
Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

Greyson Brothers 1

Abstract

We investigate the design of pooling methods used
to summarize the outputs of transformer embed-
ding models, primarily motivated by reinforce-
ment learning and vision applications. This work
considers problems where a subset of the input
vectors contains requisite information for a down-
stream task (signal) while the rest are distractors
(noise). By framing pooling as vector quantiza-
tion with the goal of minimizing signal loss, we
demonstrate that the standard methods used to ag-
gregate transformer outputs, AvgPool, MaxPool,
and ClsToken, are vulnerable to performance col-
lapse as the signal-to-noise ratio (SNR) of inputs
fluctuates. We then show that an attention-based
adaptive pooling method can approximate the
signal-optimal vector quantizer within derived er-
ror bounds for any SNR. Our theoretical results
are first validated by supervised experiments on
a synthetic dataset designed to isolate the SNR
problem, then generalized to standard relational
reasoning, multi-agent reinforcement learning,
and vision benchmarks with noisy observations,
where transformers with adaptive pooling display
superior robustness across tasks.

1. Introduction
Autonomous systems, both artificial and biological, require
diverse and redundant sensors to capture a reliable picture of
their environment. Limited processing resources and com-
petitive environments pressure biological systems to process
their abundant sensory information efficiently. To satisfy
this constraint, only the subset of information relevant to the
current task is retained while the rest is considered noise and
attenuated – the process of selective attention (Broadbent,
1958; Driver, 2001).

1Johns Hopkins University Applied Physics Laboratory,
Maryland, USA. Correspondence to: Greyson Brothers
<greyson.brothers@jhuapl.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Transformer

Pooling

Transformer

AdaPool

Figure 1: Given a mix of signal (blue) and noise (red) in-
puts, standard pooling methods result in unwanted interfer-
ence in the aggregate representation of transformer outputs.
AdaPool learns to adaptively attenuate different ratios of
noise and obtain a cleaner signal.

Complex reinforcement learning (RL) environments pose
similar challenges, especially those seeking to bridge the
gap with the real world. Modern approaches have adopted
relational architectures, like transformers (Vaswani et al.,
2017) and graph neural networks (GNNs) (Battaglia et al.,
2018), to process their observations (Zambaldi et al., 2019;
Hu et al., 2021; Nayakanti et al., 2023; Huang et al., 2023;
Nayak et al., 2023). By breaking each observation into
vector-based tokens representing entities, memories, or
multi-modal sensory streams, these networks can achieve
the following benefits over standard feedforward policy ar-
chitectures: (1) variable-sized observation spaces enabling
scalability (Iqbal & Sha, 2019; Hsu et al., 2021), (2) sample
efficiency via permutation invariance and/or equivariance
over the tokens (depending on architectural choices) (Liu
et al., 2020; McClellan et al., 2024; Hao et al., 2023), and (3)
parameter efficiency by learning pairwise relations between
tokens explicitly rather than implicitly via redundant feed-
forward subnetworks (Santoro et al., 2017). In light of the
benefits of relational architectures over their feedforward
counterparts, we examine a critical implementation detail
for transformers that is often overlooked.

Each inference of a standard transformer encoder produces
as many output embeddings as input vectors. Under the
sequence-to-sequence training paradigm that they were de-
signed for, the next token in the sequence is an obvious
target for each output embedding. However, in domains
such as computer vision or RL, deciding how to map a set

1

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

of output embeddings to a class or action distribution is less
straightforward. The goal is to discard irrelevant embed-
dings while condensing the most salient information from
those remaining into a representation that can be used for
downstream tasks. Notably, this mirrors the broader aim
of pooling in general (Boureau et al., 2010). Indeed, for
non-sequential transformer applications, this is usually ac-
complished via average pooling (Karamcheti et al., 2023;
Zhai et al., 2022; Vinyals et al., 2019), max pooling (Zam-
baldi et al., 2019; Chen et al., 2021), or the use of a learned
class token (Devlin et al., 2019; Dosovitskiy et al., 2021; He
et al., 2022). However, many prior works treat this step as
an arbitrary design choice without theoretical justifications.

In this paper, we derive a framework to evaluate the perfor-
mance of differentiable vector pooling methods on inputs
composed of both “signal” and “noise” vectors. Our analysis
reveals that popular approaches like average and max pool-
ing can suffer catastrophic performance drops when their
inductive biases are misaligned with the noise level. Moti-
vated by this finding, we explore an attention-based adaptive
pooling (AdaPool) mechanism that dynamically weights rel-
evant vectors during aggregation, mitigating interference
from distractors. We then show that AvgPool, MaxPool,
and ClsToken are special cases of AdaPool. Crucially, we
prove that AdaPool can approximate the signal-optimal vec-
tor quantizer for any signal-to-noise ratio under explicit
error bounds derived from the data distribution. We validate
these theoretical insights through synthetic supervised exper-
iments and then demonstrate their practical impact on multi-
agent reinforcement learning (MPE), relational reasoning
(BoxWorld), and vision (CIFAR) benchmarks. Across all
tasks, the adaptive pooling method consistently outperforms
standard baselines and avoids their failure modes in the
presence of significant noise.

The contributions of this work can be summarized as fol-
lows:

1. We provide a theoretical framework for analyzing the
robustness of vector pooling methods to noisy inputs.

2. We show that attention can robustly pool observations
across the full spectrum of noisy inputs, and derive
error bounds on its ability to optimally retain signal.

3. We perform extensive experiments on supervised and
RL benchmarks to corroborate our theoretical results.

2. Related Work
2.1. Interference and Associative Memories

The problem of noise robustness posed by this paper is most
closely related to the problem of noisy recall in the context
of associative memories (AMs). AMs, such as Hopfield

Networks (Hopfield, 1982), are models that store sets of
memory vectors. They utilize an update rule analogous to
a pooling method that summarizes and returns information
from the set of memories according to their relationship with
a retrieval cue. Such networks have a storage capacity under
which the pooling method is guaranteed to return one of
the memory vectors and beyond which it may return a spu-
rious mixture of interfering memories (Pham et al., 2024).
This capacity is generally exceeded when the number of
memories far exceeds the dimensionality of each vector. A
growing line of work on Dense Associative Memories (Kro-
tov & Hopfield, 2016; Demircigil et al., 2017; Hoover et al.,
2024) has shown the design of this update/pooling function
has significant ramifications on the number of memories that
can be pooled without destructive interference. By introduc-
ing increasingly sharp non-linear activation functions into
the update rule, Dense AMs are able to achieve a memory
capacity that is exponential with respect to the dimension of
the memories. Ramsauer et al. (2021) showed that an expo-
nential form of this update rule is equivalent to the attention
mechanism, going as far as to propose a standalone Hopfield
Pooling layer utilizing attention. Taking inspiration from
attention-based recall methods, our goal is to extract the
most task-relevant information from a set of abundant and
diverse sensory embeddings while minimizing destructive
interference, as conveyed in Figure 1.

2.2. Attention-based Pooling

A number of works have recently utilized cross-attention
with a single query vector as a pooling method. Research on
memory augmented neural networks yielded the Neural Tur-
ing Machine (Graves et al., 2014) and Differentiable Neural
Computer (Graves et al., 2016), both using attention to ex-
tract information from a set of memory vectors, but without
the recall guarantees afforded by Hopfield networks. These
methods used the output of a recurrent controller as the
query vector. Ilse et al. (2018) use attention-based pooling
with a learned query for multi-instance learning. Stergiou
& Poppe (2023) apply attention-based pooling to computer
vision problems, terming the technique adaptive pooling
(AdaPool), which we adopt. They use the centroid of the
input set as the query for pixel-level pooling. Several works
utilize a learned query for vision-based transformers, which
is similar to the ClsToken approach but only introduces the
learned query in a final aggregation layer (Touvron et al.,
2021; Przewięźlikowski et al., 2024; Torres et al., 2024). Fi-
nally, Perceiver (Jaegle et al., 2021), Set Transformer (Lee
et al., 2019), and Universal Physics Transformers (Alkin
et al., 2024) use multiple learned queries as inducing points
to reduce the cardinality of an input set for more efficient
self-attention blocks. We further discuss the implementation
details of adaptive pooling in Section 3.5, and motivate a
novel choice of query based on our analysis.

2

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

3. Methods
In this section, we formally define vector pooling methods
and establish a theoretical framework under which they
can be evaluated analytically for signal loss under various
signal-to-noise regimes. Critically, we demonstrate that
attention-based pooling can approximate a signal-optimal
vector quantizer for inputs with any noise ratio.

3.1. Data and Noise

We define our input domain as a set of vectors containing
sensory information. It is often helpful to imagine these vec-
tors as points, particles, or entities. We represent these sets
as matrices X ∈ RN×d, where N indicates the cardinality
of the set and d reflects the dimensionality of each vector.
In a multi-agent RL setting, each vector might contain the
x-y positions and velocities of different entities, as well as
relevant features including entity type, team, health, etc. In
a multi-modal perception example, the set of input vectors
may be split between encoded image patches, encoded audio
tokens, and embedded text tokens. Abstractly, each vector
in the set represents a snapshot from the different sensory
streams an agent uses to perceive its environment.

For any given inference, some number k ≤ N of those
input vectors will contain information that is relevant to the
learning task. We label the k task-relevant vectors as the
signal subset Xs and the rest as noise subset Xη, such that
the input set X = Xs ∪Xη and Xs ∩Xη = Ø. Under this
framework, we define a signal-to-noise ratio SNR = k

N .

A vector xi belongs to the signal subset when the learning
target y is a function of that vector. Formally, xi ∈ Xs ⇐⇒
∂y
∂xi

̸= 0 and xi ∈ Xη ⇐⇒ ∂y
∂xi

= 0. The following
sections utilize this notation to lay the groundwork for our
theoretical analysis of vector pooling methods.

3.2. Vector Quantization

We extend analytical tools developed for vector quantization
(VQ) (Gray, 1984) and lossy compression to evaluate the
theoretical noise-robustness of pooling methods. It is worth
noting that vector quantization should not be confused with
the recent weight quantization techniques used to reduce the
memory footprint of language models (Jacob et al., 2018).
Instead, VQ is concerned with evenly dividing a large set
of points into discrete clusters for data compression. The
compressed set uses a single vector representation for each
cluster in place of the original points. A well-known exam-
ple is the k-means clustering algorithm (MacQueen, 1967).
We frame global vector pooling methods as a degenerate
case of vector quantization with a single cluster.

Definition 3.1. A Global Vector Pool is any differentiable
vector quantizer C(X) : RN×d → Rd of the following

form:

C(X) =

N∑
i

wi ⊙ xi (1)

where ⊙ indicates the Hadamard product with a weight
vector wi = [wi,1, ..., wi,d] whose elements wi,j ∈ R. If
all elements of wi are identical, then the result is equivalent
to using a scalar weight wi. We label this function C as it
represents a compressor.

In the VQ literature, the information loss incurred by a quan-
tizer is referred to as quantization error or distortion. The
standard metric used is mean squared error (MSE) between
each point and its cluster’s representation. Gray (1984) de-
fines the optimal quantizer as that which minimizes MSE
over the input set, yielding the centroid in the case of a
single cluster. For our purposes, we care only about signal
distortion; noise-related quantization error is of no conse-
quence. Thus, we define a related measure of information
loss specifically for our use case:

Definition 3.2. The Signal Loss L of a vector pool C on a
noisy set X is the MSE between the compressed representa-
tion C(X) = xc and the subset of signal vectors Xs ⊆ X.

L(X,xc) =
1

k

∑
xs∈Xs

(xs − xc)
2

Corollary 3.3. The point x∗
c that minimizes signal loss is

the centroid of the signal subset (see proof A.1). We say
that the global vector pool C∗ that computes this point is
signal-optimal.

From Definition 3.2 and Corollary 3.3, it follows that the
signal-optimal global vector pool assigns weights

wi =

{
1
k if xi ∈ Xs

0 if xi ∈ Xη

3.3. Global Average Pooling

Definition 3.4. Global Average Pooling is a vector quantizer
of the following form:

AvgPool(X) =

N∑
i

wi · xi (2)

where weights wi are are scalars given by

wi =
1

N
(3)

Corollary 3.5. AvgPool is signal-optimal if the input set
contains no noise.

Xη = Ø =⇒ AvgPool = C∗

See proof A.2

3

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

Corollary 3.6. When the input contains noise, Xη ̸= Ø,
AvgPool is signal-optimal if and only if the centroid of Xs

is equivalent to the centroid of Xη .

AvgPool = C∗ ⇐⇒ AvgPool(Xs) = AvgPool(Xη)

See proof A.3

We note that these two cases are extremely limiting. Average
pool is only signal-optimal in the unlikely cases that the
entire input set is strictly composed of task-relevant vectors
or the signal and noise vectors are identically distributed.
When that is not the case, AvgPool tends to yield higher
signal loss with each additional noise vector.

3.4. Global Max Pooling

Definition 3.7. Global Max Pooling is a vector quantizer of
the following form:

MaxPool(X) =

N∑
i

wi ⊙ xi (4)

where the elements of the weight vector
wi = [wi,1, ..., wi,d] are given by

wi,d =

{
1 if xi,d > xj,d, ∀j ̸= i

0 otherwise
(5)

Any elements whose values are the maximum along a fea-
ture column of X are given a weight of one and all others
a weight of zero. For notational simplicity, we make the
assumption that a unique maximum exists. If a given col-
umn has m elements that share the maximum value, then
the MaxPool can still be obtained with this summation by
giving each a weight of 1

m .

Corollary 3.8. MaxPool is signal-optimal if and only if the
input set X contains a single signal vector (k = 1) taking
the maximal value along each feature dimension.

MaxPool = C∗ ⇐⇒ |Xs| = 1,MaxPool(X) = xs

See proof A.4

We observe that MaxPool acts as a complement to AvgPool,
where signal loss tends to increase with each additional sig-
nal vector added to the input set. They both have inductive
biases that result in best performance at opposite ends of the
signal-to-noise spectrum and experience increasing signal
loss when the SNR changes.

3.5. Global Adaptive Pooling

Adaptive pooling utilizes cross-attention with a single query
to pool a set of vectors. Prior works have utilized kernel

functions and inner product spaces to study the set of rela-
tional functions that attention can approximate (Tsai et al.,
2019; Altabaa & Lafferty, 2024). Following this line of
work, we let r(xq,xi) : Rd ×Rd → R be a parametrizable,
asymmetric kernel used to compute the relation between a
query and a sensory vector. Given parametrizable weight
matricesWQ,WK ∈ Rd×d and a query vector xq ∈ Rd, we
define the relation kernel as the scaled dot product

r(xq,xi) = ⟨ϕθ(xq), ψθ(xi)⟩ = xqWQW
⊤
Kx⊤

i · 1√
d

For our purposes, the query xq is fixed for all xi, so we use
the shorthand r(xq,xi) = ri for notational convenience.

Definition 3.9. Given parametrizable weight matrices
WQ,WK ,WV ∈ Rd×d and a query vector xq ∈ Rd, Global
Adaptive Pooling is a vector quantizer of the following form:

AdaPool(X) =
N∑
i

wi · xiWV (6)

where each weight wi is given by the softmax of relation ri

wi =
exp (ri)∑N
j exp (rj)

(7)

The choice of the query is thus an inductive bias that controls
the nature of the relation kernel, which in turn affects the
attenuation of the input set.

Corollary 3.10. AvgPool is a special case of AdaPool.
See proof A.6

Corollary 3.11. MaxPool is a special case of AdaPool.
See proof A.7

W K W Q W V

T

Dot Product
& Softmax

Input Setxq X

Weighted
Average

?

Query

Figure 2: Attention as a vector pooling method (AdaPool).

4

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

Next, we construct a set of error bounds on AdaPool’s ap-
proximation of the signal-optimal quantizer. The general
intuition is that the output of the softmax should equally
distribute weights amongst the signal vectors and give zero
weight to the noise vectors, following from Corollary 3.3.
Since softmax normalizes inputs by the sum of their expo-
nentiated values, there needs to be a meaningful margin
between signal and noise relation scores to push the noise
weights to zero, and the signal scores need to be similar in
magnitude such that one does not dominate the others. To
formalize this intuition, we introduce the following notation
to describe the neighborhood widths ϵ for signal and noise:

ϵs = max{rs} −min{rs} ≥ 0

ϵη = max{rη} −min{rη} ≥ 0
(8)

We additionally define the minimum margin M and max
distance D between signal and noise neighborhoods as

M = min{rs} −max{rη}
D = max{rs} −min{rη} =M + ϵs + ϵη

(9)

These values are illustrated in Figure 3 using an example
set of relation scores for better intuition. These are used to
bound the worst-case weights for any given set of inputs.

?s??

M{r ?} {r s}

r i

Figure 3: An example displaying the ϵ neighborhoods of
signal (blue) and noise (red) relation values, along with the
margin M between the two neighborhoods {rs} and {rη}.
The axis represents the codomain of the relation kernel.

Theorem 3.12. For any signal-to-noise ratio, AdaPool can
approximate the signal-optimal vector pool within an error
bound determined by the distribution of signal and noise re-
lations. Explicitly, for any signal vector xi ∈ Xs, AdaPool
approximates the optimal weight of w∗

i = 1
k within error

bounds Ls ≤ w∗
i − wi ≤ Us, which are the following

lower and upper bounds respectively:

Ls =
1

k
−
(
1 + (k − 1) · e−ϵs + (N − k) · e−D

)−1

Us =
1

k
−
(
1 + (k − 1) · eϵs + (N − k) · e−M

)−1

and for any noise vector xi ∈ Xη, AdaPool approximates
the optimal weight of w∗

i = 0 within the error bounds
Lη ≤ w∗

i − wi ≤ Uη, which are the following lower

and upper bounds respectively:

Lη = −
(
k · eM + 1 + (N − k − 1) · e−ϵη

)−1

Uη = −
(
k · eD + 1 + (N − k − 1) · eϵη

)−1

See proof A.5

Remark 3.13. Crucially, as the margin M increases and
the signal and noise neighborhoods ϵs and ϵη shrink, the
bounds squeeze the approximation error to zero. This is
influenced by the data distribution, the expressiveness of the
relation kernel, and any preprocessing of the input set, such
as embedding via transformer.

To make this likely in practice, we propose selecting the
query from the signal subset xq ∈ Xs. Since the dot-
product relation kernel computes a notion of similarity,
when the query is a signal vector, the dot product with
other signal vectors should tend to be higher than the dot
product with noise vectors. We argue that using the cen-
troid of the whole set as a query (Stergiou & Poppe, 2023)
is not robust, as it is influenced by the ratio of signal and
noise vectors in a given input. We also argue that selecting
a learned embedding (Lee et al., 2019) is not ideal, as it
is fixed regardless of changes to the distributions of signal
and noise per sample. For example, a simple rotation of all
signal and noise points about the origin could severely alter
their dot products with a fixed learned embedding, while
dot products with a signal vector would be invariant to such
transformations.

While choosing a known signal vector for every input might
seem like a nebulous task, we provide numerous examples
here to ground and inspire such choices. For entity-based RL
problems, the network is controlling one of the N entities in
its observation space. We use the transformer embedding of
that entity’s state token as the query since it always contains
task-relevant information. If the inputs are memory vectors,
the current state of the environment acts as a signal-rich
query vector. For vision tasks with structured images, like
video games, one might choose a particular image patch to
be the query, such as a patch covering a mini-map or status
indicators. For real-world vision tasks, a patch from the
center of the image may be desirable, as it will generally
contain focal content coinciding with the gaze of the agent.
We explore the consequences of such choices in Section 4.5.

By using a query from the input set, we also have a natural
way of preserving the residual stream by adding the output
of AdaPool back to the query. This helps with gradient
propagation, and we observe better empirical performance
than without extending a skip connection to the pooling
layer. Finally, for an analysis of time complexity, see B.1.

5

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

3.6. ClsToken

Class tokens are a common alternative to the above pooling
methods, introduced by BERT (2019) and frequently used
in vision applications (Dosovitskiy et al., 2021; He et al.,
2022). For this method, a learned parameter vector is ap-
pended to the input set before being fed into the transformer
encoder. The corresponding embedding is taken from the
output and used for downstream tasks. If one ignores the
final feedforward sublayer and discards the N − 1 other out-
put embeddings produced by the transformer, the ClsToken
and AdaPool methods differ only by the choice of query
vector xq . ClsToken takes xq to be the output embedding of
the learned parameter vector, whereas we construct AdaPool
to select the output embedding of a signal vector.

4. Experiments
We designed a variety of experiments to evaluate our the-
oretical findings. Using a large synthetic dataset, we first
construct a supervised learning task to isolate the robustness
of transformers with each pooling method across the full
spectrum of noise levels. The same architectures are then
applied to RL tasks in the Multi-Particle Environment and
BoxWorld, first mirroring the supervised task and then look-
ing at performance in standard benchmark scenarios with
increasing noise. Finally, we test the generalization of our
analysis to real-world data with the CIFAR image classifi-
cation dataset. Critically, we show that AdaPool displays
superior robustness across noise levels on all baselines, vali-
dating our theoretical results. Code is publicly available at
https://github.com/agbrothers/pooling.

4.1. Synthetic Dataset

For our first experiments, we generated a synthetic dataset
with 1 million samples. Each sample is a set containing
N = 128 vectors with d = 16 features per vector, repre-
sented by a 2D array. Each feature column is drawn from a
unique distribution, evenly split between randomly param-
eterized exponential, gaussian, and uniform distributions.
The ordering of distributions is shuffled for each sample to
ensure diversity and prevent overfitting.

4.2. Noise Robustness Experiments

To assess our theoretical findings, we design a supervised
experiment to mirror our analytical framework. Given a set
of N input vectors representing points in space, the network
must predict the centroid of the k-Nearest Neighbors (the
signal subset) to an arbitrarily chosen target point. The tar-
get point is indicated to the network by adding a learned
embedding to it at inference time, similar to the use of
learned positional embeddings used in language modeling
tasks (Radford et al., 2018). As we vary 1 ≤ k ≤ N , we

Figure 4: Signal Loss (MSE) on the KNN-Centroid Task
(N=128, d=16). Lower is better, data is provided in Table 3.

can explicitly control the signal-to-noise ratio of each obser-
vation, allowing us to gauge robustness by measuring signal
loss under each noise regime. As baselines, we display the
signal loss incurred by naively predicting the centroid of
the entire input set, as well as naively predicting the target
vector used to source the nearest neighbor subset.

For these experiments, we use 5-fold cross-validation to
train a 12-layer transformer encoder capped by a pooling
method. All models were on the order of 600k parame-
ters with the same initial weight configuration for the base
transformer. Additional hyperparameters are listed in the
appendix C.2. We report the signal loss on a test set com-
prised of 100k holdout samples in Figure 4, averaged across
the model checkpoints with the lowest validation loss on
each fold. Additional ablations are reported in B.5, varying
the dimensionality and cardinality of the inputs as well as
the dimensionality and depth of the networks.

AdaPool exhibits the lowest signal loss and most consistent
performance across noise regimes. In particular, it exceeds
all other approaches by an order of magnitude in the low
SNR regimes (0.03-0.25). Predictably, MaxPool has its best
relative performance in the lowest SNR regime and rapidly
declines as signal increases. Conversely, AvgPool performs
best for high SNR (0.5-1.0) and deteriorates predictably as
signal becomes sparse. AvgPool also closely follows the
naive centroid baseline, while MaxPool closely follows the
naive target baseline until an SNR of 1.0, at which point it
improves slightly. The ClsToken method performs slightly
worse than AvgPool at each noise level. All methods exhibit
their worst absolute performance on the highest noise KNN-
1 task, with the exception of MaxPool. These findings
directly support our theoretical analysis.

4.3. Multi-Agent Experiments

To generalize our findings to reinforcement learning, we use
the standard Multi-Particle Environment (MPE) benchmark.

6

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

(a) 1-31-0 (b) 1-15-16 (c) 1-3-28 (d) 1-1-30

Figure 5: Performance on the simple centroid environment, with the number of particles labeled Agents-Signal-Noise. The
SNR decreases from 32

32 (a) → 16
32 (b) → 4

32 (c) → 2
32 (d). Lines represent the mean value across seeds, with standard error

shaded and the Y-axis fixed across plots to show performance decay.

Figure 6: Left, the simple centroid environment with an
agent (green), signal entities (blue), and noise entities (red).
Right, the simple tag environment with a predator (red),
prey (green), and obstacles (black).

The environment provides a simple 2D world with baseline
scenarios and an API to implement custom scenarios. We
utilize the baseline simple tag environment and implement a
custom simple centroid environment, both described below.
While the default environment returns a flat observation
vector, we process the observation into entity state tokens,
such that each entity is represented by an 8-dimensional
state vector containing (x,y) position, (x,y) velocity, and
a 4-dimensional learned embedding corresponding to the
entity type: [self, predator, prey, obstacle]. These tokens are
each passed through the same projection layer to map them
to the hidden dimension of the network. Expanding the
size of the hidden dimension relative to the inputs alleviates
the burden on the pooling method to effectively compress
information, as found in our ablation studies in B.5. For
these experiments, we thus limit the hidden dimension to at
most the size of the input tokens.

We use the Proximal Policy Optimization (PPO) (Schulman
et al., 2017) reinforcement learning algorithm in an online,
centralized-training decentralized-execution (CTDE) setup:
each agent is controlled by a copy of the same policy net-
work but observes and acts independently. The training
batch compiles experience from all learning agents to up-
date the weights of the single policy, which is then copied

back to each agent. We use 10 seeds per method for each
simple centroid experiment and 20 per method for simple
tag. The policy architecture mirrors the architecture used in
the previous experiments (4.2) with the addition of a pair of
3-layer MLPs that map the pooled output to action logits and
value predictions respectively. For each trial, all four meth-
ods are run with the same seeds, base transformer weights,
and environmental initial conditions. Training batches con-
sist of 8192 samples drawn from 128-timestep episodes,
with all experiments training for 4 million timesteps total.
Additional training hyperparameters can be found in C.4.

4.3.1. SIMPLE CENTROID

We first design a custom MPE scenario to mirror the su-
pervised KNN-Centroid task in a multi-agent RL setting.
We sample a set of signal agents that move according to
a random policy, along with a set of noise agents whose
positions are fixed, as shown on the left of Figure 6. We
train a single additional agent with a reward to minimize
its distance to the centroid of the signal agents. We use a
continuous action space, where the actions are accelerations
in the cardinal directions. Results are displayed in Figure 5.

AdaPool consistently reaches the same level of performance
across noise levels, while all other methods deteriorate as
noise increases. MaxPool was the worst performer by a
wide margin across all levels, even when signal was sparse.
As in the synthetic experiment, we observe that AdaPool
performs the best relative to other methods in the mid-low
SNR regime (4

32). With all methods, we observe an intuitive
correlation between sample efficiency and noise level; more
noise requires more samples to reach the same performance.

4.3.2. SIMPLE TAG + NOISE

For this experiment, we examine the impact of increas-
ing the volume and ratio of noise in the default simple tag
benchmark provided by MPE. Simple tag is a predator-prey
scenario, where predators receive +10 reward for colliding
with prey and prey receive -10 reward for colliding with

7

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

(a) 1v3v0 (b) 1v3v4 (c) 1v3v12 (d) 1v3v28

Figure 7: Scaling the number of distractor obstacles (noise) while keeping reward dynamics fixed. Subplots are labeled
Predators-Prey-Obstacles, and the Y-axis is shared across plots.

predators, and collidable obstacles are scattered about, as
shown on the right of Figure 6. For this experiment, we
turn off obstacle collisions such that they have no influence
on the reward function or dynamics of the game. We use
a single predator and 3 prey agents, and train with increas-
ing numbers of obstacles acting as noise in the observation
space. To enable objective evaluation and prevent compe-
tition from introducing non-stationarity into the problem,
we only train the predator and control the prey agents with
a heuristic that randomly samples a direction to move in.
Unlike the simple centroid experiment, we use a discrete
action space here.

As shown in Figure 7, the final mean reward of all methods
declines significantly as both the volume and ratio of noise
increase, indicating a major decrease in sample efficiency
within the fixed training budget of 4 million timesteps. Since
the reward dynamics are identical across all scenarios and
the training time is fixed, this performance decrease can be
directly linked to the difficulty of learning from observa-
tions with sparse signal. Predictably, AvgPool suffers the
worst from an increase in noise, with the final mean reward
dropping 77.4%. ClsToken drops a similar 70.4%, MaxPool
falls 60.7%, and AdaPool drops 50.9%. AdaPool attains the
highest mean reward and lowest performance decline across
all noise levels.

4.4. BoxWorld

(a) Entity-Based Obs (b) Pixel-Based Obs

Figure 8: BoxWorld performance on entities only (8) vs all
pixels (50). The Y-axis is shared across plots.

BoxWorld is a vision-based relational reasoning task intro-
duced by Zambaldi et al. (2019). It involves picking up keys
to unlock a sequence of boxes in the correct order to reach
a goal gem. There are also distractor paths that lead to dead
ends, requiring the agent to reason over which key to pick
up or which box to unlock next. Keys, Locks, and Boxes are
represented by pixels on a 2D grid, as depicted in Figure 10.
We train on an instance with a goal sequence of length 2, 2
distractors, and a 7x7 grid under two observation regimes.
One presents tokens containing the normalized RGB color
values and relative pixel coordinates only for the entities
(max 8 tokens), while the other presents a token for each
pixel plus the key currently held by the agent (50 tokens).
Like 4.3.2, the underlying learning dynamics are the same,
but the pixel observations contain a significantly higher vol-
ume and ratio of noise. We use 5 seeds per method and train
for 40 million steps. Additional training parameters can be
found in the appendix C.6.

In Figure 8, we observe that MaxPool is able to achieve su-
perior sample efficiency and performance on the entity-level
observations, but then collapses to the worst performance
under pixel-level observations. As in the previous experi-
ment, we observe the smallest decline from AdaPool, which
achieves superior performance in the high noise regime.
AvgPool and ClsToken perform comparatively worse in
both regimes. Regarding the initial high performance of
MaxPool, the goal gem is always represented by a white
pixel, giving it a normalized color value of all ones – the
upper bound of the observation space. Corollary 3.8 im-
plies that MaxPool is uniquely suited for problems of this
form, hence the superior performance in 10a. However,
the non-entity pixels (empty space) are a light grey color,
relatively close in numerical representation to white. This
likely exacerbated the performance drop, despite MaxPool’s
helpful inductive bias. Overall, this demonstrates that our
theoretical framework can be used as an analytical tool for
neural network designers to map their problem domains to
the best pooling methods for the job, rather than relying on
intuition or trial and error.

8

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

4.5. CIFAR

Prior experiments carefully controlled for signal and noise,
but left the following unanswered: (1) Does our analysis
hold up on real-world data where signal and noise are less
clearly defined, and where individual vectors may contain
a mix of both? (2) How do you employ AdaPool when the
choice of query is not obvious? To answer these questions,
we conducted additional studies on image classification us-
ing the CIFAR 10 and 100 benchmark datasets. We adopted
the Vision Transformer (ViT) approach (Dosovitskiy et al.,
2021), partitioning the 32x32 pixel RGB images into 64
separate 4x4 pixel patches as shown in Figure 9. These are
then flattened, projected, and fed into the transformer for
embedding. Standard ViT implementations use ClsToken to
pool output embeddings, with a minority favoring AvgPool.

Figure 9: Splitting the CIFAR images into patches. We ex-
periment with different choices of query for AdaPool, with
the Corner query using the red patch embedding, the Focal
query averaging the four central yellow patch embeddings,
and the Mean query averaging all patch embeddings.

Most samples in the CIFAR dataset tend to contain the
object being classified in the center of the image. While pe-
riphery patches may include some useful information, like
grass or water, we hypothesize that the central patches are
more likely to contain discriminating signal on average than
any other patches. We thus examine 3 choices of query: Cor-
ner, the embedding of the upper-left-most periphery patch;
Focal, averaging the embeddings of the four central patches;
and Mean, using the average of all patch embeddings as the
query. These query choices are also highlighted in Figure 9.

We report the Top-1 accuracy scores on the holdout test set
in Table 1, averaged from the best models across 5 folds
after 300 training epochs each; see additional details in
C.7. We observe that AdaPool Focal and Mean queries out-
perform all other methods in both cases, reaching similar
accuracies. The Corner query underperforms in both experi-
ments, aligning with the prediction that a noisy query should
lead to worse performance. By evaluating the efficacy of
different queries, one could discover how signal tends to
be distributed. This evidence supports the hypothesis that
signal tends to be more concentrated in the central patches.

METHOD CIFAR-10 CIFAR-100

ClsToken 84.52 ±0.21 55.56 ±0.13

AvgPool 87.15 ±0.35 59.63 ±0.23

MaxPool 87.65 ±0.17 60.55 ±0.28

Ada-Focal 87.98 ±0.42 61.22 ±0.33

Ada-Mean 87.84 ±0.30 61.23 ±0.20

Ada-Corner 87.00 ±0.30 57.08 ±0.31

Table 1: ViT Top-1 test accuracy on the CIFAR image
classification dataset using different pooling methods.

Additionally, the standard ClsToken approach underper-
forms all other methods by a significant margin. AvgPool
and MaxPool perform relatively well, with MaxPool having
the edge in both experiments. In Figure 4, we previously ob-
served that this occurred in the very low SNR regime (SNR
< 0.1). If that trend generalizes beyond our synthetic dataset,
then it is a quantitative indication that, after embedding,
CIFAR samples tend to be signal-sparse.

One of our major theoretical results was that the selection
of query is critical for approximating the optimal quantizer.
This could be a practical limitation, depending on AdaPool’s
sensitivity to non-ideal queries. A key takeaway from this
experiment is that, while AdaPool is indeed sensitive to poor
choices like the Corner query, the Mean query is a strong
default option that can outperform the standard pooling
methods, even if the data is more noise than signal.

5. Conclusion
In this work, we investigated the selection and design of
global pooling methods for aggregating embeddings pro-
duced by transformers. We drew connections between pool-
ing, vector quantization, and associative memory to reframe
pooling as a lossy compression problem rather than a trivial
operation for aligning dimensions. This reframing helped
formalize the limitations of common approaches like Avg-
Pool and MaxPool, and we showed that attention-based
adaptive pooling, a niche approach, approximates the opti-
mal compressor within derived bounds. These theoretical
findings were first evaluated with carefully designed super-
vised experiments, and then in more general reinforcement
learning and vision tasks using the Multi-Particle Environ-
ment, BoxWorld, and CIFAR. The results confirmed that
AvgPool and MaxPool fail in predictable ways when the
signal-to-noise ratio of inputs changes, validating the theo-
retical analysis. Additionally, ClsToken had a similar noise
sensitivity to AvgPool, with less predictable relative perfor-
mance between tasks. Crucially, we found that AdaPool
was predictably robust to different ratios and quantities of
noise, resulting in superior performance across tasks.

9

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

Acknowledgements
We thank Mark Fleischer, Joshua McClellan, Zachary God-
dard, John Winder, and Jovanna Aragon for their helpful
feedback.

Impact Statement
The underlying motivation of this paper is to enhance the
design of neural network architectures used for controlling
autonomous systems. We focus on formalizing and im-
proving one particular aspect, vector pooling, which is a
commonly used and broadly applicable technique in many
machine learning domains. In terms of specific impacts,
there is a rich body of discussion on the very real potential
benefits and harms of intelligent autonomous systems, none
of which we feel merits particular discussion in this work.

References
Alkin, B., Fürst, A., Schmid, S. L., Gruber, L., Holzleitner,

M., and Brandstetter, J. Universal Physics Transformers:
A Framework For Efficiently Scaling Neural Operators.
In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024.

Altabaa, A. and Lafferty, J. Approximation of rela-
tion functions and attention mechanisms, June 2024.
arXiv:2402.08856 [cs].

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V. F., Malinowski, M., Tac-
chetti, A., Raposo, D., Santoro, A., Faulkner, R., Çaglar
Gülçehre, Song, H. F., Ballard, A. J., Gilmer, J., Dahl,
G. E., Vaswani, A., Allen, K. R., Nash, C., Langston,
V., Dyer, C., Heess, N. M. O., Wierstra, D., Kohli, P.,
Botvinick, M. M., Vinyals, O., Li, Y., and Pascanu, R.
Relational inductive biases, deep learning, and graph net-
works. ArXiv, abs/1806.01261, 2018.

Boureau, Y.-L., Ponce, J., and LeCun, Y. A theoretical
analysis of feature pooling in visual recognition. In Pro-
ceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, pp. 111–118,
Madison, WI, USA, 2010. Omnipress.

Broadbent, D. E. Perception and communication. Pergamon
Press, Elmsford, NY, US, 1958.

Chen, J., Hu, H., Wu, H., Jiang, Y., and Wang, C. Learning
the Best Pooling Strategy for Visual Semantic Embed-
ding. In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 15784–15793, June
2021.

Demircigil, M., Heusel, J., Löwe, M., Upgang, S., and
Vermet, F. On a Model of Associative Memory with

Huge Storage Capacity. Journal of Statistical Physics,
168(2):288–299, July 2017.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In North American Chapter of the
Association for Computational Linguistics, 2019.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An
Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. ICLR, 2021.

Driver, J. A selective review of selective attention research
from the past century. British Journal of Psychology, 92
(1):53–78, 2001.

Graves, A., Wayne, G., and Danihelka, I. Neural Turing
Machines, December 2014. arXiv:1410.5401 [cs].

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P.,
Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King,
H., Summerfield, C., Blunsom, P., Kavukcuoglu, K., and
Hassabis, D. Hybrid computing using a neural network
with dynamic external memory. Nature, 538(7626):471–
476, October 2016. Publisher: Nature Publishing Group.

Gray, R. Vector quantization. IEEE ASSP Magazine, 1
(2):4–29, April 1984. Conference Name: IEEE ASSP
Magazine.

Hao, J., Hao, X., Mao, H., Wang, W., Yang, Y., Li, D.,
Zheng, Y., and Wang, Z. Boosting Multiagent Reinforce-
ment Learning via Permutation Invariant and Permutation
Equivariant Networks. In The Eleventh International
Conference on Learning Representations, 2023.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked Autoencoders Are Scalable Vision Learners.
In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 15979–15988, 2022.

Hoover, B., Chau, D. H., Strobelt, H., Ram, P., and Krotov,
D. Dense Associative Memory Through the Lens of Ran-
dom Features. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proceed-
ings of the National Academy of Sciences, 79:2554–2558,
April 1982. Publisher: Proceedings of the National
Academy of Sciences.

Hsu, C. D., Jeong, H., Pappas, G. J., and Chaudhari, P. Scal-
able Reinforcement Learning Policies for Multi-Agent

10

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

Control. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4785–4791,
September 2021.

Hu, S., Zhu, F., Chang, X., and Liang, X. UPDeT: Universal
Multi-agent RL via Policy Decoupling with Transformers.
In International Conference on Learning Representations,
2021.

Huang, Z., Liu, H., and Lv, C. GameFormer: Game-
theoretic Modeling and Learning of Transformer-based
Interactive Prediction and Planning for Autonomous Driv-
ing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 3903–3913, Oc-
tober 2023.

Ilse, M., Tomczak, J., and Welling, M. Attention-based
deep multiple instance learning. In Dy, J. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 2127–2136. PMLR, 10–15
Jul 2018.

Iqbal, S. and Sha, F. Actor-Attention-Critic for Multi-Agent
Reinforcement Learning. In Proceedings of the 36th
International Conference on Machine Learning, pp. 2961–
2970. PMLR, May 2019.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and Training of Neural Networks for Efficient Integer-
Arithmetic-Only Inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman,
A., and Carreira, J. Perceiver: General Perception with
Iterative Attention. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, pp. 4651–4664.
PMLR, July 2021. ISSN: 2640-3498.

Karamcheti, S., Nair, S., Chen, A., Kollar, T., Finn, C.,
Sadigh, D., and Liang, P. Language-Driven Represen-
tation Learning for Robotics. In Robotics: Science and
Systems XIX. Robotics: Science and Systems Foundation,
July 2023.

Krotov, D. and Hopfield, J. J. Dense Associative Memory
for Pattern Recognition. In Advances in Neural Informa-
tion Processing Systems, volume 29. Curran Associates,
Inc., 2016.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set Transformer: A Framework for Attention-based
Permutation-Invariant Neural Networks. In Proceedings
of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Re-
search, pp. 3744–3753. PMLR, 09–15 Jun 2019.

Liu, I.-J., Yeh, R. A., and Schwing, A. G. PIC: Permuta-
tion Invariant Critic for Multi-Agent Deep Reinforcement
Learning. In Proceedings of the Conference on Robot
Learning, volume 100 of Proceedings of Machine Learn-
ing Research, pp. 590–602. PMLR, 30 Oct–01 Nov 2020.

MacQueen, J. Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the
Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Statistics, volume 5.1, pp. 281–
298. University of California Press, January 1967.

McClellan, J., Haghani, N., Winder, J., Huang, F., and
Tokekar, P. Boosting Sample Efficiency and Generaliza-
tion in Multi-agent Reinforcement Learning via Equivari-
ance. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Nayak, S., Choi, K., Ding, W., Dolan, S., Gopalakrishnan,
K., and Balakrishnan, H. Scalable Multi-Agent Reinforce-
ment Learning through Intelligent Information Aggrega-
tion. In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 25817–25833. PMLR,
23–29 Jul 2023.

Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat,
K. S., and Sapp, B. Wayformer: Motion Forecasting via
Simple & Efficient Attention Networks. In 2023 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 2980–2987, May 2023.

Pham, B., Raya, G., Negri, M., Zaki, M. J., Ambrogioni,
L., and Krotov, D. Memorization to Generalization: The
Emergence of Diffusion Models from Associative Mem-
ory. In NeurIPS 2024 Workshop on Scientific Methods
for Understanding Deep Learning, 2024.

Przewięźlikowski, M., Balestriero, R., Jasiński, W., Śmieja,
M., and Zieliński, B. Beyond [cls]: Exploring the true po-
tential of masked image modeling representations, 2024.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training. OpenAI, 2018.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M.,
Gruber, L., Holzleitner, M., Adler, T., Kreil, D., Kopp,
M. K., Klambauer, G., Brandstetter, J., and Hochreiter,
S. Hopfield Networks is All You Need. In International
Conference on Learning Representations, 2021.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple neu-
ral network module for relational reasoning. In Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

11

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal Policy Optimization Algorithms,
August 2017. arXiv:1707.06347 [cs].

Stergiou, A. and Poppe, R. AdaPool: Exponential Adaptive
Pooling for Information-Retaining Downsampling. IEEE
Transactions on Image Processing, 32:251–266, 2023.

Torres, F., Zhang, H., Sicre, R., Ayache, S., and Avrithis,
Y. CA-Stream: Attention-based Pooling for Interpretable
Image Recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pp. 8206–8211, June 2024.

Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., and
Jégou, H. Going Deeper With Image Transformers. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 32–42, October 2021.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and
Salakhutdinov, R. Transformer Dissection: An Unified
Understanding for Transformer‘s Attention via the Lens
of Kernel. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 4344–4353,
Hong Kong, China, November 2019. Association for
Computational Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is All you Need. In Advances in Neural Information
Processing Systems, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T. P., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575:350 –
354, 2019.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y.,
Babuschkin, I., Tuyls, K., Reichert, D., Lillicrap, T.,
Lockhart, E., Shanahan, M., Langston, V., Pascanu, R.,
Botvinick, M., Vinyals, O., and Battaglia, P. Deep rein-
forcement learning with relational inductive biases. In
International Conference on Learning Representations,
2019.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
Vision Transformers. In 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp.
1204–1213, June 2022.

12

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

A. Proofs
A.1. Proof of Corollary 3.3

The point x∗
c that minimizes signal loss is the centroid of

the signal subset Xs ⊆ X.

Proof. Given a vector set X as presented in Section 3.1, a
global vector pool C yielding C(X) = xc ∈ Rd, and the
following definition for signal loss given in Section 3.2

L(Xs,xc) =
1

k

∑
xi∈Xs

(xi − xc))
2

the signal-loss minimizing point x∗
c is given by

∂L
∂xc

= −2

k

∑
xi∈Xs

(xi − x∗
c) = 0

−k · x∗
c +

∑
xi∈Xs

xi = 0

x∗
c =

1

k

∑
xi∈Xs

xi

yielding the centroid of the signal subset.

A.2. Proof of Corollary 3.5

AvgPool is an optimal vector compressor if the input set
contains no noise.

Xη = Ø =⇒ AvgPool = C∗

Proof. Suppose Xη = Ø. Then Xs = X, k = N , and

AvgPool(X) =
1

N

∑
xi∈X

xi =
1

k

∑
xi∈Xs

xi = C∗(X)

A.3. Proof of Corollary 3.6

When the input contains noise, Xη ̸= Ø, AvgPool is an
optimal vector compressor if and only if the centroid of Xs

is equivalent to the centroid of Xη .

AvgPool = C∗ ⇐⇒

AvgPool(Xs) = AvgPool(Xη)

Proof. Case 1. (=⇒) Suppose Xη ̸= Ø and
AvgPool = C∗. Since AvgPool assigns weight wi =

1
N to

all vectors while the optimal compressorC∗ assigns weights
wi =

1
k to all xs and wi = 0 to all xη , we have

AvgPool = C∗ =⇒

1

N

∑
xi∈Xs

xi +
1

N

∑
xi∈Xη

xi =
1

k

∑
xi∈Xs

xi

1

N

∑
xi∈Xη

xi =

(
1

k
− 1

N

) ∑
xi∈Xs

xi

1

N

∑
xi∈Xη

xi =
N − k

N
· 1
k

∑
xi∈Xs

xi

1

N − k

∑
xi∈Xη

xi =
1

k

∑
xi∈Xs

xi

AvgPool(Xη) = AvgPool(Xs)

Case 2. (⇐=) Suppose Xη ̸= Ø
and AvgPool(Xs) = AvgPool(Xη). Then

AvgPool(Xs) = AvgPool(Xη) =⇒

1

k

∑
xi∈Xs

xi =
1

N − k

∑
xi∈Xη

xi

The remainder of the proof is symmetric to Case 1.

A.4. Proof of Corollary 3.8

MaxPool is signal-optimal if and only if the input set X
contains a single signal vector (k = 1) taking the maximal
value along each feature dimension.

MaxPool = C∗ ⇐⇒ |Xs| = 1,MaxPool(X) = xs

Proof. Case 1. (=⇒) Suppose MaxPool = C∗.
When xi ∈ Xs is a signal vector, the weight vector yielded
by MaxPool is wi = [w∗

i,1, . . . , w
∗
i,d] = w∗

i , where w∗
i,d =

1
k for all features d.

Since the weights assigned by MaxPool can only take values
of 1 or 0, this implies w∗

i,d = 1 for all features d which, in
turn, implies that k = |Xs| = 1. Furthermore, we know
that MaxPool only assigns a weight of 1 when xi,d takes
the max value over the set along a dimension d. Since
wi = [1, ..., 1], it implies that xi =MaxPool(X). By our
assumption, xi = xs =MaxPool(X).

Case 2. (⇐=) Suppose |Xs| = 1, MaxPool(X) = xs

When xi ∈ Xs is the only signal vector, by definition of
MaxPool, the weight vector must be wi = [wi,1, . . . , wi,d]
where w∗

i,d = 1 for all features. By our assumption, |Xs| =
1 = k, so the optimal weight vector and the MaxPool weight
vector coincide, wi = w∗

i .

Now instead, when xi ∈ Xη is a noise vector. Since
MaxPool(X) = xs, by definition, MaxPool assigns a
weight of wi,d = 0 for all features of all noise vectors,

13

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

which coincides with the weight vector yielded by the signal-
optimal global vector pool w∗

i = [0, . . . , 0]. Since Max-
Pool assigns the optimal weights to all vectors in the X,
MaxPool = C∗.

A.5. Proof of Theorem 3.12

For any signal-to-noise ratio, AdaPool can approximate the
signal-optimal vector pool within an error bound determined
by the distribution of signal and noise relations.

Explicitly, for any signal vector xi ∈ Xs, AdaPool approxi-
mates the optimal weight of w∗

i = 1
k within error bounds

L ≤ w∗
i − wi ≤ U

where L and U are the following lower and upper bounds
respectively:

L =
1

k
−
(
1 + (k − 1) · e−ϵs + (N − k) · e−D

)−1

U =
1

k
−
(
1 + (k − 1) · eϵs + (N − k) · e−M

)−1

and for any noise vector xi ∈ Xη, AdaPool approximates
the optimal weight of w∗

i = 0 with error bound

L ≤ w∗
i − wi ≤ U

where L and U are the following lower and upper bounds
respectively:

L = −
(
k · eM + 1 + (N − k − 1) · e−ϵη

)−1

U = −
(
k · eD + 1 + (N − k − 1) · eϵη

)−1

Proof. First, we let WV = Id. We then start by expanding
the equation for the attention weight corresponding to xi as
follows:

wi =
eri∑

j∈X

erj

=
1∑

j∈X

erj−ri

=

∑
s∈Xs

ers−ri +
∑
η∈Xη

erη−ri

−1

As a general technique, we substitute the maximal and mini-
mal neighborhood sizes well as maximal and minimal mar-
gins between signal and noise relations as defined in Section
3.5 to bound the range of the softmax operation.

Case 1. Weight for a signal vector: Given xi ∈ Xs, it
follows that ri belongs to the set of signal relations {rs}.
We can obtain an upper bound on the corresponding weight
wi via

wi =

1 +
∑
s̸=i

ers−ri +
∑
η

erη−ri

−1

≤

(
1 + (k − 1) · e−ϵs +

∑
η

erη−ri

)−1

≤
(
1 + (k − 1) · e−ϵs + (N − k) · e−D

)−1

= wU
s

Intuitively, we use the lower bound distance −ϵs between
any two signal relation values along with the maximal mar-
gin D = M + ϵs + ϵη between signal and noise to bound
the value for wi. We can similarly obtain a lower bound on
wi with the following:

wi =

1 +
∑
s̸=i

ers−ri +
∑
η

erη−ri

−1

≥

(
1 + (k − 1) · eϵs +

∑
η

erη−ri

)−1

≥
(
1 + (k − 1) · eϵs + (N − k) · e−M

)−1

= wL
s

In this case, the largest possible distance +ϵs between any
two signal relation values and the minimum margin M
are used. Note that these bounds are independent of any
particular sample from the input set, instead relying purely
on characteristics of the input distributions defined in the
assumptions.

With these bounds on wi, it follows that the upper and lower
bounds on the error from the optimal weight w∗

i = 1
k are

L =
1

k
− wU

s ≤ w∗
i − wi ≤ 1

k
− wL

s = U

Case 2. Weight for a noise vector: Given xi ∈ Xη, it
follows that ri belongs to the set of noise relations {rη}.
We can obtain an upper bound on the corresponding weight

14

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

wi via

wi =

∑
s

ers−ri + 1 +
∑
η ̸=i

erη−ri

−1

≤

(
k · eM + 1 +

∑
η

erη−ri

)−1

≤
(
k · eM + 1 + (N − k − 1) · e−ϵη

)−1

= wU
η

Similar to Case 1, we use the lower bound distance −ϵs
between any two noise relationship scores along with the
minimum margin M between signal and noise to the value
for wi from above. We can similarly obtain a lower bound
on wi with the following:

wi =

∑
s

ers−ri + 1 +
∑
η ̸=i

erη−ri

−1

≥

(
k · eD + 1 +

∑
η

erη−ri

)−1

≥
(
k · eD + 1 + (N − k − 1) · eϵη

)−1

= wL
η

Again, the largest possible distance +ϵs between any two
signal relationship scores and the maximum margin D are
used to bound wi from below.

With these bounds on wi, it follows that the upper and lower
bounds on the error from the optimal weight w∗

i = 0 are

L = 0− wU
s ≤ w∗

i − wi ≤ 0− wL
s = U

A.6. Proof of Corollary 3.10

AvgPool is a special case of AdaPool.

Proof. We will show this by construction. Let WQ = 0d be
a zero matrix, then the formula for the weights reduces to

wi =
exp (0)∑N
j exp (0)

=
1

N

By lettingWV = Id be the identity, the formula for AdaPool
then becomes and

AdaPool(X) =

N∑
i

wi · xi = AvgPool(X)

A.7. Proof of Corollary 3.11

MaxPool is a special case of AdaPool.

Note: The following proof assumes a multi-head implemen-
tation of AdaPool (attention), which was not discussed in the
main text for brevity. We outline the details of multi-head
attention in B.2.

Proof. We will show this by construction. First, we as-
sume a multihead adaptive pooling mechanism with as many
heads as input dimensions, or h = d. This is done to com-
pute a unique attention weight for each feature of each
vector. Let WK ,WV = Id, and let WQ = a · Id be the iden-
tity matrix scaled by some large constant a. As a→ ∞, the
softmax of a 1-dimensional head approaches the maximum
over some column d:

lim
a→∞

wi,d =
exp

(
a√
d
· xq,d · xi,d

)
∑N

j exp
(

a√
d
· xq,d · xj,d

)
=

exp (β · xi,d)∑N
j exp (β · xj,d)

=

{
1 if xi,d > xj,d, ∀j ∈ N

0 otherwise

where we substitute β = a√
d
· xq,d. By then concatenating

all of the heads, we obtain weight vectors wi ∈ {0, 1}d
corresponding to each input vector xi, and the formula for
AdaPool then becomes

AdaPool(X) =

N∑
i

wi · xi =MaxPool(X)

B. Additional Results
B.1. Time Complexity of AdaPool

AvgPool and MaxPool can be implemented with O(n · d)
algorithms, as both require each of the d features of each of
the n vectors to be visited during aggregation.

Self-attention famously experiences quadratic computa-
tional costs with respect to the context size n. In particular,
the attention weight computation isO(n2 ·d), as each vector
in the input set computes attention weights for each other
vector in the input set, i.e. n2 dot products of d dimensional
vectors. However, AdaPool uses cross-attention with a sin-
gle query, requiring the computation of only a single set of
attention weights rather than n sets. This reduces the weight
computation and pooling time down to O(n · d), the same
as AvgPool and MaxPool.

15

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

However, AdaPool still retains the overhead of the QKV
projections of the input set, which involves standard matrix
multiplications for each input vector, running O(n · d2).
Thus, the overall time complexity of AdaPool is O(n · d+
n · d2). The key takeaway is that it scales linearly with
the number of inputs but quadratically with the number of
features (like a standard linear layer).

In isolation, AdaPool is slower – the increased expressivity
comes at a computational cost. However, in practice, these
pooling layers are placed at the end of a multi-layer trans-
former or similarly sized encoder network, and the compute
time added by the pooling layer is marginal. For our partic-
ular applications, when using a transformer with 3+ layers,
the time difference between AdaPool and Avg/MaxPool
networks was negligible, regardless of the size of d.

Also of note, the ClsToken implementation is significantly
slower than all other methods. This is due to the fact that the
learned class embedding must be copied and concatenated
along the batch dimension of the input for every inference,
which is quite expensive in terms of both time and memory
during training. This is a known hindrance investigated by
Zhai et al. (2022), which led them to explore the use of
AvgPool for efficiency reasons when scaling vision trans-
formers.

B.2. Multi-Head AdaPool

In the theoretical portions of this work, we primarily consid-
ered the use of a single-headed attention for simplicity and
conciseness of notation and proofs. However, we note that
implementing multi-head attention, as proposed by Vaswani
et al. (2017), is quite straightforward. This can be obtained
by partitioning the input vector space Rd into h partitions
(i.e. heads) belonging to Rd/h, computing a separate set of
adaptive weights over the inputs per head, and then concate-
nating the resulting weighted averages from each head. We
assume this form of AdaPool in Proof A.7.

Multi-head adaptive pooling presents one key potential ben-
efit that we did not mention in the main text – it allows
different subspaces of the input to be pooled in parallel.
This means that, with further work, our analysis could po-
tentially be generalized beyond vectors that purely signal or
purely noise, more akin to what we expect from real-world
data. Consider a vector that contains meaningful signal
in one subspace, but serves as noise in another. In an au-
tonomous system, one could imagine that a faulty sensor
providing accurate position but bad velocity measurements
might create such an input. By using multihead attention
with the right partitioning, AdaPool could assign it a high
weight in the position subspace while suppressing it in the
velocity subspace, where it is noisy. While this multi-head
partitioning allows us to relax some of the strict assump-
tions made about the input data, it does place more relative

burden on the query, ideally requiring it to contain signal in
all subspaces used in downstream processing.

B.3. Aggregation Function Approximation

Before we evaluate the noise robustness problem, we first
ask the following question: Does the choice of output
pooling even matter when the transformer is composed
of a bunch of learned weighted averaging (attention) lay-
ers? As a simple test, we examine how well a trans-
former with each pooling method can approximate each
other. Using the synthetic dataset, we generate 3 sets of
targets: y = MaxPool(X), y = MinPool(X), and
y = AvgPool(X). If the pooling method was of little
consequence, we would expect all models to achieve the
same performance regardless of the method used.

METHOD MAX MEAN MIN

MaxPool 0.000
±0.000

0.026
±0.046

0.297
±0.239

AvgPool 0.003
±0.000

0.000
±0.000

0.003
±0.000

ClsToken 0.011
±0.000

0.008
±0.000

0.011
±0.000

AdaPool 0.002
±0.000

0.000
±0.000

0.002
±0.000

Table 2: Aggregation Approximation MSE (N=128, d=16)

Unsurprisingly, pooling methods can approximate them-
selves perfectly, with MaxPool achieving near-zero MSE
on the max targets and AvgPool achieving near-zero MSE
on the average targets. Interestingly, MaxPool performance
deteriorates on the average and min targets. AdaPool is also
able to perfectly fit the average targets and has the best per-
formance on min targets, with a similarly good performance
on max targets. AvgPool performs just marginally worse
than AdaPool on min and max targets, while ClsToken con-
sistently performs worse than AdaPool and AvgPool on all
targets. This shows that the inductive bias of the pooling
method chosen has a clear impact on a transformer encoder’s
ability to approximate functions. It is also worth noting that,
although we have proven MaxPool to be a special case of
AdaPool, AdaPool is not able to perfectly fit the max targets.
This is likely because the approximation requires that one
of the weight matrices obtain extremely high values, which
is unlikely to occur in practice via gradient descent.

B.4. Noise Robustness Table

We provide the data for Figure 4 in Table 3. This cor-
responds to the signal loss of each method for different
signal-to-noise ratios of the input data.

16

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

METHOD KNN-1
SNR = 0.01

KNN-2
SNR = 0.02

KNN-4
SNR = 0.03

KNN-8
SNR = 0.06

KNN-16
SNR = 0.13

KNN-32
SNR = 0.25

KNN-64
SNR = 0.50

KNN-128
SNR = 1.00

MaxPool 0.066
±0.102

0.061
±0.110

0.050
±0.093

0.045
±0.089

0.047
±0.095

0.055
±0.096

0.068
±0.096

0.046
±0.081

AvgPool 0.093
±0.000

0.071
±0.000

0.055
±0.000

0.043
±0.000

0.031
±0.000

0.016
±0.008

0.001
±0.000

0.000
±0.000

ClsToken 0.102
±0.000

0.079
±0.000

0.063
±0.000

0.050
±0.000

0.038
±0.000

0.027
±0.000

0.016
±0.000

0.008
±0.000

AdaPool 0.037
±0.006

0.019
±0.005

0.006
±0.001

0.004
±0.000

0.003
±0.000

0.002
±0.000

0.001
±0.000

0.000
±0.000

Baseline
(Centroid)

0.093 0.071 0.055 0.043 0.031 0.020 0.008 0.000

Baseline
(Target)

0.058 0.044 0.040 0.041 0.048 0.060 0.080 0.126

Table 3: Signal Loss (MSE) on the KNN-Centroid Task (N=128, d=16) as presented in Figure 4.

B.5. KNN Centroid Ablations

We performed several ablation studies to examine how key
data and network hyperparameters changed the relative per-
formance of each pooling method. The ablations were per-
formed on much smaller cardinality datasets than the main
experiment to enable faster iteration. We perform an initial
study to use as a baseline with which we compare each abla-
tion, using a synthetic dataset with 1 million samples, each
of size N=32 and d=16. We use the exact same network
architecture as the main experiment, with 12 layers and a
hidden dimension of 16. We perform evaluations using k-
fold cross-validation on the KNN-Centroid task as described
in section 4.2, and we report results for the baseline in Table
4. The results reflect the main experiment, with AdaPool
exhibiting superior performance across different SNRs on a
dataset with samples that have a quarter of the cardinality
as those in the main experiment (32 vs 128), with all other
hyperparameters being the same.

Next, we examine the effect of increasing the dimensionality
of the input vectors from d=16 to d=64. As shown in Table
5, MaxPool slightly outperforms AdaPool in the low signal
regimes, while AdaPool outperforms the other methods in
the medium to high signal regimes. AvgPool and ClsToken
perform very poorly in the low signal regime, with AvgPool
getting better as signal increases much more rapidly than
ClsToken.

We then look at expanding the width of the network from a
hidden dimension of 16 to 32 to 64. As displayed in tables
8 and 7, AdaPool outperforms all methods at all SNRs for
all widths. However, we observe that the absolute signal
loss for all methods reduces as the network width increases.
In particular, AvgPool and MaxPool become much more
competitive in the higher signal regimes. One possible
interpretation of this phenomenon is that as the width of

the network grows relative to the input data dimension, the
burden on the pooling mechanism to compress information
is relaxed.

Finally, we look at increasing the depth of the network
from 12 layers to 24 layers. The results in Table 8 do not
show a clearly dominant method in any particular SNR
regime. AdaPool appears to be most consistent, but is edged
out by AvgPool in the high signal regimes. AvgPool does
predictably poorly in the high noise regime, while MaxPool
does predictably poorly in the high signal regime. Finally,
ClsToken performs the worst by far in all regimes.

C. Experiment Parameters
C.1. Synthetic Dataset Construction Parameters

To construct a dataset full of sets of points with diverse
distributions, we use the following sampling scheme. For
each of the d features, all N vectors sample values from one
of the following distributions:

Gaussian with randomly sampled mean and standard devia-
tion:

µ ∼ Uniform(−3, 3)
σ ∼ Uniform(1, 3)
x:,d ∼ Normal(µ, σ)

Exponential with randomly sampled rate parameter, sign,
and shift:

sign ∼ {−1, 1}
shift ∼ Uniform(0, 3) ∗ sign
λ ∼ Uniform(0.1, 2)
x:,d ∼ Exponential(λ) ∗ sign− shift

17

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

N d hid L METHOD SNR 1
32

SNR 2
32

SNR 4
32

SNR 8
32

SNR 16
32

32 16 16 12 MaxPool 0.022 0.014 0.009 0.006 0.009
AvgPool 0.086 0.049 0.010 0.005 0.003
ClsToken 0.094 0.066 0.046 0.030 0.017
AdaPool 0.018 0.011 0.007 0.004 0.002

Table 4: Ablation baseline study.

N d hid L METHOD SNR 1
32

SNR 2
32

SNR 4
32

SNR 8
32

SNR 16
32

32 64 16 12 MaxPool 0.0056 0.0025 0.0025 0.0018 0.0018
AvgPool 0.0204 0.0104 0.0053 0.0023 0.0006
ClsToken 0.0229 0.0126 0.0069 0.0036 0.0017
AdaPool 0.0064 0.0031 0.0010 0.0005 0.0002

Table 5: Ablation increasing the data dimension ×4 from 16 to 64.

N d hid L METHOD SNR 1
32

SNR 2
32

SNR 4
32

SNR 8
32

SNR 16
32

32 16 32 12 MaxPool 0.022 0.011 0.0023 0.0006 0.0003
AvgPool 0.048 0.022 0.0012 0.0006 0.0002
ClsToken 0.086 0.057 0.0371 0.0214 0.0082
AdaPool 0.003 0.001 0.0006 0.0003 0.0001

Table 6: Ablation increasing the network width ×2 from 16 to 32.

N d hid L METHOD SNR 1
32

SNR 2
32

SNR 4
32

SNR 8
32

SNR 16
32

32 16 64 12 MaxPool 0.022 0.0012 0.0005 0.00024 0.00010
AvgPool 0.004 0.0016 0.0005 0.00021 0.00009
ClsToken 0.086 0.0574 0.0373 0.02147 0.00825
AdaPool 0.001 0.0010 0.0003 0.00019 0.00007

Table 7: Ablation increasing the network width ×4 from 16 to 64.

N d hid L METHOD SNR 1
32

SNR 2
32

SNR 4
32

SNR 8
32

SNR 16
32

32 16 16 28 MaxPool 0.020 0.011 0.007 0.005 0.0056
AvgPool 0.061 0.013 0.006 0.003 0.0019
ClsToken 0.094 0.066 0.046 0.030 0.0165
AdaPool 0.017 0.014 0.014 0.008 0.0021

Table 8: Ablation increasing the network depth ×2 from 12 to 24.

Uniform with randomly sampled lows and highs:

low ∼ Uniform(−3, 3)
high ∼ Uniform(0.2, 3) + low
x:,d ∼ Uniform(low, high)

We scale each resulting vector by
√
d to reduce the impact

of the curse of dimensionality on the scale of the loss when
different dimensionalities are used. The features for a given
set are drawn evenly from these 3 distributions, with each
individual feature having a uniquely parametrized distribu-
tion according to the above scheme. The ordering of these

18

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

feature distributions is shuffled randomly for each sample.
For our main supervised experiment, we generate 1 million
samples, 128 vectors per sample, and 16 features per vector.
Our dataset was generated using NumPy version 2.0.2 with
a seed of 42.

C.2. Supervised KNN Centroid

The base network consisted of a transformer encoder with
12 layers, a hidden dimension of 16 (same as the input data
dimension), a feedforward dimension of 64, and 8 attention
heads. We follow the standard practice of moving the layer
norm to the input of the attention and feedforward sublayers
(pre-norm). We use PyTorch for all model implementations.
Weight matrices and embedding vectors are initialized ac-
cording to Normal(µ = 0.0, σ = 0.02) with bias set to
0.0. Layer norms are initialized with weight set to 1.0 and
bias set to 0.0.

C.2.1. MODEL ARCHITECTURE

Hyperparameters Value

Input Shape N × 16

Num Layers 12
Num Heads 8

Dim Hidden 16

Dim FF 64

Dropout Attn 0.0

Dropout FF 0.1

Bias Attn False
Bias FF True

Table 9: Network Hyperparameters for KNN-Centroid

We train on the main dataset described above (N=128, d=16).
For each desired level of noise, we generated X,y pairs by
picking an arbitrary target vector from the input set X, find-
ing the k-nearest neighbors to that target point, and comput-
ing y to be the centroid of those k neighbors (excluding the
target). These k neighbors are considered the signal vectors,
while the rest are considered noise. We add a learned em-
bedding to the target vector at inference time to indicate it
to the transformer. We compute X,y pairs for the following
values of k : 1, 2, 4, 8, 16, 32, 64, 128. For each of these
pairs, we use 5-fold cross-validation with a holdout test
set of 100k samples. Each transformer + pooling method
(AdaPool, ClsToken, AvgPool, MaxPool) was trained for
100 epochs with a learning rate of 5.0e− 4 and a batch size
of 750. The base transformer model is initialized with the
same weights for each method, and different seeds are used
on each fold.

C.3. Supervised Aggregation Approximation

We use the same architecture and training setup outlined
in the previous section. Given the main dataset gener-
ated above according to C.1, we produced three sets of
targets y using standard pooling functions to see if the
underlying transformer was good enough to approximate
all aggregation types regardless of the method used to ag-
gregate its outputs. Targets include y = MinPool(X),
y =MaxPool(X), and y = AvgPool(X).

C.4. MPE Simple Centroid

For the multi-agent experiments on the simple centroid task,
network architecture hyperparameters are displayed in Table
10 and training hyperparameters in Table 11.

Hyperparameters Value

Obs Shape N × 8

Num Layers 3
Num Heads 8

Dim Input 8

Dim Hidden 8

Dim FF 32

Dropout Attn 0.0

Dropout FF 0.1

Bias Attn False
Bias FF True
Action MLP Layers 3

Action MLP Dim 32

Value MLP Layers 3

Value MLP Dim 32

Continuous Actions True

Table 10: Network Hyperparameters for MPE Simple Centroid

Hyperparameters Value

Algorithm PPO
Number of Seeds 10
Number of
Episodes

500

Training Batch 8192 Agent Steps
Minibatch 8192 Agent Steps
SGD Iter/Batch 16

Episode Length 128 Env Steps
Learning Rate 2.5e − 3

γ 0.99

λ 0.95

KL Coeff 0.0

VF Coeff 0.05

Entropy Coeff 0.0

PPO Clip 0.2

Grad Clip 10.0

Table 11: MPE Simple Centroid Training Hyperparameters

19

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

C.5. MPE Simple Tag + Noise

For the multi-agent experiments on the simple tag task,
network architecture hyperparameters are displayed in Table
12 and training hyperparameters in Table 13.

Hyperparameters Value

Obs Shape N × 8

Num Layers 6
Num Heads 3

Dim Hidden 3

Dim FF 12

Dropout Attn 0.0

Dropout FF 0.1

Bias Attn False
Bias FF True
Action MLP Layers 3

Action MLP Dim 32

Value MLP Layers 3

Value MLP Dim 32

Continuous Actions False

Table 12: MPE Simple Tag Network Hyperparameters

Hyperparameters Value

Algorithm PPO
Num Seeds 20
Num Episodes 500
Training Batch 8192 Agent Steps
Minibatch 8192 Agent Steps
SGD Iter/Batch 16

Episode Length 128 Env Steps
Learning Rate 2.5e − 3

γ 0.99

λ 0.95

KL Coeff 0.5

KL Target 0.01

VF Coeff 0.0005

Entropy Coeff 0.005

PPO Clip 0.2

Grad Clip 10.0

Table 13: MPE Simple Tag Training Hyperparameters

C.6. BoxWorld

For the relational reasoning experiments in the BoxWorld
environment, network architecture hyperparameters are dis-
played in Table 14 and training hyperparameters in Table
15. We also display images taken from the rendered envi-
ronment in Figure 10. The learning agent controls the grey
pixel. The agent’s actions move it up, down, left, or right by
one pixel on each step. Each round starts with a loose key,
depicted by the lone blue pixel on the left side of Figure
10a. “Boxes" are indicated by pairs of colored pixels, with
a lock on the right and the item in the box on the left. The
agent must first pick up the loose key, which it can then use
to open locks of the same color by moving onto them. The
currently held key is displayed in a fixed position at the top
left pixel, as shown in Figure 10b. The goal of the agent is

(a) Loose Key (b) Two Distractor Boxes

Figure 10: (Left) The BoxWorld environment showing the
agent, the initial loose key, and the box composed of a
blue lock and the gem. (Right) A scenario containing two
distractor paths, with the agent holding the orange key as
visible in the top left.

to unlock the box with the white pixel referred to as the gem.
In all training scenarios, we provide two distractor paths,
shown by the additional boxes in Figure 10b. When it picks
up the loose key, it earns +1 reward; when it unlocks the box
with the gem, it earns +10 reward; if it opens a distractor
box, it gets a penalty of -1.

Hyperparameters Value

Obs Shape N × 5

Num Layers 6
Num Heads 6

Dim Hidden 6

Dim FF 24

Dropout Attn 0.0

Dropout FF 0.1

Bias Attn False
Bias FF True
Action MLP Layers 3

Action MLP Dim 32

Value MLP Layers 3

Value MLP Dim 32

Continuous Actions False

Table 14: BoxWorld Network Hyperparameters
Hyperparameters Value

Algorithm PPO
Num Seeds 5
Num Episodes 3000
Training Batch 14400 Agent Steps
Minibatch 14400 Agent Steps
SGD Iter/Batch 32

Episode Length 30 Env Steps
Learning Rate 2.5e − 3

γ 0.99

λ 0.95

KL Coeff 0.0

VF Coeff 0.01

Entropy Coeff 0.0

PPO Clip 0.2

Grad Clip 10.0

Table 15: BoxWorld Training Hyperparameters

20

Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs

C.7. CIFAR Training Hyperparameters

All experiments trained vision transformers (ViT) from
scratch on the CIFAR dataset using 5-fold cross-validation.
As in the original paper, we note that vision transformers
trained from scratch are less performant than similarly sized
convolutional neural networks, as they lack spatial inductive
biases, such as translation invariance (Dosovitskiy et al.,
2021). Thus, performance reported in Table 1 is expected to
be lower than a similarly sized ResNet trained from scratch
on the same task, for example.

Training hyperparameters and network architecture details
are outlined in Table 16. Each fold was trained for 300
epochs and, as in previous experiments, the network for each
method was initialized with the same underlying transformer
weights and seeds. Following the ViT paper, we apply
gradient clipping at a global norm of 1.0, as well as AdamW
with a weight decay value of 0.1. Finally, we use a learning
rate scheduler with a linear warmup from 0.0 to 0.001 after
30 epochs (10% of training) and cosine annealing back
down to 0.0 by epoch 300.

Hyperparameters Value

Image Shape 32 × 32 × 3

Patch Shape 64 × 4 × 4 × 3

Input Shape
(Flattened Patches)

64 × 48

Num Layers 6
Num Heads 8

Dim Hidden 512

Dim FF 64

Dropout Attn 0.1

Dropout FF 0.1

Bias Attn False
Bias FF True
Training Epochs 300
Warmup Epochs 30
Learning Rate 1.0e-3
Batch Size 512
Weight Decay 0.1
Grad Clip 1.0

Table 16: CIFAR network and training hyperparameters. Both
experiments trained models from scratch and differed only by the
number of output classes, 10 and 100 respectively.

21

