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Abstract001

Efficient adversarial attacks on deep reinforcement002

learning agents rely on identifying critical states.003

Prior work uses learned transition models with004

environment-specific metrics to predict and lure the005

victim agent to such states. We propose a value-006

guided attack that integrates the victim policy’s007

value function as an environment-agnostic metric008

into both transition model training and state eval-009

uation. From our preliminary results in the Pong010

environment from the Arcade Learning Environ-011

ment, our method achieves comparable performance012

degradation to prior work while requiring roughly013

half as many attacks.014

1 Background015

Reinforcement Learning: Reinforcement Learn-016

ing (RL) environments are modeled as Markov De-017

cision Processes (MDP) [1], defined by018

M = (S,A, p,R, γ),019

where S is the state space, A the action space,020

p(st+1 | st, at) the transition function, R(st, at, st+1)021

the reward function, and γ ∈ [0, 1] the discount fac-022

tor. At each time-step t, the agent observes the023

current state st ∈ S, selects an action at ∈ A ac-024

cording to its policy π, transitions to a next state025

st+1 ∼ p(· | st, at) and receives a scalar reward026

rt = R(st, at, st+1). The agent’s behavior is gov-027

erned by its policy π(at | st), which defines a prob-028

ability distribution over actions given the current029

state. The state-value function represents the ex-030

pected cumulative discounted return when starting031

from st and following π thereafter:032

V π(s) = Eπ

[ ∞∑
k=0

γkrt+k | st = s

]
. (1)033

In this work, we leverage the value function, V π(s),034

as an environment-agnostic metric for identifying035

critical states to which we lure the victim policy.036
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Figure 1. General schema of test-time, state-based
adversarial attacks in DRL: (1) the adversary intercepts
the true observation and injects a perturbation δt into
the state st (2) which is passed to the agent. (3) The
agent then samples an action at ∼ π(a | st + δt) which
is executed in the environment.

Adversarial Attacks: Test-time adversarial at- 037

tacks on Deep Reinforcement Learning (DRL) agents 038

aim to manipulate the behavior of a trained victim 039

policy to achieve an ulterior objective (e.g. perfor- 040

mance degradation). These attacks exploit the sensi- 041

tivity of trained policies by perturbing their input in 042

order to induce the policy into taking (targeted) sub- 043

optimal actions during evaluation. We denote the 044

perturbation added to st as δt. Figure 1 illustrates 045

this framework. 046

Sun et al. [2] propose Critical Point Attack (CPA) 047

which identifies critical states to make adversarial 048

attacks more efficient by learning a parametrized 049

transition model1 fθ : S×A → S of the environment, 050

where θ are the parameters. This model follows the 051

same architecture proposed by Oh et al. [3]. Given 052

a dataset of N collected trajectories from the victim 053

agent D =
{(

(s
(i)
0 , a

(i)
0 ), . . . , (s

(i)
Ti
, a

(i)
Ti
)
)}N

i=0
, and a 054

prediction horizon with length K, θ is optimised 055

using the loss, 056

SE(i)(t; θ) =
∥∥ŝ(i)t (θ)− s

(i)
t

∥∥2
2
, (2) 057

LCPA(θ) =
1

2K

∑
i,t

K∑
k=1

SE(i)(t+ k; θ), (3) 058

1Here “transition model” denotes a learned environment
dynamics predictor, not the MDP transition function.
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where ŝ
(i)
t (θ) := fθ(ŝ

(i)
t−1,θ, a

(i)
t−1), t > 0. For sim-059

plicity, we omit θ in the ŝ notation unless required060

explicitly. Using fθ, given a rollout horizon length061

M , and the victim policy π, the adversary predicts062

the baseline state ŝπt+M starting from st by follow-063

ing the victim policy on predicted next states re-064

cursively. Next, given an attack horizon of length065

K ≤ M , the adversary predicts all possible sub-066

sequent states by enumerating all possible action067

sequences of length K. We denote a specific se-068

quence as at:t+K ≜ (ai)
t+K
i=t ∈ AK , where AK is069

the Cartesian product of A with itself K times. If070

M > K, then for each such predicted state the ad-071

versary continues the rollout using the victim policy072

for the remaining M−K steps. This results in |AK |073

predicted final states. Using an environment specific074

divergence function T : S → R, the adversary finds075

the final action sequence from the starting state076

which maximises the Danger Awareness Metric,077

DAMT (at:t+K) =
∣∣T (ŝat:t+K

t+M )− T (sπt+M )
∣∣, (4)078

a∗t:t+K = argmax
at:t+K∈AK

DAMT (at:t+K), (5)079

where ŝ
at:t+K

t+M denotes the predicted state ŝ at time080

step t + M following action sequence at:t+K for081

K-steps and the victim policy π for M −K-steps082

thereafter. If, for any given final state, this metric083

surpasses a threshold ∆ > 0, the victim policy is084

fooled into following the associated action sequence085

by adding carefully crafted perturbations. These per-086

turbations are computed using the Carlini & Wagner087

(C&W) attack [4]. The authors state that it is neces-088

sary for T to have an environment-specific definition089

to accurately reflect the potential danger associated090

with a predicted state. In the Pong and Breakout091

environments from the Arcade Learning Environ-092

ment [5], the authors turn to predicting the RAM093

state representation of subsequent states. Given the094

RAM state s, the authors define T (s) = d(s) · p(s),095

where d : S → R is the Euclidean distance between096

the ball and the paddle and p : S → {0, 1} is equal097

to 1 if the ball has been dropped and 0 otherwise.098

2 Our Method099

Rationale: The proposed attack employs an100

environment-agnostic T function based on the state-101

value function V π. In this context, the adversary102

finds the action sequence a∗t:t+K as follows,103

a∗t:t+K = argmax
at:t+K∈AK

DAMV π (at:t+K). (6)104

From our early experiments using LCPA to optimize105

θ, we observed that in the Pong environment, the106

final reconstruction loss was minimal, yet the differ-107

ence in state-value estimates between genuine and108

predicted states remained large, ultimately hinder-109

ing the effectiveness of the attack. We hypothesize110
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Figure 2. Average return and number of attacks vs ∆
against trained A2C victim policy using value-guided
attack with K = M = 1 in Pong averaged over 100
episodes.

that this occurs because, although the reconstruc- 111

tion error is low, the ball in these environments 112

occupies only a few pixels in the observation space. 113

Consequently, the reconstruction loss provides a very 114

weak learning signal for its precise position. These 115

inaccuracies in the ball’s position lead to substantial 116

discrepancies in the policy’s value estimates, which 117

are highly sensitive to ball position. Therefore, we 118

propose a new loss to optimize θ, 119

SE
(i)
V π (t; θ) =

∥∥V π
(
ŝ
(i)
t (θ)

)
− V π(s

(i)
t )

∥∥2
2
, (7) 120

LV (θ) =
1

2K

∑
i,t

K∑
k=1

SE
(i)
V π (t+ k; θ), (8) 121

L(θ) = αLCPA(θ) + (1− α)LV (θ), (9) 122

where α ∈ [0, 1] allows tuning for different tasks. 123

This guides the reconstruction to produce subse- 124

quent states that are not only visually accurate but 125

aligned with V π, thereby emphasizing task-relevant 126

features, such as the position of the ball. 127

Preliminary Findings: In our experiments, we 128

optimize θ using L with α = 0.1. We evaluate 129

this attack against a trained victim A2C agent in 130

the Pong environment. The lowest return of -21 is 131

achieved after a minimum of 21 attacks, as the agent 132

must drop the ball 21 times. Averaging over 100 133

episodes, with K = M = 1, and threshold ∆ = 0.35 134

the attack achieves an average return of -20.45 in 135

21.55 attacks (see Figure 2). Compared to the results 136

in Sun et al. [2], the attack achieves comparable 137

performance degradation in around half the 138

number of attacks (K = M = 2). We plan to 139

test our environment-agnostic adversarial attack in 140

environments in which constructing an environment- 141

specific T function is infeasible; yet estimating the 142

victim policy’s value function remains tractable for 143

discrete action spaces. 144
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