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Abstract

Efficient adversarial attacks on deep reinforcement
learning agents rely on identifying critical states.
Prior work uses learned transition models with
environment-specific metrics to predict and lure the
victim agent to such states. We propose a value-
guided attack that integrates the victim policy’s
value function as an environment-agnostic metric
into both transition model training and state eval-
uation. From our preliminary results in the Pong
environment from the Arcade Learning Environ-
ment, our method achieves comparable performance
degradation to prior work while requiring roughly
half as many attacks.

1 Background

Reinforcement Learning: Reinforcement Learn-
ing (RL) environments are modeled as Markov De-
cision Processes (MDP) [1], defined by

M = (Sa Aapa Ra 7)3
where S is the state space, A the action space,
p(St41 | 8¢, ar) the transition function, R(s:, at, St+1)
the reward function, and v € [0,1] the discount fac-
tor. At each time-step t, the agent observes the
current state s; € S, selects an action a; € A ac-
cording to its policy m, transitions to a next state
st+1 ~ p(- | st,a¢) and receives a scalar reward
ry = R(st,a¢,8:41). The agent’s behavior is gov-
erned by its policy 7(a; | s¢), which defines a prob-
ability distribution over actions given the current
state. The state-value function represents the ex-
pected cumulative discounted return when starting
from s; and following 7 thereafter:

V7(s) = Ex [Z Vreen | se = 5] :

k=0

(1)

In this work, we leverage the value function, V7 (s),
as an environment-agnostic metric for identifying
critical states to which we lure the victim policy.
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Figure 1. General schema of test-time, state-based
adversarial attacks in DRL: (1) the adversary intercepts
the true observation and injects a perturbation d; into
the state s; (2) which is passed to the agent. (3) The
agent then samples an action a; ~ 7(a | s¢ + d¢) which
is executed in the environment.

Adversarial Attacks: Test-time adversarial at-
tacks on Deep Reinforcement Learning (DRL) agents
ailm to manipulate the behavior of a trained victim
policy to achieve an ulterior objective (e.g. perfor-
mance degradation). These attacks exploit the sensi-
tivity of trained policies by perturbing their input in
order to induce the policy into taking (targeted) sub-
optimal actions during evaluation. We denote the
perturbation added to s; as d;. Figure 1 illustrates
this framework.

Sun et al. [2] propose Critical Point Attack (CPA)
which identifies critical states to make adversarial
attacks more efficient by learning a parametrized
transition model® fy : Sx.A — S of the environment,
where 0 are the parameters. This model follows the
same architecture proposed by Oh et al. [3]. Given
a dataset of V collected trajectories from the victim
agent D = {( 50 7aé)),. (sg), (T)))}z o and a
prediction horizon with length K, 6 is optimised
using the loss,

SE? (¢, 59(0) — s

(2)
(3)

02
[
K

0) =
QLZZ SEO (¢ + k; 6),

it k=1

Lcpa(6

1Here “transition model” denotes a learned environment
dynamics predictor, not the MDP transition function.
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where §,(f)(9) = fg(égl_)l e,ag?l), t > 0. For sim-
plicity, we omit 6 in the 5 notation unless required
explicitly. Using fp, given a rollout horizon length
M, and the victim policy 7, the adversary predicts
the baseline state s7, ,, starting from s; by follow-
ing the victim policy on predicted next states re-
cursively. Next, given an attack horizon of length
K < M, the adversary predicts all possible sub-
sequent states by enumerating all possible action
sequences of length K. We denote a specific se-
quence as ag; g = (al)iit}( € AKX where AX is
the Cartesian product of A with itself K times. If
M > K, then for each such predicted state the ad-
versary continues the rollout using the victim policy
for the remaining M — K steps. This results in |AX|
predicted final states. Using an environment specific
divergence function T': S — R, the adversary finds
the final action sequence from the starting state
which maximises the Danger Awareness Metric,

DAMy(agi k) = [T(5550) — T(sTar))

a?lt+K = argmax DAMr(asiix),
ag.i Kk €AK

(4)
()

where 84/ denotes the predicted state § at time

step t + M following action sequence a;.;yx for
K-steps and the victim policy w for M — K-steps
thereafter. If, for any given final state, this metric
surpasses a threshold A > 0, the victim policy is
fooled into following the associated action sequence
by adding carefully crafted perturbations. These per-
turbations are computed using the Carlini & Wagner
(C&W) attack [4]. The authors state that it is neces-
sary for T to have an environment-specific definition
to accurately reflect the potential danger associated
with a predicted state. In the Pong and Breakout
environments from the Arcade Learning Environ-
ment [5], the authors turn to predicting the RAM
state representation of subsequent states. Given the
RAM state s, the authors define T'(s) = d(s) - p(s),
where d : § — R is the Euclidean distance between
the ball and the paddle and p : § — {0,1} is equal
to 1 if the ball has been dropped and 0 otherwise.

2 Owur Method

Rationale: The proposed attack employs an
environment-agnostic 1" function based on the state-
value function V™. In this context, the adversary
finds the action sequence aj,;, ;- as follows,

(6)

aj,, g = argmax DAMy~(aziyx).
a4k EAK

From our early experiments using Lop 4 to optimize
0, we observed that in the Pong environment, the
final reconstruction loss was minimal, yet the differ-
ence in state-value estimates between genuine and
predicted states remained large, ultimately hinder-
ing the effectiveness of the attack. We hypothesize
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Figure 2. Average return and number of attacks vs A
against trained A2C victim policy using value-guided
attack with K = M = 1 in Pong averaged over 100
episodes.

that this occurs because, although the reconstruc-
tion error is low, the ball in these environments
occupies only a few pixels in the observation space.
Consequently, the reconstruction loss provides a very
weak learning signal for its precise position. These
inaccuracies in the ball’s position lead to substantial
discrepancies in the policy’s value estimates, which
are highly sensitive to ball position. Therefore, we
propose a new loss to optimize 6,

SEQ. (16) = [V (3 (60)) — V(s[5 ()
K
Ly () = % SOSUSEQ (4 k0),  (8)

it k=1
L(0) = aLcpa(0) + (1 — )Ly (), (9)
where « € [0,1] allows tuning for different tasks.
This guides the reconstruction to produce subse-
quent states that are not only visually accurate but

aligned with V™, thereby emphasizing task-relevant
features, such as the position of the ball.

Preliminary Findings: In our experiments, we
optimize 6 using L with a = 0.1. We evaluate
this attack against a trained victim A2C agent in
the Pong environment. The lowest return of -21 is
achieved after a minimum of 21 attacks, as the agent
must drop the ball 21 times. Averaging over 100
episodes, with K = M =1, and threshold A = 0.35
the attack achieves an average return of -20.45 in
21.55 attacks (see Figure 2). Compared to the results
in Sun et al. [2], the attack achieves comparable
performance degradation in around half the
number of attacks (K = M = 2). We plan to
test our environment-agnostic adversarial attack in
environments in which constructing an environment-
specific T' function is infeasible; yet estimating the
victim policy’s value function remains tractable for
discrete action spaces.
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