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Abstract

Most NLP bias studies focus on individual- or001
document-level tasks, yet fields where bias has002
substantial consequences, like public health,003
operate at the community-level. We systemati-004
cally examine sociodemographic error dispari-005
ties in NLP models predicting community-level006
health outcomes across billions of community-007
mapped messages and evaluate four sociode-008
mographic factor inclusion strategies. We009
introduce the Bilateral Concentration Index010
(BCI) to quantify non-monotonic disparities011
missed by traditional metrics, finding all base-012
line language-alone models had moderate dis-013
parities (average BCI=6.6%). However, while014
incorporating sociodemographics into model-015
ing consistently improved accuracy, it often016
increased disparities, from negligible (concate-017
nation: BCI=6.6%) to significantly (adaptation:018
BCI=8.2%), suggesting a cost-benefit trade-off.019
Largest disparities in error emerged over educa-020
tion and income (BCI= 2.7–16.4%), reducing021
accuracy for low-income (and sometimes high-022
income) communities, which could disadvan-023
tage them if used for policy decisions. These024
findings suggest the need to evaluate error dis-025
parities alongside accuracy to ensure fairness026
as models enter real-world applications.027

1 Introduction028

Regional disparities in health—reliable differences029

in outcomes by sociodemographic characteristics—030

are extensively studied in public health and social031

sciences to inform fair resource allocation (Beck032

et al., 2014; Lemstra et al., 2006; Shavers, 2007).033

Within NLP pipelines, biases leading to error dis-034

parities (varying model accuracy by sociodemo-035

graphic attributes (Shah et al., 2020)) have typi-036

cally been analyzed at the document- or individual-037

level (Salinas et al., 2023; Garimella et al., 2022;038

Rawat et al., 2024). However, for community-level039

tasks, such as predicting regional well-being, biases040

are less known. Understanding error disparities at041

the community-level is particularly critical for NLP 042

models to inform public health policy. 043

Here, we systematically evaluate language-based 044

predictive models across four community-level 045

health tasks and three sociodemographic dimen- 046

sions shown to have selection biases on Twit- 047

ter (Giorgi et al., 2022a): percentage of foreign- 048

born, percentage of educated, and median income 049

of the population. We focus on sociodemographic 050

(“human factor”) inclusion techniques (Zamani 051

et al., 2018) known to substantially improve model 052

accuracy (Giorgi et al., 2023; Hovy, 2015), though 053

their impact on bias or error disparities is unknown. 054

While sociodemographic inclusion could theoret- 055

ically increase bias, past studies indicate it can 056

also reduce it (Shah et al., 2020). We hypothesize 057

this could depend on the inclusion strategy, so we 058

explore two different types: (1) additive, directly 059

offsetting average outcome differences (e.g., heart 060

disease rates for low versus high income), and (2) 061

adaptive, adjusting language semantics to reflect 062

sociodemographic context (e.g., different meaning 063

of “club” for low- versus high-income). 064

We provide three contributions: (1) identifying 065

community well-being tasks and sociodemographic 066

factors most prone to model error disparities; (2) 067

analyzing how additive and adaptive sociodemo- 068

graphic inclusion methods affect disparities and 069

how this relates to their accuracy; and (3) propos- 070

ing the Bilateral Concentration Index (BCI), an 071

analog of the popular Gini-coefficient (Gini, 1912) 072

from health disparity research, to quantify error dis- 073

parities, capturing non-linear and non-monotonic 074

sociodemographic-error relationships. 075

2 Related Work 076

The integration of sociodemographic factors into 077

language-based predictive models, methods and 078

challenges, has been investigated for at least a 079

decade (Hovy, 2015; Lynn et al., 2017; Soni et al., 080
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Outc.\ Demog. Forgn Born HS Grad Income

Heart Dis Mort. 4.1 %∗ 9.0 %∗∗ 9.2 %∗∗

Life Satis. 9.9 %∗∗ 5.2 %∗∗ 5.8 %∗∗

%FairPoor Hlth 4.8 %∗∗ 10.8 %∗∗ 7.5 %∗∗

Suicide Mort. 4.4 %∗ 2.7 % 5.6 %∗

Table 1: Error disparity (BCI) for the given sociode-
mographic factor (Demog.) and across language-based
predictive models for the four community health tasks.
Asterisk represents statistically significant difference
from a random baseline (* p < .05, ** p < .01 from a
permutation test).

2024). Sociodmeographic factors explored include,081

e.g., income, age, gender, and geographic loca-082

tion (Huang and Paul, 2019). Additionally, dialog083

systems are increasingly designed with human-like084

traits such as empathy and emotions (Rashkin et al.,085

2019; Omitaomu et al., 2022) or personas (Roller086

et al., 2021). Recent work has suggested that087

prompting generative LMs with personas reveals088

internal biases and simulates human roles in crowd-089

sourcing tasks (Hu and Collier, 2024).090

Work on error disparity (Shah et al., 2020)091

started approximately with the “Wall Street Jour-092

nal effect,” where POS taggers performed worse093

as user demographics diverged from WSJ training094

authors (Hovy and Søgaard, 2015); disparities in095

hate detection for Black authors due to annotators096

missing racial context (Sap et al., 2019); and lower097

accuracy in mental health prediction for Black ver-098

sus matched White samples, even with Black-only099

training data (Rai et al., 2024). Though these stud-100

ies did not address community-level tasks, they101

motivate exploring methods to account for sociode-102

mographic differences in error, to calibrate models103

effectively for diverse populations.104

3 Data Set105

We use the open-source County Tweet Lexical106

Bank (CTLB) which contains 25,000 English-107

language lexical features across 2,041 US coun-108

ties, derived from over 1.5 billion geolocated109

tweets (Giorgi et al., 2018). We focus on three110

sociodemographic factors that have had high pre-111

dictive values in past work (Giorgi et al., 2022a):112

percentage of foreign-born residents, percentage of113

the county’s population with a high school diploma,114

and the log of the county’s median income. We115

consider four county health tasks: heart disease116

mortality (HD; N = 1750), life satisfaction (LS;117

N = 1745), percentage reporting ‘fair’/‘poor’118

health (FP; N = 1703), and suicide mortality (SM; 119

N = 1631). These outcomes were chosen to be 120

consistent with past community-level NLP tasks on 121

selection bias (Giorgi et al., 2022a). See Appendix 122

A for more details. 123

4 Methods 124

We describe the predictive models, factor inclusion 125

techniques, and disparity metrics. With the focus 126

being inclusion techniques and disparity metrics, 127

we a use well-established technique for predictive 128

modeling. Specifically, an ℓ2 penalized (ridge) re- 129

gression was used to estimate the outcomes (HD, 130

LS, FP, SM) from county lexical and/or sociode- 131

mographic features. We recorded absolute errors 132

for each county over 10-fold cross-validation with 133

hyper-parameters set over a subset of training (§Ap- 134

pendix B). 135

Factor Inclusion Methods. We explored four 136

factor inclusion techniques for integrating sociode- 137

mographic factors into language-based predictive 138

models. Techniques spanned two overall strate- 139

gies: (1) additive - direct inclusion accounting 140

for baseline differences in outcomes depending 141

on the sociodemographic factor (Preoţiuc-Pietro 142

et al., 2015) and (2) adaptive - accounting for dif- 143

ferences in the meaning of words or phrases de- 144

pending on demographics. For example, the word 145

"mean" might have one sense as "cruel," but among 146

more educated populations could more often sig- 147

nify the mathematical average sense of the word 148

(Lynn et al., 2017). 149

As additive techniques, we utilize: (1) Factor 150

Concatenation (FC) – sociodemographic factors 151

are concatenated with language features in a single 152

feature vector; (2) Residualized Controls (ResC) 153

– sociodemographic controls are first modeled inde- 154

pendently and then the language-based model is fit 155

to predict the residual from the control model (Za- 156

mani et al., 2018). By fitting to controls alone 157

first, ResC ensures the they are not lost among 158

the numerous language dimensions (Zamani and 159

Schwartz, 2017). 160

As adaptive techniques, we utilize: (3) Factor 161

Adaptation (FA) – linguistic features are com- 162

posed with sociodemographic control variables 163

allowing language features to have subtle differ- 164

ence in meaning depending on the author back- 165

ground (Lynn et al., 2017). We use the composi- 166

tional function multiplying mean centered versions 167

of the controls with the language features found 168
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Disparity and Accuracy (Bilateral Concentration Index and Pearson r)

Demog
Factor Task Lang (L) L+C ResC FA RFA Cont (C)

BCI r BCI r BCI r BCI r BCI r BCI r

Foreign
Born

HD 4.1% .749 4.2% .750 3.6% .747 5.8% .764 5.5% .763 4.4% .351
LS 9.9% .450 9.9% .451 9.6% .447 9.4% .502 9.1% .491 11.1% —-
FP 4.8% .764 4.8% .764 4.4% .754 5.9% .773 5.8% .770 4.9% .078
SM 4.4% .635 4.7% .633 7.0% .671 8.2%∗∗ .673 7.3%∗ .670 1.9% .354

High
school
Grad

HD 9.0% .749 9.1% .750 14.9%∗∗ .730 12.2%∗ .771 12.5%∗ .765 13.7% .526
LS 5.2% .450 5.0% .456 3.3% .505 3.5% .541 3.6% .518 4.1% .306
FP 10.8% .764 11.0% .769 16.4%∗∗ .781 15.0%∗ .808 15.1%∗ .803 14.1% .740
SM 2.7% .635 2.6% .636 3.4% .622 3.1% .664 3.2% .661 1.5% —-

Income

HD 9.2% .749 9.4% .752 9.9% .747 12.5%∗ .780 12.7%∗ .779 8.4% .574
LS 5.8% .450 4.4% .478 4.3% .530 3.7% .566 4.0% .551 4.6% .365
FP 7.5% .764 7.9% .770 7.9% .798 10.6%∗ .813 10.4% .811 7.0% .649
SM 5.6% .635 5.8% .637 7.6% .636 8.5% .655 8.1% .647 5.3% .304

Global Avg 6.6% .649 6.6% .654 7.7%∗∗ .664 8.2%∗ .692 8.1%∗ .686 6.8% .352

Table 2: Disparities and Accuracies across county outcomes and different sociodemographic factor inclusion
approaches: Disparity is measured using the Bilateral Concentration Index (BCI) (as a percent), each comparing the
cumulative error over counties, sorted by sociodemographic factor, to a cumulative uniform distribution. Accuracies
measured using Pearson r. Outcomes are heart disease (HD), life satisfaction (LS), fair/poor health (FP), and suicide
mortality (SM). Factor inclusion methods beyond Language (L) and Sociodemographic Control (C) are Factor
Concatenation (L + C), Residualized Controls (ResC), Factor Adaptation (FA), and Residualized Factor Adaptation
(RFA). Dashes signify not significant results. Bold represents tests with the lowest disparity per sociodemographic
factor. Underline represents tests with the highest disparity per sociodemographic factor. Asterisks represent
statistically significant difference from disparity with the same parameters using language alone (L) (*: p < .05, **:
p < .01). Significance for global average calculated using harmonic mean of p values for all tests conducted for that
factor inclusion method, which controls the family wise error rate (Wilson, 2019).

beneficial in past work (Lynn et al., 2017); (2)169

Residualized Factor Adaptation (RFA) – com-170

bining FA and ResC, an FA model is fit to the resid-171

ual of a control-only model offering the advantages172

of both (Zamani et al., 2018)1.173

Measuring Disparity. While past works in NLP-174

based predictive biases often compare error by so-175

ciodemographic groups, e.g., Hovy and Søgaard176

(2015); Zhao et al. (2017), community-level so-177

ciodemographic are often continuous (not group;178

e.g. percentages or averages). Social scientific179

works often utilize the Gini-coefficient (Gini, 1912)180

but it is limited to measures unidimensional dispar-181

ities and require measuring disparities one variable182

(e.g. error) conditioned on another (e.g. median183

income of the community). We formulate an ana-184

log to Gini that captures the disparity in model185

performance with respect to a sociodemographic186

variable (sociodemographic factor), the Bilateral187

Concentration Index (BCI).188

BCI is adaptation of the concentration index189

based on the cumulative percent of total error for190

each county sorted by the sociodemographic vari-191

able (O’Donnell et al., 2007). To calculate BCI192

we take the integration of the difference between193

1See Appendix D for mathematical notations

the concentration curve and a cumulative uniform 194

distribution (a 45° diagonal – perfect equality): 195

BCI = 2
N−1∑
i=0

(∫ i+1
N

i
N

fi(x)dx

)
(1) 196

where N is the total number of counties which 197

are ordered sequentially from lowest to highest 198

error. fi(x) represents the disparity at any point 199

x between the interval i
N to i+1

N – the cumulative 200

error (ei) compared to the expectation from the cu- 201

mulative uniform (ui) within the interval between 202

counties: 203

fi(x) = |(meix− ei+1)− (muix− ui+1)| (2) 204

205

mei =
ei+1 − ei

i
N

,mui =
ui+1 − ui

i
N

(3) 206

Curves with large area under the cumulative uni- 207

form distribution indicate prediction error increases 208

with the sociodemographic variable; curves above 209

the diagonal indicate the opposite (Figure A2). 210

Importantly, this approach treats observations con- 211

tinuously without binning, enabling a granular con- 212

sideration of each observation’s effect. The BCI 213

metric is intuitive (maximum at 100%), but we also 214

apply the Anderson-Darling test (AD) to assess 215

significant disparities (see Appendix E). 216
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Figure 1: Scatter plots of outcomes with respect to income of a county. Prediction errors as a function of logged
income in 1st and 3rd columns. Income is colored by tercile; LOESS curve in black. Predicted vs true outcome
values in 2nd and 4th columns. Linear regression lines plotted for each income tercile use the same color mapping.

5 Results217

We systematically evaluate error disparities of218

language-based predictive models across four tasks219

and three sociodemographic controls. We first es-220

tablish overall disparities for language-alone mod-221

els in Table 1, finding significant error disparities222

in every case except for suicide mortality with223

HS graduation. For example, substantial dispari-224

ties were observed for Life Satisfaction predictions225

across foreign born percentage (BCI=9.9%). This226

means models were more accurate depending on227

the amount foreign born (less foreign born meant228

better accuracy in this case). Other large dispari-229

ties included model predicting heart disease with230

income (BCI=9.2%) and Fair or Poor health with231

HS graduation (BCI=10.8%).232

Table 2 shows results across the four types of233

inclusion techniques and controls alone (C). On234

average, all inclusion techniques improved accu-235

racy over the language-alone results but often at236

the expense of an increase in error disparity. For237

example, factor adaptation (FA) while producing238

the best accuracies also had an average disparity239

BCI of 8.2%, an increase over the 6.6% observed240

from language alone. On the other hand, the sim-241

ple concatenation approach (L+C) did not seem to242

increase disparities but it also did not substantially243

increase accuracy. Interestingly, control alone mod-244

els did not have large error disparities, though this245

could be due to their low predictive performance246

overall, leaving less room for disparity.247

To depict patterns disparities with respect to in-248

come, we visualize both error and prediction scat-249

ter plots for fair and poor health (high disparity) as 250

well as suicide mortality (low disparity) in Figure 1. 251

The slope of the LOESS (Cleveland, 1979) and the 252

Bilateral Concentration Index are approximately 253

proportional in magnitude. We observed non-linear 254

patterns where simply being further from the mean 255

in income meant worse performance, while for oth- 256

ers, we observed models working better for those 257

communities with higher income. 258

6 Conclusion 259

In a systematic evaluation of community-level 260

health prediction tasks, we observed error dispari- 261

ties across three demographics and most tasks. We 262

further analyzed the effect of sociodemographic 263

factor inclusion methods on disparity in trade-off 264

for accuracy improvements. We found that predict- 265

ing outcomes such as heart disease and fair/poor 266

health had much higher error for counties with 267

lower education or income and accuracies for life 268

satisfaction were lower for counties where the per- 269

centage of foreign born population was higher. 270

While one might have expected factor inclusion 271

methods to reduce error by better capturing differ- 272

ences in semantics by sociodemographic group, we 273

found that, on average, such approaches, especially 274

adaptive approaches, increased disparities. Overall 275

results suggest that there are significant disparities 276

in model performances at the county level for most 277

sociodemographics and that the utility of introduc- 278

ing sociodemographic factors into such models de- 279

pends the context, rather than having a universally 280

positive or negative impact. 281
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7 Limitations282

To systematically study sociodemographic factor283

inclusion methods and their effects on bias (so-284

ciodemographic error disparities), we evaluated285

four methods across four outcomes. Despite this,286

this study is not exhaustive nor representative. For287

example, we evaluated a limited set of sociode-288

mographic factors (foreign-born, education, and289

income). Several studies have shown race as a290

source of error disparities (Rai et al., 2024; Sap291

et al., 2019), which was not evaluated in the current292

study. Furthermore, the data set is limited in rep-293

resentation: we only consider communities in the294

US with sufficiently large number of Twitter users.295

Thus, our results may not extend to other regions or296

cultures. Finally, studies have shown error dispari-297

ties at the document level (i.e., hate speech labels298

on social media posts; Sap et al., 2019), which299

was not evaluated in the current study. Though we300

think the factor inclusion approaches chosen are301

straightforward, and therefore provide a good basis302

for generalization, additional techniques could be303

tested as well.304

8 Ethics305

This study was reviewed and approved by the306

[redacted] Institutional Review Board. It is im-307

portant to consider and discourage the potential308

negative applications of this work. Our approach309

can be utilized to uncover societal as well as indi-310

vidual error disparities, even within targeted recom-311

mendation systems. However, we recognize that,312

if misapplied, it could be leveraged to amplify al-313

gorithmic biases and exacerbate inequities. The314

results described could reinforce existing biases315

contributing to additional stigma towards a group.316

Additionally, "fairwashing" or blindly trusting mod-317

els because they showed propensity for fairness in318

this study could lead to unaccounted for error dis-319

parity in new applications of these models. Our320

work is intended for researchers and practitioners321

of Social Science, and we don’t condone the usage322

of such algorithms for malicious purposes.323
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Appendices546

A Data Details547

Community Language The County Tweet Lexi-548

cal Bank (CTLB) is an open-source data set of US549

county-level language features. High-level details550

are described here and further details can be found551

in Giorgi et al. (2018). This dataset is derived from552

a 10% sample of Twitter from 2009-2015. From 553

this sample, Twitter users were mapped to US coun- 554

ties via self-reported location (via a free text field 555

in their profile) and latitude / longitude coordinates 556

associated with their tweets. To be included in 557

the dataset, county-mapped Twitter users needed at 558

least 30 tweets across the 10% sample, and coun- 559

ties were included if at least 100 such users were 560

mapped to the county. A total of 6 million users 561

across 2,041 counties met this threshold, for a final 562

dataset of 1.5 billion tweets. From these tweets, 563

lexical features (25,000 of the most frequent un- 564

igrams) were extracted for each of the 6 million 565

users. These user-level features were then averaged 566

within each county to produce a set of US county 567

lexical features (i.e., each county is represented 568

by a vector of 25,000 unigram frequencies). This 569

dataset has been validated across several studies 570

and shown to predict community health (Matero 571

et al., 2023; Abebe et al., 2020), well-being (Jaidka 572

et al., 2020), and psychology (Giorgi et al., 2022b). 573

Community Controls Five year estimates (2011- 574

2015) for foreign born (percentage of a country’s 575

population that was born in another country), ed- 576

ucation (% of the population with a high school 577

diploma), and income (median log annual house- 578

hold income) were obtained from United States 579

Census Bureau’s 2015 American Community Sur- 580

vey (ACS). 581

Community Outcomes We gathered age- 582

adjusted mortality rates for heart disease and 583

suicide from the Centers for Disease Control 584

and Prevention (CDC), averaged over the years 585

2010-2015. Life satisfaction was assessed using 586

individual responses to the question: "In general, 587

how satisfied are you with your life?" on a scale 588

from 1 (very dissatisfied) to 5 (very satisfied), with 589

scores averaged across 2009 and 2010 (Lawless 590

and Lucas, 2011). 591

Lastly, data on Poor or Fair Health came from 592

the County Health Rankings, drawing on the Be- 593

havioral Risk Factor Surveillance System (BRFSS; 594

Remington et al., 2015). This age-adjusted metric 595

reflects the percentage of adults who rated their 596

health as "fair" or "poor" in response to the ques- 597

tion: "In general, would you say that your health is 598

Excellent/Very good/Good/Fair/Poor?". 599
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B Model Details600

The same feature selection and modeling proce-601

dures were used across all four outcomes. In order602

to reduce the feature space, we performed a feature603

selection pipeline. First, we performed univariate604

feature selection, removing all features that were605

not significantly correlated at a family-wise error606

rate of 60. Next, we use principal component anal-607

ysis (PCA) to further reduce the features. The di-608

mension reduction size for PCA was chosen based609

on the size of the training fold.610

All models were evaluated using 10-fold cross611

validation using a linear regression with ℓ2 regular-612

ization (Ridge regression). The regression regular-613

ization parameter α was chosen via nested cross614

validation.615

Feature extraction (unigrams) as well as predic-616

tive modeling were all done using the open-source617

Python package DLATK (Schwartz et al., 2017).618

C Bilateral Concentration Index619

Figure A1 is a visualization of a hypothetical con-620

centration curve that crosses the line of equality.621

The light blue area represents the BCI.622

Figure A1: Zoomed in Bilateral Concentration Curve:
BCI shown (where the red line is the cumulative uniform
distribution, and the blue line is the predicted error of
counties sorted by sociodemographic variable)

Figure A2 depicts another hypothetical concen-623

tration curve where n, or the number of counties,624

is ten and the cumulative error for each county625

crosses the line of equality between counties five626

and six. This example illustrates the distinction627

in behavior between the existing Concentration In-628

dex and the Bilateral Concentration Index as the629

BCI accounts summatively for all area difference630

between the line of equality and the cumulative er- 631

ror curve. The relevant variables used to solve the 632

BCI using equations 1, 2, and 3 for this interval 633

([ in ,
i+1
n ]) are labeled. 634
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Figure A2: Bilateral Concentration Curve: the blue line
is cumulative error curve and red line is the cumulative
uniform line

D Factor Inclusion Methods 635

Residualized Controls can be represented mathe- 636

matically as follows 637

ε = Y − ŶC (4) 638

ε̂L = γ ×XL + λ (5) 639

where ε is the residual and ŶC represents the 640

predictions of the controls model for the outcome 641

variable, Y . The residual is minimized by a subse- 642

quent model that uses the language features, XL. 643

In Factor Adaptation, the adapted language fea- 644

tures (XAi) are combined as follows: 645

XAi = [XL · Ci],∀i ∈ [1, |C|] (6) 646

XF = [XL, XA1 , ..., XA|C| ] (7) 647

Residualized Factor Adaptation can be repre- 648

sented as 649

ε̂L = γ ×
[
XL, XA1 , XA2 , ..., XA|C|

]
+ λ (8) 650

E Additional Disparity Metrics 651

For comparison, we also ran existing disparity met- 652

rics Anderson-Darling, KS Tests, and Cross En- 653

tropy to evaluate disparity between cumulative pre- 654

diction error and a cumulative uniform error. Cross 655
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Disparity Metrics: KS, CE, AD, BCI
Demog
Group Task Lang (L) Cont (C) L+C ResC FA RFA

KS CE AD BCI KS CE AD BCI KS CE AD BCI KS CE AD BCI KS CE AD BCI KS CE AD BCI

Foreign
Born

HD .040 4.24 8157 4.1% .037 4.25 9904 4.4% .041 4.24 8523 4.2% .038 4.24 6592 3.6% .051 4.27 15881 5.8% .049 4.27 14349 5.5%
LS .077 4.35 45767 9.9% .090 4.39 58977 11.1% .077 4.35 45446 9.9% .075 4.34 42564 9.6% .076 4.34 40610 9.4% .073 4.33 38252 9.1%
FP .048 4.26 13016 4.8% .051 4.28 16560 4.9% .048 4.26 13060 4.8% .045 4.26 11505 4.4% .055 4.27 18419 5.9% .055 4.27 17701 5.8%
SM .047 4.27 8726 4.4% .017 4.21 2447 1.9% .051 4.27 9902 4.7% .065 4.29 20230 7.0% .076 4.32 27708 8.2% .068 4.30 22017 7.3%

High
school
Grad

HD .074 4.34 39872 9.0% .105 4.50 95668 13.7% .074 4.34 40863 9.1% .108 4.57 111573 14.9% .092 4.44 72498 12.2% .095 4.45 76683 12.5%
LS .043 4.27 16323 5.2% .034 4.25 10566 4.1% .041 4.26 15092 5.0% .028 4.23 6731 3.3% .029 4.23 7554 3.5% .029 4.23 7325 3.6%
FP .100 4.45 61605 10.8% .115 4.54 91734 14.1% .100 4.45 62690 11.0% .131 4.66 124552 16.4% .123 4.58 101910 15.0% .124 4.58 103679 15.1%
SM .027 4.24 4785 2.7% .023 4.21 2132 1.5% .027 4.24 4648 2.6% .033 4.25 6596 3.4% .030 4.23 4972 3.1% .030 4.24 5056 3.2%

Income

HD .076 4.35 42044 9.2% .066 4.30 33119 8.4% .077 4.35 44018 9.4% .081 4.40 51295 9.9% .097 4.45 75203 12.5% .099 4.46 76961 12.7%
LS .051 4.29 18368 5.8% .042 4.26 11029 4.6% .037 4.25 9876 4.4% .039 4.24 9711 4.3% .037 4.25 7770 3.7% .038 4.24 8508 4.0%
FP .073 4.35 32151 7.5% .056 4.31 22060 7.0% .073 4.35 33774 7.9% .067 4.33 30154 7.9% .083 4.39 50514 10.6% .081 4.38 48925 10.4%
SM .052 4.25 12973 5.6% .046 4.28 12254 5.3% .052 4.25 13624 5.8% .058 4.29 23406 7.6% .068 4.32 28929 8.5% .063 4.30 26258 8.1%

Global Avg .059 4.305 25315 6.6% .057 4.315 30537 6.8% .058 4.301 25126 6.6% .064 4.342 37075 7.7% .068 4.341 37664 8.2% .067 4.338 37142 8.1%

Table T1: Disparities across county outcomes and different sociodemographic factor inclusion approaches:
Disparity is measured using the KS Test (KS), the Cross Entropy (CE), Anderson-Darling (AD), and the Bilateral
Concentration Index (BCI) (as a percent) each comparing the cumulative error over counties, sorted by sociode-
mographic group, to a cumulative uniform distribution (Smirnov, 1939). Outcomes are heart disease (HD), life
satisfaction (LS), fair/poor health (FP), and suicide mortality (SM). Factor inclusion methods beyond Language (L)
and Demographic Control (C) are Factor Concatenation (L + C), Residualized Controls (ResC), Factor Adaptation
(FA), and Residualized Factor Adaptation (RFA). Bold represents statistically significant difference from disparity
with the same parameters using language alone (L). Significance for global average calculated using harmonic mean
of p values for all tests conducted for that factor inclusion method, which controls the family wise error rate (Wilson,
2019).

Entropy isnt as interpretable. KS test is much more656

interpretable, but fails to account for significant657

disparity in the tails of the county error distribu-658

tion. The Anderson-Darling test is best equipped659

to account for the entirety of the distribution, but is660

also difficult to interpret. We use the BCI because661

it possesses the strengths of each of these methods.662

The results can be seen in Table T1.663
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Figure A3: All Bilateral Concentration Curves: BCIs for all combinations of sociodemographic variable and
outcome (where the red line is the cumulative uniform distribution, and the blue line is the predicted error of counties
sorted by sociodemographic variable)
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