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Abstract

The rise of Large Language Models (LLMs)001
has reshaped machine translation (MT), but002
multilingual MT still relies heavily on par-003
allel data for supervised fine-tuning (SFT),004
facing challenges like data scarcity for low-005
resource languages and catastrophic forgetting.006
To address these issues, we propose TRANS-007
ZERO, a self-play framework that leverages008
only monolingual data and the intrinsic mul-009
tilingual knowledge of LLM. TRANS-ZERO010
combines a novel Monte-Carlo Tree Search, G-011
MCTS, with preference optimization, achiev-012
ing strong translation performance that rivals013
supervised methods. Experiments demonstrate014
that this approach not only matches the perfor-015
mance of models trained on large-scale paral-016
lel data but also excels in non-English transla-017
tion directions. Further analysis reveals that G-018
MCTS itself significantly enhances translation019
quality by exploring semantically consistent020
candidates through iterative translations, pro-021
viding a robust foundation for the framework’s022
success.023

1 Introduction024

The advent of Large Language Models (LLMs)025

witnesses a fundamental shift in machine trans-026

lation (MT) paradigms from the supervised end-027

to-end training (Vaswani et al., 2017) to the so-028

phisticated generation of fine-tuned language mod-029

els (Achiam et al., 2023).030

Unlike various downstream tasks that gain im-031

pressive proficiency through lightweight instruc-032

tion tuning, multilingual translations between lan-033

guages still necessitate sufficient fine-tuning with034

parallel data for specific translation directions. Be-035

sides external human annotations, researchers like036

Xu et al. (2024b); Li et al. (2024) obtain translation037

annotations or preferences from external LLM, as038

long as they prove multilingual capability. Either039

way, it faces a notable deficit in data scarcity for040

less popular languages. Moreover, issues arise as 041

the multilingual translation fine-tuning scales up. 042

The reliance on one-on-one MLE supervision has 043

been criticized for potential biases that clash with 044

natural language’s inherent multilingualism (Zhu 045

et al., 2024a) and poses a risk of catastrophic for- 046

getting. Furthermore, exceeding multilingual an- 047

notations inversely dilutes the pre-trained knowl- 048

edge in supported languages, thus degrading over- 049

all cross-lingual performance (Xu et al., 2023; Zhu 050

et al., 2024b). Xu et al. (2024a) proposes a mixture- 051

of-expert with hand-crafted route across language 052

modules. However, the route and distributed over- 053

heads increase exponentially as the number of trans- 054

lation directions involved increases. 055

Whereas traditional fine-tuning scaling ap- 056

proaches a plateau, leveraging LLM’s inherent 057

knowledge rather than external supervision for self- 058

improvement is trending (Chen et al., 2024; Kumar 059

et al., 2024). However, adapting this approach 060

to MT introduces two technical challenges. First, 061

systematic cross-lingual exploration requires nav- 062

igating complex semantic spaces beyond simple 063

prompt engineering. Traditional LLM planning in- 064

volves delicate prompt-based reasoning, even fine- 065

tuning, which is generally unavailable for most 066

scenarios. Second, multilingual quality assessment 067

must overcome the limitations of data-dependent 068

quality estimation (QE) metrics and reward model 069

training complexities. 070

In this work, we introduce TRANS-ZERO. This 071

innovative self-play framework enables LLMs to 072

bootstrap their multilingualism by strategically 073

exploring their semantic space, achieving self- 074

improvement for multilingual translation given 075

only monolingual data. We start by defining a 076

Multilingual Translation Process (MTP) that gen- 077

erates translations by interweaving the languages 078

supported by LLM, so the inference is scaled up 079

to explore more potential translations. First, we 080
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implement the Genetic Monte-Carlo tree search (G-081

MCTS) upon MTP, exploring potential translations.082

Second, we harness the search to assess translation083

preferences based on intrinsic multilingual con-084

sistency. Experiments verify that TRANS-ZERO085

improves the lesser translations through iterative086

G-MCTS and preference optimizations given only087

monolingual data. We summarize our contributions088

as follows:089

• First self-play framework extending to multi-090

lingual MT training with monolingual data.091

• Novel integration of MCTS that explores im-092

proved translation for preference.093

• An intrinsic translation preference without ad-094

ditional QE modules enables iterative self-095

improvement.096

2 Preliminary097

2.1 Machine Translation via LLM098

Traditional machine translation depends on large099

parallel supervision in specific language pairs,100

which is limited by insufficient annotation in less101

popular translation directions. The emergence102

of multilingual pre-trained language models has103

revolutionized the field, enabling impressive per-104

formance across various downstream tasks with105

minimal supervision (Wei et al., 2022a). State-106

of-the-art (SOTA) LLM-based translation systems107

now achieve competitive results with significantly108

fewer annotations by leveraging supervised fine-109

tuning guided by sophisticated instructions (see Ap-110

pendix A for details). Notably, Zhu et al. (2024b)111

demonstrated that LLMs exhibit remarkable zero-112

shot and few-shot machine translation capabili-113

ties, even without explicit instruction formatting114

or exemplars. This highlights the intrinsic poten-115

tial of LLMs for self-improvement beyond finely116

calibrated supervision, opening new avenues for117

resource-efficient translation paradigms.118

2.2 Monte-Carlo Tree Search119

Monte-Carlo Tree Search (MCTS, Browne et al.,120

2012; Świechowski et al., 2023) is a heuristic121

search algorithm proficient for complex decision122

processes such as the game of Go (Silver et al.,123

2016). MCTS proceeds through four steps: selec-124

tion, expansion, simulation, and backpropagation.125

• Selection. MCTS descends the tree from its126

root by selecting the top amongst child nodes127

by their upper confidence bounds (UCB): 128

UCB(α) = ν(α) + 2

√
logN(A)

1 +N(α)
, (1) 129

where node α is a child of node A, and N(∗) 130

is the node’s visit count, with ν(∗) as its cur- 131

rent utility. The utility is the cumulated re- 132

wards r averaged by the visit count: 133

ν(α) =

∑
r(·)

N(α)
(2) 134

The UCB balances the exploration and ex- 135

ploitation in the heuristic search. 136

• Expansion. Upon reaching a selected node, 137

MCTS expands the tree by adding a new child 138

node representing a possible move from the 139

current state. 140

• Simulation. From the newly expanded node, 141

a random simulation is performed until either 142

the decision process concludes or reaches a 143

maximum step limit, estimating the reward r 144

for this decision path. 145

• Backpropagation. The obtained reward is 146

propagated backward, updating the utility val- 147

ues of all nodes along the path from the ex- 148

panded node to the root. This update process 149

refines the UCB values, progressively enhanc- 150

ing the efficiency of subsequent search itera- 151

tions. 152

2.3 Self-Optimization in LLM 153

Typically, optimizations for LLM rely on exter- 154

nal rewards (e.g., critic and revise modules) for 155

tuning (Huang et al., 2023; Tian et al., 2024; 156

Zhang et al., 2024). Recent work explores 157

self-optimization using LLMs’ internal knowl- 158

edge, leveraging performance gaps across test 159

scenarios. For example, in multilingual tasks, 160

higher-performing languages can optimize lesser 161

ones (Geng et al., 2024). She et al. (2024) use a 162

strong language as a pivot to map and optimize 163

weaker languages. Self-play preference optimiza- 164

tion (Chen et al., 2024, SPPO) adopts the gaming 165

theory where the post-update models shall prevail 166

by a win rate to optimize the preference. SPPO 167

suits the human preferences’ non-transitive, unsta- 168

ble nature and enables iterative self-play optimiza- 169

tion. 170
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Figure 1: Overview of TRANS-ZERO. Once the tree is initiated, the search cycles the selection, expansion,
simulation, and back-propagation for new nodes. b) G-MCTS selects the node with maximum UCB to expand a
new child node. There are two types of genetic expansion: merge and mutate. c) A mass roll-out simulation of
MTP trajectories assesses the semantic consistency. The assessed reward is backpropagated to guide the search. d)
Finally, we harvest the search tree into data pairs for preference optimization.

3 TRANS-ZERO171

In this section, we present TRANS-ZERO. First,172

we introduce the Multilingual Translation Pro-173

cess (MTP), a novel framework orchestrating multi-174

step translation across multiple languages (§3.1).175

Second, we implement Genetic Monte Carlo Tree176

Search (G-MCTS) upon MTP to explore promising177

translations (§3.2), which derive preference from178

cross-lingual semantic consistency in the search179

purely through translation prompts, eliminating the180

need for explicit reasoning training or reward learn-181

ing. Finally, we utilize the search results for further182

preference optimization (§3.3), enabling the unsu-183

pervised MT training given only monolingual data.184

3.1 Multilingual Translation Process185

We define the Multilingual Translation Pro-186

cess (MTP) as an iterative translation involving187

at least two languages, denoted as {Li}|{Li}|>1,188

where each translation step maps the sentence from189

one language to another distinct language within 190

the set. An MTP trajectory of length T starts from 191

a source language l: 192

lT = f(l|l1, l2, ..., lT−1), 193

where the li is a sentence in one language in {Li}, 194

and f(·) is the translation function. MTP iteratively 195

scales up the translation across languages, enabling 196

similar cross-lingual preferences in work by Geng 197

et al. (2024); She et al. (2024). 198

Notably, an optimized translation ensures that 199

the semantics are maintained throughout the multi- 200

lingual translations. Such consistency preference 201

intuitively guides the search toward better transla- 202

tion candidates, which can also contribute to prefer- 203

ence optimization. E.g., translation optimized via 204

back-translation promotes the bilingual semantic 205

consistency given an MTP x→ y → x′. 206
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3.2 Genetic Monte-Carlo Tree Search207

As shown in Figure 1, we conduct a genetic Monte-208

Carlo tree search based on the defined MTP. The209

search employs genetic expansion coupled with210

semantic consistency simulation, constructing a211

search tree in which each node corresponds to a212

translation candidate in the target language.213

Initialization The input language is X with input214

text x, and the output language is Y . We initialize215

the search tree with x as the root and perform top-k216

sampling with a width of b to generate b translation217

candidates {yi}b in language Y . Each candidate is218

assigned as a child node of the root. These nodes219

are quickly initialized by back-translation to lan-220

guage X , with the corresponding reconstruction221

recorded, denoted as x′. We define the consis-222

tency function S(a, b) over sentence pair (a, b) of223

same language based on a mutual evaluation metric224

M(a, b), e.g. BLEURT (Sellam et al., 2020). The225

consistency score is computed as:226

S(a, b) =
M(a, b) +M(b, a)

2
, (3)227

where x′ is to compute fast-initiated reward228

r(yi) = S(x, x′), followed by backpropagations.229

Genetic Expansion Given an initialized search230

tree, each expansion step of the MTCS selects the231

node with the highest UCB value to generate a232

new translation in the target language. However, a233

straightforward generation does not naturally lead234

to diverse exploration. Inspired by genetic algo-235

rithms (Sastry et al., 2005), we propose two strate-236

gies for expansion based on the status of the current237

maximum UCB node:238

• Merge. We perform a merging when the cur-239

rent maximum UCB node differs from the240

maximum utility node: Merging is a few-241

shot translation given the current best trans-242

lation (i.e., the maximum utility node) as243

demonstrations:244

yt = f(x | yUCB, yν)245

yUCB = argmax
y<t

{UCB(y)}246

yν = argmax
y<t

{ν(y)}247

Specifically, (x, yν) and (x, yUCB), the pairs248

from both the maximum utility node and the249

maximum UCB node, are prepended to the250

instruction. The LLM then translates the orig-251

inal input x to the target language, with the252

given context.253

Figure 2: An example of simulation an English-to-
Italian translation candidate using b = 3 and n = 2.
Through roll-outs of MTP, the Italian candidate ( it ) is
assessed by semantics consistency of bn English recon-
structions {en1

ω, · · · , en9
ω} from simulated trajectories.

• Mutate. We perform a mutation when the 254

current maximum UCB node is the same as 255

the maximum utility node. Mutation enables 256

creative exploration based on existing trans- 257

lations, which is performed by translating a 258

variant of the original input: 259

yt = f(x′| argmax
y<t

{UCB(y)}). 260

Specifically, the LLMs translate the best re- 261

construction x′ ∈ {xω} recorded during simu- 262

lations of the parent node, instead of the origi- 263

nal input x: 264

Each candidate1 is generated autoregressively 265

given existing translations. The merge operation 266

reduces the most promising MTP trajectories via a 267

contexted translation of the original x. Meanwhile, 268

the mutation extends the existing trajectory through 269

additional reconstructed x′ from simulation, which 270

may come from languages other than source and 271

target (§ 3.2 on simulations). Thus a search tree is 272

constructed, with any path from the root to a node 273

in the tree a valid MTP trajectory. 274

Simulation with Multilingual Semantic Consis- 275

tency The simulation generates reward signals 276

through semantic agreement across translations, 277

which directly updates the UCB values in tree 278

search to assess translation preferences without 279

external supervision. The key insight is that a bet- 280

ter translation candidate achieves higher semantic 281

consistency for themselves and their descendants, 282

thus guiding an optimized search. 283

1The translation instructions within G-MCTS are sampled
from Table 4 in Appendix A.
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Utility (ν) Tree Nodes

0.5255 If you always harm others, the chickens gonna come home to roost.

0.5595 1⃝如果你总是伤害别人，那么必然会有一天会有报应。 (If you always hurt others, there will be retribution one day.)
1.2290 2⃝你总是伤害别人，最后伤害的就是自己。 (You always hurt others, and in the end you end up hurting yourself.)
0.5801 3⃝你总是伤害别人，最后伤害的还是你自己。 (You always hurt others, but in the end you end up hurting yourself.)
2.3230 4⃝你总是伤害别人，最后总会有报应的。 (You always hurt others, and you will get your comeuppance in the end.)
0.6117 5⃝你若总是伤害别人，鸡就要飞回你的巢了。 (If you keep hurting others, the chickens will fly back to your nest.)
0.5275 6⃝如果你总是伤害别人，最后鸡蛋就要落回自己的头上。 (If you always hurt others, eventually the eggs will fall back on your head.)
0.5626 7⃝你总是伤害别人，最后鸡蛋就要落回自己的头上。 (If you always hurt others, in the end the eggs will fall back on your head.)
0.5657 8⃝如果你总是伤害别人，那么你也会遭到报应。 (If you always hurt others, then you will also suffer retribution.)
0.5601 9⃝如果你总是伤害别人，那么最后总会有报应的。 (If you keep hurting others, you will get punished in the end.)
0.4676 10⃝如果你总是伤害别人，那么麻雀总会飞回窝的。 (If you always hurt others, the sparrow will always fly back to the nest.)

Extracted Preference Pairs for Self-Play Preference Optimization (SPPO)

Chosen Rejected Win rates (softmax)

2⃝你总是伤害别人，最后伤害的就是自己。 1⃝如果你总是伤害别人，那么必然会有一天会有报应。 1.23 : 0.56 (0.6614)
4⃝你总是伤害别人，最后总会有报应的。 2⃝你总是伤害别人，最后伤害的就是自己。 2.32 : 1.23 (0.7491)
4⃝你总是伤害别人，最后总会有报应的。 3⃝你总是伤害别人,最后伤害的还是你自己。 2.32 : 0.58 (0.8511)
7⃝你总是伤害别人，最后鸡蛋就要落回自己的头上。 6⃝如果你总是伤害别人，最后鸡蛋就要落回自己的头上。 0.56 : 0.52 (0.5088)
8⃝如果你总是伤害别人，那么你也会遭到报应。 7⃝你总是伤害别人，最后鸡蛋就要落回自己的头上。 0.57 : 0.56 (0.5008)

Table 1: Example of Tree-to-Preference. We perform level-order traversal of a search tree for English-to-Chinese
translation. The first line presents the source input as the root. The Chinese translations are accompanied by
corresponding English explanations enclosed in parentheses. Given that the utility near the root shall be larger, we
apply a sorting algorithm to arrange the sequence in descending order, where each swap during the sort makes a
preference pair.

As shown in Figure 2, assessing candidate y284

involves rolling out a temporary sub-tree on y285

through MTP with a width of b until it reaches286

a maximum depth of n. Each rollout step translates287

the parent node into a different language sampled288

from the supported languages {Li}, with corre-289

sponding input reconstruction xω. Ultimately, this290

results in bn MTP trajectories with reconstructions291

{xω}bn . Given Eq. 3, the semantic consistency292

of these reconstructions {xω}bn with the original293

input x can be calculated as follows:294

r(y) = max(S(xω, x)︸ ︷︷ ︸
literal

, S(xω, xd)︸ ︷︷ ︸
free

), xω ∈ {xω}bn295

where x is the original input, and xd is a direct296

reconstruction of the candidate y. Translation can297

be literal or free, with free translations assessed via298

straightforward back-translation xd. Each assess-299

ment is averaged over all trajectories’ {xω}bn , with300

the superior one as the reward r(y) derived from301

the simulation. The best simulation is recorded as302

x′ for further expansions and simulations:303

x′ = arg max
{xω}bn

(S(xω, x), S(xω, xd))304

During the backpropagation, the reward r(y) up-305

dates utility ν and visit counts of all nodes on the306

trajectory from the current node back to the root307

according to Eq. 2.308

3.3 Tree-to-Preference Algorithm309

As Table 1 shows, once the G-MCTS is finished,310

we extract preference data from the translation can-311

Algorithm 1 Tree-to-Preference Algorithm

Require: Translation candidates {y}∗ with utili-
ties {ν}∗, search tree T

Ensure: Preference pairs with win rates for SPPO
1: Step 1: Serialize and Sort Tree
2: S ← LevelOrderTraversal(T ) ▷ Serialize tree

and merge duplicates
3: S ← SelectionSort(S, descending) ▷ Sort

nodes by utility
4: Step 2: Generate Preference Pairs
5: P ← ∅
6: for each swap (yi, yj) in S do
7: if νi > νroot and νi > νj then
8: win rate← exp(νi)

exp(νi)+exp(νj)

9: P ← P ∪ {(yi, yj ,win rate)}
10: end if
11: end for
12: Return P ▷ Preference pairs with win rates

for SPPO

didates {y}∗ based on their utility {ν}∗ by Algo- 312

rithm 1. The tree is serialized where duplicate 313

nodes are merged to their ancestor, with utilities 314

and visit counts accumulated. Intuitively, nodes 315

away from the root take more MTP steps to gen- 316

erate and thus face more risk of semantic loss as 317

the translation step increases. Consequently, if a 318

node has a higher utility than its ancestors or broth- 319

ers, the corresponding translation is preferred for 320

optimization. Furthermore, the root node tracks a 321

comprehensive utility, which reflects the expected 322

semantic consistency of the entire search. Thus, 323
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the utility of the preferred node shall also be higher324

than that of the root node. The preference pairs325

are utilized in SPPO, where their utilities are trans-326

formed into win rates through a softmax function.327

Note that translations that failed language detection328

may be generated during MTP, and their utility is329

halved as a penalty during the sorting and filtering.330

4 Experiments331

4.1 Settings332

Data. We conduct experiments across six widely333

used languages: English (EN), German (DE),334

Portuguese (PT), Italian (IT), Chinese (ZH), and335

Russian (RU). We utilize the latest monolin-336

gual data from the WMT datasets. The SFT337

data for baselines is generated from the combi-338

nation of the Flores-200 development set, with339

equal size for all translation directions. To eval-340

uate multilingual translation performance, we341

employ the Flores-200 benchmark (Costa-jussà342

et al., 2022), assessing three key translation di-343

rections: (1) EN⇒X (English to other languages),344

(2) X⇒EN (other languages to English), and (3)345

X⇒X (inter-translations between non-English lan-346

guages). These evaluations cover all translation347

directions of the six languages mentioned above.348

Metrics. We evaluate translation quality with349

the reference-oriented metric BLEURT (Sellam350

et al., 2020) and reference-free metric COMET-351

KIWI (KIWI, Rei et al., 2022).352

Baselines. We compare TRANS-ZERO with the353

following representative baselines:354

• General Instruct LLMs: LLMs with off-355

the-shelf instruct-following ability for MT,356

e.g., Mixtral-8×7B, Llama3.1-8B-instruct357

and Qwen2.5-7B-instruct.358

• MT-oriented LLMs: LLMs supervised by359

MT annotations, e.g., ALMA (Xu et al., 2023)360

with parallel annotations, ALMA-R (Xu361

et al., 2024b) with preference annotations and362

Tower-Instruct (Colombo et al., 2024) with363

multi-task MT-related annotations, represent-364

ing strong supervised baselines.365

• Base model and SFT model: The base LLM366

for TRANS-ZERO, and their supervised coun-367

terparts.368

Implementation. The training is conducted369

on 32 NVIDIA A100 GPUs (80GB). We uti-370

lize two base LLMs without instruction tuning:371

Llama-3.1-8b and Qwen-2.5-7b. Since some372

base LLMs (e.g., Llama-3.1-Base) lack the initial 373

instruction-following for translation, we cold-start 374

the LLM with a snippet of translation instructions. 375

The TRANS-ZERO is parallelized across 32 threads, 376

with each thread a batch of 10 sentences assigned to 377

random translation directions for G-MCTS. Upon 378

completion of the search, we reduce all search 379

threads for filtered preference data and apply Self- 380

Play Preference Optimization (Chen et al., 2024, 381

SPPO). Additional details are in Appendix B. 382

4.2 Main Results 383

As shown in Table 2, TRANS-ZERO based on 384

Llama3.1 and Qwen2.5 achieves performance com- 385

parable to MT baselines trained on large-scale an- 386

notations, despite using only monolingual data for 387

self-play. While TRANS-ZERO matches the En- 388

glish translation performance (EN⇒X) of ALMA- 389

R, which also utilizes preference optimization, it 390

significantly surpasses ALMA-R in non-English 391

translation directions. Compared to Tower-instruct, 392

an LLM trained on large-scale annotations, TRANS- 393

ZERO exhibits slightly lower performance but re- 394

mains highly competitive. 395

We also evaluated the translation performance 396

of the base model and its instruction fine-tuned ver- 397

sion for comparison. Through exploration learning, 398

TRANS-ZERO significantly enhances the perfor- 399

mance of both base models. 400

Additionally, we include SFT baselines using 401

5m parallel data by pairing the Flores200 devel- 402

opment set, and those 5k instructions as parallel 403

data. Although TRANS-ZERO does not match the 404

performance by 5m supervision on EN⇒X and 405

X⇒EN, it shows significant improvements in the 406

non-English translation direction (X⇒X), achiev- 407

ing performance comparable to 5m supervision. 408

We further compared the performance improve- 409

ment to varying scales of parallel annotations in 410

SFT. As shown in Figure 3, the translation quality 411

saturates after more than 100k samples, especially 412

for the EN⇒X and X⇒X directions. This suggests 413

that simply increasing the amount of parallel an- 414

notations may not lead to proportional translation 415

improvements. 416

Increasing the number of languages expands the 417

potential exploration thus improving the TRANS- 418

ZERO’s performance upper bound. We explored 419

with 4 and 6 languages for the G-MCTS. Figure 4 420

illustrates the performance changes in German- 421

Chinese translation during Llama3.1-8b training. 422
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EN⇒X X⇒EN X⇒X Average

BLEURT KIWI BLEURT KIWI BLEURT KIWI BLEURT KIWI

Mixtral-8x7B-Instruct 55.42 69.07 75.41 81.63 54.49 71.64 61.77 74.11
Llama3.1-Instruct 62.57 74.28 72.07 77.90 62.52 76.49 65.72 76.22
Qwen2.5-Instruct 72.16 81.99 77.70 84.60 68.59 79.87 72.82 82.15
ALMA 71.98 82.60 78.25 84.34 61.07 80.89 70.43 82.61
ALMA-R 69.38 83.10 77.52 84.87 51.03 82.47 65.98 83.48
Tower-Instruct 76.74 85.26 78.73 85.02 72.98 83.08 76.15 84.45

Llama3.1-Base 33.18 25.53 50.83 55.64 34.38 53.52 39.46 44.89
w/ SFT (40k) 74.46 82.30 77.30 84.03 71.23 80.02 74.33 82.12
w/ SFT (5m) 75.80 84.61 78.47 84.61 73.30 82.33 75.86 83.85
w/ TRANS-ZERO 73.71 83.20 77.60 84.34 73.28 82.71 74.86 83.42

Qwen2.5-Base 62.91 73.98 70.98 80.50 62.70 77.86 65.53 77.45
w/ SFT (5m) 75.32 84.79 78.21 85.42 72.99 82.92 75.49 84.38
w/ TRANS-ZERO 75.05 84.48 78.21 84.88 72.23 82.30 75.16 83.89

Table 2: TRANS-ZERO achieves comparable and improved translation compared to SFT baselines with
only monolingual self-play. We highlight the best and the second-best performances in each section in bold and
underlined, respectively.

5k 40k 100k 500k 1m 5m
Datasize

70

72

74

76

78

BL
EU

RT TRANS-ZERO EN X

TRANS-ZERO X EN

TRANS-ZERO X X

EN X
X EN
X X

Figure 3: BLEURT performance for SFT based on
the Llama3.1-Base at different data sizes. We include
the performance of TRANS-ZERO in each language di-
rection.

The number of languages used in tree search signifi-423

cantly impacts TRANS-ZERO’s performance upper424

bound: increasing the number of languages can425

enhance the overall learning performance. With 6426

languages, TRANS-ZERO essentially matches the427

performance of the open-source baseline system.428

4.3 Inference-time Scaling with G-MCTS429

Inference time scaling, such as Chain of430

Thought (CoT) (Wei et al., 2022b), has become431

popular for improving the performance of LLMs.432

However, CoT requires additional learning given433

multiple natural language understanding supervi-434

sions. In contrast, G-MCTS enables straightfor-435

ward inference-time scaling using only translation436

instructions. During the tree search, merging and437

mutation continuously explore and integrate rele-438

0 10 20 30 40 50 60
Steps

45

50

55

60

65

70
BL

EU
RT

Tower
ALMA-R
4 language
6 language

Figure 4: The learning diagram of TRANS-ZERO on
Llama3.1-Base for German-to-Chinese translation
demonstrates the search process in 4-language and
6-language settings under G-MCTS. By incorporating
6 languages, TRANS-ZERO attains BLEURT scores on
par with the baseline systems.

vant expressions from the multilingual semantic 439

space, revising translations based on the LLM’s 440

conditional generation capabilities. 441

We employ G-MCTS with 6 languages to ex- 442

plore translations for the LLama-3.1 baselines, as 443

well as Tower-Instruct and ALMA-R. The candi- 444

date of the highest utility makes the final translation. 445

As Table 3 shows, G-MCTS requires a language 446

model with basic instruction-following capabilities. 447

Consequently, the Llama3.1-Base model fails the 448

search due to its lack of instruction-following in 449

various translation directions. Similarly, ALMA-R 450

also fails due to its limited multilingualism, as indi- 451

cated by its significantly lower X⇒X performance. 452

In contrast, Tower-Instruct and Llama3.1- 453

Instruct significantly improve translation perfor- 454
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EN⇒X X⇒EN X⇒X Average

BLEURT KIWI BLEURT KIWI BLEURT KIWI BLEURT KIWI

ALMA-R 69.38 83.10 77.52 84.87 51.03 82.47 65.98 83.48
+ G-MCTS Failed Failed Failed Failed Failed Failed Failed Failed

Tower-Instruct 76.74 85.26 78.73 85.02 72.98 83.08 76.15 84.45
+ G-MCTS 76.44-0.30 85.33+0.07 78.28-0.45 85.12+0.10 74.42+1.44 83.57+0.49 76.38+0.23 84.67+0.22

Llama3.1-Base 33.18 25.53 50.83 55.64 34.38 53.52 39.46 44.89
+ G-MCTS Failed Failed Failed Failed Failed Failed Failed Failed

Llama3.1-Instruct 62.57 74.28 72.07 77.90 62.52 76.49 65.72 76.22
+ G-MCTS 64.21+1.64 80.12+5.84 70.01-2.06 79.86+1.96 68.12+5.60 77.12+0.63 67.45+1.73 79.03+2.81

Llama3.1-SFT (5k) 69.33 80.19 76.99 83.97 68.51 78.38 71.61 80.85
+ G-MCTS 71.55+2.22 82.23+2.04 76.89-0.10 84.00+0.03 71.92+3.41 81.23+2.85 73.45+1.84 82.49+1.64

Llama3.1-SFT (5m) 75.80 84.61 78.47 84.61 73.30 82.33 75.86 83.85
+ G-MCTS 76.16+0.36 84.95+0.34 78.71+0.24 84.68+0.07 73.36+0.06 82.48+0.15 76.08+0.22 84.04+0.19

Table 3: G-MCTS enhances translation by scaling up inference, given the models’ own instruction-following
capability and multilingualism. Performance improvements beyond one point are highlighted in bold. The base
LLM and ALMA-R exhibit limitations due to their failure to follow instructions in various translation directions.
The search particularly enhances X⇒X translations, where the availability of SFT annotations is significantly
limited compared to English-related annotations.

mance in the X⇒X direction, benefiting from455

multilingual priors. The base model trained with456

small-scale supervision also shows notable im-457

provements. However, the improvement upon458

Llama3.1-SFT (5m) with large-scale supervision,459

is almost negligible. This suggests that when trans-460

lations are fully activated, the performance gains461

from G-MCTS, rooted in LLM’s inherent multilin-462

gualism, are not statistically significant.463

5 Related Work464

The utilization of LLM for machine translation has465

become popular, aligning with the prevailing trends466

in LLM applications. Xu et al. (2023) first shifts the467

machine translation paradigm to fine-tuned LLM468

with moderate parallel supervision. Though LLM469

seems more data-efficient, it does not have a big470

appetite for large-scale supervision due to poten-471

tial catastrophic forgetting (Xu et al., 2023; Kondo472

et al., 2024). Directly scaling up multilingual MLE473

supervision hurts performance on resource-rich lan-474

guages (Xu et al., 2024a). Therefore, XALMA (Xu475

et al., 2024a) hand-craft a mixture-of-expert to476

route different translation directions through sepa-477

rated modules, while ALMA-R (Xu et al., 2024b)478

turn to scale up more expensive preference tuning.479

Preference tuning offers flexibility when fitting480

LLM with subjective human expectations for open-481

ended generations. However, the expense of pref-482

erence annotation has led researchers to seek more483

cost-effective data sources, e.g., with additional as-484

sessments such as critic and revise modules (Huang485

et al., 2023; Tian et al., 2024; Zhang et al., 2024)486

Intuitively, the cross-lingual gaps in LLM offer a 487

more scalable self-improvement preference as the 488

proficient languages improve the lesser ones (Geng 489

et al., 2024), e.g., a straightforward improvement 490

roots in the direct mapping from the dominant 491

linguistic ability as preference (She et al., 2024). 492

Researchers further scale the preference by itera- 493

tive and competitive gaming theory (Chen et al., 494

2024, SPPO), making it possible for models to self- 495

improve. Recent work by Deepseek (Guo et al., 496

2025) has empirically validated its self-improving 497

potential by employing large-scale reinforcement 498

learning with its multilingual reasoning abilities. 499

6 Conclusion 500

In this work, we present TRANS-ZERO, a novel 501

framework for multilingual machine translation 502

that leverages multilingual LLMs with monolin- 503

gual data only. Our experiments demonstrate that 504

the proposed Genetic Monte-Carlo Tree Search 505

(G-MCTS) effectively enhances translation quality 506

by exploiting the LLM’s inherent multilingual and 507

instruction-following capabilities. Furthermore, we 508

show that iterative training of G-MCTS, combined 509

with preference optimization using monolingual 510

data, TRANS-ZERO achieves scalable performance 511

improvements, with the number of supported lan- 512

guages positively correlating with final translation 513

quality. These findings establish a new direction 514

for resource-efficient MT by shifting the paradigm 515

from supervised parallel data to self-supervised 516

monolingual learning. 517
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Limitations518

While TRANS-ZERO demonstrates promising re-519

sults, it has several limitations that warrant discus-520

sion. First, the framework introduces higher com-521

putational overhead than supervised baselines, as522

the search process requires extensive exploration523

of the cross-lingual semantic space. Second, its524

effectiveness is inherently tied to the multilingual525

capabilities of the underlying LLM, rendering it526

less suitable for weaker models with limited cross-527

lingual alignment. Third, due to computational528

constraints, our experiments were limited in scale:529

we were unable to explore larger LLMs or extend530

the search process to a broader range of languages.531

Finally, the framework’s performance upper bound532

may be influenced by the quality and diversity of533

monolingual data used for training, highlighting534

the need for future research into identifying the535

most cost-effective data types for self-supervised536

training.537
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icki, and Jacek Mańdziuk. 2023. Monte carlo tree638
search: A review of recent modifications and appli-639
cations. Artificial Intelligence Review, 56(3):2497–640
2562.641

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian642
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-643
improvement of llms via imagination, searching, and644
criticizing. ArXiv preprint, abs/2404.12253.645

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob646
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz647
Kaiser, and Illia Polosukhin. 2017. Attention is all648
you need. In Advances in Neural Information Pro-649
cessing Systems 30: Annual Conference on Neural650
Information Processing Systems 2017, December 4-9,651
2017, Long Beach, CA, USA, pages 5998–6008.652

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin653
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-654
drew M. Dai, and Quoc V. Le. 2022a. Finetuned655
language models are zero-shot learners. In The Tenth656
International Conference on Learning Representa-657
tions, ICLR 2022, Virtual Event, April 25-29, 2022.658
OpenReview.net.659

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten660
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,661
and Denny Zhou. 2022b. Chain-of-thought prompt-662
ing elicits reasoning in large language models. In663
Advances in Neural Information Processing Systems664
35: Annual Conference on Neural Information Pro-665
cessing Systems 2022, NeurIPS 2022, New Orleans,666
LA, USA, November 28 - December 9, 2022.667

Haoran Xu, Young Jin Kim, Amr Sharaf, and668
Hany Hassan Awadalla. 2023. A paradigm shift669
in machine translation: Boosting translation perfor-670
mance of large language models. ArXiv preprint,671
abs/2309.11674.672

Haoran Xu, Kenton Murray, Philipp Koehn, Hieu673
Hoang, Akiko Eriguchi, and Huda Khayrallah. 2024a.674
X-alma: Plug & play modules and adaptive rejec-675
tion for quality translation at scale. ArXiv preprint,676
abs/2410.03115.677

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,678
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-679
ray, and Young Jin Kim. 2024b. Contrastive pref-680
erence optimization: Pushing the boundaries of llm681
performance in machine translation. ArXiv preprint,682
abs/2401.08417.683

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, 684
Yuxiao Dong, and Jie Tang. 2024. Rest-mcts*: Llm 685
self-training via process reward guided tree search. 686
ArXiv preprint, abs/2406.03816. 687

Dawei Zhu, Sony Trenous, Xiaoyu Shen, Dietrich 688
Klakow, Bill Byrne, and Eva Hasler. 2024a. A 689
preference-driven paradigm for enhanced translation 690
with large language models. In Proceedings of the 691
2024 Conference of the North American Chapter of 692
the Association for Computational Linguistics: Hu- 693
man Language Technologies (Volume 1: Long Pa- 694
pers), pages 3385–3403, Mexico City, Mexico. Asso- 695
ciation for Computational Linguistics. 696

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, 697
Shujian Huang, Lingpeng Kong, Jiajun Chen, and 698
Lei Li. 2024b. Multilingual machine translation with 699
large language models: Empirical results and anal- 700
ysis. In Findings of the Association for Computa- 701
tional Linguistics: NAACL 2024, pages 2765–2781, 702
Mexico City, Mexico. Association for Computational 703
Linguistics. 704

A Translation Prompts 705

TRANS-ZERO adopts all the mainstream translation 706

instructions as prompts in Table 4. The G-MCTS 707

adopts random instructions during sampling, and 708

preference optimization adopts random instruc- 709

tions for the extracted preference pairs. LLMs 710

for MT follow their default instructions for valida- 711

tion if available. TRANS-ZERO and other instruct- 712

LLM baselines without default instruction adopt 713

the ALMA instruction and <LABAL> as gener- 714

ation prompt for SFT and validation. All LLMs 715

follow their default chat templates and generation 716

prompts if available. 717

The translation context also samples instructions 718

from Table 4 to organize translation pairs, which 719

are then prepended to the translation instructions 720

for in-context generation. 721

B Implementation Details 722

For SFT baselines, we employ full parameter fine- 723

tuning with a batch size of 1024. For Llama3.1 724

cold-start, we generate approximately 5k transla- 725

tion instructions by one random sample from the 726

Flores-200 development set, each representing one 727

translation direction with a sampled instruction in 728

Appendix A. The cold-start applies 1-epoch LoRA 729

fine-tuning with rank r = 64 and scaling parameter 730

Loraα = 128. 731

For the G-MCTS, we configure a search width 732

of b = 5 and a simulation depth of n = 2, with a 733

maximum of 20 tree nodes per search. The tree is 734

fast-initiated with b = 5 child nodes on the root by 735
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Model Translation Instruction

ALMA & ALMA-R Translate this from {src_lan} to {trg_lan}: \n{src_lan}: {src_sent}\n{trg_lan}:
Tower-Instruct Translate the following text from {src_lan} into {trg_lan}.\n{src_lan}: {src_sent} \n{trg_lan}:
Others Please translate the {src_lan} into {trg_lan}: {src_sent}

{src_lan}: {src_sent} = {trg_lan}:
{src_sent} in {src_lan} can be translated to {trg_lan} as:
{src_lan}: {src_sent} \n {trg_lan}:
Explain the following {src_lan} sentence in {trg_lan}: {src_sent}

Table 4: Commonly adopted translation instructions for LLM, {src_lan} and {src_lan} indicates the corresponding
languages for source and target, and {src_sent} presents the input sentence of the source language.

sampling. Direct inference with G-MCTS searches736

by the width of b = 10 given 6 languages.737
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