
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT ALLREDUCE WITH STRAGGLERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributed machine learning workloads use data and tensor parallelism for training
and inference, both of which rely on the ALLREDUCE collective to synchronize gra-
dients or activations. However, ALLREDUCE algorithms are delayed by the slowest
GPU to reach the synchronization barrier before the collective (i.e., the straggler).
To address this challenge, we propose StragglAR: a parallel algorithm for ALLRE-
DUCE that accelerates distributed training and inference by exploiting natural
variation in GPU execution times. StragglAR implements a REDUCESCATTER
among the remaining GPUs during the straggler-induced delay, and then executes
a novel collective algorithm to complete the ALLREDUCE once the final GPU
reaches the synchronization barrier. StragglAR achieves a 2× theoretical speedup
over popular bandwidth-efficient algorithms for large GPU clusters, surpassing the
lower bound for bandwidth-optimal synchronous ALLREDUCE by leveraging the
asymmetry in when GPUs reach the synchronization barrier. On an 8-GPU server,
StragglAR provides a 25% speedup over state-of-the-art ALLREDUCE algorithms.

Time

CPU

GPU 0

GPU 1
GPU 2

GPU 3

Straggler delay = waiting

Time

CPU

GPU 0

GPU 1
GPU 2

GPU 3

Straggler delay = work Time saved

tstraggler tAR trest trest

ReduceScatter
ReduceScatter
ReduceScatter

SAR

SAR

SAR

SAR

AllReduce
AllReduce

AllReduce

AllReduce

tstraggler tSAR

Figure 1: Straggler GPU (rank 0) causes all other GPUs to wait to begin the ALLREDUCE operation
(left). Our proposed straggler-aware ALLREDUCE (right). Only communication kernels are shown.

1 INTRODUCTION

Distributed training and inference rely on collective communication primitives to exchange model
gradients and activations across multiple GPUs. In particular, the ALLREDUCE primitive is used to
average gradients across GPUs during data-parallel training and aggregate partial activations in tensor-
parallel training and inference. ALLREDUCE and other communication primitives are implemented
in collective communication libraries (CCLs), like NVIDIA’s NCCL, which provide the core com-
munication infrastructure for distributed ML. To enable efficient communication, CCLs implement
ALLREDUCE using optimized parallel algorithms rooted in decades of research in high-performance
computing (Dongarra et al., 2013). These algorithms are designed to minimize communication time
across GPUs — a key bottleneck in scaling modern ML workloads with massive data transfer sizes. To
meet this demand, CCLs use bandwidth-optimal algorithms (e.g., Ring, Recursive Halving/Doubling),
which heavily parallelize communication to fully leverage available inter-GPU network bandwidth.

Our key insight. Today’s collective algorithms are built on a fundamental assumption: all GPUs
initiate the collective simultaneously. However, in distributed ML, communication depends on
preceding computation; the last GPU to finish the preceding computation, i.e., the straggler, delays
the entire ALLREDUCE (Fig. 1, left). Our experiments show that this happens regularly even within a
scale-up domain — the high-performance multi-GPU servers (e.g., NVIDIA DGX) and racks (e.g.,
NVIDIA GB200) that are the workhorses of distributed ML. In our experiments fine-tuning Llama-
3.2 (1B, 3B) within DGX servers, we observe straggler delays of up to 30 milliseconds (Fig. 2a),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Straggler delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(1) Perlmutter, 4xA100 SXM 40GB HBM,
Llama-3.2-1B, batch_size=32
(2) Runpod, 4xA100 SXM 80GB HBM,
Llama-3.2-1B, batch_size=32
(3) Runpod, 8xA100 SXM 80GB HBM,
Llama-3.2-3B, batch_size=64

(a) Straggler delays in Llama-3.2 fine-tuning jobs.

10 20 30 40 50 60 70
Exposed communication (%)

30

20

10

0

10

20

30

Tr
ai

ni
ng

/in
fe

re
nc

e
sp

ee
du

p
(%

)

Full overlap with straggler (ideal)
No straggler (worst case)
Baseline

8 GPUs
16 GPUs
64 GPUs

(b) Range of simulated end-to-end speedups.

Figure 2: (a) CDFs of the straggler delay—the time between when the slowest and second-slowest ranks initiate
the ALLREDUCE—in Llama-3.2 (1B, 3B) fine-tuning jobs on the Perlmutter supercomputer and RunPod VMs
(with 3 independent runs per job). (b) End-to-end speedups for ML workloads using StragglAR compared to
bandwidth-optimal algorithms (e.g., Ring) for a 4 GB buffer (data-parallel buffer size of Llama-3.2-3B with local
batch size of 4). Results are simulated with the α−β model using empirical α and β values for the NVIDIA
H100 DGX. Exposed communication is the percent of end-to-end time spent on ALLREDUCE. As cluster size
scales, StragglAR shows large gains (+30%) while worst-case performance is on par with the baseline (-3%).

prolonging the ALLREDUCE execution time and causing other GPUs to stall. While stragglers in
large datacenters are associated with network delays and hardware faults (Wu et al., 2024; Lin et al.,
2025; Warraich et al., 2025; Jiang et al., 2024), we observe stragglers as an inherent challenge in
distributed computation, where execution times naturally vary across GPUs. Existing mitigation
strategies that approximate or drop the straggler’s data can impact model convergence and do not
generalize to ALLREDUCE in tensor-parallel training/inference. Thus, there remains a pressing need
for bandwidth-efficient ALLREDUCE that is robust to stragglers while still preserving correctness.

Our proposal. Instead of treating stragglers as an anomaly, we propose designing algorithms that
expect and exploit them. We design a novel ALLREDUCE algorithm, StragglAR (Fig. 1, right), that
provably transmits up to 2× fewer bytes than the known bandwidth-optimal lower bound by exploiting
natural variation in GPU execution times. StragglAR leverages the straggler delay to perform useful
communication, eagerly executing a REDUCESCATTER among the other GPUs. However, the
resulting asymmetry between the data buffers of the straggler and non-straggler GPUs after the
REDUCESCATTER introduces new challenges in implementing highly parallel communication that
can outperform known bandwidth-optimal algorithms. Thus, we design a new parallel communication
algorithm that utilizes this asymmetry to perform faster ALLREDUCE, achieving provably lower
communication complexity in straggler settings while closely matching the complexity of bandwidth-
optimal algorithms even without stragglers (Fig. 2b). To our knowledge, our work is the first to
show that the decades-old lower bound for bandwidth-optimal ALLREDUCE (Patarasuk and
Yuan, 2009; De Sensi et al., 2024) can be surpassed by leveraging variation in compute times.

Our hardware experiments on 8-GPU servers show that StragglAR achieves a 25% speedup over
bandwidth-optimal ALLREDUCE algorithms (e.g., Ring) in the presence of stragglers, and delivers
end-to-end training speedups across multiple ML models. Simulations at larger scales show that
these improvements grow with cluster size, reaching up to 2× speedups at scale. As shown in Fig. 2b,
StragglAR’s performance range shifts upwards with cluster size, yielding clear upside with variation
in execution times and minimal downside otherwise. Finally, this work opens a new design dimension
for collective algorithms: temporal asymmetry. For decades, we have pursued spatial optimizations
like topology-aware routing (Shah et al., 2023) and spectral optimizations (e.g., compression), but
we have insisted on temporal symmetry (i.e., all GPUs start the collective together). Breaking this
assumption not only provides an algorithmic approach to mitigating straggler effects, but also presents
an opportunity to fundamentally redesign the collective algorithms that underpin distributed ML.

2 BACKGROUND AND RELATED WORK

In distributed ML, GPUs aggregate gradients and activations using the ALLREDUCE collective
communication primitive (Figure 3), which transmits and reduces data across the inter-GPU network.
Data parallelism uses ALLREDUCE to average gradients, while tensor parallelism invokes it many

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

times per model pass to exchange activations (Shoeybi et al., 2019a). Collective communication
libraries (CCLs) like NCCL implement these primitives, choosing bandwidth-optimal algorithms (e.g.,
Ring) for the large buffer sizes common in modern ML workloads (Shah et al., 2023). CCLs adopt a
bulk-synchronous model where all GPUs must synchronize before the collective, but performance
degrades when a straggler—the slowest GPU—delays synchronization (Warraich et al., 2025; Dean
and Barroso, 2013; Wang et al., 2024a; Gangidi et al., 2024; Li et al., 2014). While stragglers result
from inherent heterogeneity in GPU execution times, severe stragglers can stem from hardware issues
(thermal throttling, power supply) or runtime factors (network congestion, compute skew) (Wu et al.,
2024; Jiang et al., 2024; Grattafiori et al., 2024; Xiong et al., 2024). Recent work has highlighted the
acute impact of stragglers at datacenter scale (Jiang et al., 2024; Lin et al., 2025), and our experiments
show intrinsic 30 ms delays even within multi-GPU servers (Fig. 2a).

= + + +()

AllReduce

ReduceScatter

Figure 3: Collective operations.

Related Work. Prior straggler mitigation strategies either identify
and remove stragglers (Jiang et al., 2024; Lin et al., 2025), wasting
compute and only addressing severe cases, or approximate/drop
the straggler’s data (Warraich et al., 2025; Harlap et al., 2016;
Karakus et al., 2017; Recht et al., 2011), limiting applicability
to data-parallel training and affecting convergence. Systems ap-
proaches (Wu et al., 2024; Zhao et al., 2024a) adapt workload
placement or select among known algorithms, e.g., AdapCC (Zhao
et al., 2024a) uses known Tree algorithms that sacrifice bandwidth
for latency. In contrast, StragglAR is a novel bandwidth-efficient
ALLREDUCE algorithm that preserves exact reductions for both
data and tensor parallelism and treats stragglers as intrinsic to
distributed computation. While recent works synthesize new col-
lective algorithms for heterogeneous networks (Shah et al., 2023; Zhao et al., 2024a; Wang et al.,
2020; Won et al., 2024; Zhang et al., 2024), in homogeneous scale-up domains these converge to
classical bandwidth-optimal algorithms like Ring (Shah et al., 2023; Wang et al., 2020), which NCCL
implements (Hu et al., 2025). We provide an in-depth discussion of related work in Appendix A.

3 STRAGGLAR: A STRAGGLER-AWARE ALLREDUCE ALGORITHM

We now present StragglAR, a novel algorithm to speed up ALLREDUCE in the presence of stragglers.

α-β cost model. ALLREDUCE algorithms are typically analyzed using the α−β model of collective
communication (Hockney, 1994; Thakur et al., 2005; Shah et al., 2023; Won et al., 2023; Wang et al.,
2025). As per this model, sending a message of s bytes takes α+sβ time, where α is the fixed startup
cost per message (independent of message size) and β = 1

bandwidth is the per-byte transmission cost.

Collective algorithms perform a series of data transfers among GPUs to achieve the desired operation.
These algorithms specify a schedule that dictates which GPUs exchange data in each discrete time
step, called a round. The α cost of an algorithm corresponds to the number of rounds, and the β cost
corresponds to the total number of serialized bytes sent (number of rounds × bytes sent per round).

The goal of a collective algorithm is to provide a schedule that minimizes the total α−β cost. CCLs
use α-optimal algorithms for small buffers, when latency dominates, and β-optimal algorithms for
larger buffers, when bandwidth becomes the bottleneck (as only β cost scales with buffer size).
Different algorithms affect the coefficients on α and β while the α and β constants come from the
hardware. Bandwidth-optimal algorithms (e.g., Ring) bound β cost at∼2sβ regardless of the number
of GPUs. StragglAR, like standard ALLREDUCE algorithms used in distributed ML, focuses on
optimizing β cost because today’s large models incur large buffers of many MB to several GB.

Key insights. In standard ALLREDUCE algorithms, all GPUs must wait for the final GPU, the
straggler, before starting the collective (GPU 0 in Fig. 1). In contrast, StragglAR uses this delay
to perform a REDUCESCATTER (Fig. 3) among non-straggler GPUs. By productively using the
straggler’s delay, StragglAR reduces the data transfer cost once the straggler is ready.

Once the REDUCESCATTER is complete, StragglAR initiates a schedule of data transfers among
all GPUs (straggler and non-stragglers) to complete the ALLREDUCE. However, even with the
precondition, designing an algorithm faster than β-optimal baselines is challenging because the
precondition introduces inherent asymmetry (straggler vs. other ranks) that is difficult to paral-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: StragglAR Schedule Generator for ALLREDUCE (Power-of-2 World Size)

Input :n = 2k GPUs, with rank σ = n−1 as the straggler (without loss of generality)
Output :schedule of chunk exchanges completing ALLREDUCE in n−2 + log n rounds

1 Initialization: rank g < n−1 holds partially reduced chunk cg; straggler σ holds none.
2 A: {}, dictionary of active chunks to the set of GPUs that hold it
3 schedule: [], list of sets of matchings over rounds to return
4 for round r = 0 to n−2 + log n do
5 if r < n−1 then
6 Match rank r ↔ σ: exchange chunk cr; mark r and σ as unavailable
7 if 0 < r < log n then
8 Match rank r−1→ rank r−1+ log n: send chunk cr−1

9 Each rank with a reduced chunk sends to any rank g > 2(log n−1) without a chunk
10 else
11 Pr ← available ranks holding oldest active chunk minc A
12 Qr ← available ranks holding other active chunks in A \ {minc A}

// Handle ranks in the critical window
13 for g = r+1 to r+ log n do
14 Select c = min{c′ | g lacks c′, ∀h ∈ A[c′], h /∈ [r+1, r+ log n−1]}
15 Match rank g ↔ h; g sends c; h sends c′; mark g and h as unavailable

16 Match pi ↔ qi for pi ∈ Pr, qi ∈ Qr to exchange their active chunks
17 Append a list of round r’s matchings to schedule
18 if r ≥ log n then
19 A[cr−logn]← ∅ // cr−logn is now fully propagated

20 if r < n−1 then
21 A[cr]← {r} // Add newly active chunk to A

22 For other active chunks c exchanged: A[c]← A[c] ∪ {receivers of c in this round}

lelize. Thus, StragglAR designs communication to maximize parallelism in every round, achieving
faster ALLREDUCE schedules than baselines. While computing efficient schedules is known to be
combinatorially hard (Shah et al., 2023), StragglAR uses symmetry-breaking to quickly find them
in polynomial time. For the desired multi-GPU setup, StragglAR is run once offline to generate
ALLREDUCE schedules, which are then implemented to run in real-time without modification.

StragglAR is agnostic to the cause of the straggler or detection method (§4). Instead, it is a
fundamental parallel algorithm that communicates 2× fewer bytes than the known lower bound for
ALLREDUCE during exposed communication in settings where overlap is possible, while retaining
strong worst-case performance. We now describe the runtime environment StragglAR relies on.

GPU cluster topology. Like classical ALLREDUCE algorithms (e.g., Ring, Recursive Halv-
ing/Doubling (Thakur et al., 2005)), StragglAR targets the scale-up domain—nowadays extending
to 10-100s of GPUs (NVIDIA, 2024)—due to its homogeneous, any-to-any topology.

GPU-GPU connectivity. We assume each GPU has a single connection to the inter-GPU network,
as is typical in modern switched scale-up domains (NVLink & NVSwitch). Thus, a GPU can fully
utilize bandwidth by sending data to one peer at a time (confirmed empirically in §4). While multidi-
mensional topologies (Jouppi et al., 2023) enable using multiple links in parallel, this proportionally
reduces the available per-link bandwidth in typical NVSwitched configurations (as we show in §4).

3.1 ALGORITHM DESIGN

We consider a setting with n ranks, 0, . . ., n−1. Each rank has a buffer of s bytes that is evenly
divided into n−1 chunks, each of size s

n−1 and indexed as c0, . . ., cn−2. Without loss of generality,
we assume rank n−1 is the straggler in this section; however, by symmetry, the algorithm applies
regardless of which rank is the straggler (as further shown by our evaluation in §4).

Precondition and postcondition. StragglAR uses a precondition where the n−1 non-straggler ranks
have completed a REDUCESCATTER among themselves, ideally overlapped with the delay of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Precondition
Rank 0

Rank 1

Rank 2

Rank 3

After round 0 After round 1

After round 2After round 3

Not reduced

Partially reduced

Fully reduced

Legend

(a) Example StragglAR schedule for 4 GPUs.

Rank 0

Rank 1

Rank 2

Rank 3

Rank 4

Rank 5

Rank 6

Rank 7

1

5

6

0

2

3

4 7

Round r Active

r-3

P Q

r n-1

log n = 3 Completed

r-4 r–1r-2

(b) Example matching process, round r=4 with 8 GPUs.

Figure 4: Algorithm design (straggler in red). In (b), ranks 3 and 5 cannot match: 5 is in the critical
window and 3’s chunk was just unlocked. Pairing them would prevent 3’s chunk from doubling.

straggler. This is feasible, since REDUCESCATTER is inherently 2× faster than ALLREDUCE and
is efficiently implemented by CCLs (Thakur et al., 2005). We refer to the reduced chunks after this
step as partially reduced because they contain all but the straggler’s data. StragglAR computes an
optimized communication schedule to transition from this precondition to the standard ALLREDUCE
postcondition, where all ranks, including the straggler, possess a fully reduced buffer.

The communication schedule consists of multiple rounds, each represented by a set of matchings,
similar to some broadcast algorithms (Bar-Noy et al., 2000). In each round, matchings specify the
pairs of ranks that communicate and which data chunks they exchange simultaneously. Each rank
participates in exactly one matching per round. Since we fix the chunk size per round, the only lever
to minimize communication time is to reduce the number of rounds. At the very least, n−1 rounds
are required to transmit all n−1 chunks. StragglAR completes the ALLREDUCE in n+ log n−2
rounds, yielding a β cost of n+logn−2

n−1 sβ, which is less than the known lower bound of 2n−1
n sβ (see

§3.2). Alg. 1 summarizes the schedule computation when n is a power-of-two, with modifications for
non-power-of-two cluster sizes in §D. Fig. 4a visualizes the StragglAR schedule for n=4.

Straggler pairings. In round r, rank r pairs with the straggler to fully reduce cr. After n−1 rounds,
the straggler’s buffer is fully reduced and each chunk ci has been fully reduced on at least one
non-straggler rank. Hence, cr can propagate only from round r+1 onward, once fully reduced.

Phase 1. In the first log n rounds, every rank obtains a fully reduced chunk, guaranteed by two rules:

• In round r ∈ [1, log n−1], rank r−1 sends chunk cr−1 to rank r−1+ log n.
• Any other rank with a fully reduced chunk can send it to any other rank g > 2(log n−1).

Phase 2. At the start of round r = log n, every rank has exactly one fully reduced chunk. Exactly
one rank, r−1, has cr−1. Two ranks have cr−2 because it was first fully reduced in round r−2 and
then transmitted to another rank in round r−1. By the same pattern, four ranks have cr−3, etc.

Definition. An active chunk cj is a chunk that has been fully reduced with the straggler by round
r > j, but has yet to propagate to all n ranks.

As we prove in §C, every non-straggler possesses exactly one active chunk at any point in time.
StragglAR aims to propagate active chunks to all ranks as quickly as possible. Each active chunk
requires a minimum of log n rounds to propagate fully, by doubling in each round, so an active chunk
cj is due for full propagation to all ranks by round j + log n.

Algorithm 1 enables every active chunk to double in every round by ensuring that every rank transmits
its active chunk and receives a different active chunk, with the oldest active chunk expiring in
each round. We model each round as a bipartite matching problem between two disjoint sets of
non-straggler ranks: Pr, ranks whose active chunk in round r is cr− logn and Qr, the others. By the
doubling property, it follows that |Pr| = 2logn−1 = n

2 and thus |Qr| = n−1−|Pr| = n
2−1.

This allows us to define an invariant: For every round r ∈ [log n, n−2], rank r ∈ Pr. This guarantees
the log n propagation deadline, by ensuring that ranks receiving a new active chunk (by pairing with
the straggler) have already received the chunk due in that round (cr− logn). Thus, we exclude rank r
from the matching process since it pairs with the straggler, enabling |Pr| = |Qr| = n

2−1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Now, we have two equal-sized, disjoint sets of ranks, Pr \ {r} and Qr. However, arbitrary matchings
between the two sets risk violating the invariant in the future. In particular, ranks in the next log n
rounds (the critical window) cannot receive chunks that would remain active when they must pair
with the straggler (Fig. 4b). For example, rank r+1 may only receive cj with j ≤ r+1− log n. To
enforce this, we first match ranks j ∈ [r+1, r+ log n] in the critical window with partners outside this
window that have the oldest available active chunk. After finalizing these matchings, the remaining
ranks can be paired arbitrarily since every u ∈ Pr and v ∈ Qr lack each other’s active chunks.

After n−1 rounds, every chunk has been fully reduced, and the straggler has fully reduced its buffer.
To fully propagate remaining chunks quickly, the straggler can be paired with arbitrary ranks, but
always sends the final chunk. (This enables the straggler to be added to Qr so that |Pr| = |Qr| = n

2 .)

3.2 COMMUNICATION COMPLEXITY

Theorem 1. ALLREDUCE schedules generated by StragglAR complete in n+ log n−2 rounds.

We provide the proof in §C. Intuitively, each chunk cr propagates within log n rounds of being fully
reduced. The final chunk cn−1 only requires log n−1 rounds to propagate, as the straggler can also
help transmit it, thereby achieving n+ log n−2 total rounds. Achieving this bound requires matching
ranks optimally for the current round without compromising on future propagation, where special
care must be taken due to the pre-determined straggler pairings.

Algorithm Latency Bandwidth

Ring 2(n−1)α
2(n−1)

n sβ

RHD 2(logn)α2(logn)α2(logn)α
2(n−1)

n sβ

StragglAR (n+ logn−2)α n+ log n−2
n−1 sβn+ log n−2
n−1 sβn+ log n−2
n−1 sβ

Table 1: ALLREDUCE complexity with straggler delays.

When the straggler is delayed long enough
to mask the REDUCESCATTER precondi-
tion (supported by Fig. 2a), StragglAR’s
exposed communication time consists of
n+ log n−2 rounds with s

n−1 bytes sent
per round. Thus, the total time taken is

TSAR = (n+log n−2)α+n+ log n− 2

n− 1
sβ.

Under these conditions, StragglAR achieves much lower β cost than today’s known bandwidth-
optimal lower bound (see Table 1), and this advantage only grows as n (number of GPUs) scales. The
scaling behavior of known β-optimal algorithms is limn→∞

2(n−1)
n sβ = 2sβ, whereas StragglAR

achieves limn→∞
n+ logn−2

n−1 sβ = sβ, implying 2× speedups in large-scale settings with a straggler.
Even in the worst case, where none of the REDUCESCATTER precondition can be overlapped (e.g., no
stragglers), StragglAR remains competitive: since a REDUCESCATTER with n−1 ranks only incurs
n−2
n−1sβ cost, StragglAR achieves limn→∞

n−2
n−1sβ + n+ logn−2

n−1 sβ = 2sβ. While α cost is typically
negligible for large buffers, StragglAR scales better in α cost than Ring but more poorly than RHD.

4 EXPERIMENTS

We implement the StragglAR algorithm to compute schedules, as well as a CUDA runtime that
executes these schedules in multi-GPU setups.

Detecting stragglers. One advantage of StragglAR is that its initial REDUCESCATTER can be eagerly
executed as soon as the first n−1 ranks are ready. If there is sufficient delay between the slowest rank
and these n−1 ranks, StragglAR achieves its ideal performance; otherwise, performance falls in the
range between the ideal and worst-case bounds discussed in §3 and §4.3. To consistently support
ideal-case performance, the runtime can leverage online straggler detection tools (Zhao et al., 2024a)
and pass the straggler’s rank to the backend for conditional execution of the appropriate schedule. In
our end-to-end experiments (§4.2), we fix the rank that StragglAR assumes to be the straggler (by
profiling the workload ahead of time and picking a likely straggler rank, see §4.2). This stress-tests
StragglAR, as there are many iterations in which the algorithm encounters its worst-case performance
(i.e., no precondition overlap), when a different rank is the straggler or there is no straggler at all.

Schedule generator. We implement StragglAR in Python to generate ALLREDUCE schedules. The
algorithm takes the number of GPUs as input and outputs a schedule with matchings, specifying for
each round which GPUs communicate and which chunks to send/receive. Schedule generation is run
once offline and is fast—StragglAR computes the schedule for a 256-GPU cluster in <1.04 seconds.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 MiB
4 MiB

16 MiB
64 MiB

256 MiB
1 GiB

2 GiB
3 GiB

4 GiB

Buffer Size

0

50

100

150

200
Al

g.
 B

an
dw

id
th

 (G
iB

/s
) (a) Bandwidth Scaling: Optimistic Case

1 MiB
4 MiB

16 MiB
64 MiB

256 MiB
1 GiB

2 GiB
3 GiB

4 GiB

Buffer Size

0

50

100

150

200

Al
g.

 B
an

dw
id

th
 (G

B/
s) (b) Bandwidth Scaling: Average Case

0 5 10 15 20
Straggler Delay (ms)

30

40

50

60

Ti
m

e
(m

s) Critical delay

(c) Impact of Straggler Delay
NVIDIA DGX H100

StragglAR MSCCL RHD Ring Broadcast

1 MiB
4 MiB

16 MiB
64 MiB

256 MiB
1 GiB

2 GiB
3 GiB

4 GiB

Buffer Size

0

50

100

Al
g.

 B
an

dw
id

th
 (G

iB
/s

) (d) Bandwidth Scaling: Optimistic Case

1 MiB
4 MiB

16 MiB
64 MiB

256 MiB
1 GiB

2 GiB
3 GiB

4 GiB

Buffer Size

0

50

100

Al
g.

 B
an

dw
id

th
 (G

B/
s) (e) Bandwidth Scaling: Average Case

0 5 10 15 20
Straggler Delay (ms)

40

60

80

100

Ti
m

e
(m

s) Critical delay

(f) Impact of Straggler Delay
NVIDIA DGX A100

Figure 5: Benchmarking ALLREDUCE performance for different algorithms on NVIDIA DGX H100
(a-c) and A100 (d-f) servers. (a), (d) show the optimistic use case, by assuming REDUCESCATTER
can complete within the straggler delay. (b), (e) use a straggler delay of 9.45 ms, the average from
the ML workloads in Fig. 2a. (c), (f) fix the buffer size at 4 GiB and vary the straggler delay.

Runtime. We implement the StragglAR schedules using the NCCL Point-to-Point (P2P) API (NCCL)
(also used in prior work (Wang et al., 2020)), for GPU communication, combined with custom kernels
for reduction. After completing ncclReduceScatter() among non-straggler GPUs, we invoke
the runtime to execute the StragglAR schedule. We package both REDUCESCATTER and StragglAR
into an API that has the same functionality as ncclAllReduce().

Baselines. Given the homogeneous, switched connectivity of modern scale-up networks, we compare
StragglAR to the strongest bandwidth-optimal ALLREDUCE algorithms for this setting. Our baselines
are (1) Ring (Patarasuk and Yuan, 2009; NVIDIA, 2024a) and (2) Recursive Halving/Doubling
(RHD) (Bruck et al., 1994), which are the gold-standard bandwidth-optimal algorithms in homoge-
neous networks (Hu et al., 2025); (3) MSCCL (Cowan et al., 2023), the only recent work we are aware
of to synthesize a new algorithm for scale-up domains; and (4) Broadcast, a naive straggler-aware
baseline. The MSCCL baseline uses their allpairs algorithm: a one-round REDUCESCATTER where
each GPU splits its bandwidth across all peers, followed by a one-round mirror ALLGATHER. This
achieves the same 2sβ bandwidth cost as classical algorithms but reduces latency to 2α on switched
networks. The Broadcast baseline is straggler-aware, as non-stragglers complete an ALLREDUCE dur-
ing the straggler delay and then finish with a pairwise-exchange broadcast once the straggler arrives.
More details on baselines can be found in §E. For fair comparison of the algorithmic contribution, we
implement baselines using the NCCL P2P API and the same CUDA compute kernels as StragglAR.

4.1 BENCHMARKING STRAGGLAR ON MULTI-GPU SCALE-UP DOMAINS

Setup. We run experiments on several multi-GPU testbeds: (1) NVIDIA DGX H100, 8×80GB
H100 GPUs connected by NVLink 4.0 (450 GB/s P2P) and NVSwitch 3.0; (2) NVIDIA DGX A100,
8×80GB A100 GPUs connected by NVLink 3.0 (300 GB/s P2P) and NVSwitch 2.0; (3) a node of
the Perlmutter supercomputer (NERSC, 2025), with 4×40GB A100 GPUs fully connected (mesh) by
NVLink 3.0 for 100 GB/s P2P (results in §F). (1) and (2) are VMs obtained through RunPod (RunPod,
Inc., 2025). We use CUDA events on GPU rank 0 to measure the runtime.

Varying buffer size. We first assume the straggler delay can mask the REDUCESCATTER precondition
and measure runtime from this point to capture performance for ideal use cases of our algorithm.
(For Broadcast, we assume the entire ALLREDUCE precondition has completed.) Following the
standard for benchmarking ALLREDUCE performance, we evaluate the communication time as we
scale the buffer size in powers of 2 (in bytes). NCCL behaves unpredictably when the P2P data
transfer size (i.e., chunk size) is not a multiple of 4 KiB (page size), so we pad buffers for StragglAR

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

to ensure the chunk size is the lowest multiple of 4 KiB greater than s
n−1 (for baselines, the chunking

scheme inherently ensures this when s is a power of 2). For each buffer size, we run 50 iterations per
algorithm and report the mean, with error bars for the standard error of the mean.

Similar to how NCCL reports performance (NVIDIA, 2024b), we show the algorithmic bandwidth—
buffer size divided by collective communication time (i.e., runtime normalized by input size)—in
Fig. 5 (a,d). For some smaller buffer sizes, RHD, Broadcast, and MSCCL outperform StragglAR,
which still outperforms Ring; this matches expected results from α−β costs since α costs dominate
for small buffers. However, StragglAR is consistently the fastest for the larger buffer sizes (which
scale with model size), specifically 8.3% faster on the 4-A100 Perlmutter node and >25% faster on
the 8-H100 and 8-A100 DGX servers. The outlier at 256 MiB likely stems from NCCL’s internal
tuning in the 64-512 MiB range, where internal protocol changes cause unexpected performance, as
confirmed by our own nccl-tests profiling (§G) and prior work (Xu et al., 2025; Hu et al., 2025).

To simulate stragglers, we idle GPU rank n−1 for the specified number of clock cycles. Simul-
taneously, we begin the REDUCESCATTER for the other n−1 GPUs for StragglAR (similarly,
ALLREDUCE for Broadcast). We conduct similar experiments as above, but instead impose the
average delay of 9.45 ms observed in our Llama-3.2 fine-tuning experiments in Fig. 7. Fig. 5 (b,e)
shows that StragglAR improves the runtime under typical straggler delays in distributed ML with
larger buffer sizes, with average-case performance closely matching ideal performance. For the 4 GiB
buffer, StragglAR’s performance declines slightly from the ideal case because the REDUCESCATTER
for this buffer size cannot be fully overlapped with the 9.45 ms straggler delay.

Varying straggler delay. We vary the straggler delay by adjusting the number of clock cycles for
the sleep kernel, and run all algorithms on the largest buffer size (4 GiB) as a stress-test of the
precondition overlap. Fig. 5 (c,f) captures the total time from when the ALLREDUCE is called on
non-straggler GPUs to when it completes. It shows the critical delays of 5.53 ms and 7.57 ms for the
DGX H100 and A100, respectively, after which StragglAR outperforms baselines. The critical delay
is higher for the DGX A100 since a REDUCESCATTER takes longer due to its lower P2P bandwidth.
The critical delay also depends on buffer size, as shown in Fig. 6a, which plots the runtime of the
REDUCESCATTER precondition on the DGX H100. While the shaded region in Fig. 6a captures the
straggler delays at which StragglAR achieves its full theoretical gains, StragglAR still outperforms
baselines when some, but not all, of the REDUCESCATTER is overlapped with the straggler delay. For
example, the critical delay for a 4 GiB buffer in Fig. 5c is less than the REDUCESCATTER time for 4
GiB. Thus, StragglAR enables speedups even if the straggler delay is less than the REDUCESCATTER
precondition, but longer than the critical delay. As we show in §4.3, the critical delay approaches
zero as the size of the GPU cluster increases due to StragglAR’s efficient scaling.

4.2 END-TO-END EVALUATION ON ML WORKLOADS

Model Speedup Straggler GPU hrs.
(%) persistence (%) saved/day

Llama-3.2-3B 4.75 90 9.12
Phi-3-mini-3.8B 4.43 95 8.51
Qwen-2.5-3B 2.39 77 4.59

Table 2: End-to-end training speedups over Ring, and GPU-
hours saved per day on an 8-GPU server.

We run experiments on DGX A100
VMs to assess StragglAR’s impact
on end-to-end training time with data-
parallel fine-tuning of three popular
LLMs: Llama-3.2-3B (Grattafiori et al.,
2024), Phi-3-mini-3.8B (Abdin et al.,
2024), and Qwen-2.5-3B (Qwen, 2024).
We compile our ALLREDUCE imple-
mentations into a custom package and
configure PyTorch’s ALLREDUCE to
call this backend. In each VM, we first profile the workload with standard PyTorch tools and identify
persistent stragglers, i.e., ranks that are most likely to be delayed based on data from prior runs. We
use this approach both because persistent stragglers are common according to prior work (Lin et al.,
2025; Jiang et al., 2024) and our own experiments (§B), and because it stress-tests StragglAR to
encounter both ideal and worst-case conditions (when a different/no rank is the straggler). Then,
we pass the selected rank to the backend and train the model for 100 iterations (batch size of 32).
Because the buffer sizes of these models are ∼4 GiB, we compare StragglAR to the Ring algorithm,
which is optimal at large buffer sizes (Fig. 5a). We show the end-to-end speedups in Table 2.

The end-to-end speedup depends on several factors: how often the actual straggler was the rank we
passed to the backend, the straggler’s delay, and the fraction of overall time spent on ALLREDUCE.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 MiB 16 MiB 256 MiB 4 GiB
Buffer Size

0.12 ms

0.50 ms

2.00 ms

8.00 ms

Ti
m

e
(m

s)
Ideal delay

Avg. Delay in Experiments

(a) Ideal straggler delay (DGX H100).

8 16 32 64 128 256
Number of GPUs

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ov
er

 R
in

g

StragglAR (ideal)
StragglAR (worst)

MSCCL
RH/D

Ring
Broadcast

(b) Speedups over Ring as cluster size scales.

Figure 6: (a) REDUCESCATTER time over buffer sizes, capturing the range of straggler delays where
StragglAR achieves full theoretical guarantees. (b) ALLREDUCE performance scaling with the
analytical model for a 1 GiB buffer. The shaded region is the range of StragglAR’s possible speedups.

For Qwen-2.5-3B, gains are smaller because the straggler on that VM was less persistent, leading our
algorithm to encounter its worst-case scenario (i.e., no REDUCESCATTER overlap) more often. Even
then, StragglAR consistently shows end-to-end gains, as its worst-case performance nearly matches
baselines while its upside is much higher (Fig. 2b). StragglAR does not require online straggler
detection with dynamic stragglers, as eager conditional execution of schedules based on the first
n−1 ready ranks means at worst (i.e., no straggler delay), StragglAR’s performance closely matches
baselines. These speedups translate to 9.12 GPU-hours saved per day on an 8-GPU server (Table 2).

4.3 SCALING CHARACTERISTICS OF STRAGGLAR

To assess scaling to the largest practical scale-up domains (256 GPUs), we employ the same approach
as prior work: using the popular and empirically validated analytical network model to simulate
performance on clusters larger than 8 GPUs (Won et al., 2023; Wang et al., 2025; Gui et al., 2025;
Won et al., 2024), as we lack access to hardware like NVIDIA’s GB200 (NVIDIA, 2024). The
analytical simulator uses the α−β model to predict performance. We use α = 3µs based on latency
profiling studies of recent NVLinks (Microway, 2024) and β as the inverse of 450 GB/s, the P2P
bandwidth on DGX H100. In these simulations, we capture the entire range of performance supported
by StragglAR, from the worst case where none of the initial REDUCESCATTER can be overlapped to
the ideal case where the straggler delay enables full overlap (see Fig. 6a for ideal range). In Fig. 6b,
both StragglAR’s ideal and worst-case performance improve with cluster size for realistic, large
buffer sizes (1 GiB) in distributed ML. By n = 256, StragglAR provides a nearly 2× speedup over
the Ring algorithm in straggler settings while being no worse even without stragglers. Thus, incorrect
or infeasible straggler detection has minimal impact, as StragglAR exhibits competitive bandwidth
efficiency even at its worst. We report end-to-end scaling results in simulation for ML training in §I.

Limitations. To consistently achieve its best-case performance with dynamic stragglers, StragglAR
requires conditional execution of schedules based on the n−1 ranks that are first ready, which can
be complex. We note that libraries like NCCL already support conditional execution of different
algorithms and protocols based on runtime conditions. While StragglAR matches baselines at
scale even without a straggler, its performance on smaller clusters depends on the critical delay,
which varies with the exact GPU P2P bandwidth. Our algorithm also does not support odd values
of n, though such setups are atypical in large-scale ML. Finally, while StragglAR can tolerate
multiple stragglers, since a straggler is by definition relative, it is less effective when many GPUs
straggle simultaneously; however, this scenario is highly improbable since GPU execution times are
continuous variables (Dean and Barroso, 2013; Warraich et al., 2025).

5 CONCLUSION

We design StragglAR, a parallel algorithm that exploits natural variation in GPU execution times
to speed up ALLREDUCE. StragglAR achieves a 2× speedup over the known lower bound for
bandwidth-optimal ALLREDUCE, while performing as well in the worst case. By introducing the
dimension of temporal asymmetry, StragglAR offers a new paradigm for collective algorithm design.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We detail the assumptions, theoretical guarantees, and experimental procedures required to reproduce
our results. The formal description of StragglAR and all assumptions appear in § 3, while the
complete proofs are provided in the Appendix (§C). These proofs mirror the intuition in the main
paper and explicitly reference every prerequisite lemma.

Our implementation consists of two components: the offline schedule generator and the NCCL-
based runtime. § 4 enumerates the exact API calls we use (ncclSend(), ncclRecv(),
ncclReduceScatter()), describes the synchronization barriers, and specifies how the straggler
is emulated for benchmarking experiments and how it is detected natively for end-to-end experiments.
The same section lists every baseline, including algorithmic variants and hyperparameters, so that
readers can rebuild the comparisons without relying on vendor implementations. Hardware config-
urations (GPU model, interconnect, bandwidth, and memory) are also documented there. We also
discuss the parallelization strategy, batch sizes, and open-source models used for the motivational
experiments (Fig. 2a and §B) and end-to-end evaluation (§4).

The supplementary archive submitted with this work contains the source code for both components,
instructions for compiling the CUDA kernels, a driver to launch the experiments reported in Figures 5–
6, and configuration files that encode the straggler delays and buffer sizes we sweep. The scripts emit
raw runtime traces and summary tables identical to those used to generate the plots in the paper.

We do not release new datasets or pretrained models. Our work operates purely on synthetic buffers
and standard collective-communication APIs. The limitations of StragglAR are discussed in §3 and
revisited in § 4. Together, these details satisfy the ICLR 2026 reproducibility guidelines.

LLM USAGE

We used LLMs to help us identify writing errors, such as spelling and grammar mistakes, and to help
debug scripts for plotting figures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jack Dongarra et al. MPI: A message-passing interface standard version 3.0. High Performance
Computing Center Stuttgart (HLRS), 2(5):32, 2013.

Tianyuan Wu, Wei Wang, Yinghao Yu, Siran Yang, Wenchao Wu, Qinkai Duan, Guodong Yang,
Jiamang Wang, Lin Qu, and Liping Zhang. FALCON: Pinpointing and mitigating stragglers for
large-scale hybrid-parallel training. arXiv preprint arXiv:2410.12588, 2024.

Jinkun Lin, Ziheng Jiang, Zuquan Song, Sida Zhao, Menghan Yu, Zhanghan Wang, Chenyuan Wang,
Zuocheng Shi, Xiang Shi, Wei Jia, et al. Understanding stragglers in large model training using
what-if analysis. arXiv preprint arXiv:2505.05713, 2025.

Ertza Warraich, Omer Shabtai, Khalid Manaa, Shay Vargaftik, Yonatan Piasetzky, Matty Kadosh,
Lalith Suresh, and Muhammad Shahbaz. OptiReduce: Resilient and tail-optimal allreduce for
distributed deep learning in the cloud. In 22nd USENIX Symposium on Networked Systems Design
and Implementation (NSDI 25), pages 685–703, 2025.

Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang
Li, Cong Xie, Shibiao Nong, et al. MegaScale: Scaling large language model training to more than
10,000 GPUs. In 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24), pages 745–760, 2024.

Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms for clusters of workstations.
Journal of Parallel and Distributed Computing, 69(2):117–124, 2009.

Daniele De Sensi, Tommaso Bonato, David Saam, and Torsten Hoefler. Swing: Short-cutting rings
for higher bandwidth allreduce. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24), pages 1445–1462, 2024.

Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan Musuvathi, Todd
Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee Singh. TACCL: Guiding collective algorithm
synthesis using communication sketches. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 593–612, 2023.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-LM: Training multi-billion parameter language models using model parallelism.
CoRR, abs/1909.08053, 2019a. URL http://arxiv.org/abs/1909.08053.

Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM, 56(2):74–80,
2013.

Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia, Gaoxiong Zeng, Wei Bai, Junchen
Jiang, Yong Wang, and Kai Chen. Towards Domain-Specific network transport for distributed
DNN training. In 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24), pages 1421–1443, 2024a.

Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes, Hany Morsy,
Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi Yang, et al. RDMA over Ethernet
for distributed training at Meta scale. In Proceedings of the ACM SIGCOMM 2024 Conference,
pages 57–70, 2024.

Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. Tales of the tail: Hardware, OS,
and application-level sources of tail latency. In Proceedings of the ACM Symposium on Cloud
Computing, pages 1–14, 2014.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Yifan Xiong, Yuting Jiang, Ziyue Yang, Lei Qu, Guoshuai Zhao, Shuguang Liu, Dong Zhong, Boris
Pinzur, Jie Zhang, Yang Wang, et al. SuperBench: Improving cloud AI infrastructure reliability
with proactive validation. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages
835–850, 2024.

11

http://arxiv.org/abs/1909.08053

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R Ganger, Phillip B Gibbons, Garth A
Gibson, and Eric P Xing. Addressing the straggler problem for iterative convergent parallel ML.
In Proceedings of the seventh ACM symposium on cloud computing, pages 98–111, 2016.

Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. Straggler mitigation in distributed optimiza-
tion through data encoding. Advances in Neural Information Processing Systems, 30, 2017.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. Advances in neural information processing systems, 24,
2011.

Xiaoyang Zhao, Zhe Zhang, and Chuan Wu. Adapcc: Making collective communication in distributed
machine learning adaptive. In 2024 IEEE 44th International Conference on Distributed Computing
Systems (ICDCS), pages 25–35. IEEE, 2024a.

Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur, Jorgen Thelin, and Ion
Stoica. Blink: Fast and generic collectives for distributed ml. Proceedings of Machine Learning
and Systems, 2:172–186, 2020.

William Won, Midhilesh Elavazhagan, Sudarshan Srinivasan, Swati Gupta, and Tushar Krishna.
Tacos: Topology-aware collective algorithm synthesizer for distributed machine learning. In 2024
57th IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 856–870. IEEE,
2024.

Hanxiao Zhang, Lin Ju, Chan Wu, Jinjing Huang, Youshao Xiao, Zhenglei Zhou, Zhiming Fan,
Zhaoxin Huan, Siyuan Li, Fanzhuang Meng, et al. Rethinking memory and communication costs
for efficient data parallel training of large language models. Advances in Neural Information
Processing Systems, 37:28191–28218, 2024.

Zhiyi Hu, Siyuan Shen, Tommaso Bonato, Sylvain Jeaugey, Cedell Alexander, Eric Spada, James
Dinan, Jeff Hammond, and Torsten Hoefler. Demystifying nccl: An in-depth analysis of gpu
communication protocols and algorithms. arXiv preprint arXiv:2507.04786, 2025.

Roger W. Hockney. The communication challenge for MPP: Intel Paragon and Meiko CS-2. Parallel
Computing, 20(3):389–398, 1994.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication
operations in MPICH. The International Journal of High Performance Computing Applications,
19(1):49–66, 2005.

William Won, Taekyung Heo, Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, and Tushar
Krishna. Astra-sim2.0: Modeling hierarchical networks and disaggregated systems for large-model
training at scale. In 2023 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 283–294. IEEE, 2023.

Xizheng Wang, Qingxu Li, Yichi Xu, Gang Lu, Dan Li, Li Chen, Heyang Zhou, Linkang Zheng,
Sen Zhang, Yikai Zhu, et al. {SimAI}: Unifying architecture design and performance tuning for
{Large-Scale} large language model training with scalability and precision. In 22nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI 25), pages 541–558, 2025.

NVIDIA. NVIDIA GB200 NVL72 Architecture, March 2024. URL https://www.nvidia.
com/en-us/data-center/gb200-nvl72/. Accessed 19 April 2025.

NVLink & NVSwitch. Nvidia NVLink and NVSwitch, 2021. https://www.nvidia.com/en-us/data-
center/nvlink/.

Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil,
Suvinay Subramanian, Andy Swing, Brian Towles, Cliff Young, Xiang Zhou, Zongwei Zhou, and
David Patterson. TPU v4: An optically reconfigurable supercomputer for machine learning with
hardware support for embeddings, 2023.

Amotz Bar-Noy, Shlomo Kipnis, and Baruch Schieber. Optimal multiple message broadcasting in
telephone-like communication systems. Discrete Applied Mathematics, 100(1-2):1–15, 2000.

12

https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

NCCL. NVIDIA Collective Communications Library. https://developer.nvidia.com/nccl.

NVIDIA. Issue #569: Understanding the failure case. https://github.com/NVIDIA/nccl/
issues/569, 2024a. Accessed: 2024-05-24.

Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, and Derrick Weathersby. Efficient algorithms for
all-to-all communications in multi-port message-passing systems. In Proceedings of the sixth
annual ACM symposium on Parallel algorithms and architectures, pages 298–309, 1994.

Meghan Cowan, Saeed Maleki, Madanlal Musuvathi, Olli Saarikivi, and Yifan Xiong. MSCCLang:
Microsoft Collective Communication Language. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume
2, pages 502–514, 2023.

NERSC. Perlmutter architecture. https://docs.nersc.gov/systems/perlmutter/
architecture/, 2025. Accessed: 2025-05-10.

RunPod, Inc. All in one cloud. train, fine-tune and deploy AI models with RunPod. https:
//www.runpod.io/, 2025. Accessed: 2025-05-10.

NVIDIA. NCCL Tests. https://github.com/NVIDIA/nccl-tests, 2024b. Accessed:
2024-05-10.

Guanbin Xu, Zhihao Le, Yinhe Chen, Zhiqi Lin, Zewen Jin, Youshan Miao, and Cheng Li.
{AutoCCL}: Automated collective communication tuning for accelerating distributed and parallel
{DNN} training. In 22nd USENIX Symposium on Networked Systems Design and Implementation
(NSDI 25), pages 667–683, 2025.

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone, 2024. arXiv preprint, 2024.

Qwen. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Fei Gui, Kaihui Gao, Li Chen, Dan Li, Vincent Liu, Ran Zhang, Hongbing Yang, and Dian Xiong.
Accelerating design space exploration for LLM training systems with multi-experiment parallel
simulation. In 22nd USENIX Symposium on Networked Systems Design and Implementation (NSDI
25), pages 473–488, 2025.

Microway. DGX A100 Review: Throughput and Hardware Summary. https://www.microway.
com/hardware/dgx-a100-review-throughput-and-hardware-summary/,
2024. Accessed: 2024-05-10.

PyTorch Contributors. Pytorch: An open source machine learning framework. https://pytorch.
org/, 2024. Accessed: 2024-06-11.

TensorFlow Developers. Tensorflow: An open source machine learning framework for everyone.
https://www.tensorflow.org/, 2024. Accessed: 2024-06-11.

NVIDIA. Doubling All2All Performance with NVIDIA Collective Com-
munication Library 2.12. https://developer.nvidia.com/blog/
doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/,
2022.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on GPU clusters using Megatron-LM. In Proceedings
of the international conference for high performance computing, networking, storage and analysis,
pages 1–15, 2021.

Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio. Efficient sparse collective
communication and its application to accelerate distributed deep learning. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, pages 676–691, 2021.

13

https://github.com/NVIDIA/nccl/issues/569
https://github.com/NVIDIA/nccl/issues/569
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://www.runpod.io/
https://www.runpod.io/
https://github.com/NVIDIA/nccl-tests
https://www.microway.com/hardware/dgx-a100-review-throughput-and-hardware-summary/
https://www.microway.com/hardware/dgx-a100-review-throughput-and-hardware-summary/
https://pytorch.org/
https://pytorch.org/
https://www.tensorflow.org/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rolf Rabenseifner. Optimization of collective reduction operations. In Computational Science-ICCS
2004: 4th International Conference, Kraków, Poland, June 6-9, 2004, Proceedings, Part I 4, pages
1–9. Springer, 2004.

Rolf Rabenseifner and Jesper Larsson Träff. More efficient reduction algorithms for non-power-of-
two number of processors in message-passing parallel systems. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface: 11th European PVM/MPI Users’ Group Meeting
Budapest, Hungary, September 19-22, 2004. Proceedings 11, pages 36–46. Springer, 2004.

Peter Sanders, Jochen Speck, and Jesper Larsson Träff. Two-tree algorithms for full bandwidth
broadcast, reduction and scan. Parallel Computing, 35(12):581–594, 2009.

Heehoon Kim, Junyeol Ryu, and Jaejin Lee. TCCL: Discovering better communication paths for
PCIe GPU clusters. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3, pages 999–1015, 2024.

Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz, Jacob Nelson,
and Olli Saarikivi. Synthesizing optimal collective algorithms. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 62–75, 2021.

Liangyu Zhao, Saeed Maleki, Ziyue Yang, Hossein Pourreza, Aashaka Shah, Changho Hwang, and
Arvind Krishnamurthy. ForestColl: Efficient collective communications on heterogeneous network
fabrics. https://arxiv.org/abs/2402.06787, 2024b.

Sabuj Laskar, Pranati Majhi, Sungkeun Kim, Farabi Mahmud, Abdullah Muzahid, and Eun Jung Kim.
Enhancing collective communication in MCM accelerators for deep learning training. In 2024
IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 1–16.
IEEE, 2024.

Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya Akella. Better together: Jointly
optimizing ML collective scheduling and execution planning using SYNDICATE. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23), pages 809–824, 2023.

Nikhil Jain and Yogish Sabharwal. Optimal bucket algorithms for large MPI collectives on torus
interconnects. In Proceedings of the 24th ACM International Conference on Supercomputing,
pages 27–36, 2010.

Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere,
Ying Zhang, and Anthony Kewitsch. TopoOpt: Co-optimizing network topology and parallelization
strategy for distributed training jobs. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 739–767, 2023a.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural
networks. Proceedings of Machine Learning and Systems, 1:1–13, 2019.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Automating inter-and intra-
operator parallelism for distributed deep learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 559–578, 2022.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-LM: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019b.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quintero Narvaez, Vinay
Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, Jamaludin Mohd-Yusof, et al. Unity: Acceler-
ating DNN training through joint optimization of algebraic transformations and parallelization. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pages
267–284, 2022.

14

https://arxiv.org/abs/2402.06787

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Irene Wang, Prashant Nair, and Divya Mahajan. FLuID: Mitigating stragglers in federated learning
using invariant dropout. Advances in Neural Information Processing Systems, 36:73258–73273,
2023b.

Shigang Li and Torsten Hoefler. Near-optimal sparse allreduce for distributed deep learning. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 135–149, 2022.

Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher
Re, and Ce Zhang. CocktailSGD: Fine-tuning foundation models over 500mbps networks. In
International Conference on Machine Learning, pages 36058–36076. PMLR, 2023c.

Niv Giladi, Shahar Gottlieb, Asaf Karnieli, Ron Banner, Elad Hoffer, Kfir Y Levy, Daniel Soudry,
et al. DropCompute: simple and more robust distributed synchronous training via compute variance
reduction. Advances in Neural Information Processing Systems, 36:48403–48416, 2023.

Yi Wang and Rohan Varma. Straggler Mitigation On PyTorch DDP By Hierarchical SGD. https:
//pytorch.org/blog/straggler-mitigation/, 2024. Accessed: 2024-05-10.

Mingrui Liu, Zhenxun Zhuang, Yunwen Lei, and Chunyang Liao. A communication-efficient
distributed gradient clipping algorithm for training deep neural networks. Advances in Neural
Information Processing Systems, 35:26204–26217, 2022.

Donglin Yang, Wei Rang, and Dazhao Cheng. Mitigating stragglers in the decentralized training on
heterogeneous clusters. In Proceedings of the 21st International Middleware Conference, pages
386–399, 2020.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. Advances in neural information processing
systems, 30, 2017.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pages 560–569. PMLR, 2018.

Jue Wang, Binhang Yuan, Luka Rimanic, Yongjun He, Tri Dao, Beidi Chen, Christopher Re, and
Ce Zhang. Fine-tuning language models over slow networks using activation compression with
guarantees. arXiv preprint arXiv:2206.01299, 2022a.

Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia Wu, Connor Holmes, Zhewei Yao, Samyam
Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, et al. ZeRO++: Extremely efficient collective
communication for large model training. In The Twelfth International Conference on Learning
Representations, 2024b.

Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa, and Yuxiong He. Maximizing Com-
munication Efficiency for Large-scale Training via 0/1 Adam. arXiv preprint arXiv:2202.06009,
2022.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru
Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit Adam: Communication Efficient Large-Scale
Training with Adam’s Convergence Speed. In International Conference on Machine Learning,
pages 10118–10129. PMLR, 2021.

Cèdric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Alistarh, and Torsten Hoefler. Sparcml:
High-performance sparse communication for machine learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–15,
2019.

Ahmed M Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim Alouini, and Marco Canini. An efficient
statistical-based gradient compression technique for distributed training systems. Proceedings of
Machine Learning and Systems, 3:297–322, 2021.

15

https://pytorch.org/blog/straggler-mitigation/
https://pytorch.org/blog/straggler-mitigation/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Zhuang Wang, Haibin Lin, Yibo Zhu, and TS Eugene Ng. Hi-speed dnn training with espresso:
Unleashing the full potential of gradient compression with near-optimal usage strategies. In
Proceedings of the Eighteenth European Conference on Computer Systems, pages 867–882, 2023d.

Ismayil Ismayilov, Javid Baydamirli, Doğan Sağbili, Mohamed Wahib, and Didem Unat. Multi-GPU
communication schemes for iterative solvers: When CPUs are not in charge. In Proceedings of the
37th International Conference on Supercomputing, pages 192–202, 2023.

Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet, Saeed Maleki, Youshan
Miao, Madanlal Musuvathi, Todd Mytkowicz, and Olli Saarikivi. Breaking the computation and
communication abstraction barrier in distributed machine learning workloads. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 402–416, 2022.

Yuke Wang, Boyuan Feng, Zheng Wang, Tong Geng, Kevin Barker, Ang Li, and Yufei Ding. MGG:
Accelerating graph neural networks with Fine-Grained Intra-Kernel Communication-Computation
pipelining on Multi-GPU platforms. In 17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 23), pages 779–795, 2023e.

NVIDIA. NVSHMEM. https://developer.nvidia.com/nvshmem, 2024c. Accessed:
2024-05-10.

Kishore Punniyamurthy, Khaled Hamidouche, and Bradford M Beckmann. Optimizing distributed ML
communication with fused computation-collective operations. In SC24: International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–17. IEEE, 2024.

Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris
Zhang, Wei Feng, Howard Huang, Junjie Wang, et al. Torchtitan: One-stop pytorch native solution
for production ready llm pre-training. arXiv preprint arXiv:2410.06511, 2024.

Suchita Pati, Shaizeen Aga, Mahzabeen Islam, Nuwan Jayasena, and Matthew D Sinclair. T3:
Transparent tracking & triggering for fine-grained overlap of compute & collectives. In Proceedings
of the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, pages 1146–1164, 2024.

Chang Chen, Xiuhong Li, Qianchao Zhu, Jiangfei Duan, Peng Sun, Xingcheng Zhang, and Chao
Yang. Centauri: Enabling efficient scheduling for communication-computation overlap in large
model training via communication partitioning. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume
3, pages 178–191, 2024.

Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi, Blake Hechtman, Dehao Chen,
Karthik Srinivasa Murthy, Marcello Maggioni, Qiao Zhang, et al. Overlap communication with
dependent computation via decomposition in large deep learning models. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1, pages 93–106, 2022b.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom Benson, Andy Yoo, Marc Snir, and Brian
Van Essen. Aluminum: An asynchronous, gpu-aware communication library optimized for large-
scale training of deep neural networks on hpc systems. Technical report, Lawrence Livermore
National Lab.(LLNL), Livermore, CA (United States), 2018.

Adel Nabli, Eugene Belilovsky, and Edouard Oyallon. A2CiD2: Accelerating asynchronous commu-
nication in decentralized deep learning. Advances in Neural Information Processing Systems, 36:
47451–47474, 2023.

Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtárik. Shadowheart SGD: Distributed
asynchronous SGD with optimal time complexity under arbitrary computation and communication
heterogeneity. arXiv preprint arXiv:2402.04785, 2024.

16

https://developer.nvidia.com/nvshmem

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Wenbo Su, Yuanxing Zhang, Yufeng Cai, Kaixu Ren, Pengjie Wang, Huimin Yi, Yue Song, Jing Chen,
Hongbo Deng, Jian Xu, et al. GBA: a tuning-free approach to switch between synchronous and
asynchronous training for recommendation models. Advances in Neural Information Processing
Systems, 35:29525–29537, 2022.

Alexander Tyurin and Peter Richtarik. On the optimal time complexities in decentralized stochastic
asynchronous optimization. Advances in Neural Information Processing Systems, 37:122652–
122705, 2024.

Martijn De Vos, Sadegh Farhadkhani, Rachid Guerraoui, Anne-Marie Kermarrec, Rafael Pires, and
Rishi Sharma. Epidemic learning: Boosting decentralized learning with randomized communica-
tion. Advances in Neural Information Processing Systems, 36:36132–36164, 2023.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965a.

Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research of the
National Bureau of Standards B, 69(125-130):55–56, 1965b.

PyTorch. Customize process group backends using cpp extensions. https://docs.pytorch.
org/tutorials/intermediate/process_group_cpp_extension_tutorial.
html, 2022.

FlexFlow. FlexFlow: A flexible dataflow framework for distributed deep learning. https://
github.com/flexflow/flexflow-train.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, volume 1.
Minneapolis, Minnesota, 2019.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

17

https://docs.pytorch.org/tutorials/intermediate/process_group_cpp_extension_tutorial.html
https://docs.pytorch.org/tutorials/intermediate/process_group_cpp_extension_tutorial.html
https://docs.pytorch.org/tutorials/intermediate/process_group_cpp_extension_tutorial.html
https://github.com/flexflow/flexflow-train
https://github.com/flexflow/flexflow-train

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

APPENDIX

A EXTENDED RELATED WORK

We provide more discussion of related work in this section.

In distributed training and inference, each GPU produces local gradients and activations that must
be aggregated across devices. This multi-device aggregation is performed using the ALLREDUCE
collective communication primitive, which transmits and reduces data across the inter-GPU network
using optimized parallel communication algorithms. The parallelization strategy of an ML job
determines which GPUs communicate and how often: data parallelism uses ALLREDUCE regularly
to average gradients, while tensor model parallelism (Shoeybi et al., 2019a) invokes ALLREDUCE
many times within each model pass to exchange activations. In ML software stacks, collective com-
munication libraries (CCLs) like NCCL implement algorithms for collective primitives, interfacing
with ML application libraries (e.g., PyTorch (PyTorch Contributors, 2024), TensorFlow (TensorFlow
Developers, 2024)) at one end and network transport protocols at the other. For ALLREDUCE, NCCL
chooses between multiple algorithms based on the number of GPUs and the amount of data to be
reduced. Since buffer sizes in modern ML workloads tend to be large (Shah et al., 2023), CCLs
leverage bandwidth-optimal algorithms (e.g., Ring) to minimize the ALLREDUCE time.

Most CCLs, including NCCL, adopt a bulk-synchronous model where all GPUs synchronize before
the collective, guaranteeing data correctness and enabling efficient parallel communication algorithms
that rely on all ranks to implement the collective concurrently. However, performance degrades
significantly when one or more GPUs are slow to reach the synchronization point. The slowest
GPU (the straggler) dictates overall performance due to tail effects (Warraich et al., 2025; Dean and
Barroso, 2013; Wang et al., 2024a; Gangidi et al., 2024; Li et al., 2014). Even with multiple slower
GPUs, there is typically only a single straggler since the probability of multiple GPUs completing
exactly simultaneously is extremely small. Straggler delays may stem from hardware issues like
thermal throttling and power supply, or runtime factors like network congestion, background noise,
and unavoidable skewed compute allocations across GPUs (Wu et al., 2024; Jiang et al., 2024;
Grattafiori et al., 2024; Xiong et al., 2024). Recent work has highlighted the significant impact of
stragglers on datacenter-scale ML jobs (Jiang et al., 2024; Lin et al., 2025), and our experiments
fine-tuning Llama-3.2 (1B/3B) across different hardware setups (Fig. 2a) reveal straggler effects of
up to 30 ms even within individual multi-GPU servers.

Method Domain Backend Application Effect on Loss/Convergence

(Harlap et al., 2016) Scale-out Custom C++ runtime DP No
(Karakus et al., 2017) Scale-out MPI DP Yes
(Wang et al., 2020) Scale-out NCCL DP, TP No
(Won et al., 2024) Irregular scale-up Simulation DP, TP No
(Zhao et al., 2024a) Scale-out Custom CUDA runtime DP, TP, EP No
(Warraich et al., 2025) Scale-out Gloo & custom transport DP Yes
StragglAR (Ours) Scale-up NCCL DP, TP No

Table 3: StragglAR vs. prior work (DP=data parallel, TP=tensor parallel, EP=expert parallel). While
StragglAR targets the scale-up domain, it also applies to switched homogeneous scale-out domains,
like in today’s rail-optimized topologies for ML.

Straggler mitigation. Some prior works attempt to identify and remove straggling devices or
thoroughly investigate root causes (Jiang et al., 2024; Lin et al., 2025). However, removing stragglers
wastes compute capacity, and only applies to severe stragglers rather than the routine compute
heterogeneity we observe regularly, even at small scales. Moreover, stragglers arise from many
sources, making diagnosis difficult and incomplete (Lin et al., 2025). Recent works obviate straggler
delays by approximating or dropping the straggler’s data during training (Warraich et al., 2025; Harlap
et al., 2016; Karakus et al., 2017; Recht et al., 2011). While these approximations and asynchronous
techniques can progress without waiting for stragglers, they are limited to data-parallel training
and can impact model convergence. In contrast, StragglAR is a fundamentally new ALLREDUCE
algorithm that ensures accurate, unmodified reductions and is agnostic to the ALLREDUCE use case,
making it applicable to both data-parallel training and tensor-parallel training/inference. Like all
collective algorithms, StragglAR requires participation from all GPUs (including the straggler), but
accelerates the collective itself. Other works mitigate stragglers in datacenter-scale ML jobs through

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

systems-level workload rebalancing and runtime strategies (Wu et al., 2024; Zhao et al., 2024a),
improving efficiency by adapting task placement or dynamically selecting among different known
collective algorithms based on profiling. For example, our investigation of AdapCC (Zhao et al.,
2024a) finds that it relies classical Tree algorithms, which sacrifice bandwidth to improve latency. In
contrast, StragglAR is not a runtime controller, but a new bandwidth-efficient parallel algorithm for
ALLREDUCE that changes the communication schedule itself to provably reduce communication
complexity. It can be integrated with different runtime systems that implement these algorithms.

ALLREDUCE algorithms. Collective algorithms are designed based on knowledge of the underlying
network topology. Inter-GPU networks typically fall into two categories: scale-up (homogeneous
high-bandwidth links within a node or rack) and scale-out (heterogeneous or unpredictable bandwidth
across multiple nodes or racks). Recent works have synthesized new ALLREDUCE algorithms for
heterogeneous networks with asymmetric bandwidth (Shah et al., 2023; Zhao et al., 2024a; Wang
et al., 2020; Won et al., 2024; Zhang et al., 2024). However, for the homogeneous networks that define
modern scale-up domains, these synthesizers invariably converge to bandwidth-optimal classical
algorithms, such as Ring and Recursive Halving/Doubling (Shah et al., 2023; Wang et al., 2020).
Consequently, state-of-the-art CCLs like NCCL continue to implement classical algorithms for
collective communication in scale-up domains (Hu et al., 2025). We provide Table 3 to concretely
situate our contribution in the space of collective algorithms and straggler mitigation strategies. We
note that while we focus on the scale-up domain for StragglAR, it applies to any homogeneous
switched network, including rail-optimized scale-out domains (NVIDIA, 2022).

Optimal collective communication. Over decades, researchers have implemented collective commu-
nication primitives with fast algorithms that are carefully attuned to latency and bandwidth trade-offs.
With today’s large ML models that require communicating large amounts of data, bandwidth-efficient
algorithms are of primary focus (Narayanan et al., 2021; Fei et al., 2021). In homogeneous net-
works, well-known parallel algorithms, such as Ring, recursive halving/doubling, etc., enable fast,
bandwidth-efficient ALLREDUCE by heavily parallelizing communication in every round of the
algorithm (Patarasuk and Yuan, 2009; Rabenseifner, 2004; Rabenseifner and Träff, 2004; Thakur
et al., 2005; Bruck et al., 1994; Sanders et al., 2009). For heterogeneous networks, recent works
synthesize custom collective algorithms by using the hardware topology or parallelization strategy as
an input (Shah et al., 2023; Kim et al., 2024; Cai et al., 2021; Zhao et al., 2024b; Laskar et al., 2024;
Won et al., 2024; Mahajan et al., 2023); optimizing a collective algorithm to minimize the latency
and bandwidth cost, however, is a challenging combinatorial optimization problem that often requires
hand-tuned heuristics to constrain the search space (Shah et al., 2023). Further, some approaches
optimize ALLREDUCE for a specific topology (Jain and Sabharwal, 2010; De Sensi et al., 2024;
Wang et al., 2023a). Our work extends this line of research by optimizing ALLREDUCE in settings
with a straggler for distributed ML, where bandwidth-efficient algorithms are required due to the
large buffer sizes (Narayanan et al., 2021; Shah et al., 2023; NVIDIA, 2024a).

Rebalancing workloads. Recent works improve the efficiency of distributed ML by optimizing the
model parallelization strategy, which can affect data/work sharding across GPUs and the collective
communication incurred (Jia et al., 2019; Zhang et al., 2024; Zheng et al., 2022; Shoeybi et al., 2019b;
Rajbhandari et al., 2020; Grattafiori et al., 2024; Narayanan et al., 2021; Unger et al., 2022; Zhao
et al., 2024a). Vanilla parallelization strategies evenly shard or replicate the compute and memory
load (i.e., model weights, input batches, activations, optimizer states, etc.) across GPUs within a
group to achieve speedups from parallelization. This balances the computation and communication
load experienced by each worker, but could introduce resource idling when there are slow GPUs in
the group. Our experiments in Fig. 7 and §B highlight significant straggler effects even with uniform
workload placement. Other works identify severe stragglers and balance the workload dynamically
to limit their impact (Harlap et al., 2016; Wu et al., 2024; Wang et al., 2023b; Lin et al., 2025).
StragglAR directly addresses stragglers at a lower layer of abstraction, within the ALLREDUCE
kernel, and thus expands on the problems tackled by these works.

Sending less data. Various methods leverage the resilience of stochastic optimization algorithms
used in training to reduce the communication volume by selectively communicating data with high
statistical value (Warraich et al., 2025; Li and Hoefler, 2022; Wang et al., 2023c), synchronizing
gradients with varying frequencies (Giladi et al., 2023; Wang and Varma, 2024; Liu et al., 2022;
Karakus et al., 2017; Yang et al., 2020;?), or sending lower-precision or compressed data (Alistarh
et al., 2017; Bernstein et al., 2018; Wang et al., 2022a; 2024b; 2023c; Lu et al., 2022; Tang et al.,
2021; Renggli et al., 2019; M Abdelmoniem et al., 2021; Wang et al., 2023d). StragglAR is

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

orthogonal to these works because it optimizes the collective algorithm itself (i.e., exactly how the
data is transmitted as opposed to how much) and can operate given any buffer size, including after
compression. Further, because StragglAR directly modifies the collective algorithm, as opposed to
the data that is sent or the frequency of synchronization, it also supports ALLREDUCE for tensor
parallelism, which is used in both training and inference (Shoeybi et al., 2019a).

Compute-communication overlap. Recent works propose fine-grained overlap of compute and
communication to mitigate synchronization delays and reduce communication overheads in distributed
ML (Ismayilov et al., 2023; Jangda et al., 2022; Wang et al., 2023e; NVIDIA, 2024c; Punniyamurthy
et al., 2024; Liang et al., 2024; Pati et al., 2024; Chen et al., 2024; Wang et al., 2022b). Although
this approach may be useful for small, irregular communication patterns, such as expert-parallel
ALLTOALL (Liu et al., 2024), it is less useful with large data buffers that require aggregation and
are bottlenecked by network bandwidth (Dryden et al., 2018; Patarasuk and Yuan, 2009). Thus, bulk
data transfers, like gradient synchronization in data-parallel training or activation aggregation in
tensor-parallel training with large batch sizes, rely on bandwidth-optimal collective communication.
Further, these works consider overlapping compute and communication at higher layers of abstraction,
but rely on the same algorithms to implement the collective communication. StragglAR instead
brings the idea of overlap to the communication algorithm itself, and uses this to directly address the
straggler problem. Other works propose entirely abandoning synchronization barriers and relying on
resilience of stochastic gradient descent to enable convergence during training (Nabli et al., 2023;
Tyurin et al., 2024; Su et al., 2022; Tyurin and Richtarik, 2024; De Vos et al., 2023; Recht et al.,
2011). However, these approaches impact model convergence, limiting applicability, and do not
generalize to tensor-parallel training and inference, which require accurate and complete reductions.

B PERSISTENT STRAGGLERS

While recent works (Jiang et al., 2024; Lin et al., 2025) have shown persistent stragglers in ML jobs
with thousands of GPUs, we show that even smaller multi-GPU jobs encounter such stragglers. We
run Llama-3.2 fine-tuning jobs in three hardware environments: (1) 4 A100s with 40GB memory and
NVLink 3.0 fully-connected mesh network in the Perlmutter supercomputer (NERSC, 2025), (2) 4
A100s with 80GB memory in RunPod (RunPod, Inc., 2025), and (3) 8 A100s with 80GB memory in
RunPod. Both RunPod servers use NVLink 3.0 with an NVSwitched any-to-any network. For every
environment, we repeat the same workload three times.

We encounter stragglers in all nine runs. We define the straggler delay as Tdelay = Trest−Tstraggler,
where Tstraggler is the ALLREDUCE execution time of the straggler — the GPU that started the
ALLREDUCE last (rank 0 in Fig. 1) — and Trest is the ALLREDUCE execution time of the second-
slowest rank. Note that Tstraggler is the shortest ALLREDUCE time among all GPUs because the
straggler spends no time waiting for others before communicating, and our measure of Tdelay is
conservative since it only encodes the idle time of the second-slowest GPU. We find a median straggler
delay of more than 8 ms and a mean delay of 9.45 ms. The straggler GPU rank persists not only across
iterations, but also across runs. Fig. 7 shows that one specific GPU is the slowest in a communication
group in 98% of iterations, and is also the persistent straggler over multiple independent runs of
the same workload on the same VM. Fig. 7(a) shows these findings also generalize to multiple
stragglers. Our experiments document (1) the severity of straggler GPUs that consistently delay
ALLREDUCE, and (2) that the same GPU rank is typically the straggler, allowing us to use offline
profiling to bootstrap StragglAR. These findings also suggest that routine stragglers may even appear
from intrinsic and unavoidable GPU hardware heterogeneity (even with the same GPU model).

C PROOF OF COMMUNICATION COMPLEXITY

First, we prove that schedules synthesized by StragglAR for power-of-2 n are guaranteed to complete
within n+ log n−2 rounds. As in Algorithm 1, A represents the data structure that maps each active
chunk to the set of non-straggler ranks that holds it (and is updated in each round). We assume
this data structure is a hash table for constant-time updates and access. Note that an active chunk
necessarily implies that the chunk has been fully reduced. Our code generates results that match the
proof bounds.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Perlmutter, 4 A100 SXM,
Llama-3.2-1B, batch_size=32.

(b) RunPod, 4 A100 SXM,
Llama-3.2-3B, batch_size=32.

(c) RunPod, 8 A100 SXM,
Llama-3.2-3B, batch_size=64.

Figure 7: CDFs of the straggler delay, Trest − Tstraggler, and distribution of straggler ranks.

Lemma 1. Prior to round log n, every non-straggler rank possesses exactly one active chunk such
that for j = 0, . . . , log n−1, |A[cj]| = 2logn−1−j .

Proof. After round j < log n has completed, |A[cj]| = 1 because cj has just been fully reduced (via
a pairing between rank j and the straggler), and only rank j holds it. In round j + 1, rank j sends cj
to rank j + log n, so |A[cj]| = 2. In each subsequent round r = j + i for i < log n− j, all ranks in
A[cj] send cj to distinct ranks lacking a chunk, thus doubling |A[cj]| before the next round r + 1.

Therefore, the number of non-straggler ranks possessing cj after round r for j ≤ r < log n is
|A[cj]| = 2r−j . After any round r < log n, the total number of non-straggler ranks holding an active
chunk is

r∑
j=0

2r−j

We show that there are enough non-stragglers without a chunk after each round r < log n − 2
(equivalently, before each round r < log n− 1) to ensure that every rank with an active chunk has a
distinct target it can send to:

r∑
j=0

2r−j ≤ (n− 2)−
r∑

j=0

2r−j

(n−2 appears due to the straggler pairing in round r). Substituting the closed form of the sum,

2 r+1 − 1 ≤ (n− 2)− (2 r+1 − 1) = n− 2 r+1 − 1,

which simplifies to
2 r+2 ≤ n.

This inequality is only violated when r+2 > log n. Thus, after each round r ≤ log n−2 (before
each round r ≤ log n−1) there are strictly more chunk-free non-stragglers than senders, so every
sender can choose a distinct receiver. After round r= log n−1 (i.e., last round of Phase 1), |A[cj]| =
2logn−1−j , so the total number of non-straggler ranks with an active chunk is given by

logn−1∑
j=0

2logn−1−j =

logn−1∑
i=0

2i = 2logn − 1 = n− 1

This means all n−1 non-straggler ranks have a single fully reduced chunk after Phase 1.

Lemma 2. Each chunk cr, r < n−1, is fully reduced in round r, and is fully propagated to all ranks
immediately after round r + log n.

Proof. The first part of this statement follows directly from the schedule, as it dictates that par-
tially reduced chunk cr resides on rank r given the REDUCESCATTER precondition, and rank r
communicates with the straggler, σ, in round r, enabling cr to be fully reduced on ranks r and σ.

To prove the second part of this statement, we first inductively prove the following invariant.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Invariant I(r) holds immediately prior to round r ≥ log n:

(1) |A[cj]| = 2r−j−1, j = r− log n, . . . , r−1

(2) Pr = A[c r−logn] with |Pr| = n
2 and r ∈ Pr;

(3) Qr =

logn−1⋃
j=1

A[c r−j] with |Qr| = n
2 − 1;

(4) Active chunks are pairwise disjoint: A[ci]∩A[cj] = ∅, i ̸= j, ∀i, j ∈ { r− log n, . . ., r−1}.

This enables us to match u ∈ Pr \ {r} with v ∈ Qr to ensure that chunk cr has been fully propagated
to all ranks immediately after round r + log n.

Base case. We rely on Lemma 1 for the base case. Immediately before round log n (after round
log n−1), |A[cj]| = 2logn−1−j , where sets A[cj] are pairwise disjoint for all j = 0, 1, . . . , log n−1.
Thus, |Plogn| = |Ac0 | = 2logn−1 = n

2 and |Qlogn| = n−1−n
2 = n

2−1. Since rank log n holds
chunk c0, as the protocol in Algorithm 1 dictates that rank 0 sends c0 to rank log n in round 1, we
know log n ∈ Plogn. By matching u ∈ Plogn\{log n} with v ∈ Qlogn and having u and v each
send their active chunks, we ensure that c0 has fully propagated after round r = log n. A matching is
possible because every rank in Plogn lacks the active chunk of every rank in Qlogn, and vice versa.
After the round, c0 has fully propagated and every other active chunk has doubled.

Inductive step. Assume I(r) holds immediately before round r and that in round r we match some
u ∈ Pr\{r} with a distinct v ∈ Qr. Because u sends cr−logn to v, we have:

1. Full propagation. After round r, every non-straggler now holds cr−logn (since all ranks in
Pr

⋃
Qr now have it), so this chunk is no longer active.

2. Doubling of the remaining active chunks. Every other active chunk is sent and received
exactly once, so its cardinality doubles; every rank still stores exactly one active chunk.
If a rank possessed the active chunk that just expired, it received a new one, allowing it
to maintain having exactly one active chunk. If a rank possessed another active chunk, it
received the active chunk that just expired, allowing it to maintain the same status.

We verify the validity of I(r+1) before round r+1 as follows. We can remove cr−logn from A
because it has fully propagated via the matching between Pr and Qr in round r. We add cr to A such
that A[cr] = {r}, since it has just been fully reduced in round r via the straggler pairing. Every other
active chunk has doubled in propagation (i.e., the number of ranks that possess it) via the perfect
matching between Pr and Qr. Let j′ = r+1− log n. Immediately before round r+1 we verify:

(1) For every k ∈ {j′, . . . , r−1}, |A[ck]| = 2|A[ck]|(before round r) = 2(2r−k−1) = 2r−k

(2) By definition Pr+1 = A[cj′]. Via (1), we have |Pr+1| = 2logn−1 = n
2 . We prove that

r+1 ∈ Pr+1 separately below.

(3) The cardinality of the remaining log n− 1 active chunks ensures the Qr+1 constraint:

|Qr+1| =
r∑

k=j′+1

|A[ck]| =
logn−1∑
t=1

2logn−1−t =
n

2
− 1

(4) Since each rank still holds exactly one active chunk, the sets A[ck] remain pairwise disjoint.
In round r, ranks in Qr received cr−logn, which is no longer active by round r+1, so these
ranks still retain the same active chunk they had prior to round r. Ranks in Pr \ {r} had
only active chunk cr−logn before round r, which expired as an active chunk, and received
some other active chunk in round r, so they also only have one active chunk each. Finally,
r ∈ Pr, so its active chunk expired after round r, and it received active chunk cr via the
straggler pairing, so it also only has one active chunk. This ensures pairwise disjointness.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

There are two remaining components of the proof for the inductive step: (1) that r+1 ∈ Pr+1,
and (2) that there always exists a feasible matching between Pr+1 \ {r + 1} and Qr+1. First, it is
guaranteed that r+1 ∈ Pr+1 because of the rule for matching ranks in the critical window from
Algorithm 1. Specifically, we ensure that rank r+1 is never paired with a rank whose active chunk is
cl for l > r+1− log n. This rule ensures that r+1 ∈ Pr+1 because the only active chunk it could
have at the beginning of round r+1 is then cr+1−logn, guaranteeing that r+1 ∈ Pr+1.

The next question is whether we can ensure that there exists a matching in round r+1. First, we need
to ensure that any rank l in the critical window is not matched with a rank whose active chunk will
continue to be active by round l. If l ∈ Qr+1, this is trivial because the rank does not receive any new
active chunk in that round (since it only receives the chunk that is due in that round). If l ∈ Pr+1, we
just have to ensure that l is not matched with any of the “newest” active chunks; in fact, matching
l with ranks possessing the second-oldest active chunk always works to keep l in future Pr. Since
Gr, the graph that connects Pr and Qr, is a complete bipartite graph, we can easily guarantee this
pairing for any l. By removing these l and their partners from their respective sets (either Pr or Qr),
we can trivially apply Hall’s Marriage Theorem since |Pr| = |Qr| (and Gr is bipartite) to verify that
a matching exists. Hence, I(r+1) holds, completing the inductive step.

Remark 1 The final chunk, cn−2, propagates in log n− 1 rounds.

After round n−2, the straggler, σ, now has all fully reduced chunks, and is no longer constrained
by whom to pair with. This means we can add the straggler to Qr for subsequent rounds r ≥ n−1
such that |Pr| = |Qr| = n

2 . (We enforce the invariant for subsequent rounds that the straggler can
only send cn−2.) Both ranks n−2 and σ are in Qr (and will remain in Qr until the end of the
algorithm), and their active chunk is cn−2. Thus, cn−2 begins with 2 ranks holding it, as opposed to
1, jumpstarting its doubling process. Every chunk can continue to double because |Pr| = |Qr| and
every rank only has one active chunk, so via Hall’s Marriage Theorem a perfect matching exists.
Therefore, only log n− 1 rounds are required to fully propagate the final chunk.

Theorem 1. ALLREDUCE schedules generated by StragglAR complete in n+ log n−2 rounds.

Proof. Naturally, n−1 rounds are required for all chunks to become fully reduced, via the linear
sequence of pairing with the straggler, with chunk cj fully reduced in round j. Lemma 2 proves that
each chunk cj propagates by round j+ log n. Thus, the total number of rounds in the algorithm is
bounded by the final chunks. Chunk cn−3 will propagate by round n−3+ log n and chunk cn−2 will
have fully propagated after round n−2+ log n−1 = n−3+ log n. Since we zero-index rounds, this
results in n+ log n−2 rounds in total.

D STRAGGLAR FOR NON-POWER-OF-2 VALUES OF n

When the number of GPUs is not a power of 2, StragglAR becomes more challenging to implement
because GPUs can possess multiple active chunks at any point in time. To handle the even, non-
power-of-2 case, we use a similar matching-based approach to construct the schedule in every round,
but instead connect vertices u and v with weight 2 if u possesses a chunk that v needs and v possesses
a chunk that u needs, and with weight 1 if only u possesses a chunk that v needs, but the opposite is
not true (or vice versa). Then, we run well-known polynomial-time algorithms (Edmonds, 1965a;b)
to compute the maximum weight matchings per round in order to generate the schedule. Thus, offline
schedule generation when n is not a power-of-2 has a higher runtime, but is still polytime computable.

For even, non-power-of-2 values of n, we do not prove a bound on the α−β cost. However, we
still synthesize and evaluate these schedules in §4 and typically find schedules that complete in
∼n+2 log n−2 rounds in practice, which still results in lower β cost than baselines. The realized
communication complexity of the schedules generated by StragglAR for non-power-of-2 n is shown
in the ideal-case performance of Fig. 8, and still outperforms all baselines using the analytical network
simulator. We note that StragglAR does not provide schedules for odd values of n, but these settings
are less common in large-scale distributed ML; further, StragglAR’s schedules for even n are all
computable in polytime due to the graph matching structure.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

We compare StragglAR’s ideal and worst-case performance to baselines as the cluster size scales,
in simulation with the analytical network model. We report the results in Fig. 8, which shows a
similar pattern as for powers-of-2. In ideal scenarios, when the REDUCESCATTER precondition
can be fully overlapped with the straggler delay, StragglAR significantly outperforms all baselines.
For worst-case scenarios with no straggler delay, StragglAR’s performance is slightly worse than
baselines at small cluster sizes, but performs equally well at large cluster sizes due to its 2× lower
asymptotic communication complexity.

6 12 24 48 96 192
Number of GPUs

0.0

0.5

1.0

1.5

2.0
Sp

ee
du

p
ov

er
 R

in
g

StragglAR (ideal)
StragglAR (worst)

MSCCL
RH/D

Ring
Broadcast

Figure 8: ALLREDUCE performance of different algorithms as cluster size n scales, for even values of
n that are not powers of 2. The shaded region captures the range of StragglAR’s possible performance,
ranging from worst case (no straggler and hence no overlap) to ideal (full overlap with straggler).

E DISCUSSION OF BASELINES

We provide in-depth explanations and α−β costs of the baselines. Classical algorithms (e.g., Ring,
RH/D) achieve the known lower bounds for ALLREDUCE in networks with homogeneous bandwidth
and thus remain the standard implementations in state-of-the-art CCLs (Hu et al., 2025). While newer
works synthesize algorithms for irregular topologies and heterogeneous networks (Won et al., 2024;
Wang et al., 2020; Zhao et al., 2024a), they do not provide new algorithms for homogeneous scale-up
networks, aside from MSCCL (Cowan et al., 2023), which we compare to.

Ring (Patarasuk and Yuan, 2009). This is the standard bandwidth-efficient algorithm implemented
by NCCL for ALLREDUCE. It divides the buffer into chunks of size s

n and consists of 2(n − 1)

rounds in a ring-like communication pattern. The total runtime is TRing = 2(n− 1) · α+ 2n−1
n s · β.

Recursive halving/doubling [RHD] (Bruck et al., 1994). Also called the Butterfly algorithm, this
algorithm—like Ring—consists of two phases. In the first phase, the buffer is first divided in 1/2
with one partner, then in 1/4 with another partner, etc. to achieve a REDUCESCATTER. Then, a
mirror-image ALLGATHER completes to propagate all fully reduced chunks. The total runtime is
TRHD = 2 log n · α+2n−1

n s · β.

Broadcast. This is a straggler-aware baseline that assumes the non-stragglers complete an ALLRE-
DUCE (2× the time as REDUCESCATTER) during the straggler delay. After the straggler is ready,
it exchanges its entire buffer with any other rank to fully reduce the entire buffer and then ini-
tiates a broadcast with log n rounds and s bytes per round. The total ideal-case runtime is
TBcast = log n·α+log n·s·β while the worst-case runtime is (2n+log n−4)·α+(log n+2n−2

n−1)·s·β.

MSCCL (Cowan et al., 2023). This is a new algorithm synthesized for switched scale-up domains,
such as NVIDIA DGX. The algorithm, called allpairs, consists of just two rounds. The buffer is
divided into n chunks. In the first round, each GPU is responsible for reducing one chunk (i.e.,
REDUCESCATTER), and sends all other chunks to other GPUs simultaneously, thereby splitting the
link bandwidth among n−1 parallel connections. The next step is a mirror-image ALLGATHER,
where all GPUs communicate simultaneously to receive all reduced chunks. Thus, the total runtime
is TMSCCL = 2 · α+2n−1

n s · β.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F EVALUATION ON PERLMUTTER WITH 4 GPUS

256 KiB
1 MiB

4 MiB
16 MiB

64 MiB
256 MiB

512 MiB
1 GiB

Buffer Size

0

10

20

30

40

Al
g.

 B
an

dw
id

th
 (G

iB
/s

) (a) Bandwidth Scaling: Optimistic Case

256 KiB
1 MiB

4 MiB
16 MiB

64 MiB
256 MiB

512 MiB
1 GiB

Buffer Size

0

10

20

30

40

Al
g.

 B
an

dw
id

th
 (G

B/
s) (b) Bandwidth Scaling: Average Case

0 5 10 15 20
Straggler Delay (ms)

20

30

40

50

Ti
m

e
(m

s)

Critical delay

(c) Impact of Straggler Delay
StragglAR RHD Ring Broadcast

Figure 9: ALLREDUCE performance on a 4-GPU node in Perlmutter. (a) shows the optimistic use
case, where it is assumed that the REDUCESCATTER can complete within the straggler delay time.
(b) assumes a straggler delay of 9.45 ms, the average from our experiments. (c) fixes the buffer size
at 1 GiB and varies the straggler delay.

We show the results from running on one node of the Perlmutter supercomputer (NERSC, 2025) in
Fig. 9. While StragglAR still consistently outperforms baselines across buffer sizes in the 4-GPU
setup, its gains are less substantial than for the 8-GPU setup. This is expected, and the results are in
line with the theoretical results in §4 because StragglAR’s performance advantage improves as n, the
size of the GPU cluster, scales. (Intuitively, this is because the proportion of “work” that is offloaded
to the precondition is higher as n scales.) Fig. 9b indicates similar performance on the 4-GPU node
even with both the average and masked delays, suggesting the REDUCESCATTER precondition can
be effectively masked in typical scenarios.

G NCCL TUNING BEHAVIOR

As we discuss in §4, the performance of ncclSend()/ncclRecv() deviates from the α−β cost
model’s expected performance for some specific buffer sizes due to heuristics and protocol-switching
behavior implemented internally by NCCL. We run the baseline nccl-tests (NVIDIA, 2024b), a
benchmarking suite provided by NVIDIA for evaluating in-built NCCL performance, across different
data sizes and plot the results in Fig. 10. The region from 64 MiB-256 MiB deviates from expected
behavior under α−β costs because sending 2×, and even 4×, the amount of data results in almost no
change in communication time with the P2P API. (Under the α−β model, the time should consistently
scale linearly with the send/recv data size, instead of step-wise as shown in Fig. 10.) This is why the
Direct and MSCCL ALLREDUCE baselines outperform other algorithms at 256 MiB, as the time to
send an entire 256 MiB buffer is only marginally higher than sending smaller chunk sizes, which
bandwidth-efficient algorithms like Ring, RHD, and StragglAR do. We do not observe this finding
to generalize to other architectures, and it may be a relic of the NCCL version, CUDA version, and
specific environment configured by RunPod for ncclSend()/ncclRecv(). Also, outside of the
64-256 MiB range, the performance closely reflects the α−β model, and our findings in §4 reflect
this. This anomalous behavior is also well documented by recent works, which even propose methods
to optimize tuning parameters for NCCL (Hu et al., 2025; Wang et al., 2025).

16 MiB 64 MiB 256 MiB 1 GiB 4 GiB
Send/recv size

103

104

Ti
m

e
(u

s)

Figure 10: nccl-tests benchmarking of NCCL P2P API on RunPod server with 8 A100 GPUs.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H END-TO-END TRAINING EXPERIMENTS ON MULTI-GPU SERVERS

We evaluate StragglAR using data-parallel (DP) fine-tuning of the Llama3.2-3B model in PyTorch on
a DGX A100 VM (8-GPU setup) on RunPod. In this evaluation, we enable ALLREDUCE algorithms
to run in the wild, calling implementations directly from PyTorch on a real hardware testbed. To do
so, we compile our C++ and CUDA implementations (using the NCCL P2P API, exactly as described
in §4) into a custom package, and enable dist.all_reduce() to call these implementations
using PyTorch Distributed’s C++ extension capabilities (PyTorch, 2022). We compare StragglAR to
the Ring algorithm, the most well-known and widely used bandwidth-efficient baseline, under this
scheme. Using standard PyTorch profiling tools, we identify device (GPU) 6 to be the most frequent
straggler on our server, as device 6 was most frequently the straggler in the profiling logs. At the start
of training, we pass the straggler rank to the CUDA runtime to ensure StragglAR executes correctly.
Then, training simply proceeds as per usual with PyTorch.

Next, we fine-tune Llama3.2-3B using the same data-parallel setup on 8 GPUs with the global batch
size of 32 for 100 iterations to determine the overall training efficiency gains with StragglAR. Fig. 12
shows that even these first 100 iterations, StragglAR reduces training time by 7 seconds. These
gains suggest that training at longer time scales—for example, days—can shave off several hours of
training. Further, we note that StragglAR’s loss curve is just the Ring ALLREDUCE curve shifted to
the left: the y-coordinates are exactly the same because both algorithms ensure complete data buffers
are reduced, ensuring no change in model convergence. Instead, StragglAR enables an unmodified,
but faster ALLREDUCE to the application layer, resulting in greater training efficiency and faster
time-to-convergence. Fig. 12 captures the wall-clock time, i.e., all compute and communication
operations in training, so the results may improve in larger-scale settings (as shown in simulations in
§I) or with even larger model sizes where communication becomes a greater bottleneck.

0 50 100 150
Time (s)

0.25

0.50

0.75

1.00

Tr
ai

ni
ng

 lo
ss Diff. 7.08s

Ring
StragglAR

Figure 11: Training efficiency, 100 iters. (B=32).

Figure 12: End-to-end evaluation for Llama-3.2-3B fine-tuning on a RunPod DGX A100.

I END-TO-END TRAINING SIMULATIONS AT SCALE

We use the FlexNet simulator used by prior work (Wang et al., 2023a)—an augmented version of
FlexFlow (Jia et al., 2019; FlexFlow)—to determine 3D parallelism schemes for transformer training
at even larger scales. Specifically, FlexNet outputs the task graph of compute and communication
tasks per training iteration. We simulate training the BERT-large transformer model (Kenton and
Toutanova, 2019) as we vary both the number of GPUs and the straggler delay. We provide end-to-end
training iteration time reported by FlexNet and using the analytical network simulator to predict the
communication time (for both collective and point-to-point communication) as an input. Fig. 13
shows end-to-end results assuming α=3µs (based on (Microway, 2024)) while Fig. 14 shows these
results assuming α=0.7µs (based on (Shah et al., 2023)). In general, StragglAR outperforms
baselines as the number of GPUs scales when there is even marginal delay of 0.5 ms or higher.
When there is no delay, StragglAR suffers because none of the REDUCESCATTER precondition is
overlapped with the straggler delay. In Fig. 13, StragglAR either performs more poorly than or
evenly with RHD (depending on the straggler delay) for n=64 because the assumption of α is higher
(so, algorithms like RHD that minimize the number of rounds are preferred when n is large). In
contrast, Fig. 14 assumes a lower value of α that is reported by prior published work (Shah et al.,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

2023), thereby enabling StragglAR’s bandwidth efficiency to shine even at large values of n. The
exact buffer sizes and compute and communication kernels are directly outputted by FlexNet, and
we evaluated with batch sizes of 16, 32, 64, and 128 on 8, 16, 32, and 64 GPUs, respectively. These
batch sizes are based on typical fine-tuning use cases that opt for smaller batch sizes on smaller
datasets (Chung et al., 2024; Liu et al., 2019; Touvron et al., 2023).

8 16 32 64
Number of GPUs

100

150

200

250

Ite
ra

tio
n

Ti
m

e
(m

s)

Delay = 0 ms per AR call

8 16 32 64
Number of GPUs

Delay = 0.5 ms per AR call

8 16 32 64
Number of GPUs

Delay = 1 ms per AR call
Ring RH/D StragglAR

Figure 13: Runtime per BERT training iteration using the FlexNet simulator with α=3µs.

8 16 32 64
Number of GPUs

100

125

150

175

200

225

Ite
ra

tio
n

Ti
m

e
(m

s)

Delay = 0 ms per AR call

8 16 32 64
Number of GPUs

Delay = 0.5 ms per AR call

8 16 32 64
Number of GPUs

Delay = 1 ms per AR call
Ring RH/D StragglAR

Figure 14: Runtime per BERT training iteration using the FlexNet simulator with α=0.7µs.

27

	Introduction
	Background and Related Work
	StragglAR: A Straggler-Aware AllReduce Algorithm
	Algorithm Design
	Communication Complexity

	Experiments
	Benchmarking StragglAR on Multi-GPU Scale-Up Domains
	End-to-end Evaluation on ML Workloads
	Scaling Characteristics of StragglAR

	Conclusion
	Extended Related Work
	Persistent Stragglers
	Proof of Communication Complexity
	StragglAR for Non-Power-of-2 Values of n
	Discussion of Baselines
	Evaluation on Perlmutter with 4 GPUs
	NCCL Tuning Behavior
	End-to-End Training Experiments on Multi-GPU Servers
	End-to-End Training Simulations at Scale

