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Abstract

Most NLP bias studies focus on individual- or
document-level tasks, yet fields where bias has
substantial consequences, like public health,
operate at the community-level. We systemati-
cally examine sociodemographic error dispari-
ties in NLP models predicting community-level
health outcomes across billions of community-
mapped messages and evaluate four sociode-
mographic factor inclusion strategies. We
introduce the Bilateral Concentration Index
(BCI) to quantify non-monotonic disparities
missed by traditional metrics, finding all base-
line language-alone models had moderate dis-
parities (average BCI=6.6%). However, while
incorporating sociodemographics into model-
ing consistently improved accuracy, it often
increased disparities, from negligible (concate-
nation: BCI=6.6%) to significantly (adaptation:
BCI=8.2%), suggesting a cost-benefit trade-off.
Largest disparities in error emerged over educa-
tion and income (BCI= 2.7-16.4%), reducing
accuracy for low-income (and sometimes high-
income) communities, which could disadvan-
tage them if used for policy decisions. These
findings suggest the need to evaluate error dis-
parities alongside accuracy to ensure fairness
as models enter real-world applications.

1 Introduction

Regional disparities in health—reliable differences
in outcomes by sociodemographic characteristics—
are extensively studied in public health and social
sciences to inform fair resource allocation (Beck
et al., 2014; Lemstra et al., 2006; Shavers, 2007).
Within NLP pipelines, biases leading to error dis-
parities (varying model accuracy by sociodemo-
graphic attributes (Shah et al., 2020)) have typi-
cally been analyzed at the document- or individual-
level (Salinas et al., 2023; Garimella et al., 2022;
Rawat et al., 2024). However, for community-level
tasks, such as predicting regional well-being, biases
are less known. Understanding error disparities at

the community-level is particularly critical for NLP
models to inform public health policy.

Here, we systematically evaluate language-based
predictive models across four community-level
health tasks and three sociodemographic dimen-
sions shown to have selection biases on Twit-
ter (Giorgi et al., 2022a): percentage of foreign-
born, percentage of educated, and median income
of the population. We focus on sociodemographic
(“human factor”) inclusion techniques (Zamani
et al., 2018) known to substantially improve model
accuracy (Giorgi et al., 2023; Hovy, 2015), though
their impact on bias or error disparities is unknown.
While sociodemographic inclusion could theoret-
ically increase bias, past studies indicate it can
also reduce it (Shah et al., 2020). We hypothesize
this could depend on the inclusion strategy, so we
explore two different types: (1) additive, directly
offsetting average outcome differences (e.g., heart
disease rates for low versus high income), and (2)
adaptive, adjusting language semantics to reflect
sociodemographic context (e.g., different meaning
of “club” for low- versus high-income).

We provide three contributions: (1) identifying
community well-being tasks and sociodemographic
factors most prone to model error disparities; (2)
analyzing how additive and adaptive sociodemo-
graphic inclusion methods affect disparities and
how this relates to their accuracy; and (3) propos-
ing the Bilateral Concentration Index (BCI), an
analog of the popular Gini-coefficient (Gini, 1912)
from health disparity research, to quantify error dis-
parities, capturing non-linear and non-monotonic
sociodemographic-error relationships.

2 Related Work

The integration of sociodemographic factors into
language-based predictive models, methods and
challenges, has been investigated for at least a
decade (Hovy, 2015; Lynn et al., 2017; Soni et al.,



Outc.\ Demog. ForgnBorn HS Grad Income
Heart Dis Mort. 4.1 %* 9.0 %™ 9.2 %™
Life Satis. 9.9 %™* 52%* 5.8 %"
%FairPoor Hlth 4.8 %** 10.8 %™ 7.5 %*"
Suicide Mort. 4.4 %" 2.7 % 5.6 %"

Table 1: Error disparity (BCI) for the given sociode-
mographic factor (Demog.) and across language-based
predictive models for the four community health tasks.
Asterisk represents statistically significant difference
from a random baseline (* p < .05, ** p < .01 from a
permutation test).

2024). Sociodmeographic factors explored include,
e.g., income, age, gender, and geographic loca-
tion (Huang and Paul, 2019). Additionally, dialog
systems are increasingly designed with human-like
traits such as empathy and emotions (Rashkin et al.,
2019; Omitaomu et al., 2022) or personas (Roller
et al., 2021). Recent work has suggested that
prompting generative LMs with personas reveals
internal biases and simulates human roles in crowd-
sourcing tasks (Hu and Collier, 2024).

Work on error disparity (Shah et al., 2020)
started approximately with the “Wall Street Jour-
nal effect,” where POS taggers performed worse
as user demographics diverged from WSJ training
authors (Hovy and Sggaard, 2015); disparities in
hate detection for Black authors due to annotators
missing racial context (Sap et al., 2019); and lower
accuracy in mental health prediction for Black ver-
sus matched White samples, even with Black-only
training data (Rai et al., 2024). Though these stud-
ies did not address community-level tasks, they
motivate exploring methods to account for sociode-
mographic differences in error, to calibrate models
effectively for diverse populations.

3 Data Set

We use the open-source County Tweet Lexical
Bank (CTLB) which contains 25,000 English-
language lexical features across 2,041 US coun-
ties, derived from over 1.5 billion geolocated
tweets (Giorgi et al., 2018). We focus on three
sociodemographic factors that have had high pre-
dictive values in past work (Giorgi et al., 2022a):
percentage of foreign-born residents, percentage of
the county’s population with a high school diploma,
and the log of the county’s median income. We
consider four county health tasks: heart disease
mortality (HD; N = 1750), life satisfaction (LS;
N = 1745), percentage reporting ‘fair’/‘poor’

health (FP; N = 1703), and suicide mortality (SM;
N = 1631). These outcomes were chosen to be
consistent with past community-level NLP tasks on
selection bias (Giorgi et al., 2022a). See Appendix
A for more details.

4 Methods

We describe the predictive models, factor inclusion
techniques, and disparity metrics. With the focus
being inclusion techniques and disparity metrics,
we a use well-established technique for predictive
modeling. Specifically, an ¢, penalized (ridge) re-
gression was used to estimate the outcomes (HD,
LS, FP, SM) from county lexical and/or sociode-
mographic features. We recorded absolute errors
for each county over 10-fold cross-validation with
hyper-parameters set over a subset of training (§Ap-
pendix B).

Factor Inclusion Methods. We explored four
factor inclusion techniques for integrating sociode-
mographic factors into language-based predictive
models. Techniques spanned two overall strate-
gies: (1) additive - direct inclusion accounting
for baseline differences in outcomes depending
on the sociodemographic factor (Preotiuc-Pietro
et al., 2015) and (2) adaptive - accounting for dif-
ferences in the meaning of words or phrases de-
pending on demographics. For example, the word
"mean" might have one sense as "cruel," but among
more educated populations could more often sig-
nify the mathematical average sense of the word
(Lynn et al., 2017).

As additive techniques, we utilize: (1) Factor
Concatenation (FC) — sociodemographic factors
are concatenated with language features in a single
feature vector; (2) Residualized Controls (ResC)
— sociodemographic controls are first modeled inde-
pendently and then the language-based model is fit
to predict the residual from the control model (Za-
mani et al., 2018). By fitting to controls alone
first, ResC ensures the they are not lost among
the numerous language dimensions (Zamani and
Schwartz, 2017).

As adaptive techniques, we utilize: (3) Factor
Adaptation (FA) — linguistic features are com-
posed with sociodemographic control variables
allowing language features to have subtle differ-
ence in meaning depending on the author back-
ground (Lynn et al., 2017). We use the composi-
tional function multiplying mean centered versions
of the controls with the language features found



Disparity and Accuracy (Bilateral Concentration Index and Pearson r)

Demog

Factor Task Lang (L) L+C ResC FA RFA Cont (C)
BCI r BCI T BCI r BCI T BCI r BCI r
HD 4.1% 7149 42% 750 3.6% 147 5.8% 164 5.5% 7163 4.4% 351
Foreign LS 9.9% 450 9.9% 451 9.6% 447 9.4% 502 9.1% 491 11.1% —
Born FP 4.8% 764 4.8% 164 4.4% 154 5.9% 773 5.8% 770 4.9% .078
SM 4.4% .635 4.7% .633 7.0% 671 8.2%** .673 73%*  .670 1.9% 354
Hieh HD 9.0% 749 9.1% 750 14.9%** 730 122%* 771 125%* 765 13.7% 526
schgol LS 5.2% 450 5.0% 456 3.3% .505 3.5% 541 3.6% 518 4.1% .306
‘Gr d FP 10.8%  .764 11.0% 769 16.4%** 781 15.0%* .808 15.1%* .803 14.1% 740
a SM 2.7% .635 2.6% 636 3.4% 622 3.1% 664 3.2% .661 1.5% —
HD 9.2% 749 9.4% 152 9.9% 747 12.5%* 780 127%* 779 8.4% 574
Income LS 5.8% 450 4.4% 478 4.3% .530 3.7% .566 4.0% 551 4.6% .365
FP 7.5% 164 7.9% 770 7.9% 798 10.6%* .813 104% 811 7.0% .649
SM 5.6% .635 5.8% 637 7.6% .636 8.5% .655 8.1% .647 5.3% 304
Global Avg  6.6% .649 6.6% .654 77%** 664 82%*  .692 8.1%*  .686 6.8% 352

Table 2: Disparities and Accuracies across county outcomes and different sociodemographic factor inclusion
approaches: Disparity is measured using the Bilateral Concentration Index (BCI) (as a percent), each comparing the
cumulative error over counties, sorted by sociodemographic factor, to a cumulative uniform distribution. Accuracies
measured using Pearson r. Outcomes are heart disease (HD), life satisfaction (LS), fair/poor health (FP), and suicide
mortality (SM). Factor inclusion methods beyond Language (L) and Sociodemographic Control (C) are Factor
Concatenation (L + C), Residualized Controls (ResC), Factor Adaptation (FA), and Residualized Factor Adaptation
(RFA). Dashes signify not significant results. Bold represents tests with the lowest disparity per sociodemographic
factor. Underline represents tests with the highest disparity per sociodemographic factor. Asterisks represent
statistically significant difference from disparity with the same parameters using language alone (L) (*: p < .05, **:
p < .01). Significance for global average calculated using harmonic mean of p values for all tests conducted for that
factor inclusion method, which controls the family wise error rate (Wilson, 2019).

beneficial in past work (Lynn et al., 2017); (2)
Residualized Factor Adaptation (RFA) — com-
bining FA and ResC, an FA model is fit to the resid-
ual of a control-only model offering the advantages
of both (Zamani et al., 2018)".

Measuring Disparity. While past works in NLP-
based predictive biases often compare error by so-
ciodemographic groups, e.g., Hovy and Sggaard
(2015); Zhao et al. (2017), community-level so-
ciodemographic are often continuous (not group;
e.g. percentages or averages). Social scientific
works often utilize the Gini-coefficient (Gini, 1912)
but it is limited to measures unidimensional dispar-
ities and require measuring disparities one variable
(e.g. error) conditioned on another (e.g. median
income of the community). We formulate an ana-
log to Gini that captures the disparity in model
performance with respect to a sociodemographic
variable (sociodemographic factor), the Bilateral
Concentration Index (BCI).

BCI is adaptation of the concentration index
based on the cumulative percent of total error for
each county sorted by the sociodemographic vari-
able (O’Donnell et al., 2007). To calculate BCT
we take the integration of the difference between

'See Appendix D for mathematical notations

the concentration curve and a cumulative uniform
distribution (a 45° diagonal — perfect equality):

N-1
BCI =2 Z
1=0

where IV is the total number of counties which
are ordered sequentially from lowest to highest
error. f;(x) represents the disparity at any point
x between the interval ﬁ to %— the cumulative
error (e;) compared to the expectation from the cu-
mulative uniform (u;) within the interval between

counties:

i+1

/iN fi(x)dz (D

fi(z) = [(me;z — €iv1) — (My, T — ui1)| (2)

_ G416 Uit1 — Uj
mei - 7 ) Uq 7

N N

Curves with large area under the cumulative uni-
form distribution indicate prediction error increases
with the sociodemographic variable; curves above
the diagonal indicate the opposite (Figure A2).
Importantly, this approach treats observations con-
tinuously without binning, enabling a granular con-
sideration of each observation’s effect. The BCI
metric is intuitive (maximum at 100%), but we also
apply the Anderson-Darling test (AD) to assess
significant disparities (see Appendix E).
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Figure 1: Scatter plots of outcomes with respect to income of a county. Prediction errors as a function of logged
income in 1st and 3rd columns. Income is colored by tercile; LOESS curve in black. Predicted vs true outcome
values in 2nd and 4th columns. Linear regression lines plotted for each income tercile use the same color mapping.

5 Results

We systematically evaluate error disparities of
language-based predictive models across four tasks
and three sociodemographic controls. We first es-
tablish overall disparities for language-alone mod-
els in Table 1, finding significant error disparities
in every case except for suicide mortality with
HS graduation. For example, substantial dispari-
ties were observed for Life Satisfaction predictions
across foreign born percentage (BCI=9.9%). This
means models were more accurate depending on
the amount foreign born (less foreign born meant
better accuracy in this case). Other large dispari-
ties included model predicting heart disease with
income (BCI=9.2%) and Fair or Poor health with
HS graduation (BCI=10.8%).

Table 2 shows results across the four types of
inclusion techniques and controls alone (C). On
average, all inclusion techniques improved accu-
racy over the language-alone results but often at
the expense of an increase in error disparity. For
example, factor adaptation (FA) while producing
the best accuracies also had an average disparity
BCI of 8.2%, an increase over the 6.6% observed
from language alone. On the other hand, the sim-
ple concatenation approach (L+C) did not seem to
increase disparities but it also did not substantially
increase accuracy. Interestingly, control alone mod-
els did not have large error disparities, though this
could be due to their low predictive performance
overall, leaving less room for disparity.

To depict patterns disparities with respect to in-
come, we visualize both error and prediction scat-

ter plots for fair and poor health (high disparity) as
well as suicide mortality (low disparity) in Figure 1.
The slope of the LOESS (Cleveland, 1979) and the
Bilateral Concentration Index are approximately
proportional in magnitude. We observed non-linear
patterns where simply being further from the mean
in income meant worse performance, while for oth-
ers, we observed models working better for those
communities with higher income.

6 Conclusion

In a systematic evaluation of community-level
health prediction tasks, we observed error dispari-
ties across three demographics and most tasks. We
further analyzed the effect of sociodemographic
factor inclusion methods on disparity in trade-off
for accuracy improvements. We found that predict-
ing outcomes such as heart disease and fair/poor
health had much higher error for counties with
lower education or income and accuracies for life
satisfaction were lower for counties where the per-
centage of foreign born population was higher.
While one might have expected factor inclusion
methods to reduce error by better capturing differ-
ences in semantics by sociodemographic group, we
found that, on average, such approaches, especially
adaptive approaches, increased disparities. Overall
results suggest that there are significant disparities
in model performances at the county level for most
sociodemographics and that the utility of introduc-
ing sociodemographic factors into such models de-
pends the context, rather than having a universally
positive or negative impact.



7 Limitations

To systematically study sociodemographic factor
inclusion methods and their effects on bias (so-
ciodemographic error disparities), we evaluated
four methods across four outcomes. Despite this,
this study is not exhaustive nor representative. For
example, we evaluated a limited set of sociode-
mographic factors (foreign-born, education, and
income). Several studies have shown race as a
source of error disparities (Rai et al., 2024; Sap
et al., 2019), which was not evaluated in the current
study. Furthermore, the data set is limited in rep-
resentation: we only consider communities in the
US with sufficiently large number of Twitter users.
Thus, our results may not extend to other regions or
cultures. Finally, studies have shown error dispari-
ties at the document level (i.e., hate speech labels
on social media posts; Sap et al., 2019), which
was not evaluated in the current study. Though we
think the factor inclusion approaches chosen are
straightforward, and therefore provide a good basis
for generalization, additional techniques could be
tested as well.

8 Ethics

This study was reviewed and approved by the
[redacted] Institutional Review Board. It is im-
portant to consider and discourage the potential
negative applications of this work. Our approach
can be utilized to uncover societal as well as indi-
vidual error disparities, even within targeted recom-
mendation systems. However, we recognize that,
if misapplied, it could be leveraged to amplify al-
gorithmic biases and exacerbate inequities. The
results described could reinforce existing biases
contributing to additional stigma towards a group.
Additionally, "fairwashing" or blindly trusting mod-
els because they showed propensity for fairness in
this study could lead to unaccounted for error dis-
parity in new applications of these models. Our
work is intended for researchers and practitioners
of Social Science, and we don’t condone the usage
of such algorithms for malicious purposes.
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Appendices
A Data Details

Community Language The County Tweet Lexi-
cal Bank (CTLB) is an open-source data set of US
county-level language features. High-level details
are described here and further details can be found
in Giorgi et al. (2018). This dataset is derived from

a 10% sample of Twitter from 2009-2015. From
this sample, Twitter users were mapped to US coun-
ties via self-reported location (via a free text field
in their profile) and latitude / longitude coordinates
associated with their tweets. To be included in
the dataset, county-mapped Twitter users needed at
least 30 tweets across the 10% sample, and coun-
ties were included if at least 100 such users were
mapped to the county. A total of 6 million users
across 2,041 counties met this threshold, for a final
dataset of 1.5 billion tweets. From these tweets,
lexical features (25,000 of the most frequent un-
igrams) were extracted for each of the 6 million
users. These user-level features were then averaged
within each county to produce a set of US county
lexical features (i.e., each county is represented
by a vector of 25,000 unigram frequencies). This
dataset has been validated across several studies
and shown to predict community health (Matero
et al., 2023; Abebe et al., 2020), well-being (Jaidka
et al., 2020), and psychology (Giorgi et al., 2022b).

Community Controls Five year estimates (2011-
2015) for foreign born (percentage of a country’s
population that was born in another country), ed-
ucation (% of the population with a high school
diploma), and income (median log annual house-
hold income) were obtained from United States
Census Bureau’s 2015 American Community Sur-
vey (ACS).

Community OQOutcomes We gathered age-
adjusted mortality rates for heart disease and
suicide from the Centers for Disease Control
and Prevention (CDC), averaged over the years
2010-2015. Life satisfaction was assessed using
individual responses to the question: "In general,
how satisfied are you with your life?" on a scale
from 1 (very dissatisfied) to 5 (very satisfied), with
scores averaged across 2009 and 2010 (Lawless
and Lucas, 2011).

Lastly, data on Poor or Fair Health came from
the County Health Rankings, drawing on the Be-
havioral Risk Factor Surveillance System (BRFSS;
Remington et al., 2015). This age-adjusted metric
reflects the percentage of adults who rated their
health as "fair" or "poor” in response to the ques-
tion: "In general, would you say that your health is
Excellent/Very good/Good/Fair/Poor?".
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B Model Details

The same feature selection and modeling proce-
dures were used across all four outcomes. In order
to reduce the feature space, we performed a feature
selection pipeline. First, we performed univariate
feature selection, removing all features that were
not significantly correlated at a family-wise error
rate of 60. Next, we use principal component anal-
ysis (PCA) to further reduce the features. The di-
mension reduction size for PCA was chosen based
on the size of the training fold.

All models were evaluated using 10-fold cross
validation using a linear regression with /s regular-
ization (Ridge regression). The regression regular-
ization parameter o was chosen via nested cross
validation.

Feature extraction (unigrams) as well as predic-
tive modeling were all done using the open-source
Python package DLATK (Schwartz et al., 2017).

C Bilateral Concentration Index

Figure Al is a visualization of a hypothetical con-
centration curve that crosses the line of equality.
The light blue area represents the BCIL.

Bilateral Concentration Curve
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Figure Al: Zoomed in Bilateral Concentration Curve:
BCI shown (where the red line is the cumulative uniform
distribution, and the blue line is the predicted error of
counties sorted by sociodemographic variable)

Figure A2 depicts another hypothetical concen-
tration curve where n, or the number of counties,
is ten and the cumulative error for each county
crosses the line of equality between counties five
and six. This example illustrates the distinction
in behavior between the existing Concentration In-
dex and the Bilateral Concentration Index as the
BCI accounts summatively for all area difference

between the line of equality and the cumulative er-
ror curve. The relevant variables used to solve the
BCI using equations 1, 2, and 3 for this interval
([£, ©L]) are labeled.

n’ n
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Figure A2: Bilateral Concentration Curve: the blue line
is cumulative error curve and red line is the cumulative
uniform line

D Factor Inclusion Methods

Residualized Controls can be represented mathe-
matically as follows

e=Y — YC (4)
Er=7xXp+ A ®))
where ¢ is the residual and Yo represents the
predictions of the controls model for the outcome
variable, Y. The residual is minimized by a subse-
quent model that uses the language features, X7..
In Factor Adaptation, the adapted language fea-
tures (X 4,) are combined as follows:
XAi:[XL-CZ'],V’L'E [1,|CH (6)
XF - [XLaXAp“"XA‘CJ (7)
Residualized Factor Adaptation can be repre-
sented as
€, =y X [XL,XAI,XAQ, ...,XAICl] +A ®
E Additional Disparity Metrics
For comparison, we also ran existing disparity met-
rics Anderson-Darling, KS Tests, and Cross En-

tropy to evaluate disparity between cumulative pre-
diction error and a cumulative uniform error. Cross



Disparity Metrics: KS. CE. AD, BCI

Demog

Group Task Lang (L) Cont (C) L+C ResC FA RFA
KS CE AD BCI KS CE AD BCI KS CE AD BCI KS CE AD BCI KS CE AD BCI KS CE AD BCI
HD 040 4.24 8157 4.1% 037 4.25 9904 4.4% 041 4.24 8523 4.2% 038 4.24 6592 3.6% 051 4.27 15881 5.8% 049 4.27 14349 5.5%
Foreign LS 077 435 45767 9.9% 090 439 58977 11.1% 077 435 45446 9.9% 075 434 42564 9.6% 076 4.34 40610 9.4% 073 433 38252 9.1%
Born FP 048 4.26 13016 4.8% 051 4.28 16560 4.9% 048 4.26 13060 4.8% 045 4.26 11505 4.4% 055 4.27 18419 5.9% 055 4.27 17701 5.8%
SM 047 427 8726 4.4% 017 421 2447 1.9% 051 4.27 9902 4.7% 065 429 20230 7.0% 076 4.32 27708 8.2% 068 430 22017 7.3%
High HD 074 434 39872 9.0%  .105 4.50 95668 137% 074 434 40863 9.1%  .108 457 111573 149%  .092 444 72498 122% 095 445 76683 12.5%
<‘I1;ol LS 043 4.27 16323 52% 034 425 10566 4.1% 041 4.26 15092 5.0% 028 423 6731 3.3% 029 423 7554 3.5% 029 423 7325 3.6%
(t‘vr\gl FP .100 445 61605 10.8% 115 4.54 91734 14.1% 100 445 62690 11.0%  .131 4.66 124552 164% 123 458 101910  15.0%  .124 4.58 103679 15.1%
“ SM 027 4.24 4785 2.7% 023 421 2132 1.5% 027 4.24 4648 2.6% 033 425 6596 3.4% 030 4.23 4972 3.1% 030 4.24 5056 32%
HD 076 435 42044 92% 066 430 33119 84% 077 435 44018 9.4% 081 4.40 51295 9.9% 097 445 75203 12.5% 099 4.46 76961
I N LS 051 4.29 18368 5.8% 042 426 11029 4.6% 037 4.25 9876 4.4% 039 424 9711 4.3% 037 4.25 7770 3.7% 038 4.24 8508
neome FP 073 435 32151 7.5% 056 4.31 22060 7.0% 073 435 33774 79% 067 4.33 30154 79% 083 4.39 50514 10.6% 081 4.38 48925
SM 052 4.25 12973 5.6% 046 4.28 12254 5.3% 052 4.25 13624 5.8% 058 429 23406 7.6% 068 4.32 28929 8.5% 063 4.30 26258
Global Avg  .059  4.305 25315 6.6% 057 4315 30537 6.8% 058 4301 25126 6.6% 064 4342 37075 1.7% 068 4341 37664 8.2% 067 4338 37142 8.1%

Table T1: Disparities across county outcomes and different sociodemographic factor inclusion approaches:
Disparity is measured using the KS Test (KS), the Cross Entropy (CE), Anderson-Darling (AD), and the Bilateral
Concentration Index (BCI) (as a percent) each comparing the cumulative error over counties, sorted by sociode-
mographic group, to a cumulative uniform distribution (Smirnov, 1939). Outcomes are heart disease (HD), life
satisfaction (LS), fair/poor health (FP), and suicide mortality (SM). Factor inclusion methods beyond Language (L)
and Demographic Control (C) are Factor Concatenation (L + C), Residualized Controls (ResC), Factor Adaptation
(FA), and Residualized Factor Adaptation (RFA). Bold represents statistically significant difference from disparity
with the same parameters using language alone (L). Significance for global average calculated using harmonic mean
of p values for all tests conducted for that factor inclusion method, which controls the family wise error rate (Wilson,

2019).

Entropy isnt as interpretable. KS test is much more
interpretable, but fails to account for significant
disparity in the tails of the county error distribu-
tion. The Anderson-Darling test is best equipped
to account for the entirety of the distribution, but is
also difficult to interpret. We use the BCI because
it possesses the strengths of each of these methods.
The results can be seen in Table T1.
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Figure A3: All Bilateral Concentration Curves: BCIs for all combinations of sociodemographic variable and
outcome (where the red line is the cumulative uniform distribution, and the blue line is the predicted error of counties

sorted by sociodemographic variable)
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