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ABSTRACT

A safe and trustworthy use of Large Language Models (LLMs) requires an accu-
rate expression of confidence in their answers. We propose a novel Reinforcement
Learning approach that allows to directly fine-tune LLMs to express calibrated
confidence estimates alongside their answers to factual questions. Our method op-
timizes a reward based on the logarithmic scoring rule, explicitly penalizing both
over- and under-confidence. This encourages the model to align its confidence es-
timates with the actual predictive accuracy. The optimal policy under our reward
design would result in perfectly calibrated confidence expressions. Unlike prior
approaches that decouple confidence estimation from response generation, our
method integrates confidence calibration seamlessly into the generative process
of the LLM. Empirically, we demonstrate that models trained with our approach
exhibit substantially improved calibration and generalize to unseen tasks without
further fine-tuning, suggesting the emergence of general confidence awareness.
We provide our training and evaluation code in the supplementary and will make
it publicly available upon acceptance.

1 INTRODUCTION

In human intelligence and inter-human interaction, the ability to understand our own uncertainty
and communicate our doubts to others is fundamental for effective decision-making, collaboration,
and learning (Cosmides & Tooby, 1996; Xiong et al., 2024). Similarly, for Large Language Models
(LLMs) to be safely used in real-world applications, especially when humans and AI systems work
together, they must not only generate accurate information but also communicate their confidence
in that information. While LLMs have demonstrated impressive capabilities in natural language un-
derstanding, question answering and text summarization (Touvron et al., 2023; Chiang et al., 2023;
Achiam et al., 2023), LLMs still face significant limitations, such as their tendency to generate inac-
curate information, often referred to as hallucinations (Hadi et al., 2023). This raises concerns about
their reliability, particularly in real-world applications where trustworthiness is essential. Especially
in high-stakes environments such as medical diagnosis, where LLMs are starting to become support
tools for professionals (Moor et al., 2023; Pellegrini et al., 2025; Tu et al., 2024; Bani-Harouni et al.,
2024), overconfident predictions including factual errors or hallucinations could have serious con-
sequences for patient health. Also, in customer service or legal consultation (Shi et al., 2024; Sun
et al., 2024), LLMs need to express uncertainty and defer complex queries to human representatives
when unsure to avoid misinformed decisions. Reliable confidence estimation and expression would
enable these systems to flag uncertain outputs for human review, ensuring that crucial decisions are
not made based on uncertain LLM outputs. To allow risk estimation while using LLM-generated
output, model confidence should be calibrated, meaning that the expressed numerical confidence
should be equal to the probability of the model’s answer being correct.

Many previous methods for confidence estimation lack in calibration performance as they do not
train the model and instead infer the confidence from the internal state in a zero-shot setup (Huang
et al., 2023; Kuhn et al., 2023; Duan et al., 2024). Additionally, this does not give models an inherent
awareness of confidence. Other trained methods in this area decouple the uncertainty estimation
from the text generation process (Azaria & Mitchell, 2023; Kapoor et al., 2024). This approach
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Correct
answer
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Answer: Paris
Confidence: 10

Answer: Paris
Confidence: 5

Answer: Paris
Confidence: 0

Answer: Lyon
Confidence: 10

Answer: Lyon
Confidence: 5

Answer: Lyon
Confidence: 0

High confidence Medium confidence Low confidence

What is the capital city of France? Provide an answer and a confidence!

What confidence maximises reward, when considering possible punishment?

Figure 1: Illustration of our reward design: The model is rewarded for a high confidence if it is
correct and punished if it is incorrect. To maximize the reward, the model needs to learn when to
predict a higher or lower confidence, considering a possible higher punishment. Our reward function
is designed so that the best reward is given when the confidence and the epistemic probability of
being correct are the same, thus incentivizing the expression of calibrated confidences.

optimizes for calibrated confidence estimation but does not enable the uncertainty-awareness and
expression in the model itself.

Targeting these limitations, we propose a novel reinforcement-learning (RL) approach for teaching
LLMs to express their calibrated confidence, encouraging a granular, accurate estimation of the con-
fidence level in the training objective. For this, we model confidence estimation as a betting game: a
high-confidence answer would warrant a larger bet, reflecting a strong belief in its correctness, while
a lower confidence score would suggest caution. Central to our method is a reward function based
on the logarithmic scoring rule, a strictly proper scoring rule. We are the first to optimize this func-
tion through reinforcement-learning-based policy optimization, leveraging its calibration properties
for directly and seamlessly training confidence calibration in LLM generations. This reward func-
tion captures the fundamental risk-reward tradeoff in probabilistic decision-making, as illustrated in
Figure 1. It increases the reward when a correct answer is given with high confidence, simulating
the higher potential return of big bets. Conversely, it penalizes incorrect answers more when they
are made with high confidence, discouraging overconfidence. This ensures that both uncertainty and
confidence are appropriately factored into the reward system. As a proper scoring rule, optimizing
the reward function trains the model to align its predicted confidence with the accuracy of its output,
encouraging granular and calibrated confidence scoring. A calibrated confidence estimation will
provably result in the highest reward during training. This not only improves the trustworthiness of
LLMs in collaborative human-AI scenarios but also helps users better assess when AI tools should
be trusted, double-checked, or deferred to human expertise.

2 RELATED WORKS

2.1 CONFIDENCE ESTIMATION IN LLMS

Confidence estimation and calibration have a long history in machine learning and natural language
processing (Wang, 2024). With the rise of LLMs, research has focused on adapting and extending
these ideas to modern architectures. Broadly, methods fall into black-box and white-box approaches
(Geng et al., 2024).

Black-box methods Black-box methods rely only on model outputs. Linguistic prompting meth-
ods ask the model to verbalize its confidence, sometimes aided by chain-of-thought reasoning
(Xiong et al., 2024; Wei et al., 2022). Consistency-based approaches estimate confidence by mea-
suring agreement across multiple generations, with high variance indicating uncertainty (Manakul
et al., 2023; Wang et al., 2022). Recently, Zhou et al. (2025) proposed SteerConf, which does
multiple inference passes where the LLM is prompted to use different levels of caution in its con-
fidence expression. The resulting verbalized confidences are aggregated based on confidence and
answer consistency to an overall confidence prediction. Black-box methods are valuable for their
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simplicity, ease-of-use and universality, however generally lack behind white-box methods in their
calibration performance.

White-box methods White-box methods exploit internal model states. Logit-based techniques
estimate confidence from token probabilities or entropy (Huang et al., 2023; Kuhn et al., 2023;
Duan et al., 2024), assuming that high probability tokens correspond to high confidence predictions.
Self-evaluation methods let the model judge the truth of its own answers (Kadavath et al., 2022).
They prompt the model to provide an answer followed by a judgment whether its own answer is
"true" or "false". They then compare the probability of the "true" or "false" token to calculate
a confidence estimation. External probing approaches train classifiers on hidden states to predict
correctness (Azaria & Mitchell, 2023). While some of these methods achieve good confidence
estimation results, they do not teach the model to express clear confidence values itself but depend
on some auxiliary estimation mechanism.

2.2 FINETUNED CONFIDENCE EXPRESSION

A growing line of work integrates confidence estimation into instruction tuning. These methods
typically follow a two-step paradigm: First, they estimate model confidence using various methods,
e.g., self-consistency (Cheng et al., 2024; Yang et al., 2024; Han et al., 2024), token probabilities
(Chen et al., 2024), trained probes (Mielke et al., 2022), empirical accuracy (Zhang et al., 2024; Lin
et al., 2022; Ulmer et al., 2024), or topic unfamiliarity (Wan et al., 2024; Kang et al., 2024). Second,
they construct finetuning datasets that either replace uncertain answers with refusals (Zhang et al.,
2024; Cheng et al., 2024; Yang et al., 2024; Wan et al., 2024) or append the estimated uncertainty as
an additional supervised signal (Han et al., 2024; Chen et al., 2024; Mielke et al., 2022; Lin et al.,
2022; Ulmer et al., 2024).

The key limitation of this approach is that the model’s expressed confidence is bounded by the
quality of the constructed ground-truth estimates. Additionally, while the underlying confidence
estimation method might optimize for perfect calibration (e.g. in the case of the trained probe), this
theoretical guarantee is lost when performing supervised finetuning on these constructed ground
truths to reproduce these scores.

2.3 REINFORCEMENT LEARNING FOR CONFIDENCE EXPRESSION

Reinforcement Learning from Human Feedback (RLHF) has proven effective for aligning LLMs
with human preferences (Ouyang et al., 2022), and has also been explored for agentic interaction
in textual environments (Zhou et al., 2023; Carta et al., 2023). Only recently have researchers be-
gun applying RL directly to confidence estimation. Tao et al. (2024) adapt RLHF by designing
rewards that align verbalized confidence with preference ratings, but this requires human-annotated
preference data and does not address factual calibration. Leng et al. (2024) identify that standard
reward models in RLHF are biased toward high verbalized confidence, rating answers with high
confidence expressions with a high reward. To counteract this, they introduce two reward model
training paradigms, PPO-M and PPO-C, which fine-tune the reward model to reward answers where
correctness and confidence expression are aligned. Xu et al. (2024) propose RL from Knowledge
Feedback (RLKF) to encourage refusals outside the model’s knowledge scope, reducing hallucina-
tions but without quantifying confidence. Stengel-Eskin et al. (2024) propose LACIE, a DPO-based
approach that simulates an interaction between a speaker and a listener model, rewarding accurate
and honest confidence expression by aligning it with the listener’s interpretation of confidence cues
rather than with fact-based numerical calibration.

In contrast to previous works, our method directly optimizes for factual calibration using a theo-
retically grounded, proper scoring rule as the reward signal, enabling the model to develop intrin-
sic uncertainty awareness without requiring external preference models, knowledge supervision, or
post-hoc calibration techniques, while at the same time seamlessly integrating calibrated confidence
expression into the LLMs response generation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

question answer

confidence

or

LLM judge reward function

reward

low
confidence

high 
confidence

Figure 2: Overview of our reinforcement learning framework: The LLM is prompted to answer a
question and provide the confidence in this answer. The answer is checked for correctness by a judge
function and the reward is calculated based on the correctness and the confidence. Correct answers
with high confidences are rewarded highly, but also penalized heavily when incorrect.

3 REWARDING DOUBT

We propose a novel reinforcement-learning approach, that improves an LLM’s ability to verbalize an
accurate numerical confidence in a previously generated answer. The LLM functions as an agent in
a simulated environment as shown in Figure 2, that poses challenging question-answering scenarios.
It is prompted with task queries such as factual questions and asked to predict both an answer to
the query as well as a confidence score. Based on the correctness of the answer, and the expressed
confidence, we reward the model, incentivizing it to express a calibrated confidence.

Formally, let the model be provided with a textual question or request q, resulting in an answer-
confidence pair (a, p̂) as response, where a is a textual answer with binary correctness value, and
0 ≤ p̂ ≤ 1 is a numerical confidence score representing the subjective probability the model assigns
to answer a being correct. We train this subjective probability assessment to align with the true
epistemic probability p∗, which represents the actual likelihood of correctness given the model’s
internal knowledge state. If p̂ and p∗ are aligned the model is perfectly calibrated, meaning the
probability of correctness P (j(a) = 1) always equals the expressed confidence:

P (j(a) = 1 | p̂ = x) = x, ∀x ∈ [0, 1],

where j(·) is a correctness judging function that is 1 if answer a is correct, and 0 otherwise.

The true epistemic probability p∗ is not directly observable, thus supervised learning of calibration
is only possible by constructing an artificial ground truth to approximate p∗. Instead, we model this
task as a Markov Decision Process (MDP) defined by the tuple (S,A, T , R), where the model learns
to generate calibrated confidence scores through reinforcement learning. The MDP is defined by the
following components:

• State space (S): A state st ∈ S consists of a natural language question q, the model’s
predicted answer a, and the partial sequence of confidence tokens predicted so far, if any.
That is, st = (q, a, c1:t−1), where c1:t−1 represents the previously generated confidence
score tokens.

• Action space (A): The action space consists of selecting the next token ct in the confidence
estimation process from the LLM vocabulary, including numerical tokens (e.g., represent-
ing percentages or probability values) and a special end-of-sequence token that finalizes
the prediction.

• Transition function (T (st+1 | st, at)): The environment transitions deterministically
based on the language model’s autoregressive token generation process. Given a state
st = (q, a, c1:t−1) and an action ct, the next state is defined as st+1 = (q, a, c1:t). Once
the end-of-sequence token is generated, the episode terminates.

• Reward function (R): The reward R(a, c, j) is computed based on the final confidence
score sequence c = (c1, . . . , cT ) and the correctness of the answer j(a).

To promote accurate confidence estimation, the model’s expected reward must fulfill the requirement
of being maximized when p̂ = p∗, i.e. when the predicted confidence aligns with the probability
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Figure 3: The rewards for each confidence value for correct and incorrect answers. The closer the
confidence is to ten or zero, respectively, the higher is the reward. At the same time, the possible
punishment increases to a greater extent. The model has to learn when the trade-off between those
two possibilities is worthwhile.

of correctness. The model should receive a high reward when it correctly predicts an outcome
with high confidence or when it incorrectly predicts an outcome with low confidence. Conversely,
the reward should be low when incorrect predictions are provided with high confidence or correct
predictions are provided with low confidence. This approach incentivizes the model to express
high confidence only in cases where certainty is warranted while expressing doubt in ambiguous
situations. By penalizing both overconfidence and underconfidence, the model is encouraged to
calibrate its confidence accurately, effectively balancing the trade-off between reward maximization
and penalty avoidance. Note, that through this design our method focuses exclusively on improving
calibration while keeping task performance stable.

We design our reward as a logarithmic scoring function:

R(a, p̂, j) =

{
log(p̂), if j(a) = 1 (correct)
log(1− p̂), if j(a) = 0 (incorrect)

(1)

This function fulfills the requirement described above as we show in the following proposition:
Proposition 1 (Optimality implies Calibration). The expected reward E[R(a, p̂, j)] is maximized
for each sample when p̂ = p∗ and the optimal policy under the reward design is thus perfectly
calibrated.

The proof of Proposition 1 is analogous to the proof that the logarithmic scoring rule is a proper
scoring rule. We provide it in full in Appendix B and discuss the influence of the clipping on the
optimality of the reward function.

Since the logarithm of zero is undefined, we introduce a small positive constant ϵ as clipping value
for numerical stability. Concretely, we clip the lower and upper limit of the confidence p̂ to ϵ and
1 − ϵ, respectively. The clipped reward function is provided in Appendix C. The normalized and
clipped reward for correct and incorrect answers for each confidence is visualized in Figure 3.

4 EXPERIMENTAL SETUP

We evaluate our method in both Single-Answer and Multiple-Answer settings. We prompt the model
to provide a confidence for each answer as an integer between 0 and 10, which we normalize for
the reward calculation. A confidence of zero is defined as the model being certain that the answer
is incorrect, while ten is defined as the model being certain the answer is correct. We normalize the
reward function to the range of [−1, 1].

In the Single-Answer setting we train the model on the TriviaQA dataset (Joshi et al., 2017), which
contains question-answer-evidence triplets, from which we only use the questions and answers. For
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generalization experiments, we evaluate our method on CommonsenseQA (Talmor et al., 2019) and
MedQA (Jin et al., 2020), which are multiple-choice question datasets in the commonsense and
medical domain, respectively. For the Multiple-Answer setting, we train on the QAMPARI dataset
(Amouyal et al., 2023), which contains questions with multiple-answers as well as evidence, again
only using the questions and answers.

In the Single-Answer setting we compare our approach on the TriviaQA dataset against the following
methods: Chain-of-Thought (Xiong et al., 2024), Top-K (Tian et al., 2023), Surrogate Token (Ka-
davath et al., 2022), Sequence Probability (Huang et al., 2023) and Self-Consistency (Wang et al.,
2022) as zero-shot methods, LACIE (Stengel-Eskin et al., 2024), which uses DPO for optimizing
confidence expression and Trained Probe (Azaria & Mitchell, 2023), which employs supervised
training of an external probe for estimation model. We also compare to the non-finetuned base
model in a zero-shot manner, using the same prompt as our Rewarding Doubt method and refer
to this setup as Verbalize. In the Multiple-Answer setting we compare to Trained Probe and Se-
quence probability, as those methods are the best performing zero-shot and trained baselines in the
Single-Answer setting. LACIE does not report results for this dataset, thus we can only compare on
TriviaQA.

We report our results using the Expected Calibration Error (ECE) and the Area Under the Receiver
Operating Characteristic Curve (AUROC) metric. Additionally, we visualize the calibration with
calibration curves, where a well-calibrated model lies close to the 45° line and large deviations
show a high miscalibration.

Response Generation To calibrate and reward the model only on the confidences and not the
answers we separate generation in two steps during training: Answer and confidence generation.
Answers are generated first and afterwards treated as fixed inputs alongside the question, while the
confidence is generated in a separate generation step and considered as sole target for optimization.
Like this, we ensure that answer generation is disentangled from the optimization process, ensuring
the answer correctness is not affected by our confidence calibration training.

Correctness Assessment For the multiple-choice datasets MedQA and CommonsenseQA, we
evaluate correctness using the exact string matching between the model’s response and the ground
truth answer. For the TriviaQA and QAMPARI datasets, we use the F1 score of word overlap to
measure the similarity between the model’s response and the ground truth candidates. The F1 score
is calculated for each candidate and the maximum score is considered the final score. We consider
an answer as correct if its score exceeds a threshold of 0.5.

Implementation Details We optimize the reward function using the Proximal Policy Optimiza-
tion (PPO) algorithm (Schulman et al., 2017). Unless stated otherwise, we use Meta-Llama-3-8B-
Instruct (Grattafiori et al., 2024) as base model for our experiments. We employ the 4-bit quantized
performance-optimized model version by Unsloth AI (Han et al., 2023) and apply LoRA fine-tuning
(Hu et al., 2022). For the Single-Answer setting we train the model for two epochs with a learning
rate of 1e-5. For the Multiple-Answer setting, due to the size of the training dataset and the fact that
each question yields multiple facts, the model is trained for a limited amount of 24,000 steps with a
batchsize of eight and a learning rate of 1e-5 and multiply the reward with 5 to increase its spread.
All models are trained on one Nvidia A40 with each training run taking seven days. On average
the model generated approximately 3.4 answers per fact. If the model fails to generate an answer
in the specified format, it is penalized with an out-of-format reward of -3. Detailed implementation
choices for the baselines are provided in Appendix D.

5 RESULTS AND DISCUSSION

This section presents and discusses the key findings of our experiments for both Single and Multiple-
Answer tasks and the generalization to out-of-domain datasets.

To assess how well our approach improves calibration, we compare it against the zero-shot LLM
baseline (Verbalize) and several established methods in both Single-Answer and Multiple-Answer
question-answering tasks. Results for the Single-Answer setting on TriviaQA are presented in Ta-
ble 1, and those for the Multiple-Answer setting on QAMPARI appear in Table 2. Across both
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Table 1: Comparison of methods on the TriviaQA dataset in the Single-Answer setting with 95% CIs
in brackets. * Results are from the original paper (Stengel-Eskin et al., 2024) and include standard
error.

Method ECE (↓) AUROC (↑) Accuracy (↑)

Verbalize 0.3459 [0.3375,0.3543] 0.5858 [0.5778,0.5936] 0.6310 [0.6222,0.6397]

Chain-of-Thought 0.3065 [0.2981,0.3157] 0.6379 [0.6284,0.6475] 0.6273 [0.6181,0.6363]

Top-K 0.1611 [0.1529,0.1695] 0.6673 [0.6580,0.6768] 0.6023 [0.5936,0.6110]

Surrogate Token 0.3686 [0.3595,0.3783] 0.5923 [0.5818,0.6027] 0.5933 [0.5844,0.6016]

Sequence Probability 0.3156 [0.3074,0.3237] 0.7804 [0.7725,0.7876] 0.5955 [0.5864,0.6040]

Self-Consistency 0.1134 [0.1066,0.1210] 0.8213 [0.8129,0.8298] 0.6224 [0.6131,0.6317]

PPO-M 0.3262 [0.3173,0.3346] 0.5274 [0.5227,0.5319] 0.5749 [0.5662,0.5835]

PPO-C 0.3607 [0.3524,0.3697] 0.5439 [0.5384,0.5491] 0.5258 [0.5164,0.5358]

LACIE* 0.1200 ±0.02 0.7200 ±0.02 n/a
Trained Probe 0.0189 [0.0147,0.0275] 0.8173 [0.8099,0.8250] 0.5925 [0.5834,0.6017]

Rewarding Doubt (ours) 0.0226 [0.0176,0.0302] 0.8592 [0.8523,0.8664] 0.6309 [0.6222,0.6399]

tasks, Rewarding Doubt substantially improves the model’s confidence calibration over zero-shot
verbalization.

In the Single-Answer setting on TriviaQA, Rewarding Doubt achieves an ECE of 0.0226 and an AU-
ROC of 0.8592, clearly outperforming all zero-shot baselines as well as LACIE, which is based on
DPO-based optimization. The second fine-tuned method, Trained Probe, which relies on supervised
fine-tuning, reports a slightly lower ECE (0.0189), both methods achieve near-perfect results. Fur-
ther the AUROC of Rewarding Doubt is notably higher, suggesting that although both methods offer
strong calibration, Rewarding Doubt better discriminates between correct and incorrect answers. In
the Multiple-Answer setting on QAMPARI, Rewarding Doubt also outperforms baselines, achieving
an ECE of 0.0816 and an AUROC of 0.6947. In comparison, Verbalize, Sequence Probability, and
Trained Probe perform notably worse. Our findings support the claim by Azaria & Mitchell (2023)
that a model’s internal state encodes information about the truthfulness of statements, which can
serve as an indicator of uncertainty. However, without fine-tuning, the model struggles to utilize this
internal information effectively. Our approach enables the model to make use of this correlation and
translate it into an accurate expression of the probability that a given answer is correct.

The calibration curves in Figure 4 further illustrate these improvements. For both TriviaQA and
QAMPARI, the fine-tuned model’s confidence much more closely aligns with the ideal 45° line than
the zero-shot Verbalize baseline. Additionally, we observe a shift in the confidence distribution after
fine-tuning. As shown in Figure 5, in a zero-shot setting the LLM (Verbalize) predominantly assigns
high confidence scores (8 or above), reflecting overconfidence, a pattern also noted by Xiong et al.
(2024), who attribute it to supervised pretraining that favors confident expressions. After fine-tuning
with Rewarding Doubt, the model’s confidence scores (shown in Figure 5b) span a wider range,
including lower values, indicating a more nuanced expression of uncertainty. This shift suggests
that fine-tuning mitigates overconfidence and better aligns the model’s confidence with its actual
performance.

Table 2: Comparison of methods on the QAMPARI dataset in the Multiple-Answer setting with
95% CIs in brackets.

Method ECE (↓) AUROC (↑) Accuracy (↑)

Verbalize 0.5319 [0.5172,0.5461] 0.6047 [0.5837,0.6267] 0.2550 [0.2410,0.2698]

Sequence probability 0.5324 [0.5225,0.5432] 0.5942 [0.5775,0.6110] 0.1928 [0.1829,0.2024]

Trained probe 0.1117 [0.0997,0.1262] 0.6481 [0.6241,0.6726] 0.2233 [0.2094,0.2384]

Rewarding doubt (ours) 0.0816 [0.0723,0.0951] 0.6947 [0.6776,0.7113] 0.2480 [0.2348,0.2609]

To test the consistency of our method across different models, we perform an ablation study across
diverse LLM architectures and sizes. Specifically, we apply Rewarding Doubt to Qwen-2.5 (3B
and 7B) and Gemma-2 (9B) models, in addition to LLaMA-3.1-8B. Table 3 reports performance
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Figure 4: Calibration curves of the zero-shot base model (Verbalize) and the model fine-tuned by
Rewarding Doubt.
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Figure 5: Histograms of predicted confidences of the zero-shot base model (Verbalize) and the model
fine-tuned on the TriviaQA dataset.

for each model before and after fine-tuning with our method. Despite architectural and pretraining
differences, Rewarding Doubt consistently reduces calibration error and improves AUROC across
all models, without degrading downstream accuracy.

Stability of Answer Correctness Training confidence calibration with our method only targets
the uncertainty estimation abilities and does not aim to alter the responses of the model. This is
achieved by only rewarding the model on its expressed confidence, while the answer is generated
beforehand independently from the model update step. Our results show a stable accuracy for all
experiments without notable differences in accuracy between the base model (Verbalize) and the
model adapted with Rewarding Doubt, showing that confidence calibration training with Rewarding
Doubt does not affect task performance.

Generalization Capabilities To assess the generalization abilities of Rewarding Doubt, we eval-
uated the model trained on TriviaQA in out-of-domain settings using the CommonsenseQA (Talmor
et al., 2019) and MedQA (Jin et al., 2020) datasets. Results are shown in Table 4. On MedQA,
Rewarding Doubt significantly outperforms Verbalize in both metrics, while on CommonsenseQA,
it achieves a comparable ECE, however paired with a much higher AUROC. This discrepancy high-
lights a limitation of relying solely on ECE for evaluating calibration. ECE does not reflect how
well a model discriminates between correct and incorrect predictions across different confidence
levels. A model consistently assigning moderate confidence values could appear well-calibrated un-
der ECE, yet fail to offer meaningful distinctions between uncertain and certain cases. AUROC, in
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Table 3: Calibration and accuracy of Verbalize vs. Rewarding Doubt across different LLMs with
95% CIs in brackets.

Model Method ECE (↓) AUROC (↑) Accuracy (↑)

LLaMA-3.1-8B Verbalize 0.2771 [0.2689,0.2862] 0.6766 [0.6667,0.6863] 0.6662 [0.6577,0.6745]

Trained probe 0.0152 [0.0118,0.0235] 0.8495 [0.8420,0.8567] 0.6231 [0.6143,0.6322]

Rew. Doubt 0.0256 [0.0209,0.0327] 0.8793 [0.8729,0.8860] 0.6497 [0.6407,0.6585]

Qwen-2.5-3B Verbalize 0.5330 [0.5252,0.5435] 0.5981 [0.5927,0.6035] 0.4185 [0.4085,0.4247]

Trained probe 0.0186 [0.0134,0.0268] 0.7975 [0.7880,0.8066] 0.2540 [0.2463,0.2624]

Rew. Doubt 0.1483 [0.1415,0.1546] 0.9065 [0.9012,0.9122] 0.4193 [0.4097,0.4283]

Qwen-2.5-7B Verbalize 0.3619 [0.3530,0.3705] 0.5818 [0.5762,0.5879] 0.5239 [0.5148,0.5331]

Trained probe 0.0989 [0.0920,0.1057] 0.8737 [0.8676,0.8797] 0.4793 [0.4696,0.4881]

Rew. Doubt 0.1298 [0.1237,0.1368] 0.8928 [0.8866,0.8988] 0.5283 [0.5193,0.5368]

Gemma-2-9B Verbalize 0.3206 [0.3122,0.3288] 0.5615 [0.5548,0.5682] 0.6690 [0.6603,0.6773]

Trained probe 0.0301 [0.0253,0.0373] 0.8694 [0.8629,0.8769] 0.6464 [0.6380,0.6551]

Rew. Doubt 0.0922 [0.0861,0.0994] 0.8649 [0.8570,0.8725] 0.6832 [0.6743,0.6918]

Table 4: Comparison of generalization results on CommonsenseQA (CsQA) and MedQA, trained
on the TriviaQA dataset with 95% CIs in brackets.

Method ECE (↓) AUROC (↑) Accuracy (↑)

C
sQ

A Verbalize 0.2820 [0.2206,0.3422] 0.5425 [0.4740,0.6069] 0.6860 [0.6277,0.7444]

Trained Probe 0.4819 [0.4655,0.5130] 0.5374 [0.5021,0.5708] 0.7108 [0.6847,0.7355]

Rewarding doubt (ours) 0.2930 [0.2693,0.3179] 0.6385 [0.6065,0.6715] 0.7163 [0.6918,0.7410]

M
ed

Q
A Verbalize 0.4480 [0.4200,0.4753] 0.5075 [0.4803,0.5338] 0.5067 [0.4784,0.5350]

Trained Probe 0.2099 [0.1881,0.2439] 0.5513 [0.5207,0.5844] 0.5051 [0.4792,0.5318]

Rewarding doubt (ours) 0.1145 [0.0893,0.1408] 0.6649 [0.6355,0.6954] 0.5161 [0.4886,0.5420]

contrast, directly measures this discriminative ability. Thus, the substantial improvements in AU-
ROC underscore that Rewarding Doubt produces more useful and actionable confidence estimates.
Compared to the Trained Probe, the best-performing baseline, Rewarding Doubt consistently out-
performs, showing a stronger ability to generalize to new datasets.

We also explore generalization across experimental settings in Table 5 by applying a model trained
in a Single-Answer setting to a Multiple-Answer task. Although under-performing a model trained
specifically for that task, it still outperforms the base model considerably, demonstrating transfer-
ability of the learned confidence estimation patterns. This suggests promising applications for im-
proving confidence estimation in more complex or less structured scenarios, such as fact verification
and calibration in free-text generation, even when specialized training data is unavailable.

Our current experiments focus on settings where answer quality can be evaluated via exact rule-
based metrics, yielding a binary correctness signal, the Rewarding Doubt framework could be ex-
tended to work with correctness signals provided by an LLM-as-a-judge system, a reward model
trained on human preferences or continuous NLG metrics.

Overall, our experiments show that Rewarding Doubt provides a robust and efficient way to enhance
calibration, while generalizing across tasks, and maintaining stable task performance, making it an
effective approach for accurate confidence calibration and expression in LLMs. Beyond improve-
ments in calibration, our method also offers practical advantages. While fine-tuning requires an
initial training investment, inference remains highly efficient, as only a small, constant number of
tokens need to be generated to express confidence. In contrast, zero-shot methods like Chain-of-
Thought and Self-Consistency have substantial computational overhead during inference by requir-
ing lengthy reasoning chains or multiple generations. Rewarding Doubt introduces no such over-
head, does not rely on an additional model, and directly provides actionable confidence estimates
through verbalization directly by the LLM, making it highly suitable for real-world deployment.
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Table 5: Comparison of the base and fine-tuned model on the Qampari dataset in different settings
with 95% CIs in brackets.

Training Evaluation ECE (↓) AUROC (↑)

Base model Single fact 0.5875 [0.5597,0.6151] 0.5787 [0.5408,0.6125]

Single fact Single fact 0.1536 [0.1320,0.1813] 0.7240 [0.6889,0.7577]

Base model Multi fact 0.5319 [0.5172,0.5461] 0.6047 [0.5837,0.6267]

Single fact Multi fact 0.1777 [0.1679,0.1890] 0.6617 [0.6468,0.6779]

Multi fact Multi fact 0.1061 [0.0935,0.1206] 0.7268 [0.7065,0.7468]

Limitations Due to computational constraints, we only tested Rewarding Doubt on models with
sizes ranging from 3B to 9B parameters. While we expect similar effectiveness on larger models,
empirical validation on such scales would be valuable.

6 CONCLUSION

In this work, we propose Rewarding Doubt, a novel approach that enables LLMs to express confi-
dence in their answers more accurately using natural language. We leverage reinforcement learning
with a reward function based on the logarithmic scoring rule that incentivizes well-calibrated confi-
dence expressions. Fine-tuning with our method significantly improves the model’s ability to esti-
mate a calibrated confidence, effectively reducing the overconfidence patterns commonly observed
in LLMs. This not only enhances the trustworthiness in AI-generated responses but also lays the
groundwork for more reliable human-AI collaboration, where models can transparently communi-
cate uncertainty, an essential step toward safer and more accountable AI systems.

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, we describe implementation details of Rewarding Doubt as well
as the used baselines in Section 4 and Appendix D. Further, Appendix A provides the exact prompts
used for different experiments. Lastly, we included our code in the submission and will publish it
upon acceptance.
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APPENDIX

A PROMPTS

For all the question-answering settings, the model is directly prompted to answer a question without
a preceding example or context. For our method the model was prompted to answer the question
and additionally provide a verbalized confidence. For the other baselines that do not need a
verbalized confidence but infer it indirectly, the model is prompted to only give the correct answer.
The specifics for multiple-choice are slightly changed but hold mostly the same meaning. The exact
prompts for each method can be seen in Table 6 for open questions and Table 7 for multiple-choice
questions. The prompts for each Multi-Answer method can be seen in Table 8. We decided not to
give the model a role like "expert" in the system prompt but keep it neutral, as we observed that the
role we give the model affects the verbalized confidence.

Table 6: The prompts for each method for the open short form questions.

Method Prompt
Verbalize/ Re-
warding Doubt

You will get questions. Answer with the correct answer. Additionally pro-
vide a confidence between 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, of how sure you
are the answer is correct. A value close to 0 means you think there is a
high probability that the answer is wrong. The closer the value is to 10, the
higher you think is the probability that the answer is correct. The output
should have the format ’Answer: <answer>, Confidence: <confidence>’
and nothing else.

CoT You will get questions. Read the question, analyze step by step, provide
your reasoning steps, answer and your confidence in the response. The
confidence should be between 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. A value close to
0 means you think there is a high probability that you could be wrong. The
closer the value is to 5, the lower you think is the chance that you could be
wrong. The output should have the format ’Thoughts: <reasoning steps>,
Answer: <just the answer and nothing else>, Confidence: <confidence>’.

Top-K You will get test questions with possible options. Read the question and
enumerate your 5 best guesses and the probability for each that is correct
(0% to 100%). Just answer with the options and nothing else. The answer
should have the format 1. <answer> <probability to be correct>\n 2. <an-
swer> <probability to be correct>\n and so on

Sequence Prob-
ability/ Trained
Probe

You will get questions. Answer with the correct answer only and nothing
else.

Surrogate To-
ken

(user) You will get questions. Answer with the correct answer only and
nothing else. (model) <response> (user) Is the proposed answer: True False
\n The proposed answer is:

Self-
Consistency

You will get questions. Read the question, analyze step by step, pro-
vide your reasoning steps and answer. The output should have the for-
mat ’Thoughts: <reasoning steps>, Answer: <just the answer and nothing
else>’
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Table 7: The prompts for each method for multiple choice questions.

Method Prompt
Verbalize/ Re-
warding Doubt

You will get test questions with possible options. Answer with the correct
option. Additionally provide a confidence between 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, of how sure you are the answer is correct. A value close to 0 means
you think there is a high probability that the answer is wrong. The closer
the value is to 10, the higher you think is the probability that the answer
is correct. The output should have the format ’Answer: <answer_index>,
Confidence: <confidence>’ and nothing else.

CoT You will get test questions with possible options. Read the question, ana-
lyze step by step, provide your reasoningsteps, answer and your confidence
in the response. The confidence should be between 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10. A value close to 0 means you think there is a high probability
that you could be wrong. The closer the value is to 5, the lower you think
is the chance that you could be wrong. The output should have the for-
mat ’Thoughts: <reasoning steps>, Answer: <answer_index>, Confidence:
<confidence>’ and nothing else.

Sequence Prob-
ability/ Trained
Probe

You will get test questions with possible options. Answer with the correct
option index only and nothing else.

Surrogate To-
ken

(user) You will get test questions with possible options. Answer with the
correct option index only and nothing else. (model) <response> (user) Is
the proposed answer: True False \n The proposed answer is:

Self-
Consistency

You will get test questions with possible options. Read the question, ana-
lyze step by step, provide your reasoningsteps and the correct option index.
The output should have the format ’Thoughts: <reasoning steps>, Answer:
<answer_index>’ and nothing else.

Table 8: The prompts for each method for multiple fact questions.

Method Prompt
Verbalize/ Re-
warding Doubt

Instructions: 1. You will get a question with multiple possible answers. 2.
Enumerate all possible answers you know. After each individual answer
state your confidence in this answer. The format should be ’Answer: <an-
swer>, Confidence: <confidence> \n’ for each individual answer. 3. The
confidence should be an integer number between 0 and 10. 0 means you
know for certain the answer is wrong. 10 means you know for certain the
answer is correct. 4. Do not say anything else. Do not write multiple an-
swers in one answer block. 5. When asked about dates, answer with the
specific year.

Sequence Prob-
ability/ Trained
Probe

Instructions: 1. You will get a question with multiple possible answers. 2.
Enumerate all possible answers you know. Write each single answer in this
format "Answer: <answer>\n" . 3. Do not say anything else. Do not write
multiple answers in one answer block or any other comments. 4. When
asked about dates, answer with the specific year. 5. Do not repeat answers.

B PROOF

In the following, we prove Proposition 1 with the reward function

R(a, p̂, j) =

{
log(p̂), if j(a) = 1 (correct)
log(1− p̂), if j(a) = 0 (incorrect)

Proof. The proof is analogous to the proof that the logarithmic scoring function is a proper scoring
function.
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Let f(p̂) = E[R(a, p̂, j)] be the expected reward for all values of p̂ and p∗:

f(p̂) = p∗ log(p̂) + (1− p∗) log
(
1− p̂

)
.

Taking the first derivative w.r.t. p̂:

f ′(p̂) =
p∗

p̂
− 1− p∗

1− p̂

and setting
f ′(p̂) = 0 =⇒ p∗(1− p̂) = p̂(1− p∗) =⇒ p̂ = p∗

showing the only critical point in (0, 1) of f ′ is at p̂ = p∗.
The second derivative:

f ′′(p̂) = −p∗

p̂2
− 1− p∗(

1− p̂
)2

is strictly negative for p̂ ∈ (0, 1). Hence, f(p̂) is concave and has its global maximum at p̂ = p∗.

As the logarithm of 0 is undefined, we add a small constant ϵ in the reward function we use for
training:

R(a, p̂, j) =

{
log(max(p̂, ϵ)), if j(a) = 1 (correct)
log(min(1− p̂, 1− ϵ)), if j(a) = 0 (incorrect)

Through this clipping all confidence predictions between 0 and ϵ, and 1 and 1 − ϵ, respectively,
are rewarded equally. This leads to the model not being able to differentiate between confidence
estimations within these ranges. We argue this effect is minor for a sufficiently small ϵ and can be
disregarded in practice.

C CLIPPED REWARD FUNCTION

The clipped reward function as described in Section 3, is defined as follows:

R(a, p̂, j) =

{
log(max(p̂, ϵ)), if j(a) = 1 (correct)
log(min(1− p̂, 1− ϵ)), if j(a) = 0 (incorrect)

(2)

where ϵ > 0 is a small positive constant of 0.001 introduced for numerical stability to avoid evalu-
ating the logarithm at zero.

D IMPLEMENTATION DETAILS OF BASELINES

For the Sequence Probability, we compute the average probability for each token in the response. In
the Self-Consistency method, we let the model explore ten reasoning pathways, and the similarity of
each resulting output is evaluated using the BERTScore metric Zhang et al. (2019). For the trained
probe Azaria & Mitchell (2023), the original study introduced a custom dataset comprising short
statements classified as either true or false. The model’s activations in response to these statements
were extracted from specific layers, and a multilayer perceptron (MLP) was subsequently trained
on these activations to predict the truthfulness of the statements. To ensure a fair comparison, we
adapted this methodology to better align with our data by allowing the model to generate answers
to training dataset questions and then extracting its activations from the 24th layer for both the
statements and their corresponding answers. The labels for each sample were determined following
the same evaluation procedure as described in our evaluation framework. For the architecture of the
MLP, we employed the same design as Azaria & Mitchell (2023) and train it for four epochs with
a learning rate of 1e-4 until convergence. The exact prompts used for each baseline are provided in
Appendix A.
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E SOCIETAL IMPACT

This work introduces a reinforcement learning approach that enables Large Language Models
(LLMs) to express calibrated confidence in their factual answers, advancing safe and trustworthy AI
deployment. The method improves reliability and uncertainty awareness in LLMs, which is partic-
ularly valuable in high-stakes settings such as medicine, law, or customer support, where overconfi-
dent errors can have serious consequences. By optimizing a proper scoring rule during training, our
method provides a theoretically sound and generalizable mechanism for aligning confidence with
factual correctness—supporting human-AI collaboration and informed decision-making. However,
expressing numerical confidence may lead users to overly trust AI systems, especially if the model
is well-calibrated statistically but still wrong in important individual cases. This risk calls for careful
deployment, appropriate user interfaces that contextualize model confidence, and safeguards against
overreliance on AI-generated outputs.

F USE OF LARGE LANGUAGE MODELS

We employed ChatGPT to enhance the clarity of the manuscript by focusing on grammar correc-
tions, shortening overly complex sentences, and providing alternative wording suggestions. All
outputs were manually reviewed before inclusion, and no new technical material, code, results, or
figures were generated by the tool.
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