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Abstract

Ultrasound and other medical imaging data hold significant promise for burn depth1

assessment but remain underutilized in clinical workflows due to limited data2

availability, interpretive complexity, and the absence of standardized integration.3

Vision-language models (VLMs) have demonstrated impressive general-purpose4

capabilities across image and text domains, but they struggle to generalize to5

medical imaging modalities such as ultrasound, which are largely absent from6

pretraining corpora and represent a fundamentally different form of data. We7

present a framework for fine-grained burn depth assessment that combines digital8

photographs with ultrasound data, guided by structured vision-language reasoning.9

A central component of our method is the use of structured diagnostic hypotheses10

that describe clinical findings relevant to burn severity. These hypotheses can11

be provided by expert surgeons or automatically generated using large language12

models through a controlled prompting process. The reasoning process is further13

supported by symbolic consistency checks and chain-of-thought logic to align14

hypotheses with visual features, enhancing both interpretability and diagnostic15

performance. Our results show that the proposed method, when guided by struc-16

tured reasoning, achieves higher diagnostic accuracy in burn depth assessment17

compared to base vision-language models without structured guidance. Impor-18

tantly, the proposed system surpasses the diagnostic accuracy of expert surgeons19

using traditional assessment methods. This work demonstrates how multi-modal20

fusion and structured reasoning can enhance the explainability and accuracy of21

vision-language models in high-stakes medical applications.22

1 Introduction23

Accurate burn depth assessment is critical for determining whether a wound will heal conservatively24

or requires surgical intervention, such as excision and grafting. However, current clinical workflows25

rely heavily on subjective visual inspection and physician experience, leading to considerable inter-26

observer variability, delayed decision-making, and suboptimal outcomes. Even among experienced27

clinicians, diagnostic accuracy is estimated to range between 70% and 80%. There is a clear need28

for intelligent, interpretable systems that can support high-stakes clinical reasoning with greater29

consistency and precision.30

Medical imaging data, including B-Mode ultrasound and Tissue Doppler Imaging (TDI), offer valu-31

able physiological insights that can augment visual assessments [Ho and Solomon, 2006, Gnyawali32

et al., 2015, 2020]. Yet these modalities remain underutilized in burn care due to interpretive com-33

plexity, limited expert availability, and a lack of standardized integration. Annotated datasets for these34

modalities are scarce, and interpreting them often requires specialized knowledge that is not easily35

scalable. In particular, B-Mode and TDI images capture structural and perfusion-related signals that36
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Figure 1: Overview of the proposed framework for burn depth assessment. The system takes multi-
modal inputs, including digital photographs, B-mode ultrasound, and TDI ultrasound, from the
burn site. Structured diagnostic hypotheses are provided either by expert surgeons or automatically
generated by large-language model (LLM). These hypotheses guide the vision–language model
(VLM) through chain-of-thought (CoT) reasoning to produce interpretable outputs for surgical
decision making and fine-grained burn depth prediction.

are not discernible from photographs alone, making them a promising but underexploited source of37

diagnostic information.38

At the same time, vision-language models (VLMs) have emerged as powerful tools for visual39

understanding and general-purpose reasoning across multimodal inputs. While these models excel40

in tasks such as image captioning, visual question answering, and grounded classification [Radford41

et al., 2019, 2021, Achiam et al., 2023, Touvron et al., 2023, Liu et al., 2023, 2024], they struggle to42

generalize to domain-specific data such as ultrasound, which is largely absent from their pretraining43

corpora and fundamentally differs from natural image distributions [Li et al., 2023, Zhang et al.,44

2024b, Li et al., 2024, Guo et al., 2024, Zhang et al., 2024a, Shakeri et al., 2024].45

Applying VLMs to high-stakes medical imaging tasks remains challenging, particularly in scenarios46

where data is limited and domain expertise is essential. To address these challenges, we present a47

framework for fine, grained burn depth assessment that fuses digital photographs with ultrasound48

imaging, guided by structured vision-language reasoning. As shown in Figure 1, our method49

introduces structured diagnostic hypotheses, short natural language descriptions of clinically relevant50

features, that serve as an intermediate reasoning layer. These hypotheses can be authored by expert51

surgeons or automatically generated using large language models through controlled prompting52

strategies. We further align these hypotheses with image features using symbolic consistency checks53

and chain-of-thought reasoning, enabling transparent and clinically grounded predictions.54

We evaluate our approach on two tasks: (i) binary classification of surgical versus non-surgical cases,55

and (ii) a three-way classification of burn severity: superficial partial-thickness, deep partial-thickness,56

and full-thickness burns. The system achieves 95% accuracy using expert-generated hypotheses and57

93% with automatically generated ones—exceeding typical clinician performance and strong non-58

expert baselines. These improvements are consistent across multiple foundation models, including59

GPT-4o, GPT-4 Turbo, Gemini 1.5, and Gemini 2.0, indicating that the approach generalizes60

across architectures.61

By integrating multi-modal fusion, structured hypothesis generation, and symbolic reasoning, this62

work shows how general-purpose VLMs can be adapted to support domain-specific, high-stakes63

diagnostic tasks. Our results demonstrate the potential for automated systems to augment clini-64

cal decision-making with expert-level accuracy and interpretability in low-data, high-risk medical65

environments.66
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2 Problem Formulation67

We frame burn depth assessment as a multi-modal, hypothesis-guided visual reasoning task. Each68

training sample xi is composed of three complementary imaging modalities: a digital photograph69

xP
i ∈ RH×W×3, a B-mode ultrasound image xB

i ∈ RH×W×3, and a Tissue Doppler Imaging (TDI)70

scan xT
i ∈ RH×W×3. For each modality, we associate a modality-specific prompt cmod that describes71

the imaging context and a structured diagnostic hypothesis hmod, which may be authored by expert72

clinicians or generated automatically through a controlled prompting process of a large language73

model (LLM). The full multi-modal input is therefore:74

x̃i = {(xP
i , c

P, hP), (xB
i , c

B, hB), (xT
i , c

T, hT)},
and we define Hi = {hP, hB, hT} as the set of all hypotheses tied to sample i.75

Our objective is to infer clinically meaningful labels by jointly leveraging the image evidence76

and the structured hypotheses. For surgical decision-making, we pose a binary classification task77

where the ground-truth label yi ∈ {0, 1} indicates whether surgical intervention is required. The78

vision-language model (VLM) estimates the likelihood:79

P (yi = 1 | x̃i), and the final decision is computed as:80

ŷi = arg max
y∈{0,1}

[
P (y | x̃i) + α · S(Hi, y)

]
,

where α ≥ 0 weights the contribution of hypothesis alignment.81

For fine-grained severity estimation, the model assigns a depth label ci ∈ {1, . . . , N} with probabili-82

ties:83

P (ci = c | x̃i), c ∈ {1, . . . , N},
and final prediction:84

ĉi = arg max
c∈{1,...,N}

[
P (c | x̃i) + β · S(Hi, c)

]
,

where β ≥ 0 controls the influence of hypothesis-driven reasoning.85

The support function S(Hi, y) or S(Hi, c) evaluates the semantic alignment between the set of86

diagnostic hypotheses and a candidate output, returning a scalar in [0, 1]. From a modeling perspective,87

S provides an auxiliary reasoning signal that can modulate predictions from the visual backbone.88

This is particularly valuable in medical settings where hypotheses encode domain knowledge that is89

otherwise difficult to capture with standard pretraining.90

We operationalize S using chain-of-thought prompting within the VLM. For a given sample, the91

model is queried with a structured prompt such as: “Given the following hypotheses from the photo,92

B-mode, and TDI: [. . . ], how well do they support a diagnosis of full-thickness burn?” The VLM93

generates a free-form reasoning trace, which is then parsed into a quantitative support score. This94

mapping can be implemented through a rule-based evaluation (e.g., counting agreement phrases or95

confidence indicators) or through a lightweight learned calibration model trained to predict alignment96

scores from reasoning traces.97

Importantly, the support function is agnostic to the underlying VLM and is designed to be modular.98

It can be precomputed for a set of hypotheses or adapted online, enabling integration with a range99

of backbone architectures. By providing a structured, interpretable alignment signal, S serves as a100

bridge between human-readable hypotheses and the model’s predictive distribution, allowing explicit101

incorporation of domain reasoning into both binary surgical decisions and fine-grained burn severity102

predictions.103

3 Methodology104

We propose a hypothesis-guided vision–language reasoning framework for burn depth assessment (see105

Figure 1). The method integrates multi-modal imaging data with structured diagnostic hypotheses,106

enabling a Vision–Language Model (VLM) to reason beyond raw pixel evidence and produce107

clinically meaningful predictions.108

Input Representation and Hypothesis Construction. Each input sample xi is composed of three109

complementary modalities: a digital photograph xP
i ∈ RH×W×3, a B-Mode ultrasound image110

3



xB
i ∈ RH×W×3, and a Tissue Doppler Imaging (TDI) scan xT

i ∈ RH×W×3. Importantly, the digital111

photograph and ultrasound data do not correspond frame-by-frame. Ultrasound data are acquired as112

video sequences, while the digital photograph is a single still image. Therefore, the photograph is first113

processed independently by the VLM to extract visual reasoning cues, and its resulting hypothesis114

and feature embedding are later combined with those derived from the ultrasound modalities for the115

final prediction. Practical ultrasound acquisition settings (such as frame sampling, probe parameters,116

and TDI configurations) are described in detail in the experimental section.117

Each modality is paired with a modality-specific prompt cmod that encodes acquisition context118

and a structured hypothesis hmod that describes modality-specific diagnostic cues. Hypothe-119

ses can be sourced from two streams: (i) expert-guided, provided directly by experienced burn120

surgeons, and (ii) automated, generated by a large language model Mθ given modality instruc-121

tions: hmod = Mθ(c
mod), yielding a hypothesis set Hi = {hP, hB, hT}. The fused input is:122

x̃i =
{
(xP

i , c
P, hP), (xB

i , c
B, hB), (xT

i , c
T, hT)

}
.123

Support Function and Reasoning. To incorporate structured reasoning, we define a support function124

S(Hi, y) that quantifies how well the hypotheses support a candidate decision y: S : Hi×Y → [0, 1].125

This is implemented via chain-of-thought prompting of the VLM. For example, the model may be126

queried with: “Given the following hypotheses from the photo, B-mode, and TDI: [. . . ], how well do127

they support a diagnosis of full-thickness burn?” The reasoning trace from the VLM is then parsed128

and converted into a scalar support score, using either rule-based evaluation (e.g., detecting agreement129

indicators) or a lightweight learned calibration model.130

Prediction with Hypothesis-Guided Support. The VLM predicts label probabilities from the131

fused input: P (y | x̃i), y ∈ Y, where Y = {0, 1} for surgical decision or Y = {1, . . . , N} for132

multi-class burn severity. Final predictions integrate hypothesis support: ŷi = argmaxy∈Y

[
P (y |133

x̃i) + λ · S(Hi, y)
]
, with λ ≥ 0 controlling the influence of hypothesis-guided reasoning.134

Algorithm. The overall procedure is
summarized in Algorithm 1. This al-
gorithm shows how multi-modal in-
puts and expert- or LLM-generated
hypotheses are combined within the
VLM and refined through the sup-
port function to yield the final de-
cision. By explicitly modeling rea-
soning through diagnostic hypotheses,
the framework enables the VLM to
combine information from digital pho-
tographs and ultrasound imaging, even
though these inputs are not temporally
aligned frame-by-frame. This design
allows the system to incorporate expert
knowledge or automatically generated
insights, leading to interpretable and
accurate predictions for both surgical
decision making and fine-grained burn
depth classification.

Algorithm 1: Hypothesis-Guided Burn Depth Assessment
Input: Multi-modal inputs for i: xP

i , xB
i , xT

i ;
Prompts cP, cB, cT;
Hypothesis source (expert or LLM Mθ);
VLM; parameter λ.
Output: ŷi ∈ Y .
1. Hypothesis Generation:
foreach mod ∈ {P,B,T} do

if expert then
hmod ← expert hypothesis;

else
hmod ←Mθ(c

mod);

Hi ← {hP, hB, hT};
2. Fuse Inputs:
x̃i ← {(xmod

i , cmod, hmod)}mod;
3. VLM Prediction:
Compute P (y | x̃i);
4. Support Scoring:
foreach y ∈ Y do

Query VLM with Hi, y;
Score sy ← S(Hi, y);

5. Final Decision:
ŷi ← argmaxy

[
P (y | x̃i) + λ · sy

]
;

return ŷi;

135

Automated Hypothesis Generation. To enable structured reasoning without relying exclusively on136

human expertise, we introduce an automated hypothesis generation module (see Figure 2). This com-137

ponent is designed to transform clinical knowledge and experimental details into machine-readable138

hypotheses that guide the VLM in interpreting ultrasound data for burn depth prediction.139

The process begins by constructing a prompt that fuses two forms of textual context: the experimental140

setup and the clinical interpretation of imaging cues. Let Dexp represent descriptive details of the141

imaging modalities (e.g., “TDI provides color-coded velocity maps; B-mode offers structural tissue142

layers”), and Dclin capture clinical heuristics (e.g., “dominant blue regions in TDI and disrupted143

layers in B-mode correlate with full-thickness burns”). These are concatenated using a PromptBuilder144
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Figure 2: Automated hypothesis generation pipeline. Given the problem specification (burn
depth prediction using B-Mode and TDI ultrasound), the system first constructs an input prompt
by combining experimental descriptions with clinical context. (A) The language model generates
initial hypotheses and corresponding first-order logic (FOL) premises describing how to interpret
ultrasound patterns. (B) An SMT solver iteratively filters out conflicting premises and enforces
logical consistency, providing feedback to refine the generated rules. (C) The validated premises
are summarized into a final natural-language hypothesis that guides the vision-language model in
subsequent burn depth assessment.

function: p = PromptBuilder(Dexp,Dclin), which yields a structured query that supplies the145

language model with sufficient background knowledge.146

Given this prompt p, a large language model Mθ generates both an initial natural-language hypothesis147

h and a set of first-order logic (FOL) premises Φ = {ϕ1, ϕ2, . . . , ϕK} that encode specific diagnostic148

rules. Sampling parameters such as temperature and top-p nucleus sampling are varied to encourage149

diverse candidate rules.150

To validate the first-order logic (FOL) premises, we employed the Z3 SMT solver [de Moura and151

Bjørner, 2008] to ensure logical consistency. The solver iteratively removes contradictions and152

provides feedback to refine the generated premises. This cycle continues until a logically consistent153

set is obtained or a maximum iteration threshold is reached. Conflicting statements are pruned, and154

the remaining validated premises are then summarized into a final natural-language hypothesis. A155

typical output might be: “Based on the presence of dominant blue regions in TDI and discontinuous156

layers in B-mode, the burn is indicative of full-thickness injury and may require surgical intervention.”157

By integrating this automated pipeline into the multi-modal reasoning framework, the system can158

dynamically generate domain-specific guidance without requiring manual annotations or handcrafted159

rules, significantly improving interpretability and diagnostic accuracy.160

4 Experiments161

4.1 Dataset and Experimental Setup162

We evaluate our approach on a retrospective dataset collected over a one-year period at a major U.S.163

burn treatment center. To our knowledge, this is the first dataset to pair Tissue Doppler Imaging164

(TDI) and B-Mode ultrasound for burn depth assessment, enabling multi-modal reasoning beyond165

traditional RGB imagery. The dataset includes ultrasound recordings from 29 patients with clinically166

verified burn injuries spanning superficial, superficial partial-thickness, deep partial-thickness, and167

full-thickness (third-degree) burns. Ground-truth depth labels were determined via histological biopsy168

when available (5 cases) or established through consensus among board-certified burn surgeons.169

Each ultrasound sample contains both B-Mode frames, capturing structural echogenicity, and TDI170

frames, encoding perfusion-sensitive velocity information via pseudo-color. To ensure data reliability,171

we retained only TDI frames flagged as high-quality by the acquisition system (indicated by green172

diagnostic markers ensuring optimal probe placement and coupling). From the raw sequences,173

950 high-quality frames were extracted and then uniformly sampled at fixed intervals to reduce174

redundancy and maximize scene diversity, yielding 324 unique frames for downstream analysis.175

We hold out 130 frames from 15 subjects for evaluation, while the remainder are used to construct176

few-shot prompts, chain-of-thought demonstrations, and calibration examples.177

It is important to note that digital photographs of the burn sites, captured at bedside, do not align178

frame-by-frame with ultrasound sequences. Photographs are single still images processed inde-179

pendently by the VLM, and their reasoning outputs are later fused with ultrasound-derived cues.180
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Ultrasound acquisition parameters (e.g., probe frequency, TDI velocity ranges) follow clinical best181

practices and are detailed in the experimental section of the supplementary material. Representative182

samples are shown in Figure 3, highlighting the complementary information captured by photographs183

and ultrasound modalities.184

Figure 3: Representative samples from the dataset.
Left: digital photographs of burn wounds. Right:
paired ultrasound images, with B-Mode showing
tissue structure and TDI visualizing perfusion.

Hypothesis Generation and Vision–Language185

Models. For automated diagnostic hypotheses,186

we use OpenAI’s o3-mini-high, a compact187

LLM optimized for symbolic reasoning188

and logical chaining. These hypotheses189

complement expert-provided ones within190

our framework. Vision–language reasoning191

tasks are carried out on multiple foundation192

models, including gpt-4o, gpt-4o-mini,193

gpt-4-turbo, gemini-2.0-flash, and194

gemini-1.5-flash. These models were195

selected for their demonstrated multi-modal196

reasoning capabilities, low latency, and com-197

patibility with structured prompts that integrate198

visual evidence and text.199

All experiments are conducted in zero-shot or200

few-shot configurations unless otherwise stated.201

We benchmark our method by comparing pre-202

dictions guided by expert-crafted hypotheses203

against those guided by automatically generated hypotheses, under identical input conditions and204

prompt scaffolds, to isolate the impact of structured reasoning on burn depth assessment.205

4.2 Experimental Setup206

We evaluate our framework across three complementary experimental settings. Each setting is207

designed to isolate specific factors in diagnostic performance by varying the input modalities, the208

classification granularity, and the source of diagnostic hypotheses. This controlled design allows us209

to analyze the contribution of each component in a systematic manner.210

1. Binary Surgical Decision with Ultrasound (Expert vs. Automated Hypotheses). The first211

setting targets a binary decision task: determining whether surgical intervention is required. Inputs212

are limited to ultrasound data, comprising both B-Mode and Tissue Doppler Imaging (TDI). In the213

expert-guided variant, board-certified burn surgeons manually reviewed the ultrasound frames and214

produced structured diagnostic hypotheses informed by procedural knowledge and anatomical cues.215

TDI frames were spatially cropped using landmarks visible in the corresponding B-Mode scans,216

ensuring that hypotheses addressed clinically meaningful regions. To evaluate automated reasoning,217

the same ultrasound inputs were provided to a language model with modality-specific prompts.218

In this configuration, the model generated diagnostic hypotheses without any expert annotations219

or region-of-interest cues. This setting provides a direct comparison between expert-derived and220

LLM-generated reasoning when using ultrasound alone.221

2. Fine-Grained Burn Classification with Ultrasound (Automated Hypotheses). The second222

setting assesses fine-grained classification performance using ultrasound data only, guided exclusively223

by automatically generated hypotheses. The task is defined over three clinically significant categories:224

second-degree superficial, second-degree deep, and third-degree burns. First-degree burns are225

excluded because they are seldom represented in hospital ultrasound workflows. This experiment226

probes the system’s ability to differentiate subtle structural and perfusion patterns that separate227

intermediate burn types—cases that are difficult to resolve using image evidence alone. The use228

of LLM-generated hypotheses allows us to measure how structured reasoning impacts fine-grained229

predictions.230

3. Fine-Grained Classification with Photographs and Ultrasound (Expert Hypotheses). The231

third setting extends the analysis to a multi-modal scenario, combining bedside digital photographs232

with ultrasound inputs. In this setting, hypotheses are generated exclusively by experienced burn233

surgeons. The classification space includes first-, second-, and third-degree burns, with superficial234
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and deep second-degree categories merged into a single class. This merging reflects common practice235

in triage and telemedicine contexts, where photographs may be taken in non-clinical environments236

and used for remote assessments. This experiment highlights the value of photographs as a comple-237

mentary modality and demonstrates the framework’s ability to integrate heterogeneous inputs with238

expert-guided reasoning, yielding interpretable predictions across the full spectrum of burn severity.239

Implementation Details: The final classification results of our method, when guided by structured240

diagnostic hypotheses, are obtained through a self-consistency [Wang et al., 2023] strategy combined241

with CoT reasoning [Wei et al., 2022]. For each input, the VLM is queried multiple times with242

different sampling parameters. The temperature values are sampled within the range of 0.5 to 1 and243

the top-p values are sampled within the range of 0.5 to 1.0. In addition, the order and the subset of244

CoT exemplars in the prompt are permuted to encourage diverse reasoning paths. These multiple245

outputs are aggregated, and the final prediction is determined by majority voting across all generated246

responses.247

4.3 Results248

Table 1: Surgical decision performance using
expert-guided and automated hypotheses across
VLMs.
Method Accuracy F1 Prec Recall

Expert Hypothesis 95% 0.95 0.94 1.00

GPT-4o + Auto Hypothesis 93% 0.93 0.94 0.93
GPT-4o (Base) 33% 0.17 0.11 0.33
GPT-4o-mini + Auto Hypothesis 80% 0.77 0.85 0.80
GPT-4o-mini (Base) 67% 0.67 0.69 0.67
GPT-4 Turbo + Auto Hypothesis 93% 0.93 0.94 0.93
GPT-4 Turbo (Base) 87% 0.87 0.87 0.87
Gemini 2.0 + Auto Hypothesis 87% 0.86 0.89 0.83
Gemini 2.0 (Base) 47% 0.41 0.79 0.47
Gemini 1.5 + Auto Hypothesis 80% 0.79 0.85 0.80
Gemini 1.5 (Base) 60% 0.50 0.42 0.60

We report results across binary surgical deci-249

sion tasks, fine-grained burn depth classifica-250

tion, and multi-modal fusion analyses. All251

experiments compare baseline VLMs to their252

hypothesis-guided counterparts to quantify the253

impact of structured reasoning.254

Surgical vs. Non-Surgical Classification. Ta-255

ble 1 summarizes performance on the binary256

task of determining surgical necessity using ul-257

trasound inputs. Expert-written hypotheses pro-258

vide the strongest guidance, yielding 95% accu-259

racy, an F1-score of 0.95, precision of 0.94, and260

perfect recall. These results reflect close clinical261

alignment and serve as a reference upper bound.262

Automated hypothesis generation substantially263

improves outcomes for all VLMs. For example,264

GPT-4o and GPT-4 Turbo paired with automatically generated hypotheses both achieve 93% accu-265

racy and an F1-score of 0.93, approaching expert performance. In contrast, the base GPT-4o without266

hypothesis guidance reaches only 33% accuracy and an F1-score of 0.17, highlighting the limitations267

of direct image-to-text reasoning in high-stakes settings.268

Smaller models benefit as well: GPT-4o-mini improves from 67% to 80% accuracy, Gemini 1.5269

from 60% to 80%, and Gemini 2.0 from 47% to 87%. These gains demonstrate that structured270

reasoning provides a consistent boost in diagnostic alignment across diverse architectures.271

Fine-Grained Burn Depth Classification with Automated Hypotheses.272

Table 2: Fine-grained burn depth classification with auto-
mated hypotheses across VLMs.

Method Accuracy F1 Prec Recall

GPT-4o + Auto Hypothesis 87% 0.87 0.87 0.87
GPT-4o (Base) 27% 0.27 0.34 0.27
GPT-4o-mini + Auto Hypothesis 53% 0.42 0.53 0.53
GPT-4o-mini (Base) 73% 0.71 0.73 0.73
GPT-4 Turbo + Auto Hypothesis 53% 0.52 0.56 0.53
GPT-4 Turbo (Base) 60% 0.59 0.62 0.60
Gemini 2.0 + Auto Hypothesis 60% 0.50 0.64 0.60
Gemini 2.0 (Base) 47% 0.46 0.60 0.47
Gemini 1.5 + Auto Hypothesis 67% 0.62 0.79 0.67
Gemini 1.5 (Base) 47% 0.43 0.46 0.47

Table 2 reports performance for273

three-class burn depth classification274

(first-, second-, and third-degree) us-275

ing only ultrasound inputs with auto-276

mated hypotheses. GPT-4o achieves277

the best results, with 87% accuracy278

and balanced precision, recall, and279

F1-score, all at 0.87. This is a sub-280

stantial improvement over the base281

model’s 27% accuracy, underscoring282

the value of explicit reasoning for283

fine-grained tasks.284

Other VLMs also benefit from hypoth-285

esis guidance. Gemini 1.5 improves286

from 47% to 67% accuracy, and Gemini 2.0 improves from 47% to 60%. Interestingly, the base287
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versions of GPT-4 Turbo and GPT-4o-mini perform competitively or slightly better than their288

hypothesis-augmented counterparts on this task, suggesting that certain architectures may already289

encode sufficient priors for moderate-granularity distinctions. Nonetheless, the overall trend shows290

that hypothesis-driven reasoning improves performance in challenging, domain-specific classification.291

Effect of Multi-Modal Fusion. When using only digital photographs, the model performs well for su-292

perficial injuries, correctly identifying 83.3% of first-degree burns and 76.9% of second-degree burns.293

Table 3: Per-class performance comparison: digital pho-
tographs only vs. multi-modal input (photographs + TDI ul-
trasound). AUROC values include 95% confidence intervals,
and correct classification rates are reported as percentages.

Burn Class Setting AUROC 95% CI Correct (%)

1st-degree Photo only 0.91 0.80–0.98 83.3%
Multi-modal 0.97 0.91–1.00 83.3%

2nd-degree Photo only 0.88 0.75–0.95 76.9%
Multi-modal 0.96 0.90–1.00 76.9%

3rd-degree Photo only 0.62 0.40–0.80 14.3%
Multi-modal 1.00 1.00–1.00 100.0%

However, it struggles significantly294

with third-degree burns, correctly295

identifying only 14.3% of those cases.296

Incorporating TDI ultrasound fea-297

tures dramatically improves deep burn298

recognition, achieving 100% correct299

identification for third-degree burns300

while maintaining stable performance301

for first- and second-degree cate-302

gories.303

A detailed comparison of these results304

is provided in Table 3. For first-degree305

burns, the AUROC improves from306

0.91 (95% CI: 0.80–0.98) with pho-307

tographs alone to 0.97 (95% CI: 0.91–1.00) with multi-modal input, while maintaining the same308

correct classification rate of 83.3%. For second-degree burns, the AUROC increases from 0.88 (95%309

CI: 0.75–0.95) to 0.96 (95% CI: 0.90–1.00), again with a stable correct classification rate of 76.9%.310

The most striking improvement is observed for third-degree burns, where AUROC jumps from 0.62311

(95% CI: 0.40–0.80) to 1.00 (95% CI: 1.00–1.00), with the correct classification rate rising from312

14.3% to 100.0%.313

These results demonstrate that adding ultrasound data yields measurable gains in discrimination ability314

across all classes, particularly for third-degree burns where structural and perfusion information315

is essential for reliable identification. The stable performance on less severe classes shows that316

integrating additional modalities does not degrade recognition for easier cases, while dramatically317

improving outcomes for clinically critical deep burns.318

Qualitative Impact of Chain-of-Thought Reasoning. CoT reasoning plays a pivotal role in319

bridging raw visual evidence and clinically meaningful interpretation. To illustrate this, we analyzed320

representative cases processed by GPT-4o under our proposed framework (see Figure 4). The321

qualitative behavior reveals how step-by-step reasoning enhances both interpretability and predictive322

reliability.323

In one challenging case, the model incorrectly predicts a third-degree burn with high confidence. Its324

internal reasoning shows that it detected a dominant blue region in the TDI input and mapped this325

pattern directly to hypodermal involvement. While blue dominance often signals tissue stiffness, the326

spatial distribution in this instance was confined to superficial layers and should not have triggered a327

full-thickness classification. The error highlights that even with structured reasoning, models may328

overgeneralize cues without nuanced spatial understanding. Importantly, because the CoT output329

explicitly described this reasoning, the source of error is transparent, offering actionable insight for330

refinement.331

In contrast, another case demonstrates the intended use of CoT reasoning. Here, the model accurately332

classifies a non-third-degree burn and articulates a reasoning chain that aligns with clinical expecta-333

tions. It systematically identifies relevant tissue layers, examines color gradients in the TDI scan, and334

concludes that no dominant blue signal extends beyond the dermis. This structured narrative not only335

supports the correctness of the prediction but also exposes the underlying rationale in terms that are336

interpretable by clinicians. These examples underscore the value of incorporating chain-of-thought337

reasoning in multimodal diagnostic pipelines. Rather than producing opaque predictions, the model338

outputs a reasoning trace that contextualizes its decision process, enabling experts to evaluate, trust,339

and, when necessary, challenge the system’s outputs. This level of interpretability is particularly criti-340

cal for deployment in high-stakes medical settings, where explainable errors and traceable successes341

both contribute to system validation and continuous improvement.342
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4.4 Discussion343

Figure 4: Qualitative examples from GPT-4o with hypothesis
guidance. Top: false positive with misaligned reasoning.
Bottom: correct classification with consistent reasoning.

A central finding of our experi-344

ments is the significant performance345

gap between base VLMs and their346

hypothesis-guided counterparts. In347

zero-context conditions, base models348

like GPT-4o often misinterpret criti-349

cal TDI patterns, leading to incorrect350

predictions. For instance, blue domi-351

nance in TDI, which in burn imaging352

indicates high tissue stiffness and of-353

ten correlates with deep dermal or full-354

thickness burns, was frequently mis-355

understood by the base model as be-356

nign. Without domain-specific guid-357

ance, GPT-4o sometimes associated358

red or green hues with stiffness and359

deep injury, directly contradicting the clinical interpretation of TDI color codes. These errors explain360

the poor baseline performance, with accuracy dropping to around 33% for surgical decision tasks361

when no contextual information was provided.362

The structured reasoning approach introduced in this work addresses these limitations by generating363

task-specific hypotheses that explicitly link visual patterns to clinical concepts. By providing models364

with contextual grounding, for example, instructing that “a dominant blue pattern in TDI suggests365

tissue stiffness and deeper injury”, the framework enables VLMs to focus on clinically relevant366

features. This mechanism is particularly effective for stronger image-language models such as367

GPT-4o and GPT-4 Turbo, which are better able to leverage the reasoning cues. Smaller models also368

benefit, though to a lesser extent, due to their reduced capacity for complex multimodal reasoning.369

Beyond performance improvements, the proposed framework offers practical advantages for real-370

world deployment. It is model-agnostic and can be integrated into any VLM workflow capable of371

handling multimodal inputs and textual outputs. Unlike conventional CNN- or ViT-based pipelines,372

which often require large-scale domain-specific pretraining, our approach relies on lightweight prompt373

engineering and logical hypothesis generation. This design is especially attractive for specialized374

domains like burn ultrasound, where large annotated datasets are scarce. Furthermore, the framework375

produces interpretable, text-based explanations alongside predictions, an important requirement for376

clinical adoption and trust. By combining minimal data requirements, improved reasoning capabilities,377

and interpretability, this work establishes a foundation for integrating ultrasound into broader burn378

assessment protocols and encourages future multi-center data collection efforts.379

5 Conclusion380

We introduced a vision–language framework for burn depth assessment that integrates digital pho-381

tographs and ultrasound modalities with structured diagnostic reasoning. The framework incorporates382

both expert-authored and automatically generated hypotheses, enabling large vision–language models383

to interpret underrepresented imaging modalities such as B-mode and TDI ultrasound. An automated384

hypothesis generation module, coupled with logical consistency verification using an SMT solver,385

produces domain-specific reasoning instructions without requiring extensive manual annotation. Ex-386

tensive experiments demonstrate that hypothesis-guided reasoning significantly improves performance387

compared to base VLMs. Our approach achieves up to 95% accuracy on binary surgical decision388

tasks and 87% accuracy on three-class burn depth classification, with high AUROC values across all389

classes. Multi-modal fusion further enhances performance, achieving higher correct identification390

of third-degree burns while maintaining stable accuracy on less severe cases. Qualitative analysis391

shows that chain-of-thought reasoning exposes the decision process, yielding interpretable predictions392

and revealing sources of errors. These results highlight that structured reasoning, combined with393

multi-modal inputs, can adapt general-purpose VLMs to high-stakes clinical tasks. The proposed394

framework offers both improved diagnostic performance and interpretable outputs, establishing a395

foundation for trustworthy deployment of vision–language systems in medical imaging workflows.396
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NA answer to this question will not be perceived well by the reviewers.469
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• The paper should point out any strong assumptions and how robust the results are to482

violations of these assumptions (e.g., independence assumptions, noiseless settings,483

model well-specification, asymptotic approximations only holding locally). The authors484

should reflect on how these assumptions might be violated in practice and what the485
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judgment and recognize that individual actions in favor of transparency play an impor-502

tant role in developing norms that preserve the integrity of the community. Reviewers503

will be specifically instructed to not penalize honesty concerning limitations.504

3. Theory assumptions and proofs505

Question: For each theoretical result, does the paper provide the full set of assumptions and506

a complete (and correct) proof?507

Answer: [NA]508
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Justification: Not applicable.509
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-512

referenced.513
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• The proofs can either appear in the main paper or the supplemental material, but if515

they appear in the supplemental material, the authors are encouraged to provide a short516
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• Inversely, any informal proof provided in the core of the paper should be complemented518

by formal proofs provided in appendix or supplemental material.519

• Theorems and Lemmas that the proof relies upon should be properly referenced.520

4. Experimental result reproducibility521

Question: Does the paper fully disclose all the information needed to reproduce the main ex-522

perimental results of the paper to the extent that it affects the main claims and/or conclusions523

of the paper (regardless of whether the code and data are provided or not)?524

Answer: [Yes]525

Justification: Implementation details and pre-trained models are described in the Experi-526

ments section.527
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• The answer NA means that the paper does not include experiments.529

• If the paper includes experiments, a No answer to this question will not be perceived530

well by the reviewers: Making the paper reproducible is important, regardless of531

whether the code and data are provided or not.532

• If the contribution is a dataset and/or model, the authors should describe the steps taken533

to make their results reproducible or verifiable.534

• Depending on the contribution, reproducibility can be accomplished in various ways.535

For example, if the contribution is a novel architecture, describing the architecture fully536

might suffice, or if the contribution is a specific model and empirical evaluation, it may537

be necessary to either make it possible for others to replicate the model with the same538

dataset, or provide access to the model. In general. releasing code and data is often539

one good way to accomplish this, but reproducibility can also be provided via detailed540

instructions for how to replicate the results, access to a hosted model (e.g., in the case541

of a large language model), releasing of a model checkpoint, or other means that are542

appropriate to the research performed.543

• While NeurIPS does not require releasing code, the conference does require all submis-544

sions to provide some reasonable avenue for reproducibility, which may depend on the545

nature of the contribution. For example546

(a) If the contribution is primarily a new algorithm, the paper should make it clear how547

to reproduce that algorithm.548

(b) If the contribution is primarily a new model architecture, the paper should describe549

the architecture clearly and fully.550

(c) If the contribution is a new model (e.g., a large language model), then there should551

either be a way to access this model for reproducing the results or a way to reproduce552

the model (e.g., with an open-source dataset or instructions for how to construct553

the dataset).554

(d) We recognize that reproducibility may be tricky in some cases, in which case555

authors are welcome to describe the particular way they provide for reproducibility.556

In the case of closed-source models, it may be that access to the model is limited in557

some way (e.g., to registered users), but it should be possible for other researchers558

to have some path to reproducing or verifying the results.559

5. Open access to data and code560

Question: Does the paper provide open access to the data and code, with sufficient instruc-561

tions to faithfully reproduce the main experimental results, as described in supplemental562

material?563
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Answer: [No]564

Justification: The code and dataset will be made publicly available upon paper acceptance565

to ensure reproducibility and support future research.566

Guidelines:567

• The answer NA means that paper does not include experiments requiring code.568

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/569

public/guides/CodeSubmissionPolicy) for more details.570

• While we encourage the release of code and data, we understand that this might not be571

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not572

including code, unless this is central to the contribution (e.g., for a new open-source573

benchmark).574

• The instructions should contain the exact command and environment needed to run to575

reproduce the results. See the NeurIPS code and data submission guidelines (https:576

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.577

• The authors should provide instructions on data access and preparation, including how578

to access the raw data, preprocessed data, intermediate data, and generated data, etc.579

• The authors should provide scripts to reproduce all experimental results for the new580

proposed method and baselines. If only a subset of experiments are reproducible, they581

should state which ones are omitted from the script and why.582

• At submission time, to preserve anonymity, the authors should release anonymized583

versions (if applicable).584

• Providing as much information as possible in supplemental material (appended to the585

paper) is recommended, but including URLs to data and code is permitted.586

6. Experimental setting/details587

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-588

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the589

results?590

Answer: [Yes]591

Justification: Relevant details are provided in the Experiments section and the Appendix.592
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• The answer NA means that the paper does not include experiments.594

• The experimental setting should be presented in the core of the paper to a level of detail595

that is necessary to appreciate the results and make sense of them.596

• The full details can be provided either with the code, in appendix, or as supplemental597

material.598

7. Experiment statistical significance599

Question: Does the paper report error bars suitably and correctly defined or other appropriate600

information about the statistical significance of the experiments?601

Answer: [NA]602

Justification: Explanations for the analysis are provided where necessary.603
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• The answer NA means that the paper does not include experiments.605

• The authors should answer "Yes" if the results are accompanied by error bars, confi-606

dence intervals, or statistical significance tests, at least for the experiments that support607

the main claims of the paper.608

• The factors of variability that the error bars are capturing should be clearly stated (for609
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• It should be clear whether the error bar is the standard deviation or the standard error615

of the mean.616

• It is OK to report 1-sigma error bars, but one should state it. The authors should617

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis618

of Normality of errors is not verified.619
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error rates).622

• If error bars are reported in tables or plots, The authors should explain in the text how623

they were calculated and reference the corresponding figures or tables in the text.624

8. Experiments compute resources625

Question: For each experiment, does the paper provide sufficient information on the com-626

puter resources (type of compute workers, memory, time of execution) needed to reproduce627

the experiments?628

Answer: [Yes]629

Justification: Inference API access details for the pre-trained models are provided to support630

reproducibility.631

Guidelines:632

• The answer NA means that the paper does not include experiments.633

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,634

or cloud provider, including relevant memory and storage.635

• The paper should provide the amount of compute required for each of the individual636

experimental runs as well as estimate the total compute.637

• The paper should disclose whether the full research project required more compute638

than the experiments reported in the paper (e.g., preliminary or failed experiments that639

didn’t make it into the paper).640

9. Code of ethics641

Question: Does the research conducted in the paper conform, in every respect, with the642

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?643

Answer: [Yes]644

Justification: The research was conducted in accordance with all aspects of the NeurIPS645

Code of Ethics.646

Guidelines:647

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.648

• If the authors answer No, they should explain the special circumstances that require a649

deviation from the Code of Ethics.650

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-651

eration due to laws or regulations in their jurisdiction).652

10. Broader impacts653

Question: Does the paper discuss both potential positive societal impacts and negative654

societal impacts of the work performed?655

Answer: [Yes]656

Justification: No immediate or apparent societal risks arise from this research, and its657

implications are discussed.658

Guidelines:659

• The answer NA means that there is no societal impact of the work performed.660

• If the authors answer NA or No, they should explain why their work has no societal661

impact or why the paper does not address societal impact.662
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• The conference expects that many papers will be foundational research and not tied667

to particular applications, let alone deployments. However, if there is a direct path to668

any negative applications, the authors should point it out. For example, it is legitimate669

to point out that an improvement in the quality of generative models could be used to670

generate deepfakes for disinformation. On the other hand, it is not needed to point out671

that a generic algorithm for optimizing neural networks could enable people to train672

models that generate Deepfakes faster.673

• The authors should consider possible harms that could arise when the technology is674

being used as intended and functioning correctly, harms that could arise when the675

technology is being used as intended but gives incorrect results, and harms following676

from (intentional or unintentional) misuse of the technology.677

• If there are negative societal impacts, the authors could also discuss possible mitigation678

strategies (e.g., gated release of models, providing defenses in addition to attacks,679

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from680

feedback over time, improving the efficiency and accessibility of ML).681

11. Safeguards682

Question: Does the paper describe safeguards that have been put in place for responsible683

release of data or models that have a high risk for misuse (e.g., pretrained language models,684

image generators, or scraped datasets)?685

Answer: [Yes]686

Justification: The dataset will be released with safeguards in place.687

Guidelines:688

• The answer NA means that the paper poses no such risks.689

• Released models that have a high risk for misuse or dual-use should be released with690

necessary safeguards to allow for controlled use of the model, for example by requiring691

that users adhere to usage guidelines or restrictions to access the model or implementing692

safety filters.693

• Datasets that have been scraped from the Internet could pose safety risks. The authors694

should describe how they avoided releasing unsafe images.695

• We recognize that providing effective safeguards is challenging, and many papers do696

not require this, but we encourage authors to take this into account and make a best697

faith effort.698

12. Licenses for existing assets699

Question: Are the creators or original owners of assets (e.g., code, data, models), used in700

the paper, properly credited and are the license and terms of use explicitly mentioned and701

properly respected?702

Answer: [Yes]703

Justification: Appropriate citations are given.704

Guidelines:705

• The answer NA means that the paper does not use existing assets.706

• The authors should cite the original paper that produced the code package or dataset.707

• The authors should state which version of the asset is used and, if possible, include a708

URL.709

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.710

• For scraped data from a particular source (e.g., website), the copyright and terms of711

service of that source should be provided.712

• If assets are released, the license, copyright information, and terms of use in the713

package should be provided. For popular datasets, paperswithcode.com/datasets714

has curated licenses for some datasets. Their licensing guide can help determine the715

license of a dataset.716

• For existing datasets that are re-packaged, both the original license and the license of717

the derived asset (if it has changed) should be provided.718
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• If this information is not available online, the authors are encouraged to reach out to719

the asset’s creators.720

13. New assets721

Question: Are new assets introduced in the paper well documented and is the documentation722

provided alongside the assets?723

Answer: [Yes]724

Justification: New dataset is discussed in details.725

Guidelines:726

• The answer NA means that the paper does not release new assets.727

• Researchers should communicate the details of the dataset/code/model as part of their728

submissions via structured templates. This includes details about training, license,729

limitations, etc.730

• The paper should discuss whether and how consent was obtained from people whose731

asset is used.732

• At submission time, remember to anonymize your assets (if applicable). You can either733

create an anonymized URL or include an anonymized zip file.734

14. Crowdsourcing and research with human subjects735

Question: For crowdsourcing experiments and research with human subjects, does the paper736

include the full text of instructions given to participants and screenshots, if applicable, as737

well as details about compensation (if any)?738

Answer: [NA]739

Justification: [NA]740

Guidelines:741

• The answer NA means that the paper does not involve crowdsourcing nor research with742

human subjects.743

• Including this information in the supplemental material is fine, but if the main contribu-744

tion of the paper involves human subjects, then as much detail as possible should be745

included in the main paper.746

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,747

or other labor should be paid at least the minimum wage in the country of the data748

collector.749

15. Institutional review board (IRB) approvals or equivalent for research with human750

subjects751

Question: Does the paper describe potential risks incurred by study participants, whether752

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)753

approvals (or an equivalent approval/review based on the requirements of your country or754

institution) were obtained?755

Answer: [NA]756

Justification: [NA]757

Guidelines:758

• The answer NA means that the paper does not involve crowdsourcing nor research with759

human subjects.760

• Depending on the country in which research is conducted, IRB approval (or equivalent)761

may be required for any human subjects research. If you obtained IRB approval, you762

should clearly state this in the paper.763

• We recognize that the procedures for this may vary significantly between institutions764

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the765

guidelines for their institution.766

• For initial submissions, do not include any information that would break anonymity (if767

applicable), such as the institution conducting the review.768

16. Declaration of LLM usage769

17



Question: Does the paper describe the usage of LLMs if it is an important, original, or770

non-standard component of the core methods in this research? Note that if the LLM is used771

only for writing, editing, or formatting purposes and does not impact the core methodology,772

scientific rigorousness, or originality of the research, declaration is not required.773

Answer: [NA]774

Justification: [NA]775

Guidelines:776

• The answer NA means that the core method development in this research does not777

involve LLMs as any important, original, or non-standard components.778

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)779

for what should or should not be described.780
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