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ABSTRACT

Graph contrastive learning (GCL) is a newly popular paradigm for self-supervised
graph representation learning and offers an alternative to reconstruction-based
methods. However, it is not well understood what conditions a task must sat-
isfy such that a given paradigm is better suited. In this paper, we investigate
the role of dataset properties and augmentation strategies on the success of GCL
and reconstruction-based approaches. Using the recent population augmentation
graph-based analysis of self-supervised learning, we show theoretically that the
success of GCL with popular augmentations is bounded by the graph edit distance
between different classes. Next, we introduce a synthetic data generation process
that systematically controls the amount of style vs. content in each sample- i.e.
information that is irrelevant vs. relevant to the downstream task- to elucidate
how graph representation learning methods perform under different dataset con-
ditions. We empirically show that reconstruction approaches perform better when
the style vs. content ratio is low and GCL with popular augmentations benefits
from moderate style. Our results provide a general, systematic framework for an-
alyzing different graph representation learning methods and demonstrate when a
given approach is expected to perform well.

1 INTRODUCTION

Analyzing graph-structured data is essential for many real-world applications and graph neural net-
works (GNNs) have emerged as a popular solution for challenging prediction tasks. However, these
tasks often have limited labeled data due to prohibitive procuration costs and require models to
possess strong generalization abilities to be practically useful. For example, in molecular property
prediction, obtaining training labels requires expensive wet lab experiments and, at test time, models
must predict properties for novel candidate molecules (Hwang et al., 2020; Duvenaud et al., 2015;
Zitnik et al., 2018). Unsupervised graph representation learning is a natural paradigm in such cases,
where graph contrastive learning (GCL) is a promising approach over using pre-training tasks (Hu
et al., 2020).

While recent findings (Arora et al., 2019; HaoChen et al., 2021; Tian et al., 2020; von Kügelgen
et al., 2021; Zimmermann et al., 2021; Wang & Isola, 2020; Purushwalkam & Gupta, 2020) have
investigated what makes for successful visual contrastive learning, a similar understanding remains
lacking for GCL. Furthermore, in computer vision, reconstruction-based approaches using an au-
toencoder framework (Kingma & Welling, 2014), updated with modern encoder architectures and
data augmentation, are emerging as an alternative paradigm that avoids negative sampling or large
batch sizes (Falcon et al., 2021). Reconstruction-based approaches (Kipf & Welling, 2016) have
not yet been similarly revisited with improved GNN architecture designs or augmentations for self-
supervised graph representation learning. Moreover, due to complications arising from the discrete,
non-Euclidean nature of graph datasets, analysis from visual contrastive learning (VCL) cannot be
straightforwardly extended to a graph setting. Therefore, it remains unclear under what circum-
stances a reconstruction or CL-based approach is expected to perform well on a given task.

In this paper, we investigate, theoretically and empirically, the conditions that enable a given unsu-
pervised learning approach to perform well. Specifically, we first show theoretically that the success
of GCL with generic graph augmentations (GGA) introduced by GraphCL (You et al., 2020a) is
dependent on the graph edit distance between classes. Next, we address the elephant in the room:
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that untrained GNNs have enough inductive bias to nullify the benefits of unsupervised pre-training
on benchmark graph classification datasets. Therefore, we introduce a carefully designed synthetic
dataset and conduct an extensive evaluation to better understand the behavior of both reconstruc-
tion and CL approaches. Here, we demonstrate that the effectiveness of different unsupervised
approaches over strong untrained baselines can be understood through a style vs. content decompo-
sition: the proportion of relevant information for a task (content) and irrelevant information (style)
that each example in a dataset contains.

Our contributions are as follows: (i) We provide theoretical analysis of when contrastive learning
is expected to work well, showing that this depends on the graph edit distance of samples within
and across classes; (ii) We systematically evaluate reconstruction as an alternative unsupervised
paradigm to contrastive learning for graphs, including introducing augmentation-augmented graph
autoencoders (AAGAE). Further, we empirically show to what extent untrained GNN models are a
competitive baseline in terms of accuracy, invariance, and sample complexity; and (iii)mWe identify
a style vs. content trade-off in graphs and introduce an extensive benchmark setup that can carefully
control this trade-off. Using our benchmark, we show how not only the ratio of style vs. content but
also how generic versus content-aware augmentation impacts different learning paradigms.

2 BACKGROUND: UNSUPERVISED REPRESENTATION LEARNING FOR GNNS

While the general approach of pre-training can be either supervised (Hu et al., 2020)) or unsu-
pervised, we focus on the latter. In this section, we formalize unsupervised representation learning
(URL) for graphs and discuss two widely adopted approaches, namely graph contrastive learning and
reconstruction-based learning. Appendix A.6 contains additional related work on self-supervised
learning and data augmentation for graphs.

Graph Contrastive Learning. Contrastive learning (CL) frameworks learn representations by max-
imizing similarity between positive or augmented examples, and at the same time minimizing simi-
larity between negative or uncorrelated examples. Formally, let X = {x1, . . . , xn} denote a dataset
consisting of un-augmented (clean) samples, where each xi = (Gi, Fi) corresponds to a tuple con-
taining the adjacency matrix Gi ∈ [0, 1]n×n and node feature matrix Fi. Let A represent a set of
augmentations over X ; namely the generic graph augmentations (GGA) introduced by (You et al.,
2020a): (i) node dropping, (ii) edge perturbation, (iii) attribute masking and (iv) sub-graph sampling.
Furthermore, let X be the set of all augmented samples given X , and {xi = A(xi), xj = A(xi)} be
considered a positive pair.

GraphCL parallels SimCLR (Chen et al., 2020a) and uses the normalized temperature scaled cross
entropy (NT-XENT) loss to learn representations by contrasting the representations of positive pairs
and negative samples. Specifically, let f be a graph feature learner, such that f(xi) = zi ∈ Rd,
e.g., a GNN with a global READOUT layer, i.e., READOUT : Rn×d → Rd. Given batch size B,
similarity function, sim : (Rd,Rd) → [0, 1], temperature parameter, τ , and positive pair, {xi, xj},
the NT-XENT loss is defined as:

ℓi,j = − log
exp (sim (zi, zj) /τ)∑2B

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
. (1)

Here, the numerator encourages the representations for xi, xj to have high similarity, while the
denominator encourages representations of negative pairs (k ̸= i) to have low similarity. By maxi-
mizing similarity between positive samples, we expect the representations to become invariant to the
properties modified by augmentations. Correspondingly, models learn to perform instance discrimi-
nation where each sample defines its own class and the augmented samples also belong to this class.
Other recent GCL frameworks follow this general formulation but differ in the choice of the objec-
tive function and the augmentation strategy. For example, InfoGraph (Sun et al., 2020) maximizes
the mutual information between sampled subgraphs (local) and pooled graph (global) representa-
tions. MVGRL (Hassani & Ahmadi, 2020) contrasts representations of graphs augmented through
diffusion processes at node and graph scales. While this work focuses on GraphCL, other formula-
tions including InfoGraph, DGI (Hjelm et al., 2019), and GMI (Peng et al., 2020), can be derived as
instances of this general framework.

Reconstruction-Based Approaches. In computer vision, auto-encoding frameworks enriched with
sophisticated model architectures and strong data augmentations (Falcon et al., 2021) are currently
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being revisited as an alternative unsupervised learning paradigm that is less dependent on large
batch-sizes (Chen et al., 2020a) and negative sampling strategies (Kalantidis et al., 2020) when
compared to CL. Given that graph datasets are often significantly smaller than vision datasets and
negative sampling strategies may be difficult to design, such approaches are particularly relevant to
self-supervised graph representation learning and bear revisiting in light of stronger GNN architec-
tures and augmentations.

Formally, let g : (Gi, Fi) → Rn×d be an encoder that outputs node representations, h : Rn×d →
[0, 1]n×n be a decoder that predicts the edges of Gi given node representations, and READOUT :
Rn×d → Rd provide graph representations given node representations. Then, a vanilla graph auto-
encoder minimizes: ||h(g(xi) − Gi||22, where h is often defined as σ

(
g(xi)g(xi)

T
)

and the aggre-
gated graph representation zi = READOUT(g(Gi, Fi)) is used to perform downstream tasks. Given
that graphs are generally sparse, standard implementations sample an equivalent number of positive
and negative edges to ensure stable training. Variational graph auto-encoders (Kipf & Welling, 2016)
reparameterize node representations and add a KL divergence term to the reconstruction loss simi-
lar to (Kingma & Welling, 2014). As we will argue in this paper, reconstruction-based approaches
enhanced with suitable augmentations can be an effective alternative for GCL, under specific condi-
tions. We choose to focus on reconstruction tasks as it is more general than task-specific pretraining
tasks and more amenable to theoretical analysis (Khemakhem et al., 2020). In subsequent sections,
we seek to understand when and why a given method performs well. We begin by taking a closer
look at the performance of graph URL using benchmark datasets.

3 A CLOSER LOOK INTO GRAPH URL USING BENCHMARK DATASETS

Designing an unsupervised representation learning pipeline for graph-structured data requires se-
lecting from a number of components, including encoder architecture, data augmentation, strategies
for leveraging inductive bias, and training paradigms. It is important to understand the impact of
different components on downstream performance, so practitioners can appropriately select them for
their needs and determine if URL or pre-training will improve representation quality. To this end,
we begin by performing an empirical study on benchmark datasets that considers different: (i) lev-
els of inductive biases by incorporating data augmentation and varying the amount of training; (ii)
representation learning paradigms (CL, reconstruction-based) (iii) GNN architectures (GIN, GCN,
GAT etc.). We note that we are the first to implement and benchmark the augmentation augmented
graph auto-encoders (AAGAE) as a stable reconstruction-based approach for graph URL.

While our empirical analysis offers several insights into different components of graph URL
pipelines, we are unable to evaluate context-aware augmentations (CAA) as they are difficult to
realize on standard graph benchmarks. CAA have been critical to the advancements in visual CL
and the remainder of this paper investigates if CAA have similar promise for graph URL. In Section
4, we extend analytical tools from visual CL to characterize the behaviour of generic graph aug-
mentations (GGA). In Section 5, we introduce a novel, synthetic benchmark that gives us control
over the style vs. content ratio in the synthesized samples. This enables systematic evaluation of
the potential gains to be obtained from CAA. We begin by evaluating the quality of representations
obtained not only through GCL and reconstruction-based approaches but also from surprisingly ef-
fective, untrained GNN encoders.

3.1 REPRESENTATION LEARNING STRATEGIES

We consider three flavors of unsupervised representation learning: (i) Graph contrastive learning:
For a representative GCL approach, we select GraphCL with GGA as it is a popular and effective
method for graph classification. Following You et al. (2020a), we use random node-dropping or sub-
graph sampling at 20% of the graph size as the augmentation strategy; (ii) Reconstruction-based:
In addition to standard graph autoencoders (GAEs), we extend AAVAE (Falcon et al., 2021) to the
graph domain and introduce augmentation-augmented graph autoencoders (AAGAE). While GAE
minimizes the reconstruction loss with respect to the original sample, AAGAE minimizes the recon-
struction loss between the original and the reconstruction for an augmented sample to learn repre-
sentations that are consistent with respect to augmentations: ||Gi −h(g(A(Gi, Xi)))||22. We use the
same augmentations and encoder architecture as GraphCL for fair comparison and include a straight-
through estimator in the decoder for better training (Jang et al., 2017); and finally (iii) Untrained
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representations: We include untrained GNNs as an important baseline and find that representations
from randomly initialized models often perform comparably to unsupervised approaches.

There is some folk wisdom that untrained GNNs can be surprisingly competitive with trained mod-
els. Early GNN works noted that even an untrained model may have strong inductive bias suitable
for node-level tasks (Kipf & Welling, 2017). For graph-level transfer learning, Xu et al. (2021)
consider an untrained GIN model as a baseline, finding it obtains competitive although generally
inferior results. A recent blog post performs a limited exploratory analysis of graph classification
using untrained embeddings obtained from a simple GCN model (Safronov, 2021). Our analysis
here (extended to consider different architectures in Appendix A.3-A.4) is far more comprehensive,
showing precisely in what ways untrained models may be competitive.

Table 1: Inductive Bias on Benchmark Datasets. We report the performance of untrained N-layer GIN
encoders against 3-layer encoders trained through GraphCL (You et al., 2020a) or reconstruction approaches
(GAE/AAGAE). Results for GraphCL are taken from the paper and we follow the same evaluation protocol.
Best results are indicated in bold; results within standard deviation are underlined.

Dataset Untrained (3) Untrained(4) Untrained (5) GraphCL GAE AAGAE
MUTAG (188) 85.76± 7.38 86.36± 6.51 86.73± 10.33 86.80± 1.34 87.76± 3.00 88.23± 0.98

PROTEINS (1113) 73.64± 5.464 74.46± 4.09 74.22± 2.85 74.39± 0.45 75.36± 0.4 74.77± 0.43
NCI1 (4060) 70.65± 1.99 70.36± 3.11 70.49± 2.42 77.81± 0.41 79.48± 0.44 79.75± 1.25
DD (1187) 73.23± 8.25 72.15± 7.25 77.08± 4.18 78.62± 0.40 78.24± 0.67 77.59± 0.64

RDT-B (2000) 72.34± 6.64 64.57± 8.03 67.32± 7.41 89.53± 0.84 79.75± 1.25 79.95± 4.39
IMDB-B (1000) 67.22± 7.77 61.26± 7.01 60.43± 5.92 71.14± 0.44 71.70± 0.36 71.26± 0.305
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Figure 1: (a) Invariance vs. Acc on TUDatasets. While trained models do see an improvement in both
accuracy and invariance, we see that this improvement in often minimal over an untrained model, suggesting
that GGA augmentations introduce invariance that is not always useful to the downstream tasks; (b) Sample
Complexity on TU Datasets. We perform semi-supervised learning on TU Datasets with various amounts of
labeled data. For REDDIT-BINARY, pretraining does not improve sample complexity. GAE/AAGAE have
slightly better complexity than the supervised baseline on IMDB-BINARY. On PROTEINS, pretraining also
does not have clear benefits.

3.2 EVALUATION METRICS

While prediction accuracy on the downstream task is an important criterion for choosing a represen-
tation learner, we consider two other metrics to empirically illustrate the benefits of these methods,
or lack thereof, over the untrained representations. Specifically, we quantify how training with unsu-
pervised methods affects the invariance of representations with respect to augmentations, and sample
complexity. These metrics are selected because they are well-aligned with the objectives of potential
applications. For example, in molecular property prediction, it is desirable to have models that are
invariant to small measurement discrepancies and can quickly generalize to new distributions. We
define these measures and describe how they are computed as follows.

Invariance: When training with NT-XENT, as GraphCL does, the representation similarity between
augmented pairs is maximized and models learn invariances to augmentations. AAGAE also en-
forces consistency to natural and augmented samples. However, it is unclear if (i) models are
actually learning invariant representations and (ii) if this property is valuable to downstream task
performance. To measure this property, for a given sample xi, we generate 300 randomly aug-
mented samples {x1

i . . . x
300
i } compute the average cosine similarity between xi, x

j
i . Note, using

cosine similarity as a proxy for the invariance property is well-motivated by NX-ENT.
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Sample Complexity: If unsupervised learning is used as the pre-training step, then it is expected
that the pre-trained model will have improved sample complexity. We consider if this holds true for
GraphCL, GAE and AAGAE. Specifically, after unsupervised training, we include a linear classifier
layer to the backbone or encoder. Then, we train the model, end-to-end, in a supervised fashion,
where we vary the size of the labeled dataset, extending the setup of (You et al., 2020a).

GGA introduces invariance that has limited improvements in performance. Fig. 1a plots the
invariance of GraphCL, GAE, AAGAE, and untrained models on benchmark TU datasets. As noted
in Tab. 1, untrained models often perform comparably to trained ones (≤ 5% difference). However,
we see that training with GCL or reconstruction leads to improved invariance. This suggests that
the learning invariance was not necessary for downstream task performance. While designing better
augmentations is a difficult but obvious solution (Zhao et al., 2020; Kong et al., 2020), in Sec. 5,
we find that even optimal augmentations are often unable to surpass supervised performance and
discuss implications of this result.

Pretraining has limited benefits on sample complexity. Given that GCL or reconstruction did not
lead to considerable improvements in accuracy over a untrained baseline or introduce meaningful
invariance, we investigate if pretraining leads to better sample complexity. As shown in Fig. 1b, we
find there is no clear benefit to pretraining. On REDDIT-BINARY, the fully supervised model has
better accuracy across all label ratios. For IMDB-BINARY, reconstruction based approaches offers
a slight improvement. The results are mixed for PROTEINS. We note that the supervised model
did not see consistent improvements as the labeled ratio increased and suspect this is related to the
random data-splits (Dwivedi et al., 2020).

Our empirical analysis demonstrates the unreasonable effectiveness of untrained GNNs and high-
lights the uneven benefits GGA with respect to invariance, sample complexity and accuracy. More-
over, in the appendix, we show that URL leads to minimal improvements for expressive architec-
tures, such as PNA (Corso et al., 2020). In the next section, we use the recently proposed Population
Augmentation Graph (HaoChen et al., 2021) to better understand the limitations of GGA, as they
are routinely used when it is unclear how to leverage domain knowledge as graph augmentations.

4 USING POPULATION AUGMENTATION GRAPHS TO ANALYZE GGA

Recent attempts to analyze theoretically the performance of contrastive learning often assumes that
sample views are independent, a condition clearly violated by data augmentation (Arora et al., 2019;
Tosh et al., 2021). To avoid this assumption, HaoChen et al. (2021) recently introduced the notion of
a population augmentation graph, which represents augmented samples as nodes and edges as the
likelihood of generating a given pair of augmented samples from the same clean sample. HaoChen
et al. (2021) also provably showed that well-designed augmentations will lead to tight subgraphs
(partitions) in the population graph that correspond with downstream class labels. They show that
true class labels can be recovered, up to some error, by performing spectral decomposition on this
graph and propose a matrix factorization based objective function to perform the decomposition.

In this section, we leverage population augmentation graphs (PAGs) for analyzing contrastive learn-
ing with graph data, and show that employing generic graph augmentations from (You et al., 2020a)
will lead to subgraphs in the PAG that are dependent on the graph edit distance (GED) between sam-
ples of different classes: that is, the minimum number of graph edit operators (operations such as
node dropping or edge perturbation that also form the basis for the augmentations commonly used
in contrastive learning) needed to transform one sample into another. This implies that performing
spectral decomposition on this graph will not align with true class labels if the average GED of sam-
ples between two different classes is smaller than the average GED of samples between the same
class. Equivalently, generic graph augmentation (GGA) can be interpreted as imposing GED as the
implicit metric for representation similarity, and the success of GCL with GGA is dependent on how
appropriate GED is for a given task.

More specifically, our analysis is comprised of the following steps: (i) defining the population aug-
mentation graph; (ii) showing that GGA can be decomposed in graph edit operators; (iii) describing
graph characteristics of the PAG; and finally (iv) showing that the resulting subgraphs of the PAG
are determined by GED, which may not necessarily align with downstream class labels. We follow
the notation in (HaoChen et al., 2021).
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4.1 CONSTRUCTING THE PAG WITH GENERIC GRAPH AUGMENTATIONS

Given a natural dataset X , let A(·|xi) be the distribution of augmentations given a natural sample
x, or, intuitively, as the probability of generating a particular augmented sample from the large
but finite set of all possible augmented versions of x. Then, X := ∪x∈XA(·|x). Note, the tuple
(x = A(x),x′ = A(x)) is considered a positive pair.

Population Augmentation Graph HaoChen et al. (2021): Let Gp be the population graph, where all
N samples in augmented set X form the nodes and W ∈ RN×N is the corresponding adjacency
matrix. The edge weight between two nodes x and x′ is defined as

wx,x′ := Ex∈PX
[A(x|x)A(x′|x)].

Intuitively, if wx,x′ is larger, it is relatively easier to generate the augmented pair from the same
natural sample.

We first observe that augmentations defined by GraphCL (such as node dropping, edge perturbation,
and sub-graph sampling) can be directly decomposed using standard graph edit operators (node
dropping, node addition, edge dropping, and edge addition). For example, an edge perturbation
augmentation can be represented as a set of edge drops and edge additions between {x,A(x)}.
Further, note that GraphCL assumes that constraining augmentations to a fraction, γ, of the overall
graph size will preserve task-relevant information, and only one augmentation may be applied to
a graph at a time. Then, for a single sample, xi = (Gi, Fi), the maximum edit distance of an
augmented sample x′ = A(x) is:

max{γ|Ei|, γ|Vi|},

where Ei,Vi are the edge/node sets. Now, since graphs are discrete, the augmentation severity is
restricted and only one edit can be applied at a time, we can completely delineate the set of allowable
augmentations given xi, Ãi, and can determine the size of this set.

For example, consider the node dropping augmentation and let γVi
∈ Z+ be the number of allowable

node drops for Gi. Then, there are

NDi :=

γVi∑
j=1

|Vi|!
(|Vi| − j)!j!

allowable augmented samples. Further, note that augmentations are applied randomly, so any sample
in the augmentation set is equally likely, up to node permutation. This means, we can exactly define
A(x|x), as 1

|Ãi|
. A similar analysis can be used for other augmentations. For ease of exposition, we

focus on one augmentation here.

Then, we observe
A(x|x) ̸= 0 ⇐⇒ x ∈ Ãx (2)

GED(x, x) ≤ γx. (3)

Intuitively, x must exist in the augmentation set of x to have non-zero probability and the augmen-
tation set is defined by all graphs within γx edits. This implies wx,x′ will be large when x, x′ jointly
appear in the augmentation set of many different natural samples. As such, we have defined all pos-
sible nodes in Gp as well as how the edges are defined and can discuss implications of the structure
of the population graph induced by GGA.

4.2 ANALYZING POPULATION AUGMENTATION GRAPH STRUCTURE

HaoChen et al. (2021) show that performing spectral decomposition on the augmentation graph
provably recovers underlying classes if the partitions or subgraphs in the augmentation graph can
be aligned to downstream classes. We now show how these partitions are related to GED and
how the structure of these partitions relates to task performance. Clearly, for strong downstream
performance, partitions must contain more samples from the same class than of different classes.

Recall Eq. 2 and Eq. 3 define when a given edge will exist between samples. Now, clearly, determin-
ing how many edges will cross between ground-truth classes can be determined by measuring the
edit distance between samples of different classes. Formally, consider a simple binary task, where
Ψ := {(GED(xi, xj) ≤ γi + γj ∋ y(xi) ̸= y(xj)} corresponds to a set of edges across classes
and Φ := {(GED(xi, xj) ≤ γi + γj ∋ y(xi) = y(xj)} is the set of edges within classes. Then,
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Figure 2: Synthetic Dataset Generation. We create a six class, graph classification dataset by first, selecting
one of six unique motifs and then injecting 1-3x copies into a randomly generated tree. Here, the motifs
completely determine the class, and are considered “content” (shown in red). To vary the amount of style,
the size of the background tree graph (shown in blue) is ratio of the number of “content” nodes. Above are
examples of varying style ratios. Our dataset goes beyond binary, benchmark datasets and allows for content-
aware augmentations, a critical component to understanding the maximal performance GCL frameworks.

if |Ψ| > |Φ|, it is not possible to learn well-aligned partitions because partitions will contain a mix
of classes. Therefore, if spectral contrastive learning is performed using GGA, there is some fixed
error, ϵ, that is directly determined by the average GED between classes, as shown.

While our analysis leverages PAG and the spectral contrastive loss, HaoChen et al. (2021) show
that their proposed loss function can be extended to other popular contrastive loss functions and
also empirically performs well. Therefore, our results suggest generally that the success of graph
contrastive learning with GGA is dependent on the GED between classes. The augmentation set
of a given sample is determined by its graph size, and thus it should be more difficult to achieve
invariance to GGA augmentations for larger graphs. Third, the above analysis may offer a path to
deriving bounds on the generalization to certain distribution shifts, for example graph size shifts.

5 A STYLE VS. CONTENT PERSPECTIVE FOR EVALUATING
CONTENT-AWARE AUGMENTATIONS

While the above analysis identifies untrained networks as a strong baseline for URL and char-
acterizes GGA’s behavior, it remains unclear how to improve different components of GCL and
reconstruction-based approaches such that the additional expense of pretraining is justified. Given
that existing augmentations are far from optimal (see Sec. 4), one avenue of improvement is through
better augmentation design. However, graph data augmentation is known to be difficult (Kong et al.,
2020; Zhao et al., 2020) and it is unclear if the different paradigms will benefit equally from im-
proved augmentations. To that end, we first take the perspective that graph samples can be decom-
posed into style (irrelevant information) vs. content (task relevant information). We then introduce
a synthetic data generation process that controls the amount of style vs. content in dataset sam-
ples (see Fig. 2), and allows for oracle, content-aware augmentations (CAA). Using this dataset, we
validate the effectiveness of augmentations and introduce a valuable benchmark to the community.

Recent theoretical works in VCL also build upon a similar style vs. content perspective. For ex-
ample, von Kügelgen et al. (2021) introduced a latent variable model to show that self-supervised
training with data augmentations is able to recover a style vs. content partition in the latent repre-
sentation and Zimmermann et al. (2021) showed that is possible to invert the data generating process
using contrastive learning and augmentations. Our work differs in that our data generation process
operates directly in the observed domain, instead of latent variables as in (von Kügelgen et al., 2021),
and we leverage oracle augmentations to better understand the performance of different frameworks.
Synthetic Data Generation: The proposed data generation process consists of three components:
a set of C motifs, M, that uniquely determine C classes, a random graph generator, RBG(n),
parameterized by the number of nodes (we can also equivalently define this based on number of
edges), and ρ, the style multiplier, which controls how much irrelevant information is included in a
sample. To generate a sample, we attach a randomly generated background graph (i.e., style com-
ponent) to a motif (i.e., content) in accordance to the style multiplier. While this process is simple,
it addresses several limitations often encountered in GCL evaluation. Specifically, this process (i)
allows for varying levels of content-aware augmentation (i.e., edges that can be perturbed directly in
the background graph without harming the motif); (ii) is easily extended beyond binary classifica-
tion; (iii) contains relatively large number of samples and (iv) offers a natural test bed for GNN size
generalization or transfer learning.
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Figure 3: Effect of Style vs. Content Ratio on Different Paradigms: We evaluate the performance of con-
trastive and reconstruction approaches with content preserving and random augmentations as the ratio of style
vs. content changes. As expected, reconstruction methods perform best in low style regimes. While we see
that content aware augmentations improve performance, especially for GCL, in high style regimes, it remains
difficult to match the supervised performance.

Experimental-Setup: We let C = 6 and define RBG(n) through a random tree generator, where n
is ρ% of the nodes belonging the motif. To make the task more challenging, we randomly insert be-
tween 1-3 motif copies into each sample. We explore two different augmentation strategies, namely
random edge dropping and content preserving edge dropping, where only edges in the background
graph are dropped. We parameterize these augmentations by the number of edges in the total entire
and background graphs, respectively. We do not consider any additional node features, though that
extension would be straightforward. We use a 5-layer GIN-based encoder for both our GraphCL
backbone and GAE/AAGAE encoders and the models are evaluated using a linear probing protocol
(Chen et al., 2020a). See appendix A.2 for more details.

5.1 BALANCING STYLE VS. CONTENT

Many real graph datasets can be understood through the aforementioned partitioning of relevant vs.
irrelevant information. For example, molecules can be split into functional groups (content) and
carbon rings (style). A natural question is whether a reconstruction-based approach or contrastive
learning approach is preferable if there is some intuition on the ratio of style vs. content (i.e., many
carbon rings vs. a few). We make the following observations from Fig. 3.

Reconstruction-based approaches perform well in low style regimes. Note that as the amount
of style increases, the problem inherently becomes harder. However, in regimes where there is
little style content (irrelevant information), reconstruction-based approaches should perform well
in particular as the model will only learn to recover the relevant information. Conversely, GCL
with GGA risks corrupting content, and generating false positives or out of distribution samples.
Thus, we expect the accuracy of reconstruction-based approaches to fall more sharply as the amount
of style increases, which indeed we do see in Fig. 3. We also find that that CAA helps GCL
perform considerably better than with GGA, and that less severe generic augmentations are better;
this supports the hypothesis that GCL succeeds when, whether by augmentation design or simply
the composition of the data, there is less risk of the augmentations corrupting content.

Content-aware augmentations are not a silver bullet. Optimal augmentations generate views
that only share task-relevant information and minimize other task-irrelevant information (Tian et al.,
2020). For the proposed dataset, this would correspond to removing the entire background graph.
We restrict augmentations to removing 60% of the style portions and find even with strong content-
preserving augmentations, unsupervised approaches significantly under-perform when compared to
fully supervised models. This is in stark contrast to VCL where strong data augmentation is a crit-
ical component to surpassing performance of supervised models on a variety of vision tasks (Chen
et al., 2020a). Our analysis suggests that other framework components, such as more expressive ar-
chitectures (Chen et al., 2020b; Xu et al., 2019; Velickovic et al., 2018; Corso et al., 2020; Hamilton
et al., 2017) and sampling strategies (Kalantidis et al., 2020; Grill et al., 2020; Chen & He, 2020),
must also be developed before GCL sees the same success. Furthermore, we note that the gain
from CAA in high-style regimes is much less pronounced for reconstruction approaches than for
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Figure 4: (a) Invariance vs. Accuracy on Synthetic Datasets. We measure the invariance to random aug-
mentations, when ρ = 0.5; (b) Sample Complexity on Synthetic Dataset. We perform semi-supervised
learning when ρ = 1.0 with various amounts of labeled data. GraphCL has considerably better performance
than reconstruction-based methods. Content-aware augmentations are useful for both paradigms.

GCL. This may partially be attributed to increased difficulty in reconstructing larger graphs. More
sophisticated decoders and algorithms may help improve performance.

5.2 EVALUATION

Invariance: Invariance to random edge dropping at 20% of the graph after performing unsupervised
training when ρ = 0.5 is shown in Fig. 4a. Almost all methods improve on the untrained baselines in
accuracy and invariance. We find that all reconstruction-based methods have high invariance in this
low style regime. In contrast, GCL models that are more invariant tend to be more accurate, which
may suggest that for this learning paradigm, learning to be invariant to augmentations can improve
accuracy. Interestingly, supervised training is the most accurate but the least invariant–this reminds
us the pursuit of expressive GNN models that most successfully map distinct graphs to distinct
representations Xu et al. (2019) is helpful in supervised settings, though without the guidance of
task supervision, unsupervised learning may benefit from greater representation invariance.

Sample Complexity: We measure the performance of different methods when ρ = 1 and at dif-
ferent labeling ratios in a semi-supervised setting. While CAA improves the sample efficiency
of reconstruction-based methods with respect to GGA, we see that (i) GAE outperforms AAGAE
across all labeling rates, and (ii) all considered reconstruction-based methods are not able to match
the performance of GCL or supervised performance. This suggests that AAGAE may converge to a
more unstable loss landscape, but also highlights our observation at the end of Sec. 5.1 that augmen-
tations are limited in what they can accomplish, and may require technical advances such as more
sophisticated decoders to come into their own to the extent they have in computer vision.

6 CONCLUSION

In this paper, we seek to understand the behavior of GCL and reconstruction-based approaches when
performing unsupervised graph representation learning. We show theoretically that the success of
GCL with popular, generic graph augmentations is directly dependent on the average graph edit dis-
tance between classes. Our empirical study shows in detail the competitiveness of untrained GNNs
on benchmark datasets to help the community understand what benefits to expect from training. We
demonstrate for both GCL and reconstruction-based methods, which we consider in greater detail
for unsupervised graph representation learning including with a new method AAGAE, that generic
graph augmentation does not introduce meaningful invariance or reliably improve model sample
complexity on these benchmarks. Thus, we introduce a synthetic benchmark with a controlled style
vs. content decomposition to understand how much can be gained from optimal (content-aware)
augmentations and better compare the GCL and reconstruction paradigms. Our work provides use-
ful frameworks and evaluation tools to better understand the performance of unsupervised graph
representation learning, contributions we expect to be of great interest to this burgeoning field.
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7 REPRODUCIBILITY STATEMENT

For reproducibility, we provide details about data generation in appendix A.2. For baselines, we
build off the code provided by the authors and follow the authors’ guidelines to set the hyperparam-
eters. We will also release code at this link: https://anonymous.4open.science/r/GCLRecon-5DF6/
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A APPENDIX

A.1 UNDERSTANDING GENERIC GRAPH AUGMENTATIONS

We expand our discussion on the connections between generic graph augmentations and graph edit
distance. We also discuss how the graph edit distance between dataset samples influences the struc-
ture of the population augmentation graph HaoChen et al. (2021), a recently introduced tool to
understand contrastive learning.

Table 2: Notation

Symbol Definition

X the original or natural dataset.
X set of all augmented data.
xi data sample containing graph and node feature tuple, (Gi, Fi)
Ei Edge set of Gi.
Vi Node set of Gi.

γ ∈ (0, 1) augmentation strength. Controls the % of edges or nodes that may be perturbed
by the selected augmentation

A(x) Augmentation, A, applied to the natural sample x
A(·|xi) distribution of augmentations given a natural sample, xi.
B(x) set of allowable augmentations given x.

D ∈ Z|X×|X| positive, symmetric distance matrix where Di,j = GED(xi, xj)

Γ ∈ Z1×|X| column vector containing max. number of allowable perturbations per sample.
y ∈ [0, 1]|X | column vector providing the labels of all natural samples.

A.1.1 GGA AND GRAPH EDIT DISTANCE

Graph edit distance (GED) is used to capture similarity between two graphs. Intuitively, it captures
the cost of making elementary edit operations on a graph, g1, to transform it to be isomorphic to
another graph, g2. Given two graphs, g1, g2,

GED (g1, g2) = min
(e1,...,ek)∈P(g1,g2)

k∑
i=1

c (ei) ,

where P (g1, g2) is the set of paths (series of edit operations) that transforms g1 into g2, ei is i-th edit
operation in the path, and c(ei) > 0 is the cost of the particular edit. In this work, we consider node
insertion, node deletion, edge deletion and edge addition as the elementary graph edit operators as
these are well-aligned to the augmentations defined in You et al. (2020a), namely node dropping,
edge perturbation, attribute masking, and sub-graph sampling. While GED is typically defined on
graph structure, our analysis can be extended to include categorical node attributes by introducing
a graph operator that performs a “replacement” whenever a graph’s node attributes disagree. Then,
the GED is the cost of structural changes and the number of disagreements between their attributes.
Categorical variables are common in molecular classification tasks, where attributes correspond to
elements, and discrete node attributes are often used when analyzing GNNs (Xu et al., 2019). We
also consider a constant cost of 1 per operation, such that GED counts the number of operations
required to transform one graph into another.

For example, let (g, ga) represent the original and augmented graph respectively, where we perform
node dropping to obtain ga. Recall that the node dropping augmentation may only drop up to
some fraction of nodes in g. Then, clearly the minimum cost path can then be found using only node
deletion operators, and the GED(g, ga) is bounded by the number of allowed node drops. Similarly,
if ga was obtained through the edge perturbation augmentation, which randomly adds or removes
a fraction of edges, then GED(g, ga) is bounded by the number of allowable edge modifications
and can be obtained using only edge addition/deletion operators. (Here, we allow nodes without
edges to still exist, so performing node addition/deletion would not result in a lesser GED.) The
sub-graph sampling augmentation extracts a connected sub-graph that contains at most a fraction of
total nodes. The minimum cost path can then be defined using only node deletions, e.g. where the
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operator is applied to all nodes not in the sampled sub-graph. Therefore, GED(g, ga) is bounded
by |g| − |ga|.
Given the aforementioned discussion, we can now define the set of allowable augmentations using
GED and make the following remarks. Please see Table 2 for a complete list of notation.
Definition 1 (Set of Allowable Augmentations). Let A be a generic graph augmentation (node
dropping, etc). Then, all allowable augmented samples induced by A(xi) have graph edit distance
less than max{γ|Vi|, γ|Ei|} to xi. Equivalently:

B(xi) ≜ {x′ : GED(x′, xi) ≤ max{γ|Vi|, γ|Ei|}}.

Remark A.1 (Upper-bound on Size of Augmentation Set). The size of B(xi) can be upper-bounded
through a combinatorial or counting process. For example, to determine B(xi) when the considered
augmentation is node dropping, we can delineate all sets of possible nodes with size upto γ|Vi|.
Formally, the upper-bound on the number of samples generated using node dropping are:

|B(xi)| ≤
γVi∑
j=1

|Vi|!
(|Vi| − j)!j!

We note that this value is an upper-bound because isomorphic pairs are treated as two separate
graphs. Furthermore, note the size of the augmentation set grows exponentially with graph size.
Definition 2 (Overlapping Sample). An augmented sample, x′, is considered an overlapping sample
if belong to the augmentation set of multiple natural samples: x′ ∈ B(xi)∧x′ ∈ B(xj), where i ̸= j.

Using Def. 2, we show that overlapping examples must exist given certain conditions on graph edit
distance of samples in X .
Remark A.2 (Existence of Overlapping Samples). Consider two samples xi and xj . Let ri =
max{γ|Vi|, γ|Ei|} and rj = max{γ|Vj |, γ|Ej |}. If GED(xi, xj) < ri+rj , then ∃x′ ∈ B(xi)∧x′ ∈
B(xj), i.e. at least one augmented sample belongs to both the induced augmentation sets.
Definition 3 (Invalid Augmented Samples). We consider an augmented sample, x to be an invalid
sample, if x ∈ B(xi) ∧ x ∈ B(xj) (an overlapping sampling), and yi ̸= yj .
Claim A.1. Given D,Γ,y, we can lower-bound the number of overlapping samples in the empirical
data distribution as 1

2

∑
i,j∈[1,...,|X |] 1(Dij − Γi − Γj ≤ 0) where 1 is the indicator function.

Furthermore, if we consider oracle label information, we can lower bound the number of invalid
samples as 1

2

∑
i,j∈[1,...,|X |] 1

(
(Dij − Γi − Γj)|yi − yj | < 0

)
.

Proof. Γi + Γj is the total number of edit operations that can be applied to either samples xi or xj .
If the graph edit distance between samples i and j is smaller than this, then it is possible to reach
the same augmented sample somewhere on the edit path that turns xi into xj regardless of which
endpoint we start from. This augmented sample constitutes an overlapping sample, or an invalid
sample if the class labels of xi and xj differ. Note that there may be multiple such augmented
samples that can be created from either xi or xj ; our indicator function counts one per pair of
samples, and thus helps constitute a lower bound.

A.1.2 DISCUSSION ON INVALID SAMPLES

An invalid sample does not have a clear label because we do not know which natural label should
be assigned to it. This can incur instability in discriminative methods if the invalid sample’s loss
is minimized with different labels over the course of training. It is also problematic for methods
enforcing consistency because such methods will use the invalid sample to enforce consistency with
respect to two different classes. We note that invalid samples will occur for any method that uses
GGA and most methods will incur some irreducible error from training on an ambiguous sample.

Here, we discuss how inter-class and intra-class GED relate to number of invalid and overlapping
samples. Let I be the set of all invalid samples, O the set of overlapping samples, and Õ := O \ I
be the set of intra-class (valid) overlapping samples. Let C ′ be the lower bound on the number of
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invalid samples we computed in Claim A.1. C ′ is controlled by two parameters, D and Γ. We see
that whether samples are, on average, invalid or merely overlapping is dependent on the average
distance between samples of different classes when Γ is held constant. Clearly, when training, we
desire that |I|

|Õ| → 0, as this ensures the model mostly sees valid samples. We note that this ratio is
proportional to inter-class and intra-class distances as follows:

Recall that if A(xi) ∈ I, (Dij−Γi−Γj)|yi−yj | < 0 or equivalently, Dij < Γi+Γj , for yi ̸= yj .
Now, if A(xi) ∈ Õ,Dij < Γi + Γj , for yi = yj . Then, |I| ∼ 1 (Dij < Γi + Γj), for yi ̸= yj and
|Õ| ∼ 1 (Dij < Γi + Γj), for yi = yj .

Now, |I|
|Õ| ∼=

1(Dij<Γi+Γj), for yi ̸=yj

1(Dij<Γi+Γj), for yi=yj
→ 0, when inter-class distance is large for many samples,

(i.e. the numerator is minimized), and when the intra-class distance is small for many samples (the
denominator is maximized). This suggests it is desirable to have a lower average intra-class distance
and a higher average inter-class distance.

While GED between samples cannot be controlled, the augmentation strength, Γ, can be controlled.
It is desirable to minimize the number of invalid samples, while simultaneously maximizing the
number of valid (including overlapping) augmented samples as follows:

min
Γ

(C) s.t. max
Γ

(∑
x∈X

|B(x)|

)

While the above optimization is intractable and assumes label information, it alludes to two prop-
erties critical to the success of contrastive learning: connectedness of samples and recoverabil-
ity (HaoChen et al., 2021). The number of invalid samples is indicative of the recoverability of
different classes, while the above optimization indicates that we must also consider how well con-
nected the augmentation sets are. We formalize this discussion in the next section.

A.1.3 GGA AND THE POPULATION AUGMENTATION GRAPH

The preceding section discusses the relationship between GGA, GED and error introduced by invalid
samples. However, this analysis is method-agnostic and does not offer theoretical insights into graph
contrastive learning.

In computer vision, recent attempts to analyze theoretically the performance of contrastive learning
often assumes that sample views are independent, a condition clearly violated by data augmenta-
tion (Arora et al., 2019; Tosh et al., 2021). To avoid this assumption, HaoChen et al. (2021) recently
introduced the notion of a population augmentation graph (PAG), which represents augmented sam-
ples as nodes and weighted edges as the likelihood of generating a given pair of augmented samples
from the same clean sample. Because samples from the same class are more likely to produce the
same augmented sample than two random classes, connected subgraphs or communities in the PAG
naturally correspond to underlying classes. HaoChen et al. (2021) designed and theoretically ana-
lyzed a CL objective that performed spectral decomposition on the PAG to recover these subgraphs
(classes). Using their proposed objective and the PAG, they were able to provide the first accuracy
guarantees for CL.

We begin by defining the PAG and the assumptions critical to HaoChen et al. (2021)’s analysis.
Then, we extend our analysis from the preceding section to discuss how well these assumptions are
supported for GCL.
Definition 4 (Population Augmentation Graph (HaoChen et al., 2021)). Given a natural dataset
X , let A(·|x) be the distribution of augmentations given a natural sample x, or, intuitively, as the
probability of generating a particular augmented sample from the large but finite set of all possible
augmented versions of x. Then, X := ∪x∈XA(·|x).
Let Gp be the population augmentation graph, where all N samples in X form the nodes and W ∈
RN×N is the corresponding adjacency matrix. The edge weight between two nodes x and x′ is
defined as

wx,x′ := Ex∈PX
[A(x|x)A(x′|x)].
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Intuitively, if wx,x′ is larger, it is relatively easier to generate the augmented pair from the same
natural sample.

Now, since graphs are discrete, the augmentation severity is restricted and only one edit can be
applied at a time, we can completely define the population augmentation graph. Specifically, by
using Remark A.1, the entire set of allowable augmentations can be determined. Moreover, re-
call that augmentations are performed randomly. Therefore, any x ∈ B(xi) is equally likely, so
A(x|xi) = 1

|B(x)i| . However, if x′ ̸∋ B(xi), A(x|xi) = 0 because it is not considered an allow-
able augmentation for xi. Note wx,x′ > 1

|X |
1

|B(xi)|2 when x, x′ are both overlapping samples, i.e.
x ∈ B(xj), x

′ ∈ B(xj) for i ̸= j. We refer to an edge whose endpoints are both overlapping sam-
ples as an overlapping edge. Similarly, a node in the PAG that is an overlapping sample is referred
to as an overlapping node. As such, we have defined all possible nodes in Gp as well as how the
edges are defined.

A.1.4 EXPLORING PAG STRUCTURE

Claim A.2. (Node Degree) Let x be an overlapping node in the PAG. Additionally, suppose there is
an alternative PAG, where x̃ is no longer an overlapping node but otherwise the PAG is the same.
Then, x will have a larger degree than x̃. This is true even if x̃ is not in an overlapping edge.

Proof. Because x is an overlapping node, x ∈ B(xi) ∧ x ∈ B(xj) for some i ̸= j. Then,
wx =

∑
x′ wxx′ =

∑
x′∈B(xi)

wxx′ +
∑

x′∈B(xj)
wxx′ . Now, in the alternative PAG, x̃ is not

an overlapping node, so x̃ ∈ B(xi) ∧ x̃ /∈ B(xj),∀j ̸= i. Then wx̃ =
∑

x′ wx̃x′ =
∑

x′∈B(xi)
wxx′ .

Clearly, wx > wx̃. This that if a sample is an overlapping node, it will have a higher degree than if
the same sample were not an overlapping node.

Claim A.3 (GED Influences PAG structure). If data points x, x′ share an edge in the PAG, then
max

(
GED(x, xi), GED(x′, xi)

)
< max{γ|Vi|, γ|Ei|}.

Proof. wxx′ > 0 if and only if x ∈ B(xi)∧x′ ∈ B(xi). Recall in Def. 1, that x ∈ B(xi) if and only
if GED(x, xi) < max{γ|Vi|, γ|Ei|}, and similarly for x′.

Moreover, edge weights and node degrees are also influenced by the GED between samples. Over-
lapping edges can increase the weight between nodes. However, as discussed above, this requires
that both ends of the edge are overlapping nodes. In Definition 2 and Remark 3, we show how GED
can be used to determine the existence of such nodes. This further demonstrates the structure of the
PAG is directly influenced by the GED between samples in X .

We emphasize that our analysis suggests that practitioners may be using generic graph augmen-
tations without realizing that they are implicitly assuming that GED is a useful metric for their
problem.

Having elucidated the structure of the PAG and its relationships to GED, we discuss how its struc-
ture relates to the assumptions made by HaoChen et al. (2021) when analyzing the PAG. Namely,
they require that the PAG “cannot be partitioned into too many disconnected sub-graphs”, and that
“labels are recoverable from augmentations.” Indeed, their resulting bound on the error of spectral
contrastive learning on the PAG depends upon the sparsest m-partition and classifier error.

The following assumption is from HaoChen et al. (2021):
Assumption 1. (Labels are recoverable from augmentations). Let x̄ ∼ PX and yx̄ be its label. Let
the augmentation x ∼ A(· | x̄). We assume that there exists a classifier g that can predict yx̄ given
x with error at most α. That is, g(x) = yx̄ with probability at least 1− α.

Claim A.4. (Recoverability is lower-bounded by the number of invalid samples). α (Assumption 1)
can be lower-bounded when when B(x) contains an invalid sample: α ≥ 1

B(x) −
1

|B(x)|Ỹ | , where

where Ỹ is the set of labels represented among the natural samples that may have generated x.

Proof. For this claim, we first discuss the best error that can be expected when classifying an invalid
sample, and then we discuss the likelihood of encountering such a sample given some x. Let x be an

16



Under review as a conference paper at ICLR 2022

invalid sample that can be generated from natural samples: X̃ = {(x1,yx1
), . . . (xk,yxk

)}. Clearly,
x’s label is not well defined as it could be assigned any label ỹ ∈ Ỹ . However, the classifier g, is
assumed to predict g(x) = yxi

,∀xi ∈ X̃ with error at most α. Then, the minimum error for such
a classifier is 1− 1

|Ỹ | , since the classifier does not know which natural sample generated x. For the
remainder of the proof, we assume that g can correctly classify all samples expect invalid samples
to derive a lower bound.

Having established the minimum error of a classifier on an invalid sample, we determine how likely
g is to encounter such a sample given x. Note that by assuming that g can correctly identify all
other augmented samples, the classifier error is only incurred when x is an invalid sample. Through
Remark 3, we first determine if an invalid sample is possible given a particular x. If an invalid sample
is possible, recall that every sample in the augmentation set, B(x), is equally likely by definition of
generic graph augmentations. Therefore, the likelihood of generating x given x is ∼ 1

|B(x)| , where
the size of the augmentation set can be determined using Remark A.1. We note that we could not
provide an exact likelihood here because we assume (i) isomorphic graphs are counted separately
and (ii) there is only one invalid sample in B(x), when in practice there may be multiple invalid
samples. Nonetheless, we are able to derive a lower-bound on the error of the classifier, g, given a
particular x, by considering the likelihood of encountering an invalid sample and the error such a
sample incurs: 1

B(x) −
1

|B(x)|Ỹ | ≤ α. While the above analysis focus on a particular x, we can extend
the analysis to consider all samples, if we establish the likelihood of selecting a natural sample that
can produce an invalid sample. (See subsubsection A.1.2 for related discussion.)

Lastly, we hypothesize that GED can be related to the Dirichlet conductance of the PAG, where
Dirichlet conductance measures how many edges cross between a subset, S, and its complement
relative to the total number of edges in the subset. We discuss our intuition in the following simple
example, but leave a rigorous mathematical discussion to future work. Let X be a dataset such that
mini ̸=j GED(xi, xj) > max(Γ), i.e the minimum distance between any two samples in the dataset
is greater than the maximum allowable edits. Then, clearly the PAG contains |X | fully connected
subgraphs (cliques) that correspond to B(x), where wxx′ = 1

|B(x)| for x, x′ ∈ B(x). Given the struc-
ture of the graph, the conductance is minimized when S = B(x), as all edges within the subset are
already contained. There are no edges to the complement because there are no overlapping samples
by construction. We suspect that this observation can be extended to understand the behavior of the
sparsest m-partition of the PAG, which HaoChen et al. (2021) use in their error bounds, but we leave
that analysis to future work.

A.2 DATASET GENERATION AND EXPERIMENTAL DETAILS
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Figure 5: Motifs used to determine class labels.

We use the motifs shown in Fig. A.2 to define a 6 class graph classification task. It is important to
ensure that the motifs are not isomorphic, as many GNNs are less expressive than the 1-Weisfeiler
Lehman’s test for isomorphism (Xu et al. (2019)). For each class, 1000 random samples are gen-
erated as follows: (i) We randomly select between 1-3 motifs to be in each sample. At this time,
motifs all belong to the same class, though this condition could easily be changed for a more difficult
task. (ii) We define the number of content nodes, Cn, as the size of the selected motif, scaled by
the number of motifs in the sample. (iii) For a given style ratio, we determine the number of possi-
ble style nodes as Sn = ρCn (iv). We define RBG(n) using networkx’s 1 random tree generator:

1https://networkx.org/documentation/stable/
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networkx.generators.trees.random_tree. We note that other random graph genera-
tors would also be well suited for this task. (v) For additional randomness, we create background
graphs using Sn±2, and also randomly perturb up-to 10% of edges in sample. We repeat this set-up
with ρ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} to generate the datasets used in Sec 5.

Experimental Set-up: We follow You et al. (2020a) for TUDataset experiments. We use a 5-layer
GIN model with sum pooling for all synthetic experiments. Models are pretrained for 100 epochs
and then fine-tuned for 200 epochs with 1 learning rate drop when the loss plateaus. The hidden
layer dimension is 32. We concatenate hidden representations for a representation dimension of
160. All models are trained with Adam, lr = 0.001. For the sample complexity experiment, we
allow for end to end training. For all other experiments, we freeze the backbone and only train the
linear prediction head.

A.3 INDUCTIVE BIAS, ADDITIONAL RESULTS

To further demonstrate the effectiveness of untrained models on popular benchmarks, we include
results from different GNN architectures: GraphSage (Hamilton et al. (2017)), PNA (Corso et al.
(2020)), GCN (Kipf & Welling (2017)) and GAT (Velickovic et al. (2018)). We note that while
it has been informally discussed that untrained GNNs have a strong inductive bias, our intention
is to formalize why these untrained models must be included when evaluating unsupervised graph
representation learning. Moreover, in Tab. A.4, we include a variant of untrained models, where we
initialize BatchNorm statistics without computing any gradients by iterating over the dataset once.
For several datasets and baselines, we see that this Warmup step makes the untrained baseline even
stronger. We believe that future work should also consider this simple baseline when evaluating the
performance of their models.

Table 3: Inductive Bias.

GraphSAGE 3 Layer 4 Layer 5 Layer GraphCL InfoGraph

MUTAG 0.85± 0.005 0.85± 0.006 0.85± 0.005 0.82± 0.040 0.85± 0.005
PROTEINS 0.73± 0.004 0.73± 0.003 0.74± 0.005 0.75± 0.002 0.74± 0.008
NCI1 0.74± 0.003 0.75± 0.006 0.73± 0.011 0.78± 0.000 0.79± 0.002
DD 0.77± 0.006 0.78± 0.002 0.78± 0.005 0.80± 0.008 0.77± 0.010
REDDIT-B 0.85± 0.014 0.83± 0.016 0.83± 0.005 – 0.66± 0.137
IMDB-B 0.66± 0.012 0.81± 0.008 0.81± 0.008 – –

PNA 3 Layer 4 Layer 5 Layer GraphCL InfoGraph

MUTAG 0.88± 0.011 0.88± 0.010 0.89± 0.009 0.86± 0.023 0.90± 0.014
PROTEINS 0.74± 0.003 0.74± 0.012 0.74± 0.005 0.74± 0.007 0.74± 0.003
NCI1 0.67± 0.008 0.68± 0.011 0.68± 0.010 0.78± 0.008 0.77± 0.019
DD 0.76± 0.014 0.76± 0.002 0.76± 0.008 0.80± 0.008 0.76± 0.006
REDDIT-B 0.90± 0.003 0.88± 0.014 0.89± 0.010 0.92± 0.006 0.92± 0.006
IMDB-B 0.72± 0.007 0.68± 0.011 0.68± 0.010 0.71± 0.009 0.71± 0.009

GCN 3 Layer 4 Layer 5 Layer GraphCL InfoGraph

MUTAG 0.85± 0.003 0.85± 0.004 0.85± 0.005 0.82± 0.013 0.85± 0.003
PROTEINS 0.74± 0.003 0.73± 0.007 0.74± 0.004 0.75± 0.004 0.75± 0.003
NCI1 0.76± 0.004 0.75± 0.001 0.75± 0.002 0.78± 0.008 0.79± 0.007
DD 0.78± 0.002 0.77± 0.012 0.78± 0.003 0.79± 0.007 0.76± 0.003
REDDIT-B 0.52± 0.005 0.51± 0.003 0.52± 0.005 0.92± 0.002 0.80± 0.062
IMDB-B 0.54± 0.001 0.57± 0.016 0.58± 0.008 0.71± 0.011 0.62± 0.070

GAT 3 Layer 4 Layer 5 Layer GraphCL InfoGraph

MUTAG 0.84± 0.003 0.85± 0.009 0.84± 0.003 0.81± 0.032 0.85± 0.013
PROTEINS 0.74± 0.002 0.74± 0.005 0.74± 0.006 0.74± 0.007 0.74± 0.005
NCI1 0.76± 0.009 0.75± 0.004 0.76± 0.002 0.78± 0.004 0.70± 0.040
DD 0.78± 0.005 0.77± 0.006 0.79± 0.001 0.79± 0.003 0.76± 0.005
REDDIT-B 0.52± 0.005 0.53± 0.004 0.52± 0.012 0.75± 0.004 –
IMDB-B 0.51± 0.004 0.51± 0.009 0.50± 0.005 0.51± 0.007 –

A.4 INVARIANCE, ADDITIONAL RESULTS

We extend our representation invariance results on standard benchmarks to different architectures
below in Tab. A.4. As in our main results, we use random subgraph sampling and node drop-
ping as our augmentations, following You et al. (2020a), when computing invariance. We find that
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similar trends hold: while training with GCL does improve performance and invariance somewhat,
untrained models perform comparably without the same levels of invariance.

Table 4: Invariance Table.

RandGAT (Acc) WarmupGAT (Acc) GAT (GraphCL) (Acc)

MUTAG 0.993 0.843 0.364 0.793 0.608 0.807
PROTEINS 0.987 0.737 0.819 0.738 0.554 0.744
NCI1 0.993 0.761 0.543 0.771 0.669 0.781
DD 0.970 0.779 0.381 0.778 0.361 0.793
REDDIT-B 1.000 0.517 0.850 0.724 0.982 0.747
IMDB-B 1.000 0.512 0.979 0.670 0.994 0.512

RandGIN (Acc) WarmupGIN (Acc) GIN (GraphCL) (Acc)

MUTAG 0.921 0.867 0.208 0.866 0.852 0.868
PROTEINS 0.910 0.745 0.495 0.750 0.547 0.744
NCI1 0.921 0.707 0.281 0.769 0.768 0.778
DD 0.907 0.732 0.071 0.760 0.638 0.786
REDDIT-B 0.906 0.723 0.242 0.768 0.286 0.895
IMDB-B 0.914 0.672 0.791 0.700 0.468 0.711

RandGCN (Acc) WarmupGCN GCN (GraphCL) (Acc)

MUTAG 0.996 0.847 0.491 0.807 0.561 0.821
PROTEINS 0.980 0.739 0.886 0.750 0.765 0.749
NCI1 0.991 0.756 0.480 0.767 0.664 0.780
DD 0.968 0.779 0.440 0.772 0.367 0.789
REDDIT-B 0.999 0.519 0.129 0.833 0.678 0.919
IMDB-B 0.914 0.540 0.539 0.833 0.994 0.709

RandSAGE (Acc) WarmupSAGE (Acc) SAGE (GraphCL) (Acc)

MUTAG 0.910 0.846 0.273 0.801 0.303 0.823
PROTEINS 0.907 0.732 0.582 0.747 0.507 0.749
NCI1 0.912 0.737 0.412 0.771 0.579 0.779
DD 0.590 0.771 0.590 0.781 0.727 0.801
REDDIT-B 0.833 0.849 0.225 0.740 – –
IMDB-B 0.223 0.663 0.223 0.497 – –

A.5 DATASET STATISTICS

A.6 RELATED WORK

Graph Data Augmentation: Augmentations for graphs are difficult to define due to their discrete,
non-euclidean nature. Furthermore, unlike images or natural language where there is an intuitive
understanding of what changes will preserve task-relevant information, no such understanding exists
for graphs. Indeed, a single edge change can completely change the properties of a molecular graph.
Therefore, only a few works consider graph data augmentation. Zhao et al. (2020) note that a node
classification task can be perfectly solved if edges only exist between same class samples. They
train a neural edge predictor to increase homophily by adding edges between nodes expected to
be of the same class and break edges between nodes of expected dissimilar classes. However, this
approach is expensive and not applicable to graph classification. Kong et al. (2020) argue that
information preserving topological transformations are difficult for the aforementioned reasons and
instead focus on feature augmentations. Throughout training, they add an adversarial perturbation to
node features to improve generalization. To avoid incurring the large expense of adversarial training,
they leverage Shafahi et al. (2019) and compute the gradient of the model weights while computing
the gradients of the adversarial perturbation. This approach is not directly applicable to contrastive
learning, where label information cannot be used to generate the adversarial perturbation.

Graph Self-Supervised Learning: Several paradigms for self-supervised learning in graphs have
been recently explored, including the use of pre-text tasks, multi-tasks, and unsupervised learning.
See Liu et al. (2021) for an up-to-date survey. Graph pre-text tasks are often reminiscent of image
in-painting tasks Yu et al. (2018), and seek to complete masked graphs and/or node features (You
et al. (2020b); Hu et al. (2020)). Other successful approaches include predicting graph level or prop-
erty level properties during pre-training or part of regular training to prevent over-fitting (Hu et al.
(2020)). These tasks often must be carefully selected to avoid negative transfer between tasks. Many
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Table 5: Dataset Description

Name Graphs Classes Avg. Nodes Avg. Edges Domain
IMDB-BINARY (Yanardag & Vishwanathan, 2015) 1000 2 19.77 96.53 Social
REDDIT-BINARY (Yanardag & Vishwanathan, 2015) 2000 2 429.63 497.75 Social
MUTAG (Kriege & Mutzel, 2012) 188 2 17.93 19.79 Molecule
PROTEINS (Borgwardt et al., 2005) 1113 2 39.06 72.82 Bioinf.
DD (Shervashidze et al., 2011) 1178 2 284.32 715.66 Bioinf.
NCI1 (Wale & Karypis, 2006) 4110 2 29.87 32.30 Molecule

Table 6: Selected Graph Contrastive Learning Frameworks. Brief description of augmentations used by
selected frameworks is provided. Most frameworks use random corruptive, sampling, or diffusion-based ap-
proaches to generate augmentations.

Method Augmentations

GraphCL (You et al. (2020a)) Node Dropping, Edge Adding/Dropping, Attr. Mask-
ing, Subgraph Extraction

GCC (Qiu et al. (2020)) RWR Subgraph Extraction of Ego Network
MVGRL (Hassani & Ahmadi (2020)) PPR Diffusion + Sampling
GCA (Zhu et al. (2020)) Edge Dropping, Attr. Masking (both weighted by cen-

trality)
BGRL (Thakoor et al. (2021)) Edge Dropping, Attr. Masking
SelfGNN (Kefato & Girdzijauskas (2021)) Attr. Splitting, Attr. Standardization + Scaling, Local

Degree Profile, Paste + Local Degree Profile

unsupervised approaches have also been proposed. Sun et al. (2020); Velickovic et al. (2019) draw
inspiration from Hjelm et al. (2019) and maximize the mutual information between global and local
representations. MVGRL (Hassani & Ahmadi (2020)) contrasts different views at multiple granu-
larities similar to van den Oord et al. (2018). You et al. (2020a); Qiu et al. (2020); Zhu et al. (2020);
Thakoor et al. (2021); Kefato & Girdzijauskas (2021) use augmentations to generate views for con-
trastive learning. See Table A.6 for a summary of the augmentations used. We note that random
corruption, sampling or diffusion based approaches often do not preserve task relevant information
or introduce meaningful invariances.
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