 43.2

Table 1: Role-level and record-level precision( P.),
recall (R.), and F1 scores evaluated on the test set.

Model Data-CO Data-NC

P. R. F1 P. R. F1

D2E*+SA 76.7 68.6 72.4 84.1 79.3 81.7
CAD-D2E* 80.1 74.0 77.0 84.6 79.3 81.9

4.4%↑ 7.9%↑ 6.4%↑ 0.6%↑ 0 0.2%↑

Table 2: Role-level precision( P.), recall (R.), F1
scores evaluated on Data-CO and Data-NC sets.

Baselines. We compare with Doc2EDAG239

(Zheng et al., 2019), DE-PPN (Yang et al., 2021)240

and GIT (Xu et al., 2021). We apply CAD on241

Doc2EDAG and GIT. For Doc2EDAG, we test242

these variants: 1) D2E*. Doc2EDAG with the243

same role order as the CAD for comparison; 2)244

D2E*+SA, D2E* only with the schema adjustment;245

3) CAD-D2E*; D2E* with schema adjustment and246

coreference aggregation. For GIT, as 8-layer GIT247

can’t fit into a 12G memory GPU, we alter the en-248

coder layer to 4 (GIT4), the same as Doc2EDAG.249

And we also apply CAD on it (CAD-GIT4).250

4.2 Results and Analysis251

Results. The performance results are shown in Ta-252

ble 1. We report GIT and DE-PPN results from the253

original paper. CAD improves 3.0, 2.7 role-level254

micro F1 compared with the D2E* and GIT4, re-255

spectively. The improvements are more significant256

under record-level metrics, which are 4.3, 7.7 micro257

F1 respectively, which indicates CAD is more capa-258

ble of extracting a complete event record. Note that259

the 4-layer CAD-GIT4 can even outperform the260

8-layer GIT. Experiments on these models demon-261

strate the effectiveness of CAD. We further show262

the results on each event type in the appendix.263

Analysis. We take CAD-D2E* as an example264

and further analyze where the improvements come265

from. From the ablation test, we can observe that 1)266

the coreference module is of prime importance to267
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Figure 2: Detailed error analysis of the schema adjust-
ment on Equity Underweight events.

the role level, bringing about 2.4 scores increase on 268

F1; 2) the schema adjustment makes contributions 269

to the record level, improving 3.2 scores on F1. 270

a) Coreference aggregation. Our patterns ex- 271

tract 17,656 new coreferential mentions in the 272

dataset. According to whether there exists corefer- 273

ence in a document, we split the origin test set into 274

two parts: data with and without coreference (Data- 275

CO vs. Data-NC). We show the evaluation results 276

on these two sets in Table 2. Adding the coref- 277

erence aggregation results in more performance 278

increase on the Data-CO compared with the Data- 279

NC, which indicates that this module can help to 280

obtain better entity representations. 281

b) Schema structure adjustment. We take 282

event type Equity Underweight as example. As 283

shown in Figure 2. In the left sub-figure, we show 284

the proportions of wrong records vs. the number of 285

wrong arguments in a record. The distribution of 286

D2E*+SA relatively skews to the right. This indi- 287

cates the wrongly extracted roles of D2E*+SA are 288

more likely to appear in the same record, leading to 289

higher record-level metrics. In the right sub-figure, 290

we further analyze the role extraction accuracy 291

along the depth of the DAG when there are sev- 292

eral extraction errors on the preceding roles. Roles 293

before the boundary (1,2,3) are core roles. As the 294

extraction deepens, the accuracy of D2E* decreases 295

sharper than D2E*+SA. Because D2E*+SA ex- 296

tracts non-core roles only depending on core roles, 297

and thus alleviates the error propagation problem. 298

5 Conclusion and Future Work 299

We argue that besides the model architecture, the 300

data characteristics are also indispensable to im- 301

proving DEE. Note that: 1) The core role concept 302

can be applied to a wide range of event types in 303

other domains. 2) Advanced coreference detection 304

can be interesting future work. 3) Our significant 305

improvement may lead people to rethink why com- 306

plex models can’t capture these data characteristics 307

and further inspire the future model design. 308
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Model EF ER EU EO EP
P. R. F1 P. R. F1 P. R. F1 P. R. F1 P. R. F1

Doc2EDAG 72.8 62.1 67.0 93.9 82.6 87.9 81.2 59.6 68.8 79.9 65.8 72.2 82.7 68.4 74.9
D2E* 77.8 59.9 67.7 91.0 85.1 88.0 79.0 58.5 67.2 81.6 65.2 72.5 76.2 71.4 73.7
D2E*+SA 73.2 61.4 66.8 90.9 87.6 89.2 77.8 56.0 65.1 75.1 69.7 72.3 77.6 71.8 74.5
CAD-D2E* 80.1 63.4 70.8 91.1 85.3 88.1 76.2 65.1 70.2 73.7 71.1 72.4 80.7 76.3 78.5

GIT 78.9 68.5 73.4 92.3 89.2 90.8 83.9 66.6 74.3 80.7 72.3 76.3 78.6 76.9 77.7
GIT4 78.5 66.2 71.9 94.0 85.5 89.5 80.0 65.4 72.0 78.3 70.5 74.2 82.0 71.0 76.1
CAD-GIT4 80.9 63.9 71.4 92.5 90.0 91.2 78.6 66.3 71.9 80.9 71.5 75.9 81.8 78.0 79.9

Table 3: Overall role-level precision (P.), recall (R.) and F1 scores evaluated on the test set.

Model EF ER EU EO EP
P. R. F1 P. R. F1 P. R. F1 P. R. F1 P. R. F1

Doc2EDAG 29.1 25.5 27.1 43.3 42.1 42.7 38.2 35.3 36.7 35.7 33.1 34.4 32.9 28.9 30.8
D2E* 28.3 23.3 25.6 47.2 47.2 47.2 33.5 31.7 32.6 33.8 30.8 32.2 28.7 28.4 28.6
D2E*+SA 25.2 22.1 23.6 53.8 54.0 53.9 42.9 35.6 38.9 34.0 33.5 33.8 30.9 30.0 30.4
CAD-D2E* 29.6 23.6 26.3 48.6 48.2 48.4 41.5 40.0 40.8 34.8 35.7 35.3 35.2 34.3 34.7

GIT 32.5 28.8 30.5 59.1 59.3 59.2 45.8 42.4 44.0 38.1 37.5 37.8 34.3 34.9 34.6
GIT4 29.6 26.4 27.9 47.7 46.8 47.2 39.5 40.6 40.1 33.5 33.1 33.3 31.1 28.4 29.7
CAD-GIT4 31.6 26.1 28.6 62.0 62.1 62.0 41.1 41.1 41.1 36.2 34.7 35.4 37.4 36.5 36.9

Table 4: Overall record-level precision (P.), recall (R.) and F1 scores evaluated on the test set.

Appendix388

Event #Train #Dev #Test #Total

EF 608 125 164 897
ER 0 0 0 0
EU 1,637 130 121 2,888
EO 2,218 266 160 2,644
EP 9,005 1,247 1,065 11,317

All 13,468 1,768 1,510 17,746

Table 5: Number of detected coreference in each event
type.

We train Doc2EDAG using the official code, and389

the role-level micro-F1 score is 77.1, which is close390

to results reported in previous studies, 76.3 and391

77.5 (Zheng et al., 2019; Xu et al., 2021). The392

8-layer GIT model can’t fit into a 12G memory393

GPU, so we obtain the best prediction result from394

the authors and conduct analysis on that result. We395

acknowledge Xu et al. (2021) for sharing their396

results. For DE-PPN, we can only get the role-397

level F1 from the original paper. Due to the lack of398

time, we can’t conduct experiments on this model399

and the results we report are based on a single run.400

We will do more experiments later.401

We report detailed results on each event type in402

Table 3 and Table 4. Although 4-layer CAD-GIT4403

can only outperform 8-layer GIT on ER and EP404

events, CAD-GIT4 still outperforms GIT on the405

overall record-level metrics, as EP events account 406

for almost half of the dataset. 407

Table 5 shows the number of coreference de- 408

tected in each event type. The distribution is related 409

to the improvement of our coreference method. 410

For example, EP has the most coreference men- 411

tions so that CAD-D2E* performs much better 412

than D2E*+SA, and ER has no coreference so that 413

CAD-D2E* performs similar or slightly worse than 414

D2E*+SA. 415
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