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ABSTRACT

Self-interpreting neural networks have garnered significant interest in research.
Existing works in this domain often (1) lack a solid theoretical foundation ensur-
ing genuine interpretability or (2) compromise model expressiveness. In response,
we formulate a generic Additive Self-Attribution (ASA) framework. Observing
the absence of Shapley value in Additive Self-Attribution, we propose Shapley
Additive Self-Attributing Neural Network (SASANet), with theoretical guaran-
tees for the self-attribution value equal to the output’s Shapley values. Specif-
ically, SASANet uses a marginal contribution-based sequential schema and in-
ternal distillation-based training strategies to model meaningful outputs for any
number of features, resulting in un-approximated meaningful value function. Our
experimental results indicate SASANet surpasses existing self-attributing models
in performance and rivals black-box models. Moreover, SASANet is shown more
precise and efficient than post-hoc methods in interpreting its own predictions. 1

1 INTRODUCTION

While neural networks excel in fitting complex real-world problems due to their vast hypothesis
space, their lack of interpretability poses challenges for real-world decision-making. Although
post-hoc interpretation algorithms (Lundberg & Lee (2017); Shrikumar et al. (2017)) offer extrinsic
model-agnostic interpretation, the un-transparent intrinsic modeling procedure unavoidably lead to
inaccurate interpretation (Laugel et al. (2019); Frye et al. (2020)). Thus, there’s a growing need for
self-interpreting neural structures that intrinsically convey their prediction logic faithfully.

Self-interpreting neural networks research has garnered notable interest, with the goal of inherently
elucidating a model’s predictive logic. Various approaches are driven by diverse scenarios. For
example, Alvarez Melis & Jaakkola (2018) linearly correlates outputs with features and consis-
tent coefficients, while Agarwal et al. (2020) employs multiple networks each focusing on a single
feature, and Wang & Wang (2021) classifies by comparing inputs with transformation-equivariant
prototypes. However, many existing models, despite intuitive designs, might not possess a solid
theoretical foundation to ensure genuine interpretability. The effectiveness of attention-like weights,
for instance, is debated (Serrano & Smith (2019); Wiegreffe & Pinter (2019)). Additionally, striv-
ing for higher interpretability often means resorting to simpler structures or intricate regularization,
potentially compromising prediction accuracy.

This paper aims to achieve theoretically guaranteed faithful self-interpretation while retaining ex-
pressiveness in prediction. To achieve this goal, we formulate a generic Additive Self-Attribution
(ASA) framework. ASA offers an intuitive understanding, where the contributions of different ob-
servations are linearly combined for the final prediction. Notably, even with varying interpretative
angles, many existing methods implicitly employ such structure. Thus, we utilize ASA to encapsu-
late and distinguish their interpretations, clarifying when certain methods are favored over others.

Upon examining studies through the ASA lens, we identified an oversight regarding the Shapley
value. Widely recognized for post-hoc attribution (Lundberg & Lee (2017); Bento et al. (2021))
with robust theoretical backing from coalition game theory (Shapley et al. (1953)), its potential has
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Figure 1: A schematic of the SASANet procedure. (a) Each sample is viewed as a set of features.
The intermediate sequential module models an permutation-variant intermediate output as the cu-
mulative contributions of these features. (b) The Shapley Value module trains a self-attributing
network via internal Shapley value distillation, in which the attribution values proven to converge to
the permutation-invariant final output’s Shapley value.

been underutilized. Notably, while a recent work called Shapley Explanation Network (SHAPNet)
(Wang et al. (2021)) achieves layer-wise Shapley attribution, it lacks model-wise feature attribution.
Addressing this gap, we introduce a Shapley Additive Self-Attributing Neural Network (SASANet)
under the ASA framework, depicted in Figure 1. In particular, we directly define value function as
model output given arbitrary number of input features. With an intermediate sequential modeling
and distillation-based learning strategy, SASANet can be theoretically proven to provide additive
self-attribution converging to the Shapley value of its own output. Our evaluations of SASANet
on various datasets show it surpasses current self-attributing models and reaches comparable per-
formance as black-box models. Furthermore, compared to post-hoc approaches, SASANet’s self-
attribution offers more precise and streamlined interpretation of its predictions.

2 PRELIMINARIES

2.1 ADDITIVE SELF-ATTRIBUTING MODELS

Oriented for various tasks, self-interpreting networks often possess distinct designs, obscuring their
interrelations and defining characteristics. Observing a commonly shared principle of linear feature
contribution aggregation across numerous studies, we introduce a unified framework:

Definition 2.1 (Additive Self-Attributing Model) Additive Self-Attributing Models output the sum
of intrinsic feature attribution values that hold desired properties, formulated as

f(x; θ, ϕ0) = ϕ0 +
∑
i∈N

ϕ(x; θ)i, s.t. C(ϕ, x), (1)

where x = [x1, · · · , xN ] ∈ RN denotes a sample with N features, N = {1, 2, · · · , N} denotes
feature indices, ϕ(x; θ)i is the i-th feature’s attribution value, ϕ0 is a sample-independent bias,
C(ϕ, x) denotes constraints on attribution values.

As there are abundant ways to build additive models, attribution terms are required to satisfy spe-
cific constraints for ensuring the physically meaningfulness, often achieved through regularizers or
structural inductive bias. Neglecting various pre- and post-transformations for adapting to specific
inputs and outputs, many existing structures providing intrinsic feature attribution matches ASA
framework. Below, we introduce several representative works.

Self-Explaining Neural Network (SENN) (Alvarez Melis & Jaakkola (2018)). SENN mod-
els generalized coefficients for different concepts (features) and constrains the coefficients to be
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locally bounded by the feature transformation function. Using x to denote the explained fea-
ture unit, SENN’s attribution can be formulated as f(x) =

∑N
i=1 a(x; θ)ixi + b, constrain-

ing that a(x; θ)i is approximately the gradient of f(x) with respect to each xi. By setting
ϕ(x; θ) := [a(x; θ)1x1, · · · , a(x; θ)NxN ] ∈ RN , SENN aims at the form of Eq. 1 with a con-
straint ∇xif(x; θ, ϕ0) ≈ ϕ(x; θ)i/xi for i ∈ N . To realize the constraints, SENN adds a regularizer
on the distance between the coefficients and the gradients.

Neural Additive Model (NAM) (Agarwal et al. (2020)). NAM models each feature’s independent
contribution and sums them for the prediction as f(x) =

∑N
i=1 hi(xi; θi) + b. Regarding hi(·; θi) :

R → R as a function ϕ(·; θ)i : RN → R constrained depend only on xi, NAM targets the form
of Eq. 1 with a constraint: ∀x, x′ xi = x′

i → ϕ(x; θ)i = ϕ(x′; θ)i for i ∈ N . To realize such
constraints, NAM models each feature’s attribution with an independent network module.

Self-Interpretable model with Transformation Equivariant Interpretation (SITE) (Wang &
Wang (2021)). SITE models the output as a similarity between the sample and a relevant proto-
type G(x; θ) ∈ RN , formulated as f(x) =

∑N
i=1 G(x; θ)ixi + b. Each feature’s contribution term

G(x; θ)ixi is the attribution value. The prototype is constrained to (1) resemble real samples of
the corresponding class and (2) be transformation equivariant for image inputs. Thus, SITE tar-
gets the form of Eq. 1 with constraints: ϕ(x; θ)i = G(x; θ)ixi for i ∈ N , G(x; θ) ∼ Dc, and
T−1
β (G(Tβ(x); θ)) ∼ Dc, where Dc is sample distribution, Tβ is predefined transformations. To

realize such constraints, SITE regularizes sample-prototype distance and Tβ’s reconstruction error.

Salary-Skill Value Composition Network (SSCN)(Sun et al. (2021)). Domain-specific studies
also seek self-attributing networks. For example, SSCN models job salary as the weighted aver-
age of skills’ values, formulated as f(x; θd, θv) =

∑N
i=1 d(x; θd)iv(xi; θv), where d(x; θd)i de-

notes skill dominance and v(xi; θv) denotes skill value, defined as task-specific components in their
study. Regarding each skill as a salary prediction feature, SSCN inherently targets the form of Eq. 1
with constraints: ϕ(x; θ)i = d(x; θd)iv(x; θv)i, ∀x, x′ xi = x′

i → v(x; θv)i = v(x′; θv)i, and∑N
i=1 d(x; θd)i = 1 for i ∈ N . To realize such constraints, SSCN models v with a single-skill

network and d with a self-attention mechanism.

2.2 SHAPLEY ADDITIVE SELF-ATTRIBUTING MODEL

In coalition game theory, Shapley value ensures Efficiency, Linearity, Nullity, and Symmetry axioms
for fair contribution allocation, largely promoting post-hoc interpretation methods (Lundberg & Lee
(2017); Bento et al. (2021)). However, there’s a gap in studying self-attributing networks satisfying
these axioms. Therefore, we define the Shapley ASA model as:

Definition 2.2 (Shapely Additive Self-Attributing Model) Shapely Additive Self-Attributing
Model are ASA models that are formulated as

f(x; θ, ϕ0) =ϕ0 +

N∑
i=1

ϕ(x; θ)i,

s.t. ϕ(x; θ)i =
1

N !

∑
O∈π(N ),k∈N

I{Ok = i}(vf (xO1:k−1∪{i}; θ, ϕ0)− vf (xO1:k−1 ; θ, ϕ0)),

(2)

where π(·) denotes all possible permutations, xS := {xi|i ∈ S} represents a subset of features in x
given S ∈ N (x = xN ), vf is a predefined value function about the effect of xS with respect to f .

Following coalition game theory (Shapley et al. (1953)), we constrain ϕ(x;ϕ)i to feature xi’s aver-
age marginal contribution upon joining a random input subset, leading to Shapley value axioms.

Theorem 2.3 In a Shapley ASA model, the following axioms hold:

(Efficiency):
∑

i∈N ϕ(x; θ)i = vf (xN ; θ, ϕ0)− vf (x∅; θ, ϕ0).

(Linearity): Given Shapley ASA models f , f ′, and f ′′, for all α, β ∈ R: if vf ′′ = αvf + βvf ′ , then
ϕ(f ′′) = αϕ(f) + βϕ(f ′), where ϕ(·) denotes the internal attribution value of a Shapley ASA model.

(Nullity): If ∀S ⊂ N\{i} vf (xS∪{i}; θ, ϕ0) = vf (xS ; θ, ϕ0) then ϕ(x; θ)i = 0.

(Symmetry): If ∀S ⊂ N\{i, j} vf (xS∪{i}; θ, ϕ0) = vf (xS∪{j}; θ, ϕ0) then ϕ(x; θ)i = ϕ(x; θ)j .
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3 METHOD

The value function of feature subsets has inputs of variable sizes, i.e., vf :
⋃N

k=1 Rk → R, whereas
most existing models accept fix-size inputs, i.e., f : RN → R. Transforming from f to vf demands
approximating model output with missing inputs using handcrafted reference values (Lundberg &
Lee (2017)) and a sampling procedure (Datta et al. (2016)). This is non-trivial given complex factors
like feature dependency. SASANet addresses this by directly modeling f :

⋃N
k=1 Rk → R using

set-based modeling for inputs of any size.

Definition 3.1 (SASANet value function) In SASANet, the value function vf (xS ; θ, ϕ0) for any
given feature subset xS ∈

⋃N
k=1 Rk is the model output f(xS ; θ, ϕ0).

With vf = f , ensuring f :
⋃N

k=1 Rk → R meets Definition 2.2 often involves adding a regulariza-
tion term. This can cause conflicting optimization directions, hindering proper model convergence.
To address this, we introduce an intermediate sequential modeling framework and an internal dis-
tillation strategy. This naturally achieves f :

⋃N
k=1 Rk → R compliant with Definition 2.2. The

process is depicted in Figure 1, with proofs and structural details in the Appendix.

3.1 MARGINAL CONTRIBUTION-BASED SEQUENTIAL MODELING

In SASANet, a marginal contribution-based sequential module generates a permutation-variant out-
put for any feature set size, capturing the intermediate effects of each given feature. Specifically, for
a given order O where features in N are sequentially added for prediction, the marginal contribu-
tion of each feature is explicitly modeled as △(xOi

, xO1:i−1
; θ△). For any feature subset S ⊂ N ,

accumulating the marginal contributions given an order OS ∈ π(S) yields the permutation-variant
output fc(xS , OS ; θ△) =

∑|S|
i=1 △(xOS i

, xOS1:i−1
; θ△) + ϕ0. This module can be trained for var-

ious prediction tasks. For example, using σ to represent the sigmoid function, we can formulate a
binary classification loss for a sample x as

Lm(x, y,O) = y log(σ(fc(x,O; θ△))) + (1− y) log(1− σ(fc(x,O; θ△))), (3)

3.2 SHAPLEY VALUE DISTILLATION

Following Definition 2.1, we train an attribution network ϕ(·; θϕ) :
⋃N

k=1 Rk →
⋃N

k=1 Rk, pro-
ducing a final permutation-invariant output f(xS ; θϕ) =

∑
i∈S ϕ(xS ; θϕ)i for any valid input

xS ∈
⋃N

k=1 Rk. Specially, instead of directly supervising f with data, we propose an internal
distillation method based on the intermediate marginal contribution module fc. Specifically, we
construct a distillation loss for each feature i ∈ S in variable-size input xS ∈

⋃N
k=1 Rk as

L(i)
s (xS) =

1

|D|
∑
O∈D

(ϕ(xS ; θϕ)i −
∑
k∈S

I{Ok = i}△(xi, xO1:k−1
; θ△))2, (4)

where D ⊂ π(S) denotes permutations drawn for training. Training with Ls, ϕ(xS ; θϕ)i amortizes
the features’ effect in fc. We prove it naturally ensure Shapley value constraints without bringing
conflict to optimization directions. For simplicity, as is typical, we assume no gradient vanishing
and sufficient model expressiveness to reach optimal.

Proposition 3.2 By optimizing L
(i)
s (xS) with D, SASANet converges to satisfy ϕ(xS ; θϕ)i ∼

N (ϕ∗
i ,

σ2
i

M ), where M = |D|, ϕ∗
i = 1

|S|!
∑

O∈π(S)

∑
k∈S I{Ok = i}△(xi, xO1:k−1

; θ△), σ2
i =

1
|S|!

∑
O∈π(S)

∑
k∈S I{Ok = i}(△(xi, xO1:k−1

; θ△)− ϕ∗
i )

2.

This means ϕ is trained towards the averaged intermediate feature effects in fc. Then, we can derive
the relationship between the final output f and the intermediate output fc.

Proposition 3.3 By optimizing L
(i)
s (xS) with enough permutation sampling, there is small uncer-

tainty that the model converges to satisfy f(xS ; θϕ) =
1

|S|!
∑

O∈π(S) fc(xS , O; θ△).

In this way, f acts as an implicit bagging of the permutation-variant prediction of fc, leading to
valid permutation-invariant predictions that offer stability and higher accuracy, without requiring
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direct supervision loss from training data. We will subsequently demonstrate how this distillation
loss enables ϕ to model the Shapley value of f .

Theorem 3.4 If ∀O1, O2 ∈ π(S) fc(xS , O1) = fc(xS , O2), optimizing L
(i)
s (xS) for sample x’s

subsets xS with ample permutation samples ensures ϕ(x; θϕ) converge to satisfy Definition 2.2’s
constraint, i.e., Shapley value in f(x; θϕ).

While fc is permutation-variant, in the subsequent section, we’ll introduce a method for fc to con-
verge to label expectations of arbitrary feature subsets, thereby not only reflecting pertinent feature-
label associations but also naturally inducing a permutation invariance condition.

3.3 FEATURE SUBSET LABEL EXPECTATION MODELING

Notably, training fc with Eq. 3 can lead to f making good prediction for samples in the dataset,
it does not guarantee meaningful outputs for feature subsets. For example, it might output 0 when
any feature is missing, assigning the same Shapley value to all features as the last one takes all the
credit. Although this attribution captures the model’s logic, it fails to represent significant feature-
label associations in the data. To address this, we target the output to reflect the label expectation for
samples with a specific feature subset. Specifically, we define a loss for xS using training set Dtr as

Lv(xS , OS) =

∑
(x′,y′)∈Dtr

I{x′
S = xS}Lm(xS , y, OS)∑

(x′,y′)∈Dtr
I{x′

S = xS}
. (5)

Lv is designed for fc instead of the Shapley module, averting conflicts with the convergence direc-
tion of ϕ we have illustrated. Nonetheless, we show that this approach makes ϕ to be the Shapley
value of f by directing fc’s output to satisfy the permutation-invariance stipulated in Theorem 3.4.

Theorem 3.5 Optimizing L
(i)
s (xS) and Lv(xS , OS) for sample x’s subsets xS for all permutations

OS ∈ π(S) makes ϕ converge to Shapley value of f .

In this way, we ensure the constraint in Definition 2.2 satisfied, while training f to make a valid
prediction with a unified distillation loss. Moreover, Lv can make the attribution value seize real-
world feature-label relevance, which we discuss as follows.

Proposition 3.6 Optimizing L
(i)
s (xS) and Lv(xS , OS) for all permutations OS ∈ π(S) makes

σ(f(xS)) converge to EDtr
[y|xS ].

While we cannot exhaust all the permutations in practice, by continuously sampling permutations
during training, the network will learn to generalize by grasping permutation patterns.

Remark 3.7 f estimates the expected label when certain features are observed, represented by∫
x′
S̄
p(x′

S̄ |xS)h(x
′
S̄ ∪ xS)dx

′
S̄ , where S̄ = N − S, h(x) signifies a sample x’s real label, and

p(·|xS) is the conditional sample distribution given the feature set xS . Then, ϕ learns to estimate
the actual feature-label Shapley value.

Previously, such analyses can be conducted by training a model with fixed-size inputs and employ-
ing post-hoc methods. These methods crafted value functions to estimate expectations based on
model outputs when randomly replacing missing features. As outlined in the literature (Štrumbelj
& Kononenko (2014); Datta et al. (2016); Lundberg & Lee (2017)), this can be depicted as:∫
x′
S̄
p(x′

S̄)h
′(x′

S ∪ xS̄)dx
′
S̄ , where h′ approximates the inaccessible h. The sample distribution for

the entire dataset is given by pgen(x) = p(xS̄) · p(xS), which only matches p if ∀xS̄ , xS p(xS̄) =
p(xS̄ |xS). Given that full feature independence is unlikely, generated samples may not align with
real data, causing unreliable outputs. Despite progress in post-hoc studies (Laugel et al. (2019); Aas
et al. (2021)) on feature dependence, complex tasks remain challenging. SASANet sidesteps this by
learning an apt value function, better estimating feature-label relations via self-attribution.

3.4 POSITIONAL SHAPLEY VALUE DISTILLATION

The marginal contribution of a feature can fluctuate based on the prefix set size. For instance, with
many observed features, a model might resist change in prediction from new ones. Such diversified

5



Under review as a conference paper at ICLR 2024

Table 1: Model performance - the best performance among interpretable models is in bold.

Model Income Higgs Boson Fraud Insurance
AP AUC AP AUC AP AUC RMSE MAE

LightGBM 0.6972 0.9566 0.8590 0.8459 0.7934 0.9737 0.2315 0.1052
MLP 0.6616 0.9518 0.8877 0.8771 0.8167 0.9621 0.2310 0.1076
DT 0.2514 0.7250 0.6408 0.6705 0.5639 0.8614 0.3332 0.1167
LR 0.3570 0.8717 0.6835 0.6846 0.7279 0.9620 - -

NAM 0.6567 0.9506 0.7897 0.7751 0.7986 0.9590 0.2382 0.1182
SITE 0.6415 0.9472 0.8656 0.8597 0.7912 0.9556 - -

SENN 0.6067 0.9416 0.7563 0.7556 0.7709 0.8916 0.2672 0.1313
SASANet-p 0.6708 0.9525 0.8775 0.8656 0.8090 0.9667 0.2368 0.0894
SASANet-d 0.6811 0.9527 0.8790 0.8675 0.8090 0.9665 0.2387 0.1037
SASANet 0.6864 0.9542 0.8836 0.8721 0.8124 0.9674 0.2375 0.0901

contribution distribution can hinder model convergence. Therefore, instead of directly training over-
all attribution function with Eq. 4, we train a positional attribution function ϕ(xS ; θϕ)i,k to measure
feature i’s effects in fc in a certain position k, with an internal positional distillation loss:

L(i,k)
s (xS) =

1

|D|
∑
O∈D

I{Ok = i}(ϕ(xS ; θϕ)i,k −△(xi, xO1:k−1
; θ△))2. (6)

Proposition 3.8 By randomly drawing m permutations where xi appears at a specific

position k and optimizing L
(i,k)
s (xS), we have ϕ(xS ; θϕ)i,k ∼ N (ϕ∗

i,k,
σ2
i,k

m ), where
ϕ∗
i,k = 1

(|S|−1)!

∑
O∈π(S) I{Ok = i}△(xi, xO1:k−1

; θ△), σ2
i,k = 1

(|S|−1)!

∑
O∈π(S) I{Ok =

i}(△(xi, xO1:k−1
; θ△)− ϕ∗

i,k)
2.

Lemma 3.9 When optimizing L
(i,k)
s (xS) with enough sampling and calculate

ϕ(xS ; θϕ)i = 1
|S|

∑|S|
i=1 ϕ(xS ; θϕ)i,k, there is small uncertainty that ϕ(xS ; θϕ)i converges to

1
|S|!

∑
O∈π(S)

∑|S|
k=1 I{Ok = i}△(xi, xO1:k−1

; θ△).

The overall attribution value produced this way mirrors the original distillation, equating to the
Shapley value in our analysis. Hence, we term it positional Shapley value distillation.

Proposition 3.10 Positional Shapley value distillation decreases SASANet’s Shapley value estima-
tion’s variance.

3.5 NETWORK IMPLEMENTATION

To accommodate features of diverse meanings and distributions, we employ value embedding ta-
bles for categorical features and single-input MLPs for continuous ones, outperforming field em-
bedding methods (Song et al. (2019); Guo et al. (2017)). The marginal contribution module ap-
plies multi-head attention for prefix representation of each feature, with position embeddings aiding
in capturing sequential patterns and ensuring model convergence. Conversely, the Shapley value
module uses multi-head attention for individualized sample representation, excluding position em-
beddings to maintain permutation-invariance. Feature embeddings are combined with prefix and
sample representations for marginal contribution and positional Shapley value calculations using
feed-forward networks. ϕ0 is precomputed, symbolizing the sample-specific label expectation. Re-
fer to the Appendix for a model schematic. For computational efficiency, terms in Ls and Lv

are separated based on sample and permutations, resulting in the loss formulation L(x, y,O) =∑N
k=1(λs(ϕ(x; θϕ)Ok, k−△(xOk, xO1:k−1

; θ△))2+λv(
∑k

i = 1△(xOi, xO1:i−1
; θ△)+ϕ0−y)2).

In this manner, for each sample in a batch, we randomly select a single permutation rather than sam-
pling multiple times, promoting consistent training and enhancing efficiency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

As depicted in Section 2.1, self-attributing models (including SASANet) can integrate pre-/post-
transformations to adapt to various data types, e.g., integrate image feature extractors for image
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concept-level attribution, then estimate pixel-level contributions with propagation methods like up-
sampling. Yet, the efficacy and clarity of such attributions can be substantially compromised by the
quality of the concept extraction module. To ensure clarity and sidestep potential ambiguities aris-
ing from muddled concepts or propagation methods, our evaluation uses tabular data, as it presents
standardized and semantically coherent concepts. This approach foregrounds the direct impact of
the core attribution layer. Specifically, we tested on three public classification tasks: Census Income
Prediction (Kohavi (1996)), Higgs Boson Identification (Baldi et al. (2014)), and Credit Card Fraud
Detection2, and examined SASANet’s regression on the Insurance Company Benchmark3, all with
pre-normalized input features. We benchmarked SASANet against prominent black-box models
like LightGBM (Ke et al. (2017)) and MLP; traditional interpretable methods such as LR and DT;
and other self-attributing networks like NAM, SITE, and SENN. Hyperparameters were finely tuned
for each model on each dataset for a fair comparison, and models specific to classification weren’t
assessed on regression tasks. Configuration and dataset specifics are in Appendices H and I. For
interpretation evaluation, we did not compare with other self-attributing models since their desired
feature attribution value have different intuitions and physical meanings. Instead, we compared with
post-hoc methods to demonstrate that SASANet accurately conveys its prediction rationale.

4.2 EFFECTIVENESS: PREDICTION PERFORMANCE EVALUATION

We used AUC and AP for imbalanced label classification, and RMSE and MAE for regression.
Table 6 shows average scores from 10 tests; Appendix J lists standard deviations.

Comparison to Baselines. Black-box models outperform other compared models. Classic tree
and linear methods, though interpretable, are limited by their simplicity. Similarly, current self-
attributing networks often sacrifice performance for interpretability due to simplified structures or
added regularizers. However, SASANet matches black-box model performance while remaining
interpretable. We also show SASANet rivals separately trained MLP models in predicting with
arbitrary number of missing features, indicating its Shapley values genuinely reflect feature-label
relevance through modeling feature contribution to label expectation. See Appendix K for details.

Ablation Study. First, without the Shapley value module (i.e., “SASANet-d”), there was a large
performance drop. This suggests that parameterizing Shapley value enhances accuracy. The
permutation-variant predictions, despite theoretical convergence, can still be unstable in practice.
The permutation-invariant Shapley value, akin to inherent bagging across permutations, offers better
accuracy. Second, bypassing positional Shapley value and directly modeling overall Shapley value
(i.e., “SASANet-p”) resulted in performance reduction, particularly on Income and Higgs Boson
datasets. This underscores the benefit of distinguishing marginal contributions at various positions.

4.3 FIDELITY: FEATURE-MASKING EXPERIMENT

We observed prediction performance after masking the top 1-5 features attributed by SASANet
for each test sample and compared it to the outcome when using KernelSHAP, a popular post-hoc
method, and FastSHAP, a recent parametric post-hoc method. The results are shown in Table 7.
SASANet’s feature masking leads to the most significant drop in performance, indicating its self-
attribution is more faithful than post-hoc methods. This stems from self-attribution being rooted
in real prediction logic. Moreover, SASANet’s reliable predictions on varied feature subsets make
it suitable for feature-masking experiments, sidestepping out-of-distribution noise from feature re-
placements. Notably, FastSHAP performs the worst in feature-masking experiments. While it can
approximate the Shapley value in numerical regression, it appears to struggle in accurately identi-
fying the most important features in a ranked manner. Additionally, we conducted experiment to
add the top 1-5 features from scratch, showing SASANet’s selection led to quicker performance
improvement. See Appendix L for details.

4.4 EFFICIENCY: ATTRIBUTION TIME EVALUATION

We assessed attribution time for SASANet’s self-attribution and two post-hoc interpreters, Ker-
nelSHAP and LIME, on 1,000 random samples. As per Table 3, SASANet was the quickest. LIME,
reliant on drawing neighboring samples for local surrogates, was the slowest, especially with larger
datasets. KernelSHAP, while faster than LIME due to its linear approximation and regression-based

2https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
3https://archive.ics.uci.edu/dataset/125/insurance+company+benchmark+coil+2000
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Table 2: Results of feature masking experiments.

Task Method Top 1 Top 2 Top 3 Top 4 Top 5
AP AUC AP AUC AP AUC AP AUC AP AUC

Income SASA. 0.560 0.929 0.497 0.917 0.441 0.904 0.398 0.892 0.361 0.880
KerSH. 0.606 0.939 0.566 0.932 0.547 0.928 0.532 0.926 0.518 0.923
FastSH. 0.683 0.954 0.617 0.944 0.617 0.944 0.618 0.944 0.613 0.943

Higgs SASA. 0.825 0.813 0.777 0.764 0.730 0.715 0.681 0.665 0.632 0.616
KerSH. 0.855 0.843 0.833 0.821 0.808 0.795 0.783 0.770 0.760 0.746
FastSH. - - - - - - - - - -

Fraud SASA. 0.789 0.962 0.758 0.957 0.681 0.952 0.625 0.938 0.526 0.904
KerSH. 0.806 0.963 0.782 0.961 0.732 0.959 0.693 0.949 0.627 0.936
FastSH. 0.813 0.967 0.813 0.967 0.815 0.965 0.811 0.965 0.809 0.966

* FastSHAP results for the Higgs dataset are missing due to prolonged training times.

estimation, was constrained by its sampling, making it over 200 times slower than SASANet. No-
tably, while parametric post-hoc methods like FastSHAP (Jethani et al. (2021)) offer swift 1-pass
attribution, they demand an extensive post-hoc training involving many forward propagations of the
interpreted model. This was problematic for large datasets and models, such as the Higgs Boson.
Conversely, self-attribution itself is the core component of model prediction and inherently acquired
during model training, eliminating post-hoc sampling or regression procedure.

4.5 ACCURACY: COMPARISON WITH GROUND-TRUTH SHAPLEY VALUE

SASANet can predict for any-sized input, allowing us to directly ascertain accurate Shapley values
through sufficient permutations. While getting ground truth Shapley value is time-intensive, the
transformer structure in SASANet alleviates the problem since it can simultaneously produce mul-
tiple feature subsets’ value by incrementally considering the attention relevant to new features. For
each dataset, we sampled 1,000 test samples and estimated their real Shapley values in SASANet
with 10,000 permutations. Furthermore, to test the generalization of the attribution module, we
created a distribution shift dataset by adding a randomly sampled large bias to each dimension,
which has the same scale as the normalized input. The RMSE of KernelSHAP, FastSHAP, and
SASANet’s attribution value to the real Shapley value are shown in Table 3. We have observed
that SASANet’s self-attribution models provide accurate estimates of the Shapley value for its own
output. The performance of the attribution module may decrease when there is a distribution shift,
as it is trained on the distribution of the training data in our experiment. Nevertheless, it still largely
outperforms KernelSHAP and FastSHAP. Indeed, our analysis in Section 3.2 indicates that con-
vergence to the Shapley value is ensured on the distilled sample distribution, irrespective of input
distribution. Therefore, simple tricks like introducing noise during internal distillation can alleviate
this issue without harming the effectiveness of the model.

Table 3: Time cost and accuracy for feature attribution.

Method Time RMSE RMSE (Distribution Shift)
Income Higgs Fraud Income Higgs Fraud Income Higgs Fraud

LIME 1604.9s 11792.7s 9851.2s - - - - - -
KernelSHAP 91.2s 65.7s 38.4s 0.348 0.402 0.514 0.348 0.405 0.494

FastSHAP* 0.3s* -* 0.2s* 0.332 - 0.473 0.522 - 0.550
SASANet 0.3s 0.3s 0.2s 0.001 0.005 0.033 0.001 0.113 0.082

* FastSHAP’s has time-consuming post-hoc training procedure, whose time isn’t reported to prevent confu-
sion. FastSHAP results for the Higgs dataset are missing due to prolonged training times.

4.6 QUALITATIVE EVALUATION

Overall Interpretation. We compared feature attributions from SASANet and KernelSHAP for
the entire test set. In Figure 2 (a), SASANet reveals clear attribution patterns. Specifically, for the
Income dataset, there’s evident clustering in attribution values tied to specific feature values. Such
sparsity of attribution value aligns with the feature value, which are mostly categorical. The Higgs
Boson dataset shows SASANet’s attributions tend to align with feature value changes, confirming its
ability to identify pertinent feature-label relationships. For Higgs Boson dataset, SASANet’s attri-
bution value shows rough monotonic associations with feature values. For example, a larger feature
value tends to bring positive attribution for “m jlv” while a negative attribution value for “m bb”.
This suggests SASANet identifies feature-label relevance consistent with common sense. That is,
despite complex quantitative relationship between features and outcomes, qualitative patterns are

8



Under review as a conference paper at ICLR 2024

Figure 2: Feature attribution visualizations: x-axis shows attribution value; y-axis lists top features
by decreasing average absolute attribution. (a) Overall attribution. (b) Single-instance attribution.

usually clear. Meanwhile, clear differences exist between real self-attribution and approximated
post-hoc attribution, highlighting potential inaccuracies in post-hoc methods. For example, in both
datasets, many features have abnormally high attribution values in KernelSHAP. This may stem from
neglecting feature interdependencies, evident upon sample interpretation in the subsequent part.

Sample Interpretation. We randomly draw a positive sample in Higgs Boson dataset predicted
correctly by SASANet and compared its self-attribution with KernelSHAP’s attribution in Figure 2
(b). Distinct differences are evident. Notably, SASANet indicates all top-9 features contribute pos-
itively, highlighting a simple, intuitive logic. Indeed, the objective of Higgs Boson prediction is to
differentiate processes that produce Higgs bosons from those that do not. As a result, the model
distinguishes the distinctive traits of Higgs bosons from the ordinary, resulting in a consistent pos-
itive influence from key features representing these unique attributes. KernelSHAP sometimes as-
signs disproportionately large negative values to features. For instance, the attribution for “m wbb”
(−6.26) significantly surpasses SASANet’s peak attribution of 0.7. Yet, they aggregate to a final out-
put of f(x) = 3.959 as opposing attributions from dependent features, like the positive contribution
of “m jlv” (6.14), neutralize each other. Notably, SASANet’s self-attribution doesn’t deem either
m wbb” or “m jlv” as so crucial. Similar phenomenon can be observed from other datasets and
samples, which are visualized in Appendix M. For example, in Income prediction task, indicators
exist for both rich and poor people. Accordingly, SASANet identifies input features indicating both
outcomes. However, it is still obvious that KernelSHAP attributes exaggerated values to features,
which then offset one another. This underscores how KernelSHAP can be deceptively complex by
neglecting feature interdependencies, an issue that has been a pitfall in numerous post-hoc studies
(Laugel et al. (2019); Frye et al. (2020); Aas et al. (2021)). SASANet naturally handles feature de-
pendency well since the value functions has explicit physical meaning as estimated label expectation
and are directly trained under the real data distribution.

5 CONCLUDING REMARKS

We proposed Shapley Additive Self-Attributing Neural Network (SASANet) and proved its self-
attribution aligns with the Shapley values of its attribution-generated output. Through extensive
experiments on real-world datasets, we demonstrated that SASANet not only surpasses current
self-interpretable models in performance but also rivals the precision of black-box models while
maintaining faithful Shapley attribution, bridging the gap between expressiveness and interpretabil-
ity. Furthermore, we showed that SASANet excels in interpreting itself compared to using post-
hoc methods. Moreover, our theoretical analysis and experiments suggest broader applications for
SASANet. Firstly, its self-attribution offers a foundation for critiquing post-hoc interpreters, pin-
pointing areas of potential misinterpretation. Furthermore, its focus on label expectation uncovers
intricate non-linear relationships between real-world features and outcomes. In the future, we will
use SASANet to gain further insights into model interpretation and knowledge discovery studies.
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6 ETHICS STATEMENT

This is a fundamental research on a neural network model that is not tied to a particular application.
All the data used in this study are popular public datasets. The authors assert that there are no
potential ethical concerns associated with this paper.

7 REPRODUCIBILITY STATEMENT

The code for this paper has been uploaded to https://anonymous.4open.science/r/SASANet-B343
for peer review and will be publicly available after publication. The data used in this paper are
popular public datasets, and we have provided links or citations to their sources. All the proofs of
theoretical results have been appended in the appendix.
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A PROOF OF PROPOSITION 3.2

Given that L(i)
s (xS) =

1
|D|

∑
O∈D(ϕ(xS ; θϕ)i−

∑
k∈S I{Ok = i}△(xi, xO1:k−1

; θ△))2, the partial

derivative of L(i)
s (x, y) with respective to θϕ can be calculated as

∂L
(i)
s (xS)

∂θϕ
=

2

|D|
∑
O∈D

(ϕ(xS ; θϕ)i −
N∑

k=1

I{Ok = i}△(xi, xO1:k−1
; θ△))

∂ϕ(xS ; θϕ)i
∂θϕ

. (7)

The loss function converges when L(i)
s (xS)
∂θϕ

= 0. When ∂ϕ(xS ;θϕ)i
∂θϕ

̸= 0, we have

∑
O∈D

ϕ(xS ; θϕ)i =
∑
O∈D

N∑
k=1

I{Ok = i}△(xi, xO1:k−1 ; θ△). (8)

Then, we can derive

ϕ(xS ; θϕ)i =
1

|D|
∑
O∈D

N∑
k=1

I{Ok = i}△(xi, xO1:k−1 ; θ△). (9)

Therefore, we have

Proposition A.1 By optimizing L
(i)
s (xS), unless gradient vanishing (i.e., ∂ϕ(xS ;θϕ)i

∂θϕ
̸=

0), an expressive enough model converges to ϕ(xS ; θϕ)i = 1
|D|

∑
O∈D

∑
k∈S I{Ok =

i}△(xi, xO1:k−1
; θ△).

According to Proposition A.1, optimizing L
(i)
s (xS) when |D| = M will make ϕ(xS ; θϕ)i converge

to

ϕ(xS ; θϕ)i =
1

M

∑
O∈D

|S|∑
k=1

I{Ok = i}△(xi, xO1:k−1
; θ△), (10)

i.e., the averaged marginal contribution in the drawn permutations.

Since the permutations are sampled randomly and independently, their corresponding marginal con-
tribution are i.i.d. We can regard them as randomly sampled from a marginal contribution set

Di
△(xS) := {

|S|∑
k=1

I{Ok = i}△(xi, xO1:k−1
; θ△)|O ∈ π(S)}. (11)

According to Central Limit Theorem, their mean follows a Gaussian distribution

N (ϕ∗
i ,

σ2
i

M
), (12)

where ϕ∗
i = 1

|S|!
∑

△∈Di
△(xS) △ is the real Shapley value, σ2

i = 1
|S|!

∑
△∈Di

△(xS)(△− ϕ∗
i )

2 is the

variance of Di
△(xS). Obviously, we can formulate ϕ∗

i and σ2
i as

ϕ∗
i =

1

|S|!
∑

O∈π(S)

|S|∑
k=1

I{Ok = i}△(xi, xO1:k−1 ; θ△),

σ2
i =

1

|S|!
∑

O∈π(S)

(

|S|∑
k=1

I{Ok = i}△(xi, xO1:k−1 ; θ△)− ϕ∗
i )

2.

(13)

Therefore, ϕ(xS ; θϕ)i ∼ N (ϕ∗
i ,

σ2
i

M ), where ϕ∗
i = 1

|S|!
∑

O∈π(S)

∑|S|
k=1 I{Ok =

i}△(xi, xO1:k−1
; θ△), σ2

i = 1
|S|!

∑
O∈π(S)

∑|S|
k=1 I{Ok = i}(△(xi, xO1:k−1

; θ△)− ϕ∗
i )

2.
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B PROOF OF PROPOSITION 3.3

We can derive from Proposition 3.2 that

Lemma B.1 When optimizing L
(i)
s (xS) with enough permutation sampling, there is small uncer-

tainty that ϕ(xS ; θϕ)i converges to 1
|S|!

∑
O∈π(S)

∑
k∈S I{Ok = i}△(xi, xO1:k−1

; θ△).

According to Lemma B.1, for any S ∈ N , it holds that ϕ0 +
∑

i∈S ϕi(xS ; θϕ) =
1

|S|!
∑

O∈π(S)

∑|S|
k=1 △(xk, xO1:k−1

; θ△) = 1
|S|!

∑
OS∈π(S) fc(xS , OS). Since f(xS) = ϕ0 +∑

i∈S ϕi(xS ; θϕ), we have f(xS) =
1

|S|!
∑

O∈π(S) fc(xS , O).

C PROOF OF THEOREM 3.4

According to Proposition 3.3, by optimizing L
(i)
s (xS), we have f(xS) =

1
|S|!

∑
O∈π(S) fc(xS , O).

When fc(xS , O1) = fc(xS , O2) ∀O1, O2 ∈ π(S), it is obvious that f(xS) = fc(xS , O) ∀O ∈
π(S). According to Lemma B.1,

ϕi(x; θϕ) =
1

N !

∑
O∈π(N )

N∑
k=1

I{Ok = i}△(xi, xO1:k−1
; θ△)

=
1

N !

∑
O∈π(N )

N∑
k=1

I{Ok = i}(fc(xO1:k
, O1:k)− fc(xO1:k−1

, O1:k−1))

=
1

N !

∑
O∈π(N )

N∑
k=1

I{Ok = i}(f(xO1:k
)− f(xO1:k−1

)).

(14)

In this case, according to Shapley et al. (1953), ϕ holds the four axioms and is the Shapley value of
f .

D PROOF OF THEOREM 3.5

First, we induce the value of fc when it converges.

Proposition D.1 Optimizing Lv(xS , OS) makes fc(xS , OS) converge to σ−1(EDtr [y|xS ]).

We can prove it as follows. Given

Lv(xS , OS) =

∑
(x′,y′)∈Dtr

I{x′
S = xS}Lm(xS , y, OS)∑

(x′,y′)∈Dtr
I{x′

S = xS}
, (15)

the partial derivative of Lv(xS , y, OS) with respective to θϕ can be derived as

∂Lv(xS , y, OS)

∂θϕ
=

1∑
(x′,y′)∈Dtr

I{x′
S = xS}

∑
(x′,y′)∈Dtr

I{x′
S = xS}

∂Lm(xS , y, OS)

∂θϕ
. (16)

The partial derivative of Lm(xS , y, OS) = y log(σ(fc(xS , OS)))+(1−y) log(1−σ(fc(xS , OS)))
with respective to ŷ = σ(fc(xS , OS)) can be derived as

∂Lm(xS , y, OS)

∂ŷ
=

ŷ − y

ŷ(1− ŷ)
.

The partial derivative of ŷ = σ(fc(xS , OS)) with respective to fc(xS , OS) can be derived as

∂ŷ

∂fc(xS , OS)
= ŷ(1− ŷ).
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Therefore, the partial derivative of Lm(xS , y, OS) with respective to θϕ can be derived as

∂Lm(xS , y, OS)

∂θϕ
= (ŷ − y)

∂fc(xS , OS)

∂θϕ
.

Therefore, we have

∂Lv(xS , y, OS)

∂θϕ
=

1∑
(x′,y′)∈Dtr

I{x′
S = xS}

∂fc(xS , OS)

∂θϕ

∑
(x′,y′)∈Dtr

I{x′
S = xS}(ŷ − y′).

(17)

The loss function converges when ∂Lv(xS ,y,OS)
∂θϕ

= 0. When ∂fc(xS ,OS)
∂θϕ

̸= 0, i.e., gradient descent
not occurring for the prediction of the marginal contribution module, we have∑

(x′,y′)∈Dtr

I{x′
S = xS}ŷ =

∑
(x′,y′)∈Dtr

I{x′
S = xS}y′ (18)

Then, we can derive

σ(fc(xS , OS)) =

∑
(x′,y′)∈Dtr

I{x′
S = xS}y′∑

(x′,y′)∈Dtr
I{x′

S = xS}
= EDtr

[y|xS ]. (19)

Therefore, fc(xS , OS) = σ−1(EDtr
[y|xS ]).

According to Proposition D.1, for all O ∈ π(S), there is σ(fc(xS , OS)) = EDtr [y|xS ]. According
to Theorem 3.6, this leads to ϕ converging to Shapley value of f .

E PROOF OF PROPOSITION 3.6

According to Proposition 3.3, f(xS) = 1
|S|!

∑
O∈π(S) fc(xS , O; θδ). With Proposition D.1, we

have f(xS) = 1
|S|!

∑
O∈π(S) σ

−1(EDtr
[y|xS ]) = σ−1(EDtr

[y|xS ]). Therefore, σ(f(xS)) =

EDtr [y|xS ].

F PROOF OF PROPOSITION 3.8

We first prove the following proposition:

Proposition F.1 Optimizing L
(i,k)
s (xS) makes ϕ(xS ; θϕ)i,k converge to∑

O∈D I{Ok=i}△(xi,xO1:k−1
;θ△)∑

O∈D I{Ok=i} .

Given

L(i,k)
s (xS) =

1

|D|
∑
O∈D

I{Ok = i}(ϕ(xS ; θϕ)i,k −△(xi, xO1:k−1
; θ△))2, (20)

the partial derivative of L(i,k)
s (x, y) with respective to θϕ can be calculated as

∂L
(i,k)
s (xS)

∂θϕ
=

2

|D|
∑

O∈∈D

I{Ok = i}(ϕ(xS ; θϕ)i,k −△(xi, xO1:k−1 ; θ△))
∂ϕ(xS ; θϕ)i,k

∂θϕ
. (21)

The loss function converges when ∂L(i,k)
s (xS)
∂θϕ

= 0. When ∂ϕ(xS ;θϕ)i,k
∂θϕ

̸= 0, we have∑
O∈D

I{Ok = i}(ϕ(xS ; θϕ)i,k −△(xi, xO1:k−1 ; θ△)) = 0. (22)

From Eq. 22, we can derive

ϕ(xS ; θϕ)i,k =

∑
O∈D I{Ok = i}△(xi, xO1:k−1 ; θ△)∑

O∈D I{Ok = i} . (23)
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According to Proposition A.1, optimizing L
(i,k)
s (xS) will make ϕ(xS ; θϕ)i,k converge to∑

O∈D I{Ok=i}△(xi,xO1:k−1
;θ△)∑

O∈D I{Ok=i} . i.e., the averaged marginal contribution in permutations that xi ap-
pears at the k-th position. Supposing m =

∑
O∈D I{Ok = i}, since the permutations are drawn

independently from each other, their generated marginal contribution are i.i.d. We can regard them
as randomly sampled from the marginal contribution set

Di,k
△ (xS) = {△(xi, xO1:k−1

; θ△)|O ∈ π(S), Ok = i}. (24)

According to Central Limit Theorem, their mean value follows a Gaussian distribution:

N (ϕ∗
i,k,

σ2
i,k

m
), (25)

where ϕ∗
i,k = 1

(|S|−1)!

∑
△∈Di,k

△ (xi)
△ is the real positional Shapley value, σ2

i,k =
1

(|S|−1)!

∑
△∈Di,k

△ (xi)
(△ − ϕ∗

i,k)
2 is the variance of D△. Obviously, we can formulate ϕ∗

i,k and

σ2
i,k as

ϕ∗
i,k =

1

(|S| − 1)!

∑
O∈π(S)

I{Ok = i}△(xi, xO1:k−1 ; θ△)

σ2
i,k =

1

(|S| − 1)!

∑
O∈π(S)

I{Ok = i}(△(xi, xO1:k−1 ; θ△)− ϕ∗
i,k)

2.

(26)

Therefore, ϕi,k ∼ S(ϕ∗
i,k,

σ2
i,k

m ), where ϕ∗
i,k = 1

(|S|−1)!

∑
O∈π(S) I{Ok = i}△(xi, xO1:k−1

; θ△),
σ2
i,k = 1

(|S|−1)!

∑
O∈π(S) I{Ok = i}(△(xi, xO1:k−1

; θ△)− ϕ∗
i,k)

2.

G PROOF OF PROPOSITION 3.10

Since the position of feature xi in the sampled permutation follows a uniform distribution, when
sampling large number of permutations, the number of samples appearing at different positions are
approximately the same. We denote the number as m = M/|S|. Since

ϕ(xS ; θϕ)i,k ∼ N (ϕ∗
i,k,

σ2
i,k

m
), (27)

When using positional Shapley value to estimate Shapley value, we have

ϕ(xS ; θϕ)i =
1

|S|

|S|∑
k=1

ϕ(xS ; θϕ)i,k

∼ N (

∑|S|
k=1 ϕ

∗
i,k

|S|
,

1

|S|2

|S|∑
k=1

σ2
k

m
)

= N (ϕ∗
i ,

1

|S|2
N∑

k=1

σ2
k

m
).

(28)

According to Proposition 3.2, the distribution of directly Shapley value estimation is N (ϕ∗
i ,

σ2
i

M ).
Compare the variances of these two distributions, we have

σ2
i

M
− 1

|S|2

|S|∑
k=1

σ2
i,k

m
≈ σ2

i

M
−

∑|S|
k=1 σ

2
i,k

|S|M

=
1

|S|M
(|S|σ2

i −
|S|∑
k=1

σ2
i,k)

=
1

|S|M
(

|S|∑
k=1

(σ′
i,k)

2 −
|S|∑
k=1

σ2
i,k),

(29)
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Figure 3: The structure overview of SASANet. Different modules are represented by different colors,
including Feature Embedding module (blue), Marginal Contribution module (yellow), and Shapley Value mod-
ule (green). The purple dash lines indicate loss terms.

where

(σ′
i,k)

2 =

∑
O∈π(S) I{Ok = i}(△(xi, xO1:k

; θ△)− ϕ∗
i )

2

(|S| − 1)!
. (30)

Since
ϕ∗
i,k = argmin

µ

∑
O∈π(S)

I{Ok = i}(△(xi, xO1:k
; θ△)− µ)2, (31)

we have

σ2
i,k =

∑
O∈π(S) I{Ok = i}(△(xi, xO1:k−1

; θ△)− ϕi,k)
2

(|S| − 1)!

=
minµ

∑
O∈π(S) I{Ok = i}(△(xi, xO1:k−1

; θ△)− µ)2

(|S| − 1)!

≤ (σ′
i,k)

2.

(32)

Therefore, positional Shapley value-based estimation has a smaller variance than the direct Shapley
value estimation.

H CONFIGURATIONS

We conducted experiments on a computer with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz,
RAM of 500G, and 1 GeForce RTX 2080 Ti GPU. We implemented our model with Tensor-
Flow 1.15. The weights of the neural networks were randomly initialized with normal initializer.
LeakyRELU was used as activation function. Adam optimizer was used for model training. The
detailed model structures of SASANet are shown in Table 4.

I DATASET

The experiments are conducted on 3 public datasets:
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Table 4: The detailed network structure of SASANet.
Dataset Module Name Value

Fraud

Feature Embedding Dimension 64
Continuous Embedding [16, 16, 64]

Marginal

MLP [128, 128, 128]
Attention Dimension 8
Attention Head 4

Shapley

MLP [128, 128, 128]
Attention Dimension 8
Attention Head 8
λv 1
λs 1

HiggsBoson

Feature Embedding Dimension 64
Continuous Embedding [128, 128, 512]

Marginal

MLP [512] * 6 + [1024]
Attention Dimension 128
Attention Head 8

Shapley

MLP [256] * 6
Attention Dimension 128
Attention Head 8
λv 1
λs 1

Income

Feature Embedding Dimension 128
Continuous Embedding [128, 16, 128]

Marginal

MLP [256, 128, 128]
Attention Dimension 128
Attention Head 16

Shapley

MLP [256, 128, 128]
Attention Dimension 128
Attention Head 16
λv 1
λs 0.0001

Insurance

Feature Embedding Dimension 64
Continuous Embedding [16, 16]

Marginal

MLP [128, 128, 128]
Attention Dimension 8
Attention Head 4

Shapley

MLP [128, 128, 128]
Attention Dimension 8
Attention Head 8
λv 1
λs 1

Table 5: Summary of the datasets.

Dataset Train Test FeaturesTotal Positive Negative Total Positive Negative
Income 199,523 12,382 187,141 99,762 6,186 93,576 39

Higgs Boson 10,000,000 5,299,505 4,700,495 500,000 529,618 470,382 28
Fraud 227,845 380 227,465 56,962 112 56,850 30

Insurance 5,822 348 5,474 4,000 238 3762 85

Census-Income Prediction. This is the dataset for predicting if the income will be above 50K,
given demographic and employment related features. This dataset contains anomalous census data
extracted from the 1994 and 1995 Current Population Surveys conducted by the U.S. Census Bureau.
We formulated the task as a binary-classification problem. The original data has been split into
training and test set with a ratio of 2:1, which we have followed in our experiments.

Higgs Boson dataset. This is a classification problem that aims to distinguish between a signal
process that produces Higgs Bosons and a background process that does not. The first 21 features
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represent kinematic properties measured by the particle detectors in the accelerator. The last seven
features are high-level features derived from the first 21 features to help discriminate between the
two classes. In our experiments, we used the last 500,000 examples as a test set.

Credit Card Fraud Detection The dataset contains transactions made by credit cards in September
2013 by European cardholders. This dataset presents transactions that occurred in two days. The
dataset is highly unbalanced, the positive class (frauds) account for 0.172. The dataset contains
the seconds elapsed between each transaction and the first transaction in the dataset, the transaction
Amount, and 28 features obtained with PCA. License: Database Contents License (DbCL) v1.0.

Insurance Company Benchmark This data set used in the CoIL 2000 Challenge contains infor-
mation on customers of an insurance company. The data was supplied by the Dutch data mining
company Sentient Machine Research and is based on a real world business problem. The data con-
sists of 86 variables and includes product usage data and socio-demographic data.

The summary of the datasets are listed in Table 5. We have transformed each task into standard
prediction tasks with structured input features. Specifically, each sample consists of an input feature
vector and a class label.

J STANDARD DEVIATION OF PERFORMANCE

Table 6: Model Performance, in which the best performance among interpretable models is in bold.

Model Income Higgs Boson Fraud Insurance
AP AUC AP AUC AP AUC RMSE MAE

LightGBM 0.6972 0.9566 0.8590 0.8459 0.7934 0.9737 0.2315 0.1052
± 0.0001 0.0001 0.0001 0.0001 0.0122 0.0011 0.0001 0.0002

MLP 0.6616 0.9518 0.8877 0.8771 0.8167 0.9621 0.2310 0.1076
± 0.0011 0.0003 0.0002 0.0001 0.0105 0.0017 0.0003 0.0008

DT 0.2514 0.7250 0.6408 0.6705 0.5639 0.8614 0.3332 0.1167
± 0.0022 0.0018 0.0002 0.0001 0.0164 0.0073 0.0020 0.0019

LR 0.3570 0.8717 0.6835 0.6846 0.7279 0.9620 - -
± 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 - -

NAM 0.6567 0.9506 0.7897 0.7751 0.7986 0.9590 0.2382 0.1182
± 0.0043 0.0006 0.0003 0.0001 0.0026 0.0075 0.0018 0.0071

SITE 0.6415 0.9472 0.8656 0.8597 0.7912 0.9556 - -
± 0.0037 0.0009 0.0002 0.0011 0.0039 0.0057 - -

SENN 0.6067 0.9416 0.7563 0.7556 0.7709 0.8916 0.2672 0.1313
± 0.0013 0.0005 0.0003 0.0005 0.0004 0.0001 0.0082 0.0107

SASANet-p 0.6708 0.9525 0.8775 0.8656 0.8090 0.9667 0.2368 0.0894
± 0.0009 0.0001 0.0008 0.0004 0.0022 0.0017 0.0010 0.0122

SASANet-d 0.6811 0.9527 0.8790 0.8675 0.8090 0.9665 0.2387 0.1037
± 0.0009 0.0001 0.0002 0.0002 0.0020 0.0017 0.0011 0.0130

SASANet 0.6864 0.9542 0.8836 0.8721 0.8124 0.9674 0.2375 0.0901
± 0.0002 0.0001 0.0001 0.0001 0.0004 0.0002 0.0005 0.0083

K MEANINGFULNESS: VALUE FUNCTION EVALUATION

SASANet’s value function’s prediction performance given different numbers of features decides
how well the modeled Shapley values reveal real-world feature-label relevance. By randomly mask
each test sample to each feature set size to form separate test sets, we test the AUC performance
of a trained SASANet’s value function generated by the marginal contribution module on each test
set. As comparison, we train a separate model for each feature size with SASANet structure (i.e.,
“SASANet (sep)”), which has lower fitting difficulty for only considering fixed-sized feature sets.
In addition, we trained separate MLPs for each size because MLP performed the best among neural
networks in Table 6. According to the results in Figure 4, SASANet is comparable to the separately
trained models in terms of prediction with arbitrary-numbered features. This brings meaningful
value functions and Shapley values that reflect real feature-label relevance.
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(a) Income (b) Higgs Boson

Figure 4: AUC performance given different number of features.

L FEATURE ADDING EXPERIMENT

We experimented by adding features with Top-k (1-5) attribution values by different models from
scratch and observe how AP and AUC increases.

Table 7: Feature-adding experiments.

Task Method Top 1 Top 2 Top 3 Top 4 Top 5
AP AUC AP AUC AP AUC AP AUC AP AUC

Income SASA. 0.448 0.911 0.511 0.928 0.582 0.938 0.603 0.942 0.617 0.945
KerSH. 0.400 0.895 0.428 0.901 0.456 0.902 0.495 0.916 0.528 0.924
FastSH. 0.149 0.679 0.185 0.528 0.250 0.756 0.276 0.770 0.346 0.840

Higgs SASA. 0.757 0.756 0.659 0.659 0.669 0.685 0.679 0.701 0.689 0.714
KerSH. 0.691 0.669 0.626 0.621 0.641 0.639 0.648 0.652 0.657 0.661
FastSH. - - - - - - - - - -

Fraud SASA. 0.519 0.933 0.747 0.950 0.791 0.959 0.809 0.963 0.812 0.967
KerSH. 0.464 0.940 0.735 0.950 0.787 0.948 0.802 0.953 0.802 0.958
FastSH. 0.004 0.673 0.005 0.737 0.012 0.824 0.061 0.866 0.077 0.875

M EXTRA VISUALIZATIONS

Figure 5: Additional visualizations.
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