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Abstract

Ultrasound and other medical imaging data hold significant promise for burn depth
assessment but remain underutilized in clinical workflows due to limited data
availability, interpretive complexity, and the absence of standardized integration.
Vision-language models (VLMs) have demonstrated impressive general-purpose
capabilities across image and text domains, but they struggle to generalize to
medical imaging modalities such as ultrasound, which are largely absent from
pretraining corpora and represent a fundamentally different form of data. We
present a framework for fine-grained burn depth assessment that combines digital
photographs with ultrasound data, guided by structured vision-language reasoning.
A central component of our method is the use of structured diagnostic hypotheses
that describe clinical findings relevant to burn severity. These hypotheses can
be provided by expert surgeons or automatically generated using large language
models through a controlled prompting process. The reasoning process is further
supported by symbolic consistency checks and chain-of-thought logic to align
hypotheses with visual features, enhancing both interpretability and diagnostic
performance. Our results show that the proposed method, when guided by struc-
tured reasoning, achieves higher diagnostic accuracy in burn depth assessment
compared to base vision-language models without structured guidance. Impor-
tantly, the proposed system surpasses the diagnostic accuracy of expert surgeons
using traditional assessment methods. This work demonstrates how multi-modal
fusion and structured reasoning can enhance the explainability and accuracy of
vision-language models in high-stakes medical applications.

1 Introduction

Accurate burn depth assessment is critical for determining whether a wound will heal conservatively
or requires surgical intervention, such as excision and grafting. However, current clinical workflows
rely heavily on subjective visual inspection and physician experience, leading to considerable inter-
observer variability, delayed decision-making, and suboptimal outcomes. Even among experienced
clinicians, diagnostic accuracy is estimated to range between 70% and 80%. There is a clear need
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Figure 1: Overview of the proposed framework for burn depth assessment. The system takes multi-
modal inputs, including digital photographs, B-mode ultrasound, and TDI ultrasound, from the
burn site. Structured diagnostic hypotheses are provided either by expert surgeons or automatically
generated by large-language model (LLM). These hypotheses guide the vision–language model
(VLM) through chain-of-thought (CoT) reasoning to produce interpretable outputs for surgical
decision making and fine-grained burn depth prediction.

for intelligent, interpretable systems that can support high-stakes clinical reasoning with greater
consistency and precision.

Medical imaging data, including B-Mode ultrasound and Tissue Doppler Imaging (TDI), offer valu-
able physiological insights that can augment visual assessments [Ho and Solomon, 2006, Gnyawali
et al., 2015, 2020]. Yet these modalities remain underutilized in burn care due to interpretive com-
plexity, limited expert availability, and a lack of standardized integration. Annotated datasets for these
modalities are scarce, and interpreting them often requires specialized knowledge that is not easily
scalable. In particular, B-Mode and TDI images capture structural and perfusion-related signals that
are not discernible from photographs alone, making them a promising but underexploited source of
diagnostic information.

At the same time, vision-language models (VLMs) have emerged as powerful tools for visual
understanding and general-purpose reasoning across multimodal inputs. While these models excel
in tasks such as image captioning, visual question answering, and grounded classification [Radford
et al., 2019, 2021, Achiam et al., 2023, Touvron et al., 2023, Liu et al., 2023, 2024], they struggle to
generalize to domain-specific data such as ultrasound, which is largely absent from their pretraining
corpora and fundamentally differs from natural image distributions [Li et al., 2023, Zhang et al.,
2024b, Li et al., 2024, Guo et al., 2024, Zhang et al., 2024a, Shakeri et al., 2024].

Applying VLMs to high-stakes medical imaging tasks remains challenging, particularly in scenarios
where data is limited and domain expertise is essential. To address these challenges, we present a
framework for fine, grained burn depth assessment that fuses digital photographs with ultrasound
imaging, guided by structured vision-language reasoning. As shown in Figure 1, our method
introduces structured diagnostic hypotheses, short natural language descriptions of clinically relevant
features, that serve as an intermediate reasoning layer. These hypotheses can be authored by expert
surgeons or automatically generated using large language models through controlled prompting
strategies. We further align these hypotheses with image features using symbolic consistency checks
and chain-of-thought reasoning, enabling transparent and clinically grounded predictions.

We evaluate our approach on two tasks: (i) binary classification of surgical versus non-surgical cases,
and (ii) a three-way classification of burn severity: superficial partial-thickness, deep partial-thickness,
and full-thickness burns. The system achieves 95% accuracy using expert-generated hypotheses and
93% with automatically generated ones—exceeding typical clinician performance and strong non-
expert baselines. These improvements are consistent across multiple foundation models, including
GPT-4o, GPT-4 Turbo, Gemini 1.5, and Gemini 2.0, indicating that the approach generalizes
across architectures.

By integrating multi-modal fusion, structured hypothesis generation, and symbolic reasoning, this
work shows how general-purpose VLMs can be adapted to support domain-specific, high-stakes
diagnostic tasks. Our results demonstrate the potential for automated systems to augment clini-
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cal decision-making with expert-level accuracy and interpretability in low-data, high-risk medical
environments.

2 Problem Formulation

We frame burn depth assessment as a multi-modal, hypothesis-guided visual reasoning task. Each
training sample xi is composed of three complementary imaging modalities: a digital photograph
xP
i ∈ RH×W×3, a B-mode ultrasound image xB

i ∈ RH×W×3, and a Tissue Doppler Imaging (TDI)
scan xT

i ∈ RH×W×3. For each modality, we associate a modality-specific prompt cmod that describes
the imaging context and a structured diagnostic hypothesis hmod, which may be authored by expert
clinicians or generated automatically through a controlled prompting process of a large language
model (LLM). The full multi-modal input is therefore:

x̃i = {(xP
i , c

P, hP), (xB
i , c

B, hB), (xT
i , c

T, hT)},

and we define Hi = {hP, hB, hT} as the set of all hypotheses tied to sample i.

Our objective is to infer clinically meaningful labels by jointly leveraging the image evidence
and the structured hypotheses. For surgical decision-making, we pose a binary classification task
where the ground-truth label yi ∈ {0, 1} indicates whether surgical intervention is required. The
vision-language model (VLM) estimates the likelihood:

P (yi = 1 | x̃i), and the final decision is computed as: ŷi = argmaxy∈{0,1}
[
P (y | x̃i) + α ·

S(Hi, y)
]
, where α ≥ 0 weights the contribution of hypothesis alignment.

For fine-grained severity estimation, the model assigns a depth label ci ∈ {1, . . . , N} with prob-
abilities: P (ci = c | x̃i), c ∈ {1, . . . , N}, and final prediction: ĉi = argmaxc∈{1,...,N}

[
P (c |

x̃i) + β · S(Hi, c)
]
, where β ≥ 0 controls the influence of hypothesis-driven reasoning.

The support function S(Hi, y) or S(Hi, c) evaluates the semantic alignment between the set of
diagnostic hypotheses and a candidate output, returning a scalar in [0, 1]. From a modeling perspective,
S provides an auxiliary reasoning signal that can modulate predictions from the visual backbone.
This is particularly valuable in medical settings where hypotheses encode domain knowledge that is
otherwise difficult to capture with standard pretraining.

We operationalize S using chain-of-thought prompting within the VLM. For a given sample, the
model is queried with a structured prompt such as: “Given the following hypotheses from the photo,
B-mode, and TDI: [. . . ], how well do they support a diagnosis of full-thickness burn?” The VLM
generates a free-form reasoning trace, which is then parsed into a quantitative support score. This
mapping can be implemented through a rule-based evaluation (e.g., counting agreement phrases or
confidence indicators) or through a lightweight learned calibration model trained to predict alignment
scores from reasoning traces.

Importantly, the support function is agnostic to the underlying VLM and is designed to be modular.
It can be precomputed for a set of hypotheses or adapted online, enabling integration with a range
of backbone architectures. By providing a structured, interpretable alignment signal, S serves as a
bridge between human-readable hypotheses and the model’s predictive distribution, allowing explicit
incorporation of domain reasoning into both binary surgical decisions and fine-grained burn severity
predictions.

3 Methodology

We propose a hypothesis-guided vision–language reasoning framework for burn depth assessment (see
Figure 1). The method integrates multi-modal imaging data with structured diagnostic hypotheses,
enabling a Vision–Language Model (VLM) to reason beyond raw pixel evidence and produce
clinically meaningful predictions.

Input Representation and Hypothesis Construction. Each input sample xi is composed of three
complementary modalities: a digital photograph xP

i ∈ RH×W×3, a B-Mode ultrasound image
xB
i ∈ RH×W×3, and a Tissue Doppler Imaging (TDI) scan xT

i ∈ RH×W×3. Importantly, the digital
photograph and ultrasound data do not correspond frame-by-frame. Ultrasound data are acquired as
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video sequences, while the digital photograph is a single still image. Therefore, the photograph is first
processed independently by the VLM to extract visual reasoning cues, and its resulting hypothesis
and feature embedding are later combined with those derived from the ultrasound modalities for the
final prediction. Practical ultrasound acquisition settings (such as frame sampling, probe parameters,
and TDI configurations) are described in detail in the experimental section.

Each modality is paired with a modality-specific prompt cmod that encodes acquisition context
and a structured hypothesis hmod that describes modality-specific diagnostic cues. Hypothe-
ses can be sourced from two streams: (i) expert-guided, provided directly by experienced burn
surgeons, and (ii) automated, generated by a large language model Mθ given modality instruc-
tions: hmod = Mθ(c

mod), yielding a hypothesis set Hi = {hP, hB, hT}. The fused input is:
x̃i =

{
(xP

i , c
P, hP), (xB

i , c
B, hB), (xT

i , c
T, hT)

}
.

Support Function and Reasoning. To incorporate structured reasoning, we define a support function
S(Hi, y) that quantifies how well the hypotheses support a candidate decision y: S : Hi×Y → [0, 1].
This is implemented via chain-of-thought prompting of the VLM. For example, the model may be
queried with: “Given the following hypotheses from the photo, B-mode, and TDI: [. . . ], how well do
they support a diagnosis of full-thickness burn?” The reasoning trace from the VLM is then parsed
and converted into a scalar support score, using either rule-based evaluation (e.g., detecting agreement
indicators) or a lightweight learned calibration model.

Prediction with Hypothesis-Guided Support. The VLM predicts label probabilities from the
fused input: P (y | x̃i), y ∈ Y, where Y = {0, 1} for surgical decision or Y = {1, . . . , N} for
multi-class burn severity. Final predictions integrate hypothesis support: ŷi = argmaxy∈Y

[
P (y |

x̃i) + λ · S(Hi, y)
]
, with λ ≥ 0 controlling the influence of hypothesis-guided reasoning.

Algorithm. The overall procedure is
summarized in Algorithm 1. This al-
gorithm shows how multi-modal in-
puts and expert- or LLM-generated
hypotheses are combined within the
VLM and refined through the sup-
port function to yield the final de-
cision. By explicitly modeling rea-
soning through diagnostic hypotheses,
the framework enables the VLM to
combine information from digital pho-
tographs and ultrasound imaging, even
though these inputs are not temporally
aligned frame-by-frame. This design
allows the system to incorporate expert
knowledge or automatically generated
insights, leading to interpretable and
accurate predictions for both surgical
decision making and fine-grained burn
depth classification.

Algorithm 1: Hypothesis-Guided Burn Depth Assessment
Input: Multi-modal inputs for i: xP

i , xB
i , xT

i ;
Prompts cP, cB, cT;
Hypothesis source (expert or LLM Mθ);
VLM; parameter λ.
Output: ŷi ∈ Y .
1. Hypothesis Generation:
foreach mod ∈ {P,B,T} do

if expert then
hmod ← expert hypothesis;

else
hmod ←Mθ(c

mod);

Hi ← {hP, hB, hT};
2. Fuse Inputs:
x̃i ← {(xmod

i , cmod, hmod)}mod;
3. VLM Prediction:
Compute P (y | x̃i);
4. Support Scoring:
foreach y ∈ Y do

Query VLM with Hi, y;
Score sy ← S(Hi, y);

5. Final Decision:
ŷi ← argmaxy

[
P (y | x̃i) + λ · sy

]
;

return ŷi;

Automated Hypothesis Generation. To enable structured reasoning without relying exclusively on
human expertise, we introduce an automated hypothesis generation module (see Figure 2). This com-
ponent is designed to transform clinical knowledge and experimental details into machine-readable
hypotheses that guide the VLM in interpreting ultrasound data for burn depth prediction.

The process begins by constructing a prompt that fuses two forms of textual context: the experimental
setup and the clinical interpretation of imaging cues. Let Dexp represent descriptive details of the
imaging modalities (e.g., “TDI provides color-coded velocity maps; B-mode offers structural tissue
layers”), and Dclin capture clinical heuristics (e.g., “dominant blue regions in TDI and disrupted
layers in B-mode correlate with full-thickness burns”). These are concatenated using a PromptBuilder
function: p = PromptBuilder(Dexp,Dclin), which yields a structured query that supplies the
language model with sufficient background knowledge.
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Figure 2: Automated hypothesis generation pipeline. Given the problem specification (burn
depth prediction using B-Mode and TDI ultrasound), the system first constructs an input prompt
by combining experimental descriptions with clinical context. (A) The language model generates
initial hypotheses and corresponding first-order logic (FOL) premises describing how to interpret
ultrasound patterns. (B) An SMT solver iteratively filters out conflicting premises and enforces
logical consistency, providing feedback to refine the generated rules. (C) The validated premises
are summarized into a final natural-language hypothesis that guides the vision-language model in
subsequent burn depth assessment.

Given this prompt p, a large language model Mθ generates both an initial natural-language hypothesis
h and a set of first-order logic (FOL) premises Φ = {ϕ1, ϕ2, . . . , ϕK} that encode specific diagnostic
rules. Sampling parameters such as temperature and top-p nucleus sampling are varied to encourage
diverse candidate rules.

To validate the first-order logic (FOL) premises, we employed the Z3 SMT solver [de Moura and
Bjørner, 2008] to ensure logical consistency. The solver iteratively removes contradictions and
provides feedback to refine the generated premises. This cycle continues until a logically consistent
set is obtained or a maximum iteration threshold is reached. Conflicting statements are pruned, and
the remaining validated premises are then summarized into a final natural-language hypothesis. A
typical output might be: “Based on the presence of dominant blue regions in TDI and discontinuous
layers in B-mode, the burn is indicative of full-thickness injury and may require surgical intervention.”

By integrating this automated pipeline into the multi-modal reasoning framework, the system can
dynamically generate domain-specific guidance without requiring manual annotations or handcrafted
rules, significantly improving interpretability and diagnostic accuracy.

4 Experiments

4.1 Dataset and Experimental Setup

We evaluate our approach on a retrospective dataset collected over a one-year period at a major U.S.
burn treatment center. To our knowledge, this is the first dataset to pair Tissue Doppler Imaging
(TDI) and B-Mode ultrasound for burn depth assessment, enabling multi-modal reasoning beyond
traditional RGB imagery. The dataset includes ultrasound recordings from 29 patients with clinically
verified burn injuries spanning superficial, superficial partial-thickness, deep partial-thickness, and
full-thickness (third-degree) burns. Ground-truth depth labels were determined via histological biopsy
when available (5 cases) or established through consensus among board-certified burn surgeons.

Each ultrasound sample contains both B-Mode frames, capturing structural echogenicity, and TDI
frames, encoding perfusion-sensitive velocity information via pseudo-color. To ensure data reliability,
we retained only TDI frames flagged as high-quality by the acquisition system (indicated by green
diagnostic markers ensuring optimal probe placement and coupling). From the raw sequences,
950 high-quality frames were extracted and then uniformly sampled at fixed intervals to reduce
redundancy and maximize scene diversity, yielding 324 unique frames for downstream analysis.
We hold out 130 frames from 15 subjects for evaluation, while the remainder are used to construct
few-shot prompts, chain-of-thought demonstrations, and calibration examples.

It is important to note that digital photographs of the burn sites, captured at bedside, do not align
frame-by-frame with ultrasound sequences. Photographs are single still images processed inde-
pendently by the VLM, and their reasoning outputs are later fused with ultrasound-derived cues.
Ultrasound acquisition parameters (e.g., probe frequency, TDI velocity ranges) follow clinical best
practices and are detailed in the experimental section of the supplementary material. Representative
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samples are shown in Figure 3, highlighting the complementary information captured by photographs
and ultrasound modalities.

Figure 3: Representative samples from the dataset.
Left: digital photographs of burn wounds. Right:
paired ultrasound images, with B-Mode showing
tissue structure and TDI visualizing perfusion.

Hypothesis Generation and Vision–Language
Models. For automated diagnostic hypotheses,
we use OpenAI’s o3-mini-high, a compact
LLM optimized for symbolic reasoning
and logical chaining. These hypotheses
complement expert-provided ones within
our framework. Vision–language reasoning
tasks are carried out on multiple foundation
models, including gpt-4o, gpt-4o-mini,
gpt-4-turbo, gemini-2.0-flash, and
gemini-1.5-flash. These models were
selected for their demonstrated multi-modal
reasoning capabilities, low latency, and com-
patibility with structured prompts that integrate
visual evidence and text.

All experiments are conducted in zero-shot or
few-shot configurations unless otherwise stated.
We benchmark our method by comparing pre-
dictions guided by expert-crafted hypotheses
against those guided by automatically generated hypotheses, under identical input conditions and
prompt scaffolds, to isolate the impact of structured reasoning on burn depth assessment.

4.2 Experimental Setup

We evaluate our framework across three complementary experimental settings. Each setting is
designed to isolate specific factors in diagnostic performance by varying the input modalities, the
classification granularity, and the source of diagnostic hypotheses. This controlled design allows us
to analyze the contribution of each component in a systematic manner.

1. Binary Surgical Decision with Ultrasound (Expert vs. Automated Hypotheses). The first
setting targets a binary decision task: determining whether surgical intervention is required. Inputs
are limited to ultrasound data, comprising both B-Mode and Tissue Doppler Imaging (TDI). In the
expert-guided variant, board-certified burn surgeons manually reviewed the ultrasound frames and
produced structured diagnostic hypotheses informed by procedural knowledge and anatomical cues.
TDI frames were spatially cropped using landmarks visible in the corresponding B-Mode scans,
ensuring that hypotheses addressed clinically meaningful regions. To evaluate automated reasoning,
the same ultrasound inputs were provided to a language model with modality-specific prompts.
In this configuration, the model generated diagnostic hypotheses without any expert annotations
or region-of-interest cues. This setting provides a direct comparison between expert-derived and
LLM-generated reasoning when using ultrasound alone.

2. Fine-Grained Burn Classification with Ultrasound (Automated Hypotheses). The second
setting assesses fine-grained classification performance using ultrasound data only, guided exclusively
by automatically generated hypotheses. The task is defined over three clinically significant categories:
second-degree superficial, second-degree deep, and third-degree burns. First-degree burns are
excluded because they are seldom represented in hospital ultrasound workflows. This experiment
probes the system’s ability to differentiate subtle structural and perfusion patterns that separate
intermediate burn types—cases that are difficult to resolve using image evidence alone. The use
of LLM-generated hypotheses allows us to measure how structured reasoning impacts fine-grained
predictions.

3. Fine-Grained Classification with Photographs and Ultrasound (Expert Hypotheses). The
third setting extends the analysis to a multi-modal scenario, combining bedside digital photographs
with ultrasound inputs. In this setting, hypotheses are generated exclusively by experienced burn
surgeons. The classification space includes first-, second-, and third-degree burns, with superficial
and deep second-degree categories merged into a single class. This merging reflects common practice
in triage and telemedicine contexts, where photographs may be taken in non-clinical environments
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and used for remote assessments. This experiment highlights the value of photographs as a comple-
mentary modality and demonstrates the framework’s ability to integrate heterogeneous inputs with
expert-guided reasoning, yielding interpretable predictions across the full spectrum of burn severity.

Table 1: Surgical decision performance using
expert-guided and automated hypotheses across
VLMs.
Method Accuracy F1 Prec Recall

Expert Hypothesis 95% 0.95 0.94 1.00

GPT-4o + Auto Hypothesis 93% 0.93 0.94 0.93
GPT-4o (Base) 33% 0.17 0.11 0.33
GPT-4o-mini + Auto Hypothesis 80% 0.77 0.85 0.80
GPT-4o-mini (Base) 67% 0.67 0.69 0.67
GPT-4 Turbo + Auto Hypothesis 93% 0.93 0.94 0.93
GPT-4 Turbo (Base) 87% 0.87 0.87 0.87
Gemini 2.0 + Auto Hypothesis 87% 0.86 0.89 0.83
Gemini 2.0 (Base) 47% 0.41 0.79 0.47
Gemini 1.5 + Auto Hypothesis 80% 0.79 0.85 0.80
Gemini 1.5 (Base) 60% 0.50 0.42 0.60

Implementation Details: The final classifica-
tion results of our method, when guided by
structured diagnostic hypotheses, are obtained
through a self-consistency [Wang et al., 2023]
strategy combined with CoT reasoning [Wei
et al., 2022]. For each input, the VLM is queried
multiple times with different sampling parame-
ters. The temperature values are sampled within
the range of 0.5 to 1 and the top-p values are
sampled within the range of 0.5 to 1.0. In ad-
dition, the order and the subset of CoT exem-
plars in the prompt are permuted to encourage
diverse reasoning paths. These multiple outputs
are aggregated, and the final prediction is deter-
mined by majority voting across all generated
responses.

4.3 Results

We report results across binary surgical decision tasks, fine-grained burn depth classification, and
multi-modal fusion analyses. All experiments compare baseline VLMs to their hypothesis-guided
counterparts to quantify the impact of structured reasoning.

Surgical vs. Non-Surgical Classification. Table 1 summarizes performance on the binary task
of determining surgical necessity using ultrasound inputs. Expert-written hypotheses provide the
strongest guidance, yielding 95% accuracy, an F1-score of 0.95, precision of 0.94, and perfect recall.
These results reflect close clinical alignment and serve as a reference upper bound.

Table 2: Fine-grained burn depth classification with auto-
mated hypotheses across VLMs.

Method Accuracy F1 Prec Recall

GPT-4o + Auto Hypothesis 87% 0.87 0.87 0.87
GPT-4o (Base) 27% 0.27 0.34 0.27
GPT-4o-mini + Auto Hypothesis 53% 0.42 0.53 0.53
GPT-4o-mini (Base) 73% 0.71 0.73 0.73
GPT-4 Turbo + Auto Hypothesis 53% 0.52 0.56 0.53
GPT-4 Turbo (Base) 60% 0.59 0.62 0.60
Gemini 2.0 + Auto Hypothesis 60% 0.50 0.64 0.60
Gemini 2.0 (Base) 47% 0.46 0.60 0.47
Gemini 1.5 + Auto Hypothesis 67% 0.62 0.79 0.67
Gemini 1.5 (Base) 47% 0.43 0.46 0.47

Automated hypothesis generation sub-
stantially improves outcomes for
all VLMs. For example, GPT-4o
and GPT-4 Turbo paired with auto-
matically generated hypotheses both
achieve 93% accuracy and an
F1-score of 0.93, approaching expert
performance. In contrast, the base
GPT-4o without hypothesis guidance
reaches only 33% accuracy and an
F1-score of 0.17, highlighting the lim-
itations of direct image-to-text reason-
ing in high-stakes settings.

Smaller models benefit as well:
GPT-4o-mini improves from 67% to 80% accuracy, Gemini 1.5 from 60% to 80%, and Gemini
2.0 from 47% to 87%. These gains demonstrate that structured reasoning provides a consistent boost
in diagnostic alignment across diverse architectures.

Fine-Grained Burn Depth Classification with Automated Hypotheses.

Table 2 reports performance for three-class burn depth classification (first-, second-, and third-degree)
using only ultrasound inputs with automated hypotheses. GPT-4o achieves the best results, with 87%
accuracy and balanced precision, recall, and F1-score, all at 0.87. This is a substantial improvement
over the base model’s 27% accuracy, underscoring the value of explicit reasoning for fine-grained
tasks.

Other VLMs also benefit from hypothesis guidance. Gemini 1.5 improves from 47% to 67%
accuracy, and Gemini 2.0 improves from 47% to 60%. Interestingly, the base versions of GPT-4
Turbo and GPT-4o-mini perform competitively or slightly better than their hypothesis-augmented
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counterparts on this task, suggesting that certain architectures may already encode sufficient priors
for moderate-granularity distinctions. Nonetheless, the overall trend shows that hypothesis-driven
reasoning improves performance in challenging, domain-specific classification.

Effect of Multi-Modal Fusion. When using only digital photographs, the model performs well for su-
perficial injuries, correctly identifying 83.3% of first-degree burns and 76.9% of second-degree burns.

Table 3: Per-class performance comparison: digital pho-
tographs only vs. multi-modal input (photographs + TDI ul-
trasound). AUROC values include 95% confidence intervals,
and correct classification rates are reported as percentages.

Burn Class Setting AUROC 95% CI Correct (%)

1st-degree Photo only 0.91 0.80–0.98 83.3%
Multi-modal 0.97 0.91–1.00 83.3%

2nd-degree Photo only 0.88 0.75–0.95 76.9%
Multi-modal 0.96 0.90–1.00 76.9%

3rd-degree Photo only 0.62 0.40–0.80 14.3%
Multi-modal 1.00 1.00–1.00 100.0%

However, it struggles significantly
with third-degree burns, correctly
identifying only 14.3% of those cases.
Incorporating TDI ultrasound fea-
tures dramatically improves deep burn
recognition, achieving 100% correct
identification for third-degree burns
while maintaining stable performance
for first- and second-degree cate-
gories.

A detailed comparison of these results
is provided in Table 3. For first-degree
burns, the AUROC improves from
0.91 (95% CI: 0.80–0.98) with pho-
tographs alone to 0.97 (95% CI: 0.91–1.00) with multi-modal input, while maintaining the same
correct classification rate of 83.3%. For second-degree burns, the AUROC increases from 0.88 (95%
CI: 0.75–0.95) to 0.96 (95% CI: 0.90–1.00), again with a stable correct classification rate of 76.9%.
The most striking improvement is observed for third-degree burns, where AUROC jumps from 0.62
(95% CI: 0.40–0.80) to 1.00 (95% CI: 1.00–1.00), with the correct classification rate rising from
14.3% to 100.0%.

These results demonstrate that adding ultrasound data yields measurable gains in discrimination ability
across all classes, particularly for third-degree burns where structural and perfusion information
is essential for reliable identification. The stable performance on less severe classes shows that
integrating additional modalities does not degrade recognition for easier cases, while dramatically
improving outcomes for clinically critical deep burns.

Qualitative Impact of Chain-of-Thought Reasoning. CoT reasoning plays a pivotal role in
bridging raw visual evidence and clinically meaningful interpretation. To illustrate this, we analyzed
representative cases processed by GPT-4o under our proposed framework (see Figure 4). The
qualitative behavior reveals how step-by-step reasoning enhances both interpretability and predictive
reliability.

In one challenging case, the model incorrectly predicts a third-degree burn with high confidence. Its
internal reasoning shows that it detected a dominant blue region in the TDI input and mapped this
pattern directly to hypodermal involvement. While blue dominance often signals tissue stiffness, the
spatial distribution in this instance was confined to superficial layers and should not have triggered a
full-thickness classification. The error highlights that even with structured reasoning, models may
overgeneralize cues without nuanced spatial understanding. Importantly, because the CoT output
explicitly described this reasoning, the source of error is transparent, offering actionable insight for
refinement.

In contrast, another case demonstrates the intended use of CoT reasoning. Here, the model accurately
classifies a non-third-degree burn and articulates a reasoning chain that aligns with clinical expecta-
tions. It systematically identifies relevant tissue layers, examines color gradients in the TDI scan, and
concludes that no dominant blue signal extends beyond the dermis. This structured narrative not only
supports the correctness of the prediction but also exposes the underlying rationale in terms that are
interpretable by clinicians. These examples underscore the value of incorporating chain-of-thought
reasoning in multimodal diagnostic pipelines. Rather than producing opaque predictions, the model
outputs a reasoning trace that contextualizes its decision process, enabling experts to evaluate, trust,
and, when necessary, challenge the system’s outputs. This level of interpretability is particularly criti-
cal for deployment in high-stakes medical settings, where explainable errors and traceable successes
both contribute to system validation and continuous improvement.
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4.4 Discussion

Figure 4: Qualitative examples from GPT-4o with hypothesis
guidance. Top: false positive with misaligned reasoning.
Bottom: correct classification with consistent reasoning.

A central finding of our experi-
ments is the significant performance
gap between base VLMs and their
hypothesis-guided counterparts. In
zero-context conditions, base models
like GPT-4o often misinterpret criti-
cal TDI patterns, leading to incorrect
predictions. For instance, blue domi-
nance in TDI, which in burn imaging
indicates high tissue stiffness and of-
ten correlates with deep dermal or full-
thickness burns, was frequently mis-
understood by the base model as be-
nign. Without domain-specific guid-
ance, GPT-4o sometimes associated
red or green hues with stiffness and
deep injury, directly contradicting the clinical interpretation of TDI color codes. These errors explain
the poor baseline performance, with accuracy dropping to around 33% for surgical decision tasks
when no contextual information was provided.

The structured reasoning approach introduced in this work addresses these limitations by generating
task-specific hypotheses that explicitly link visual patterns to clinical concepts. By providing models
with contextual grounding, for example, instructing that “a dominant blue pattern in TDI suggests
tissue stiffness and deeper injury”, the framework enables VLMs to focus on clinically relevant
features. This mechanism is particularly effective for stronger image-language models such as
GPT-4o and GPT-4 Turbo, which are better able to leverage the reasoning cues. Smaller models also
benefit, though to a lesser extent, due to their reduced capacity for complex multimodal reasoning.

Beyond performance improvements, the proposed framework offers practical advantages for real-
world deployment. It is model-agnostic and can be integrated into any VLM workflow capable of
handling multimodal inputs and textual outputs. Unlike conventional CNN- or ViT-based pipelines,
which often require large-scale domain-specific pretraining, our approach relies on lightweight prompt
engineering and logical hypothesis generation. This design is especially attractive for specialized
domains like burn ultrasound, where large annotated datasets are scarce. Furthermore, the framework
produces interpretable, text-based explanations alongside predictions, an important requirement for
clinical adoption and trust. By combining minimal data requirements, improved reasoning capabilities,
and interpretability, this work establishes a foundation for integrating ultrasound into broader burn
assessment protocols and encourages future multi-center data collection efforts.

5 Conclusion

We introduced a vision–language framework for burn depth assessment that integrates digital pho-
tographs and ultrasound modalities with structured diagnostic reasoning. The framework incorporates
both expert-authored and automatically generated hypotheses, enabling large vision–language models
to interpret underrepresented imaging modalities such as B-mode and TDI ultrasound. An automated
hypothesis generation module, coupled with logical consistency verification using an SMT solver,
produces domain-specific reasoning instructions without requiring extensive manual annotation. Ex-
tensive experiments demonstrate that hypothesis-guided reasoning significantly improves performance
compared to base VLMs. Our approach achieves up to 95% accuracy on binary surgical decision
tasks and 87% accuracy on three-class burn depth classification, with high AUROC values across all
classes. Multi-modal fusion further enhances performance, achieving higher correct identification
of third-degree burns while maintaining stable accuracy on less severe cases. Qualitative analysis
shows that chain-of-thought reasoning exposes the decision process, yielding interpretable predictions
and revealing sources of errors. These results highlight that structured reasoning, combined with
multi-modal inputs, can adapt general-purpose VLMs to high-stakes clinical tasks. The proposed
framework offers both improved diagnostic performance and interpretable outputs, establishing a
foundation for trustworthy deployment of vision–language systems in medical imaging workflows.
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