
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IDENTIFYING AND TUNING SAFETY NEURONS IN
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Safety alignment for Large Language Models (LLMs) has become a critical is-
sue due to their rapid progress. However, our understanding of effective safety
mechanisms in LLMs remains limited, leading to safety alignment training that
mainly focuses on improving optimization, data-level enhancement, or adding extra
structures to intentionally block harmful outputs. To address this gap, we develop
a neuron detection method to identify safety neurons—those consistently crucial
for handling and defending against harmful queries. Our findings reveal that these
safety neurons constitute less than 1% of all parameters, are language-specific and
are predominantly located in self-attention layers. Moreover, safety is collectively
managed by these neurons in the first several layers. Based on these observations,
we introduce a Safety Neuron Tuning method, named SN-Tune, that exclusively
tune safety neurons without compromising models’ general capabilities. SN-Tune
significantly enhances the safety of instruction-tuned models, notably reducing the
harmful scores of Llama3-8B-Instruction from 65.5 to 2.0, Mistral-7B-Instruct-
v0.2 from 70.8 to 4.5, and Vicuna-13B-1.5 from 93.5 to 3.0. Moreover, SN-Tune
can be applied to base models on establishing LLMs’ safety mechanism, effectively
diminishing models’ harmful scores from around 100 to 5.3, 13.5, and 13.8 for
LLama2-7B-Base, LLama3-8B-Base, and Mistral-7B-v0.1, respectively. In addi-
tion, we improve the LLMs’ safety robustness during downstream tasks fine-tuning
by separating the safety neurons from models’ foundation neurons.

1 INTRODUCTION

The rapid developments of Large Language Models (LLMs) (Achiam et al., 2023; Jiang et al.,
2023; Reid et al., 2024; Team et al., 2024; Dubey et al., 2024) have brought safety alignment to
the forefront of research (Zou et al., 2023; Zhao et al., 2024d; Zou et al., 2024; Deng et al., 2024;
Wei et al., 2024). Different perspectives have been studied to improve safety alignments, such as
improving optimization (Ouyang et al., 2022; Rafailov et al., 2024; Yuan et al., 2023), refining
training data (Zhou et al., 2024; Rafailov et al., 2024; Zhang et al., 2024), or implementing additional
structures designed to intentionally block harmful outputs (Inan et al., 2023; Zou et al., 2024). Despite
its importance, a clear understanding of safety mechanisms in LLMs remains absent. Prior works
tried to identify and interpret safety mechanisms in LLMs from either layer-level (Li et al., 2024)
or feature-level (Chen et al., 2024). However, their identification methods attribute nearly 10% of
parameters to safety-related functions. This large proportion makes it challenging to effectively
perform safety alignments based on these findings (Anwar et al., 2024; Zeng et al., 2024). Moreover,
other works have suggested that safety mechanisms can be easily compromised through minor
parameter adjustments (Qi et al., 2024; Zhao et al., 2024a).

In this work, we aim to understand and interpret safety mechanisms in LLMs at a finer granularity,
specifically at the neuron level across all structures, including the self-attention and feed-forward
parts. Here, a “neuron” is represented by a single row or column of a parameter matrix in LLMs. We
identify a “safety neuron” as one that consistently plays a crucial role in processing and defending
against harmful queries. Specifically, a neuron is considered important if its removal—by setting
its parameters to zero—significantly affects the generated output beyond a specified threshold. To
achieve this, we input a corpus of harmful queries and extract neurons that are important across all
queries in the corpus, identifying them as the set of safety neurons in the LLM. By conducting a
thorough analysis of these identified safety neurons in various models, we uncover several key insights

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

about LLMs’ safety mechanisms. First, we find that safety neurons comprise less than 1% of all
parameters. Second, each language has its own unique safety neurons, with minimal overlap between
them. Third, safety is collaboratively managed by safety neurons located in the first several layers of
the model. Lastly, safety neurons are predominantly located within the self-attention structures.

Figure 1: SN-Tune mainly consists of three steps: 1⃝ cal-
culating neuron importance for handling harmful queries; 2⃝
identifying “safety neuron” that consistently play a crucial
role in processing harmful queries; 3⃝ tune the identified
safety neurons while leaving other safety-unrelated neurons
unchanged during the tuning process.

Motivated by these intriguing obser-
vations, we propose a Safety Neuron
Tuning method, named SN-Tune,
designed to exclusively tune the safety
neurons in LLMs. As shown in Fig-
ure 1, we gather safety training doc-
uments that include harmful queries
and refusal safety outputs, similar
to the widely used safety alignment
training settings (Inan et al., 2023;
Zhang et al., 2024; Zou et al., 2024).
We then tune the identified safety
neurons while leaving other safety-
unrelated neurons unchanged by set-
ting their gradients to zero during the
tuning process. Experimental results
demonstrate that SN-Tune not only
enhances the safety mechanism for
instruction-tuned models but also es-
tablishes safety mechanism for base
models without compromising their
general capabilities. Notably, it reduces the average harmful scores of Llama3-8B-Instruction from
65.5 to 2.0, Mistral-7B-Instruct-v0.2 from 70.8 to 4.5, and Vicuna-13B-1.5 from 93.5 to 3.0. More-
over, SN-Tune reduces base models’ harmful score from around 100 to 5.3, 13.5, and 13.8 for
LLama2-7B-Base, LLama3-8B-Base, and Mistral-7B-v0.1, respectively. The harmful score is eval-
uated using the harmful behavior dataset (Zou et al., 2023), by averaging the Attack Success Rate
(ASR) across various adversarial attacking methods, including Direct Attack, GCG (Zou et al., 2023),
AutoDAN (Liu et al., 2024) and PAIR (Chao et al., 2023). Concurrently, we assess the models’
general capabilities using representative NLP tasks including MMLU (Hendrycks et al., 2020), ARC-
Challenge (Clark et al., 2018), and GSM8K (Cobbe et al., 2021), ensuring that safety improvements
do not come at the cost of overall performance.

Building upon the strong performance of SN-Tune, we aim to further enhance LLMs’ safety
robustness during downstream tasks fine-tuning, a common practice for users focusing on specific
application scenarios (Yu et al., 2024; Zhao et al., 2024c). As Qi et al. (2024) observed, even
fine-tuning with seemingly benign and widely used datasets can unintentionally compromise the
safety alignment of LLMs. From the neuron perspective, fine-tuning on downstream tasks modifies
certain foundation neurons (Zhao et al., 2024b; Liang et al., 2024). Consequently, the vulnerability of
a model’s safety mechanism to downstream task fine-tuning may be attributed to the overlap between
these foundation neurons and safety neurons, with the latter being unintentionally adjusted during
the fine-tuning process. Inspired by this observation, we propose another technique called Robust
Safety Neuron Tuning method (RSN-Tune). It separates safety neurons from foundation neurons
by selectively tuning only those safety neurons that do not overlap with foundation neurons when
applying SN-Tune to instruction-tuned models. Experimental results demonstrate the effectiveness
of RSN-Tune in enhancing models’ safety robustness during downstream tuning. Notably, it reduces
Llama2-7B-Chat’s harmful score after tuning on GSM8K training set from 41.0 to 26.0 and Mistral-
7B-Instruct-v0.2’s from 79.0 to 41.0. Importantly, RSN-Tune enhances safety robustness while
maintaining models’ downstream tuning performance.

2 SAFETY NEURONS

In this section, we propose a neuron detection method that can calculate the importance of a neuron
when handling a query without a corresponding labeled output.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 SAFETY NEURON DETECTION

A neuron is defined as a single row or column of a parameter matrix in LLMs, including the self-
attention and feed-forward structures. To identify neurons responsible for safety in an alignment-tuned
LLM, it’s crucial to extract those that play a key role in processing inputted harmful queries.

Foundational Safety Neuron Detection Formally, we denote the l-th neuron in layer i as N (l)
i ,

while the intermediate representation after layer i when handling harmful query x is denoted as hi(x).
Furthermore, the importance of neuron N

(l)
i in processing x is calculated by

∥h\N(l)
i ,i

(x)− hi(x)∥2, (1)

where h\N(l)
i ,i

(x) represents the intermediate representation after deactivating neuron N
(l)
i . There-

fore, the activated neurons of the model when handling harmful query x can be calculated by

Nx = {N (l)
i

∣∣∥h\N(l)
i ,i

(x)− hi(x)∥2 ≥ ϵ, for all N (l)
i in LLM}, (2)

where ϵ is a pre-defined threshold. Furthermore, after collecting a set of harmful queries, denoted as
X . We extract neurons consistently activated for all queries in X , identifying the safety neurons we
aim to obtain, i.e.,

Nsafe = {N (l)
i

∣∣N (l)
i ∈ Nx,∀x ∈ X, for all N (l)

i in LLM}. (3)

Accelerated Safety Neuron Detection The process of deactivating N
(l)
i sequentially in Equation 2

is extremely slow due to its sequential nature. Drawing inspiration from the parallel neuron detection
method proposed by Zhao et al. (2024b), we implement it on safety neuron detection through the
incorporation of masks and parallel computations. Specifically, for the feed-forward layer,

∥h\N(l)
i ,i

(x)− hi(x)∥2 = ∥(hffn(x) · Mask)Wdown∥2, (4)

where hffn is the intermediate embedding between the up-projection and down-projection matrices,
Mask is an identity matrix of size (dim(hffn)× dim(hffn)), and Wdown denotes the down-projection
matrix in the feed-forward layer. Moreover, for the self-attention layer,

∥h\N(l)
i ,i

(x)− hi(x)∥2 ≈
∥∥∥softmax

(WQ(x)W
T
K(x)−∆(x)√
d

)
− softmax

(WQ(x)W
T
K(x)√

d

)∥∥∥
2
, (5)

where WQ and WK are the attention matrices for Q and K, respectively, and
√
d represents the

corresponding dimension following the notations in Vaswani et al. (2017), and

∆(x) = WQ(x).resize(l, 1, d)×WK(x).resize(1, l, d) ∈ Rl×l×d. (6)

Detailed proof of Equation 4 and Equation 5 is available in Appendix A.1.

2.2 VERIFY IDENTIFIED SAFETY NEURON

We subsequently apply the accelerated safety neuron detection method to a variety of alignment-tuned
LLMs to identify corresponding safety neurons, and conduct experiments to verify that these neurons
are exclusively responsible for handling safety. Specifically, by deactivating the safety neurons,
the model’s safety mechanism will be attacked, potentially transforming it into a harmful model.
However, by solely manipulating neurons associated with safety, the overall functionality should
remain intact. Consequently, the model could become both helpful and harmful.

Experimental Setup We employ three open-source models that have been specifically tuned for
safety, including Llama2-7B-Chat (Touvron et al., 2023), Llama3-8B-Instruction (Dubey et al., 2024),
and Mistral-7B-Instruct-v0.2 (Jiang et al., 2023). The harmful corpus set used to detect safety neurons
is constructed from the training set split in Zou et al. (2024). More details are illustrated in Appendix
A.2. To prove the generability of the detected safety neuron, we test the harmfulness of the model on
harmful behavior testset in Zou et al. (2023) (Harm Behavior), adversarial behavior testset in Mazeika
et al. (2024) (Adv Behavior) and English version of multilingual jailbreak testset in Deng et al. (2024)
(MultiJail-En). Furthermore, the models’ general capability is evaluated by MMLU Hendrycks et al.
(2020) and GSM8K Cobbe et al. (2021).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Performance of models on harmfulness and general capability with the deactivation of
safety neurons (“Deact-SN”) and an equivalent number of randomly selected neurons (“Deact-R”).
Harmfulness is measured by Attack Success Rate (lower is safer), and capability by Accuracy.

Dataset Llama2-7B-Chat Llama3-8B-Instruction Mistral-7B-Instruct-v0.2
Origin. Deact-R Deact-SN Origin. Deact-R Deact-SN Origin. Deact-R Deact-SN

Harmful↓
Harm Behavior 0.0 2.0 97.0 30.0 31.0 78.0 36.0 39.0 86.0
Adv Behavior 0.0 3.0 83.0 7.0 13.0 96.0 30.0 30.0 87.0
MultiJail-En 12.7 12.9 81.6 20.0 21.6 74.3 44.1 46.8 86.4

Avg. Harmful 4.2 6.0 87.2 19.0 21.9 82.8 36.7 38.6 86.5

Capablity↑
MMLU 48.2 48.4 47.8 65.3 63.2 62.7 59.2 59.3 58.5
GSM8K 24.8 22.7 21.9 75.9 73.6 72.4 43.6 43.6 42.1

Avg. Capability 36.5 35.6 34.8 70.6 68.4 67.6 51.4 51.5 50.3

Figure 2: Effects of deactivated safety neurons on ASR.
Figure 3: Distribution of Safety Neuron in
different structures.

Evaluation Metrics The harmfulness is assessed through direct attacks using the Attack Success
Rate (ASR), which identifies harmful keywords from the output, following the method outlined
by Zou et al. (2023). Furthermore, accuracy is the metric used for MMLU and GSM8K.

Existence of Safety Neurons Table 1 demonstrates how deactivating safety neurons can attack the
model’s safety mechanism. Moreover, the model’s general capabilities have not diminished, indicating
that these neurons are specifically for safety mechanisms, not for other functions. Even with just about
0.5% of neurons deactivated, the model’s safety capabilities are significantly compromised, leading
to a substantial increase in harmful behavior: from 4.2 to 87.2 on Llama2-7B-chat, from 19.0 to 82.8
on Llama3-8B-Instruction, and from 36.7 to 86.5 on Mistral-7B-Instruct-v0.2. Meanwhile, randomly
deactivating an equivalent number of neurons has little to no impact on the model’s safety. Regarding
general capability, deactivating the safety neuron shows minimal impact, similar to deactivating
randomly selected neurons, as demonstrated by the performance of 36.5 and 34.8 on Llama2-7B-chat,
70.6 and 68.4 on Llama3-8B-Instruction, and 51.4 and 50.3 on Mistral-7B-Instruct-v0.2 before
and after deactivation. Therefore, the detected neurons are safety neurons that are associated with
safeguarding the models.

2.3 ANALYZE SAFETY MECHANISM IN LLMS

As we have detected the safety neurons of LLMs, we conduct a more detailed and comprehensive
analysis of the properties of LLM’s safety mechanism.

2.3.1 SAFETY MECHANISM PROPERTIES

Safety mechanism is resilient but breakable by under one percent of the parameters. Figure
2 shows the harmful score of three models as deactivating different number of safety neurons. In
Mistral-7B-Instruct-v0.2, deactivating 0.2% of neurons can destroy its safety mechanism, compared
to 0.4% for Llama2-7B-Chat and 0.5% for Llama3-8B-Instruction. Furthermore, an emergence of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Effect of deactivating safety neurons in different layers. The left represents deactivating
safety neurons before the certain layers, the right indicates deactivation after the certain layers.

(a) Llama2-7B-Chat (b) Llama3-8B-Instruction (c) Mistral-7B-Instruct-v0.2

Figure 5: Overlapping ratio of safety neurons across different languages.

“harmfulness” is observed for three models. For example, in Llama2-7B-Chat, the leap appears when
deactivating 0.3% neurons, while the number is 0.15% for Llama3-8B-Instruction and is 0.1% for
Mistral-7B-Instruct-v0.2.

Safety Mechanism is handled by the first several layers together. Figure 4 illustrates the
detrimental impact of deactivating safety neurons across various layers in models. Upon deactivating
neurons in the first 10 layers simultaneously, we observe a near-complete breakdown in the safety
mechanism of Llama2-7B-Chat. This threshold is 10 for Mistral-7B-Instruct-v0.2 and 16 for Llama3-
8B-Instruction. On the contrary, if we deactivate safety neurons from the back to the front, the
breakdown of safety mechanisms becomes apparent as nearly all safety neurons are deactivated.

Safety neurons predominantly reside within the self-attention layers. In Figure 3, safety neurons
are categorized based on their belonging structures, which include the attention structure and feed-
forward structure. Our findings reveal that safety neurons predominantly reside within the attention
structure. Specifically, in Llama2-7B-Chat, 77% of safety neurons are attributed to the attention
structure, while 23% belong to the feed-forward structure. This finding aligns with the interpretation
that the attention structure primarily handles understanding, while the feed-forward structure is mainly
responsible for knowledge extraction (Geva et al., 2021). Given that the safety mechanism focuses on
understanding potential threats to discern their harmful nature without the need to extract much new
knowledge, it is logical for safety neurons to predominantly reside in the attention structure, despite
the attention parameters being fewer than half of the feed-forward parameters.

2.3.2 MULTILINGUAL SAFETY

Based on the research by Deng et al. (2024); Yong et al. (2024); Kotha et al. (2024), the safety
mechanism cannot be effectively transferred between languages. For instance, even when a LLM
is specifically tuned for safety in English, it may still pose risks when applied to other languages.
Drawing inspiration from these discoveries, we analyze this phenomenon through the perspective

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Performance of SN-Tune on instruction-tuned models. General capabilities are evaluated
by accuracy, while harmfulness is evaluated by ASR.

Dataset Vicuna-13B-v1.5 Llama3-8B-Instruction Mistral-7B-Instruct-v0.2
Origin. Circ-Break SN-Tune Origin. Circ-Break SN-Tune Origin. Circ-Break SN-Tune

Training Cost (min.) - 43 4 - 24 2 - 23 2

Parameters (M) 0 34.1 0 0 27.5 0 0 27.5 0

Capablity↑
MMLU 53.4 52.8 55.7 65.2 65.6 67.3 58.6 56.3 59.5
ARC-c 59.7 61.3 61.6 73.7 74.1 74.9 72.6 71.8 73.4
GSM8K 33.4 35.0 34.8 63.2 64.3 69.6 43.7 42.5 44.1

Avg. Capablity 48.8 49.7 50.7 67.4 68.0 68.4 58.3 56.9 59.0

Harmful↓

Direct 92.0 0.0 0.0 30.0 0.0 0.0 36.0 7.0 0.0
GCG 100.0 3.0 0.0 74.0 3.0 4.0 88.0 8.0 6.0
AutoDAN 93.0 2.0 3.0 82.0 0.0 0.0 91.0 3.0 4.0
PAIR 89.0 16.0 9.0 76.0 9.0 4.0 68.0 22.0 8.0

Avg. Harmful 93.5 5.3 3.0 65.5 3.0 2.0 70.8 10.0 4.5

of safety neurons. We specifically incorporate five languages—English (en), Italian (it), Chinese
(zh), Thai (th), and Vietnamese (vi)—spanning high-resource to low-resource languages, to visu-
alize the overlap of safety neurons. Specifically, the overlap among safety neurons are defined as
overlap(x, y) = |Nx ∩ Ny|/|Ny|, where Nlanguage represents the set of safety neurons in that lan-
guage. Figure 5 displays the intersection of safety neurons across languages. Our analysis reveals that
the overlap of safety neurons is typically below 30%, significantly less than that of language-specific
neurons, which are a subset of neurons responsible for processing multilingual queries(Zhao et al.,
2024b). This disparity underscores the unique nature of safety neurons in each language, indicating
that safety capabilities are not transferrable between languages. This observation aligns with the
progression of the SFT training, where diverse language-specific safety corpora are developed to
provide tailored safety mechanism for individual languages (Zhang et al., 2024).

3 EFFICIENT SAFETY TRAINING

With only a limited number of parameters able to ensure safety, we can focus on manipulating these
neurons effectively to strengthen or even establish the safety mechanism.

3.1 LIVE-LINE WORK ON INSTRUCT TUNED MODEL

Experimental Setup With fewer than 1% of neurons dedicated to safety, we can enhance safety by
fine-tuning them using a safety corpus, named as Safety Neuron Tuning (SN-Tune). Specifically,
we create a safety corpus by partitioning a training dataset from (Zou et al., 2024), utilizing it
to identify and strengthen safety neurons. In a manner similar to the setup in Table 1, we assess
models’ harmfulness using the harmful behavior testset, while their general capabilities are evaluated
on MMLU (5-shots) (Hendrycks et al., 2020), ARC-c (3-shots) (Clark et al., 2018), and GSM8K
(zero-shot) (Cobbe et al., 2021). Additionally, beyond testing direct attacks, we explore other attack
methods, including GCG (Zou et al., 2023), AutoDAN (Liu et al., 2024), and PAIR (Chao et al.,
2023). To demonstrate the generality of the method, we also employ the large model Vicuna-13B-
v1.5 (Peng et al., 2023) in addition to Llama3-8B-Instruction and Mistral-7B-Instruct-v0.2. We
compare SN-Tune with Zou et al. (2024), who train an independent model called “Circ-Break” to
act as a circuit breaker, interrupting models when they produce harmful outputs.

Experiment Details We utilize the HarmBench implementation (Mazeika et al., 2024) for the
attacking methods. For general capability evaluation, we employ accuracy as the metric, while for
harmfulness assessment, we use Attack Success Rate (ASR). The hyperparameters for fine-tuning
primarily focus on the training corpus, number of epochs, and learning rate. As the fine-tuning
process is essentially continued training, we aim to minimize alterations to the existing parameters.
Specifically, we use a dataset of 50 documents where the model refuses to answer harmful questions,
train for only 1 epoch, and set the initial learning rate to 1e− 6.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Performance of SN-Tune on base models. General capabilities are evaluated by accuracy,
while harmfulness is evaluated by ASR.

Dataset Llama2-7B-Base Llama3-8B-Base Mistral-7B-v0.1
Origin. Circ-Break SN-Tune Origin. Circ-Break SN-Tune Origin. Circ-Break SN-Tune

Training Cost (min.) - 23 2 - 35 2 - 21 2

Parameters (M) 0 34.1 0 0 27.5 0 0 27.5 0

Capablity↑
MMLU 49.2 49.1 49.2 70.1 68.9 69.6 68.4 68.1 69.2
ARC-c 27.6 26.8 29.3 70.7 72.0 71.8 74.8 73.4 74.7
GSM8K 12.7 13.7 16.3 58.9 58.2 59.5 50.4 47.6 52.3

Avg. Capablity 29.8 29.9 31.6 66.6 66.4 67.0 62.0 63.0 65.4

Harmful↓

Direct 97.0 84.0 0.0 100.0 87.0 0.0 100.0 78.0 6.0
GCG 100.0 92.0 7.0 100.0 95.0 14.0 100.0 82.0 13.0
AutoDAN 100.0 97.0 9.0 100.0 92.0 21.0 100.0 93.0 12.0
PAIR 98.0 89.0 5.0 100.0 96.0 19.0 100.0 97.0 24.0

Avg. Harmful 98.8 90.5 5.3 100.0 92.5 13.5 100.0 87.5 13.8

Table 4: RSN-Tune’s performance on improving models’ safety robustness. “Before”: pre-tuning.
“Original”: direct tuning. “SN-Tune” and “RSN-Tune”: tuning on safety-enhanced models.

Dataset Llama2-7B-Chat Mistral-7B-Instruct-v0.2
Before Origin. SN-Tune RSN-Tune Before Origin. SN-Tune RSN-Tune

GSM8K 16.8 26.5 27.2 26.2 43.7 63.4 61.8 63.2

Harmful 0.0 41.0 38.0 26.0 36.0 79.0 72.0 41.0

Main Results Table 2 shows the performance of SN-Tune on instruction tuned model. Note that
tuning base models can be regarded as live-line work, meaning that we hope to enhance models’
safety without sacrificing models’ general instruction following capabilities in other aspects. We find
that SN-Tune effectively enhances model safety without compromising general capabilities, and
in some cases, even slightly improves them. Specifically, SN-Tune reduces the harmful score of
Vicuna-13B-v1.5 from 93.5 to 3.0, Llama3-8B-Instruction from 65.5 to 2.0, and Mistral-7B-Instruct-
v0.2 from 70.8 to 4.5. Meanwhile, the general capabilities are largely preserved. Furthermore,
compared to Circ-Break, SN-Tune requires less training time and fewer additional parameters.

3.2 EFFICIENT ESTABLISH SAFE MECHANISM FOR BASE MODEL

Experimental Settings When implementing SN-Tune on base models, we largely maintain the
settings described in Section 3.1, with two key differences. First, we do use the specific chat template
for fine-tuning. Second, for evaluations on GSM8K, we employ a 5-shot approach rather than
zero-shot, given the use of base models.

Main Results Table 3 shows the performance of SN-Tune on base models. We find that SN-Tune
effectively enhances model safety without compromising general capabilities, and in some cases,
even slightly improves them. Specifically, SN-Tune reduces the harmful score of Llama2-7B-Base
from 98.8 to 5.3, Llama3-8B-Base from 100.0 to 13.5, and Mistral-7B-v0.1 from 100.0 to 13.8.
Meanwhile, the general capabilities are largely preserved. For instance, the original general capability
score for LLama2-7B-Base is 29.8, while the model after SN-Tune achieves 31.6. Similarly, the
score increases from 66.6 to 67.0 for Llama3-8B-Base and from 100.0 to 13.8 for Mistral-7B-v0.1.
Furthermore, different from instruction-tuned models, Circ-Break can not construct safety mechanism
on the base model with several training corpus. Specifically, harmful score of Llama2-7B-Base
after tuned by Circ-Break is still 90.5, while the number is 92.5 for Llama3-8B-Base and 87.5 for
Mistral-7B-v0.1. Moreover, the training time for SN-Tune on Llama2-7B-Base is just 2 minutes,
while Circ-Break requires 23 minutes. On Llama3-8B-Base, the time costs are 2 and 35 minutes
respectively, while on Mistral-7B-v0.1, they are 2 and 21 minutes respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Ablation on the number of
safety documents used in training. Figure 7: Ablation on training epoch and learning rate..

4 MORE ROBUST EFFICIENT SAFETY TUNING

Fine-tuning instruction-tuned models on specific downstream tasks is a common practice for users
seeking to optimize performance in particular application scenarios (Yu et al., 2024; Zhao et al.,
2024c). However, Qi et al. (2024); Jain et al. (2024) have noted that even fine-tuning with seemingly
benign and widely used datasets can unintentionally compromise the safety alignment of LLMs. To
address this issue and mitigate its effects, we propose a Robust Safety Neuron Tuning method, called
RSN-Tune. According to Zhao et al. (2024b), a specialized set of neurons, termed foundation
neurons, are responsible for fundamentally managing queries. Consequently, the vulnerability of a
model’s safety mechanism to general fine-tuning may be attributed to the overlap between foundation
neurons and safety neurons, with the latter being inadvertently altered during the fine-tuning process.
Inspired by this observation, we propose separating the safety neurons from the foundation neurons.
This separation is achieved by selectively tuning only those safety neurons that do not overlap with
foundation neurons when applying SN-Tune to instruction-tuned models, as illustrated in Section
3.1. We then conduct experiments to prove the effectiveness of RSN-Tune.

Experiment Settings We employ Llama2-7B-Chat and Mistral-7B-Instruct-v0.2 as backbone
models considering their excellent safety performance and generality. For fine-tuning, we employ
the GSM8K dataset (Cobbe et al., 2021), widely recognized as a challenging and representative
benchmark for reasoning tasks. The foundation neurons are detected by Wikipedia corpus1 with the
same neuron detection method illustrated in Section 2.1.

Main Results Table 4 demonstrates the effectiveness of RSN-Tune in enhancing models’ safety
robustness during downstream tuning. We observe that direct tuning using the GSM8K training set
significantly increases model harmfulness. For instance, Llama2-7B-Chat’s harmful score rises from
0.0 to 41.0, while Mistral-7B-Instruct-v0.2’s score increases from 36.0 to 79.0. This phenomenon
also affects SN-Tune, which indiscriminately enhances all safety neurons, regardless of their overlap
with foundation neurons. In contrast, RSN-Tune partially preserves model safety after downstream
tuning. Specifically, it reduces Llama2-7B-Chat’s harmful score to 26.0 and Mistral-7B-Instruct-
v0.2’s to 41.0. However, a complete harmful score reduction to 0.0 is not achievable due to an
insufficient number of non-overlapping safety neurons.

5 FURTHER ANALYSIS

In this section, to further understand the mechanism and explore the influencing factors to the
performance of SN-Tune, we conduct comprehensive ablation analysis, mainly including the
number of training safety documents, training epoch and learning rate.

5.1 NUMBER OF SAFETY DOCUMENTS FOR SN-TUNE

Experiment Settings We employ LLama2-7B-Base to serve as the representative base model and
Llama3-8B-Instruction to represent the instruction-tuned model. Following the setting outlined in

1https://huggingface.co/datasets/wikimedia/wikipedia

8

https://huggingface.co/datasets/wikimedia/wikipedia

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Section 3, we assess the models’ overall performance and potential harmfulness after tuning by
SN-Tune with varying quantities of safety-related documents.

Main Results Figure 6 illustrates the effect of training document quantity on SN-Tune. We
observe that the general capabilities of both LLama2-7B-Base (yellow dotted line) and Llama3-8B-
Instruction (blue dotted line) remain largely unaffected regardless of the training document size.
This stability is primarily attributed to the limited number of neurons trained. Specifically, as we
only train the safety neurons, which comprise approximately 0.5% of all parameters, the majority
of the language ability remains intact, resulting in preserved general capabilities. Notably, the
harmful score of both models decreases rapidly as the number of training documents increases to 40
for LLama2-7B-Base (yellow line) and Llama3-8B-Instruction (blue line). This demonstrates the
efficiency of SN-Tune in both enhancing and establishing model safety mechanism with just a few
dozen documents. In contrast, Circ-Break requires around 4000 safety documents and a retention
dataset of similar size (Zou et al., 2024). These findings underscore that SN-Tune is not only
effective but also highly efficient in tuning safety for LLMs.

5.2 LEARNING RATE & TRAINING EPOCH

Experiment Settings We further explore the effects of learning rate and number of training
epochs simultaneously, as both hyperparameters influence the magnitude of parameter updates.
We employ Llama2-7B-Base as our model since instruction-tuned versions derived from it are
highly representative of safe language models. Similar to Section 5.1, we investigate the model’s
performance in terms of both general capabilities and safety aspects.

Main Results Figure 7 illustrates the impact of learning rate and training epoch on both harmfulness
(left) and general capability (right). We observe that with 10 training epochs, harmful score reaches
0.0, but the model also loses generality, scoring 0.0 in capability. As the number of epochs decreases,
this effect diminishes. For instance, with 5 epochs and a learning rate of 10−7, the general capability
improves to 3.2. Further reducing to 3 epochs maintains low harmful scores across all learning rates
while increasing general capability to 6.8 at a 10−7 learning rate. The best performance is achieved
with a single epoch, aligning with other continue-train approaches (Dou et al., 2024; Zhang et al.,
2024). Additionally, higher learning rates lead to overfitting, resulting in both harmful score and
general capabilities dropping to 0.0, while lower rates fail to effectively train safety into the model.
Consequently, a learning rate of 10−6 emerges as the optimal balance between low harmful score and
high general capability.

6 RELATED WORK

Safety Alignment. To build safe LLMs, alignments has also been a widely studied topic in the
community (Stiennon et al., 2020; Ouyang et al., 2022). Efforts have been put into improving
helpfulness (Bai et al., 2022; Cheng et al., 2023), honesty (Kaddour et al., 2023; Liu et al., 2023;
Park et al., 2023), and harmlessness (Hartvigsen et al., 2022). Among them, safety, i.e., reducing
harmfulness, is established and improved via optimization (Ouyang et al., 2022; Rafailov et al., 2024;
Yuan et al., 2023), refining training data (Zhou et al., 2024; Rafailov et al., 2024; Zhang et al., 2024),
or implementing additional structures designed to intentionally block harmful outputs (Inan et al.,
2023; Zou et al., 2024). However, these methods are indirect and require many resources.

Interpretability. In the era of LLMs, one brunch of interpretability work includes efforts to
understand knowledge storage (Geva et al., 2021; Dai et al., 2022; Geva et al., 2022; Meng et al.,
2022; Li et al., 2023). Another line of research centers on the self-attention layer, examining its
connection to reasoning capability (Hou et al., 2023; Stolfo et al., 2023; Friedman et al., 2023)
by contrasting the reasoning tree based on attention weights. In the context of safety, prior works
tried to identify and interpret safety mechanisms in LLMs from either layer-level (Li et al., 2024)
or feature-level (Chen et al., 2024). However, their identification methods attribute nearly 10% of
parameters to safety-related functions, which is too coarse to be used.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 CONCLUSION

Safety alignment in LLMs is critical yet underexplored. We introduced a method to detect and tune
safety neurons, which are less than 1% of parameters and mainly in self-attention layers. Our Safety
Neuron Tuning (SN-Tune) enhances model safety without compromising performance, significantly
reducing harmful scores in both instruction-tuned and base models. This approach also improves
safety robustness during fine-tuning by separating safety neurons from foundational ones.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational challenges
in assuring alignment and safety of large language models. arXiv preprint arXiv:2404.09932,
2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
Jailbreaking black box large language models in twenty queries. arXiv preprint arXiv:2310.08419,
2023.

Jianhui Chen, Xiaozhi Wang, Zijun Yao, Yushi Bai, Lei Hou, and Juanzi Li. Finding safety neurons
in large language models. arXiv preprint arXiv:2406.14144, 2024.

Pengyu Cheng, Yifan Yang, Jian Li, Yong Dai, and Nan Du. Adversarial preference optimization.
arXiv preprint arXiv:2311.08045, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8493–8502, 2022.

Yue Deng, Wenxuan Zhang, Sinno Jialin Pan, and Lidong Bing. Multilingual jailbreak challenges
in large language models. In The Twelfth International Conference on Learning Representations,
2024.

Longxu Dou, Qian Liu, Guangtao Zeng, Jia Guo, Jiahui Zhou, Wei Lu, and Min Lin. Sailor: Open
language models for south-east asia. arXiv preprint arXiv:2404.03608, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Dan Friedman, Andrew Lampinen, Lucas Dixon, Danqi Chen, and Asma Ghandeharioun. Inter-
pretability illusions in the generalization of simplified models, 2023.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary space. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 30–45, 2022.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detection.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 3309–3326, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2020.

Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo, Wangchunshu Zhou, Guangtao Zeng, Antoine
Bosselut, and Mrinmaya Sachan. Towards a mechanistic interpretation of multi-step reasoning
capabilities of language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 4902–4919,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.299. URL https://aclanthology.org/2023.emnlp-main.299.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.

Samyak Jain, Robert Kirk, Ekdeep Singh Lubana, Robert P Dick, Hidenori Tanaka, Tim Rocktäschel,
Edward Grefenstette, and David Krueger. Mechanistically analyzing the effects of fine-tuning on
procedurally defined tasks. In The Twelfth International Conference on Learning Representations,
2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert
McHardy. Challenges and applications of large language models. arXiv preprint arXiv:2307.10169,
2023.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forgetting
in language models via implicit inference. In The Twelfth International Conference on Learning
Representations, 2024.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. arXiv preprint arXiv:2306.03341,
2023.

Shen Li, Liuyi Yao, Lan Zhang, and Yaliang Li. Safety layers of aligned large language models: The
key to llm security. arXiv preprint arXiv:2408.17003, 2024.

Yunlong Liang, Fandong Meng, Songming Zhang, Yufeng Chen, Jinan Xu, Jie Zhou, et al. Multilin-
gual knowledge editing with language-agnostic factual neurons. arXiv preprint arXiv:2406.16416,
2024.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. AutoDAN: Generating stealthy jailbreak
prompts on aligned large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=7Jwpw4qKkb.

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo Hao Cheng, Yegor
Klochkov, Muhammad Faaiz Taufiq, and Hang Li. Trustworthy llms: a survey and guideline for
evaluating large language models’ alignment. arXiv preprint arXiv:2308.05374, 2023.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation framework for
automated red teaming and robust refusal. In Forty-first International Conference on Machine
Learning, 2024.

11

https://aclanthology.org/2023.emnlp-main.299
https://openreview.net/forum?id=7Jwpw4qKkb

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Peter S Park, Simon Goldstein, Aidan O’Gara, Michael Chen, and Dan Hendrycks. Ai deception: A
survey of examples, risks, and potential solutions. arXiv preprint arXiv:2308.14752, 2023.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to! In
International Conference on Learning Representations, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
arithmetic reasoning in language models using causal mediation analysis. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 7035–7052, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.435. URL https://aclanthology.org/
2023.emnlp-main.435.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
Advances in Neural Information Processing Systems, 36, 2024.

Zheng-Xin Yong, Cristina Menghini, and Stephen H. Bach. Low-resource languages jailbreak gpt-4,
2024. URL https://arxiv.org/abs/2310.02446.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In The Twelfth International Conference on Learning Representations,
2024.

12

https://aclanthology.org/2023.emnlp-main.435
https://aclanthology.org/2023.emnlp-main.435
https://arxiv.org/abs/2310.02446

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

Yi Zeng, Hongpeng Lin, Jingwen Zhang, Diyi Yang, Ruoxi Jia, and Weiyan Shi. How johnny can
persuade llms to jailbreak them: Rethinking persuasion to challenge ai safety by humanizing llms.
arXiv preprint arXiv:2401.06373, 2024.

Wenxuan Zhang, Hou Pong Chan, Yiran Zhao, Mahani Aljunied, Jianyu Wang, Chaoqun Liu, Yue
Deng, Zhiqiang Hu, Weiwen Xu, Yew Ken Chia, et al. Seallms 3: Open foundation and chat
multilingual large language models for southeast asian languages. arXiv preprint arXiv:2407.19672,
2024.

Jiachen Zhao, Zhun Deng, David Madras, James Zou, and Mengye Ren. Learning and forgetting
unsafe examples in large language models. In Forty-first International Conference on Machine
Learning, 2024a.

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji Kawaguchi, and Lidong Bing. How do large
language models handle multilingualism? arXiv preprint arXiv:2402.18815, 2024b.

Yiran Zhao, Wenxuan Zhang, Huiming Wang, Kenji Kawaguchi, and Lidong Bing. Adamergex:
Cross-lingual transfer with large language models via adaptive adapter merging. arXiv preprint
arXiv:2402.18913, 2024c.

Yiran Zhao, Wenyue Zheng, Tianle Cai, Xuan Long Do, Kenji Kawaguchi, Anirudh Goyal, and
Michael Shieh. Accelerating greedy coordinate gradient via probe sampling. arXiv preprint
arXiv:2403.01251, 2024d.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023.

Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, Rowan
Wang, Zico Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness
with circuit breakers, 2024.

A APPENDIX

A.1 PARALLEL NEURON DETECTION METHOD

Feed-Forward Network (FFN) In the latest open-source models, when processing input c, the
feed-forward network in a certain layer is defined as

FFN(x) =
(

SiLU
(
Wgate(x)

)
·Wup(x)

)
Wdown, (7)

where x ∈ Rl×dmodel is the embedding fed into the FFN, Wgate,Wup ∈ Rdmodel×dinter 2, Wdown ∈
Rdinter×dmodel . The calculation of the importance of the k-th neuron in Wup, when processing the
input c, as presented in Equation 2, can be equivalently transformed to

Imp(Wup[:, k]|c) = ∥ ˆFFN(x)− FFN(x)∥2 =
∥∥∥(hffn(x) · Mask[k]

)
Wdown

∥∥∥
2
, (8)

where hffn ∈ Rl×dinter represents the embedding before Wdown, and Mask[k] ∈ dinter is a vector
with the k-th element equal to 1 and the rest equal to 0. To calculate Imp(Wup[:, k]|c) for k ∈ dinter
parallelly, we introduce a diagonal mask matrix of size (dinter, dinter), denoted as Mask. Therefore,

Imp(Wup|c) = ∥(hffn(x) · Mask)Wdown∥2. (9)
Furthermore, we observe that deactivating the k-th neuron of Wdown is equivalent to deactivating the
k-th neuron in Wup, as they both result in hffn[k] = 0. Hence, we can also derive Imp(Wdown|c) by
employing Equation (9).

2W (·) represents the linear matrix product of the input x and the parameter W , i.e., W (x) := xW .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Self-Attention Network When processing input c, the self-attention network in a certain layer is

Attention(x) = Softmax
(WQ(x)W

T
K(x)√

d

)
WV (x), (10)

where WQ,WK ,WV ∈ Rdmodel×dmid . 3 Since WV (x) is not in the non-linear softmax calculation,
we can calculate Imp(WV |c) by applying Equation (9). For WQ, we obtain Imp(WQ[:, k]|c) by
deactivating its k-th neuron, specifically, ŴQ ←WQ[:, k] = 0. Firstly, we calculate the difference in
attention weight before and after deactivation, prior to scaling and softmax,

∆k(x) = ŴQ(x)W
T
K(x)−WQ(x)W

T
K(x) = WQ(x)[:, k]WK(x)[k, :] ∈ Rl×l. (11)

Next, as the changes in attention exhibit a positive correlation with the changes in the output of this
layer, the importance of WQ[:, k] in processing c, can be approximated as

Imp(WQ[:, k]|c) ≈ ∥ ˆattention(x)− attention(x)∥2

≈
∥∥∥softmax

(WQ(x)W
T
K(x)−∆k(x)√

d

)
− softmax

(WQ(x)W
T
K(x)√

d

)∥∥∥
2
.

(12)

This process can also be calculated in parallel, specifically,

∆(x) = ŴQ(x)W
T
K(x)−WQ(x)W

T
K(x)

= WQ(x).resize(l, 1, dmid)×WK(x).resize(1, l, dmid) ∈ Rl×l×dmid .
(13)

Therefore, the importance of WQ in processing input c is calculated by

Imp(WQ|c) ≈
∥∥∥softmax

(WQ(x)W
T
K(x)−∆(x)√
d

)
− softmax

(WQ(x)W
T
K(x)√

d

)∥∥∥
2
. (14)

Similarly, since WK is symmetrical to WQ, Imp(WK |c) can be calculated in the same way.

A.2 SAFETY NEURON DETECTION CORPUS

In the neuron detection process, we utilize the training documents from Zou et al. (2024), from
which sampling 200 documents for detection. Specifically, the training set contains harmful queries
across various categories, including “terrorism and violent extremism”, “self-harm”, and “political
campaigning”, etc. This diverse dataset helps ensure the generalizability of the detected neurons.
Furthermore, our analysis examined how the number of input documents affects safety neuron
detection, as shown in Table 5. The ablation analysis is on Llama3-8B-Instruct, and the results
demonstrate that 200 documents are sufficient to reliably identify safety neurons.

Table 5: Number of detected safety neurons across different document sizes.

Corpus Size 10 50 100 200 400 800

Number of Safety Neurons 8912 4825 3594 2329 2322 2314

3In some models like Vicuna and Mistral, dmodel = dmid, but we use different notations to avoid ambiguity.

14

	Introduction
	Safety Neurons
	Safety Neuron Detection
	Verify Identified Safety Neuron
	Analyze Safety Mechanism in LLMs
	Safety mechanism Properties
	Multilingual Safety

	Efficient Safety Training
	Live-line Work on Instruct Tuned Model
	Efficient Establish Safe Mechanism for Base Model

	More Robust Efficient Safety Tuning
	Further Analysis
	Number of Safety Documents for SN-Tune
	Learning Rate & Training Epoch

	Related Work
	Conclusion
	Appendix
	Parallel Neuron Detection Method
	Safety Neuron Detection Corpus

