

REWARDING DOUBT: A REINFORCEMENT LEARNING APPROACH TO CALIBRATED CONFIDENCE EXPRESSION OF LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions. Our method optimizes a reward based on the logarithmic scoring rule, explicitly penalizing both over- and under-confidence. This encourages the model to align its confidence estimates with the actual predictive accuracy. The optimal policy under our reward design would result in perfectly calibrated confidence expressions. Unlike prior approaches that decouple confidence estimation from response generation, our method integrates confidence calibration seamlessly into the generative process of the LLM. Empirically, we demonstrate that models trained with our approach exhibit substantially improved calibration and generalize to unseen tasks without further fine-tuning, suggesting the emergence of general confidence awareness. We provide our training and evaluation code in the supplementary and will make it publicly available upon acceptance.

1 INTRODUCTION

In human intelligence and inter-human interaction, the ability to understand our own uncertainty and communicate our doubts to others is fundamental for effective decision-making, collaboration, and learning (Cosmides & Tooby, 1996; Xiong et al., 2024). Similarly, for Large Language Models (LLMs) to be safely used in real-world applications, especially when humans and AI systems work together, they must not only generate accurate information but also communicate their confidence in that information. While LLMs have demonstrated impressive capabilities in natural language understanding, question answering and text summarization (Touvron et al., 2023; Chiang et al., 2023; Achiam et al., 2023), LLMs still face significant limitations, such as their tendency to generate inaccurate information, often referred to as hallucinations (Hadi et al., 2023). This raises concerns about their reliability, particularly in real-world applications where trustworthiness is essential. Especially in high-stakes environments such as medical diagnosis, where LLMs are starting to become support tools for professionals (Moor et al., 2023; Pellegrini et al., 2025; Tu et al., 2024; Bani-Harouni et al., 2024), overconfident predictions including factual errors or hallucinations could have serious consequences for patient health. Also, in customer service or legal consultation (Shi et al., 2024; Sun et al., 2024), LLMs need to express uncertainty and defer complex queries to human representatives when unsure to avoid misinformed decisions. Reliable confidence estimation and expression would enable these systems to flag uncertain outputs for human review, ensuring that crucial decisions are not made based on uncertain LLM outputs. To allow risk estimation while using LLM-generated output, model confidence should be calibrated, meaning that the expressed numerical confidence should be equal to the probability of the model’s answer being correct.

Many previous methods for confidence estimation lack in calibration performance as they do not train the model and instead infer the confidence from the internal state in a zero-shot setup (Huang et al., 2023; Kuhn et al., 2023; Duan et al., 2024). Additionally, this does not give models an inherent awareness of confidence. Other trained methods in this area decouple the uncertainty estimation from the text generation process (Azaria & Mitchell, 2023; Kapoor et al., 2024). This approach

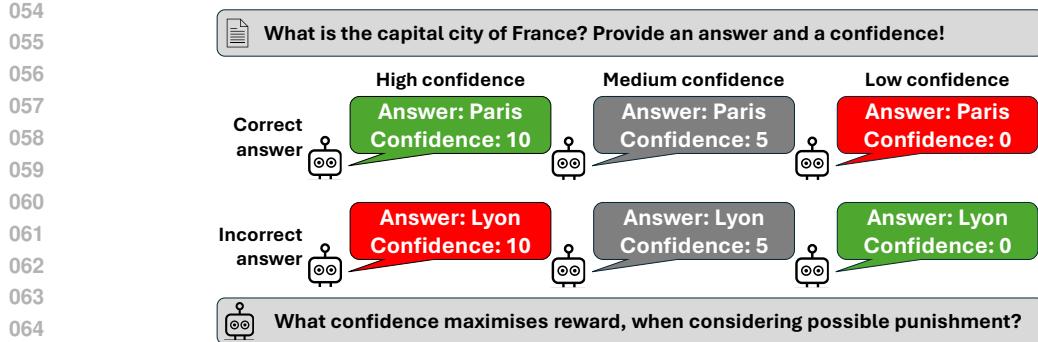


Figure 1: Illustration of our reward design: The model is rewarded for a high confidence if it is correct and punished if it is incorrect. To maximize the reward, the model needs to learn when to predict a higher or lower confidence, considering a possible higher punishment. Our reward function is designed so that the best reward is given when the confidence and the epistemic probability of being correct are the same, thus incentivizing the expression of calibrated confidences.

optimizes for calibrated confidence estimation but does not enable the uncertainty-awareness and expression in the model itself.

Targeting these limitations, we propose a novel reinforcement-learning (RL) approach for teaching LLMs to express their calibrated confidence, encouraging a granular, accurate estimation of the confidence level in the training objective. For this, we model confidence estimation as a betting game: a high-confidence answer would warrant a larger bet, reflecting a strong belief in its correctness, while a lower confidence score would suggest caution. Central to our method is a reward function based on the logarithmic scoring rule, a strictly proper scoring rule. We are the first to optimize this function through reinforcement-learning-based policy optimization, leveraging its calibration properties for directly and seamlessly training confidence calibration in LLM generations. This reward function captures the fundamental risk-reward tradeoff in probabilistic decision-making, as illustrated in Figure 1. It increases the reward when a correct answer is given with high confidence, simulating the higher potential return of big bets. Conversely, it penalizes incorrect answers more when they are made with high confidence, discouraging overconfidence. This ensures that both uncertainty and confidence are appropriately factored into the reward system. As a proper scoring rule, optimizing the reward function trains the model to align its predicted confidence with the accuracy of its output, encouraging granular and calibrated confidence scoring. A calibrated confidence estimation will provably result in the highest reward during training. This not only improves the trustworthiness of LLMs in collaborative human-AI scenarios but also helps users better assess when AI tools should be trusted, double-checked, or deferred to human expertise.

2 RELATED WORKS

2.1 CONFIDENCE ESTIMATION IN LLMs

Confidence estimation and calibration have a long history in machine learning and natural language processing (Wang, 2024). With the rise of LLMs, research has focused on adapting and extending these ideas to modern architectures. Broadly, methods fall into black-box and white-box approaches (Geng et al., 2024).

Black-box methods Black-box methods rely only on model outputs. Linguistic prompting methods ask the model to verbalize its confidence, sometimes aided by chain-of-thought reasoning (Xiong et al., 2024; Wei et al., 2022). Consistency-based approaches estimate confidence by measuring agreement across multiple generations, with high variance indicating uncertainty (Manakul et al., 2023; Wang et al., 2022). Recently, Zhou et al. (2025) proposed SteerConf, which does multiple inference passes where the LLM is prompted to use different levels of caution in its confidence expression. The resulting verbalized confidences are aggregated based on confidence and answer consistency to an overall confidence prediction. Black-box methods are valuable for their

108 simplicity, ease-of-use and universality, however generally lack behind white-box methods in their
 109 calibration performance.
 110

112 **White-box methods** White-box methods exploit internal model states. Logit-based techniques
 113 estimate confidence from token probabilities or entropy (Huang et al., 2023; Kuhn et al., 2023;
 114 Duan et al., 2024), assuming that high probability tokens correspond to high confidence predictions.
 115 Self-evaluation methods let the model judge the truth of its own answers (Kadavath et al., 2022).
 116 They prompt the model to provide an answer followed by a judgment whether its own answer is
 117 "true" or "false". They then compare the probability of the "true" or "false" token to calculate
 118 a confidence estimation. External probing approaches train classifiers on hidden states to predict
 119 correctness (Azaria & Mitchell, 2023). While some of these methods achieve good confidence
 120 estimation results, they do not teach the model to express clear confidence values itself but depend
 121 on some auxiliary estimation mechanism.
 122

123 2.2 FINETUNED CONFIDENCE EXPRESSION

126 A growing line of work integrates confidence estimation into instruction tuning. These methods
 127 typically follow a two-step paradigm: First, they estimate model confidence using various methods,
 128 e.g., self-consistency (Cheng et al., 2024; Yang et al., 2024; Han et al., 2024), token probabilities
 129 (Chen et al., 2024), trained probes (Mielke et al., 2022), empirical accuracy (Zhang et al., 2024; Lin
 130 et al., 2022; Ulmer et al., 2024), or topic unfamiliarity (Wan et al., 2024; Kang et al., 2024). Second,
 131 they construct finetuning datasets that either replace uncertain answers with refusals (Zhang et al.,
 132 2024; Cheng et al., 2024; Yang et al., 2024; Wan et al., 2024) or append the estimated uncertainty as
 133 an additional supervised signal (Han et al., 2024; Chen et al., 2024; Mielke et al., 2022; Lin et al.,
 134 2022; Ulmer et al., 2024).
 135

136 The key limitation of this approach is that the model's expressed confidence is bounded by the
 137 quality of the constructed ground-truth estimates. Additionally, while the underlying confidence
 138 estimation method might optimize for perfect calibration (e.g. in the case of the trained probe), this
 139 theoretical guarantee is lost when performing supervised finetuning on these constructed ground
 140 truths to reproduce these scores.
 141

142 2.3 REINFORCEMENT LEARNING FOR CONFIDENCE EXPRESSION

144 Reinforcement Learning from Human Feedback (RLHF) has proven effective for aligning LLMs
 145 with human preferences (Ouyang et al., 2022), and has also been explored for agentic interaction
 146 in textual environments (Zhou et al., 2023; Carta et al., 2023). Only recently have researchers be-
 147 gun applying RL directly to confidence estimation. Tao et al. (2024) adapt RLHF by designing
 148 rewards that align verbalized confidence with preference ratings, but this requires human-annotated
 149 preference data and does not address factual calibration. Leng et al. (2024) identify that standard
 150 reward models in RLHF are biased toward high verbalized confidence, rating answers with high
 151 confidence expressions with a high reward. To counteract this, they introduce two reward model
 152 training paradigms, PPO-M and PPO-C, which fine-tune the reward model to reward answers where
 153 correctness and confidence expression are aligned. Xu et al. (2024) propose RL from Knowledge
 154 Feedback (RLKF) to encourage refusals outside the model's knowledge scope, reducing hallucina-
 155 tions but without quantifying confidence. Stengel-Eskin et al. (2024) propose LACIE, a DPO-based
 156 approach that simulates an interaction between a speaker and a listener model, rewarding accurate
 157 and honest confidence expression by aligning it with the listener's interpretation of confidence cues
 158 rather than with fact-based numerical calibration.
 159

160 In contrast to previous works, our method directly optimizes for factual calibration using a theo-
 161 retically grounded, proper scoring rule as the reward signal, enabling the model to develop in-
 162 trinsic uncertainty awareness without requiring external preference models, knowledge supervision, or
 163 post-hoc calibration techniques, while at the same time seamlessly integrating calibrated confidence
 164 expression into the LLMs response generation.
 165

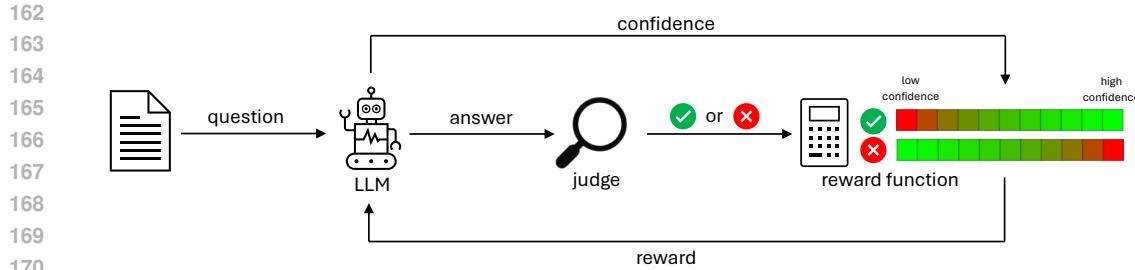


Figure 2: Overview of our reinforcement learning framework: The LLM is prompted to answer a question and provide the confidence in this answer. The answer is checked for correctness by a judge function and the reward is calculated based on the correctness and the confidence. Correct answers with high confidences are rewarded highly, but also penalized heavily when incorrect.

3 REWARDING DOUBT

We propose a novel reinforcement-learning approach, that improves an LLM’s ability to verbalize an accurate numerical confidence in a previously generated answer. The LLM functions as an agent in a simulated environment as shown in Figure 2, that poses challenging question-answering scenarios. It is prompted with task queries such as factual questions and asked to predict both an answer to the query as well as a confidence score. Based on the correctness of the answer, and the expressed confidence, we reward the model, incentivizing it to express a calibrated confidence.

Formally, let the model be provided with a textual question or request q , resulting in an answer-confidence pair (a, \hat{p}) as response, where a is a textual answer with binary correctness value, and $0 \leq \hat{p} \leq 1$ is a numerical confidence score representing the subjective probability the model assigns to answer a being correct. We train this subjective probability assessment to align with the true epistemic probability p^* , which represents the actual likelihood of correctness given the model’s internal knowledge state. If \hat{p} and p^* are aligned the model is perfectly calibrated, meaning the probability of correctness $P(j(a) = 1)$ always equals the expressed confidence:

$$P(j(a) = 1 \mid \hat{p} = x) = x, \quad \forall x \in [0, 1],$$

where $j(\cdot)$ is a correctness judging function that is 1 if answer a is correct, and 0 otherwise.

The true epistemic probability p^* is not directly observable, thus supervised learning of calibration is only possible by constructing an artificial ground truth to approximate p^* . Instead, we model this task as a Markov Decision Process (MDP) defined by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{T}, R)$, where the model learns to generate calibrated confidence scores through reinforcement learning. The MDP is defined by the following components:

- **State space (\mathcal{S}):** A state $s_t \in \mathcal{S}$ consists of a natural language question q , the model’s predicted answer a , and the partial sequence of confidence tokens predicted so far, if any. That is, $s_t = (q, a, c_{1:t-1})$, where $c_{1:t-1}$ represents the previously generated confidence score tokens.
- **Action space (\mathcal{A}):** The action space consists of selecting the next token c_t in the confidence estimation process from the LLM vocabulary, including numerical tokens (e.g., representing percentages or probability values) and a special end-of-sequence token that finalizes the prediction.
- **Transition function ($\mathcal{T}(s_{t+1} \mid s_t, a_t)$):** The environment transitions deterministically based on the language model’s autoregressive token generation process. Given a state $s_t = (q, a, c_{1:t-1})$ and an action c_t , the next state is defined as $s_{t+1} = (q, a, c_{1:t})$. Once the end-of-sequence token is generated, the episode terminates.
- **Reward function ($R(a, c, j)$):** The reward $R(a, c, j)$ is computed based on the final confidence score sequence $c = (c_1, \dots, c_T)$ and the correctness of the answer $j(a)$.

To promote accurate confidence estimation, the model’s expected reward must fulfill the requirement of being maximized when $\hat{p} = p^*$, i.e. when the predicted confidence aligns with the probability

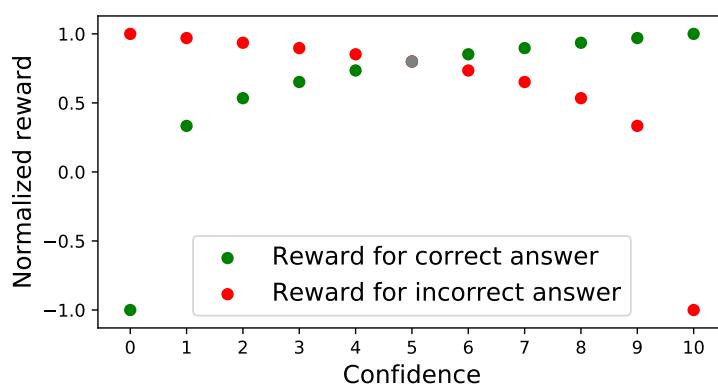


Figure 3: The rewards for each confidence value for correct and incorrect answers. The closer the confidence is to ten or zero, respectively, the higher is the reward. At the same time, the possible punishment increases to a greater extent. The model has to learn when the trade-off between those two possibilities is worthwhile.

The model should receive a high reward when it correctly predicts an outcome with high confidence or when it incorrectly predicts an outcome with low confidence. Conversely, the reward should be low when incorrect predictions are provided with high confidence or correct predictions are provided with low confidence. This approach incentivizes the model to express high confidence only in cases where certainty is warranted while expressing doubt in ambiguous situations. By penalizing both overconfidence and underconfidence, the model is encouraged to calibrate its confidence accurately, effectively balancing the trade-off between reward maximization and penalty avoidance. Note, that through this design our method focuses exclusively on improving calibration while keeping task performance stable.

We design our reward as a logarithmic scoring function:

$$R(a, \hat{p}, j) = \begin{cases} \log(\hat{p}), & \text{if } j(a) = 1 \text{ (correct)} \\ \log(1 - \hat{p}), & \text{if } j(a) = 0 \text{ (incorrect)} \end{cases} \quad (1)$$

This function fulfills the requirement described above as we show in the following proposition:

Proposition 1 (Optimality implies Calibration). *The expected reward $\mathbb{E}[R(a, \hat{p}, j)]$ is maximized for each sample when $\hat{p} = p^*$ and the optimal policy under the reward design is thus perfectly calibrated.*

The proof of Proposition 1 is analogous to the proof that the logarithmic scoring rule is a proper scoring rule. We provide it in full in Appendix B and discuss the influence of the clipping on the optimality of the reward function.

Since the logarithm of zero is undefined, we introduce a small positive constant ϵ as clipping value for numerical stability. Concretely, we clip the lower and upper limit of the confidence \hat{p} to ϵ and $1 - \epsilon$, respectively. The clipped reward function is provided in Appendix C. The normalized and clipped reward for correct and incorrect answers for each confidence is visualized in Figure 3.

4 EXPERIMENTAL SETUP

We evaluate our method in both Single-Answer and Multiple-Answer settings. We prompt the model to provide a confidence for each answer as an integer between 0 and 10, which we normalize for the reward calculation. A confidence of zero is defined as the model being certain that the answer is incorrect, while ten is defined as the model being certain the answer is correct. We normalize the reward function to the range of $[-1, 1]$.

In the Single-Answer setting we train the model on the TriviaQA dataset (Joshi et al., 2017), which contains question-answer-evidence triplets, from which we only use the questions and answers. For

270 generalization experiments, we evaluate our method on CommonsenseQA (Talmor et al., 2019) and
 271 MedQA (Jin et al., 2020), which are multiple-choice question datasets in the commonsense and
 272 medical domain, respectively. For the Multiple-Answer setting, we train on the QAMPARI dataset
 273 (Amouyal et al., 2023), which contains questions with multiple-answers as well as evidence, again
 274 only using the questions and answers.

275 In the Single-Answer setting we compare our approach on the TriviaQA dataset against the following
 276 methods: Chain-of-Thought (Xiong et al., 2024), Top-K (Tian et al., 2023), Surrogate Token (Ka-
 277 davath et al., 2022), Sequence Probability (Huang et al., 2023) and Self-Consistency (Wang et al.,
 278 2022) as zero-shot methods, LACIE (Stengel-Eskin et al., 2024), which uses DPO for optimizing
 279 confidence expression and Trained Probe (Azaria & Mitchell, 2023), which employs supervised
 280 training of an external probe for estimation model. We also compare to the non-finetuned base
 281 model in a zero-shot manner, using the same prompt as our Rewarding Doubt method and refer
 282 to this setup as Verbalize. In the Multiple-Answer setting we compare to Trained Probe and Se-
 283 quence probability, as those methods are the best performing zero-shot and trained baselines in the
 284 Single-Answer setting. LACIE does not report results for this dataset, thus we can only compare on
 285 TriviaQA.

286 We report our results using the Expected Calibration Error (ECE) and the Area Under the Receiver
 287 Operating Characteristic Curve (AUROC) metric. Additionally, we visualize the calibration with
 288 calibration curves, where a well-calibrated model lies close to the 45° line and large deviations
 289 show a high miscalibration.

290 **Response Generation** To calibrate and reward the model only on the confidences and not the
 291 answers we separate generation in two steps during training: Answer and confidence generation.
 292 Answers are generated first and afterwards treated as fixed inputs alongside the question, while the
 293 confidence is generated in a separate generation step and considered as sole target for optimization.
 294 Like this, we ensure that answer generation is disentangled from the optimization process, ensuring
 295 that the answer correctness is not affected by our confidence calibration training.

296 **Correctness Assessment** For the multiple-choice datasets MedQA and CommonsenseQA, we
 297 evaluate correctness using the exact string matching between the model’s response and the ground
 298 truth answer. For the TriviaQA and QAMPARI datasets, we use the F1 score of word overlap to
 299 measure the similarity between the model’s response and the ground truth candidates. The F1 score
 300 is calculated for each candidate and the maximum score is considered the final score. We consider
 301 an answer as correct if its score exceeds a threshold of 0.5.

302 **Implementation Details** We optimize the reward function using the Proximal Policy Optimiza-
 303 tion (PPO) algorithm (Schulman et al., 2017). Unless stated otherwise, we use Meta-Llama-3-8B-
 304 Instruct (Grattafiori et al., 2024) as base model for our experiments. We employ the 4-bit quantized
 305 performance-optimized model version by Unslot AI (Han et al., 2023) and apply LoRA fine-tuning
 306 (Hu et al., 2022). For the Single-Answer setting we train the model for two epochs with a learning
 307 rate of 1e-5. For the Multiple-Answer setting, due to the size of the training dataset and the fact that
 308 each question yields multiple facts, the model is trained for a limited amount of 24,000 steps with a
 309 batchsize of eight and a learning rate of 1e-5 and multiply the reward with 5 to increase its spread.
 310 All models are trained on one Nvidia A40 with each training run taking seven days. On average
 311 the model generated approximately 3.4 answers per fact. If the model fails to generate an answer
 312 in the specified format, it is penalized with an out-of-format reward of -3. Detailed implementation
 313 choices for the baselines are provided in Appendix D.

316 5 RESULTS AND DISCUSSION

317 This section presents and discusses the key findings of our experiments for both Single and Multiple-
 318 Answer tasks and the generalization to out-of-domain datasets.

319 To assess how well our approach improves calibration, we compare it against the zero-shot LLM
 320 baseline (Verbalize) and several established methods in both Single-Answer and Multiple-Answer
 321 question-answering tasks. Results for the Single-Answer setting on TriviaQA are presented in Ta-
 322 ble 1, and those for the Multiple-Answer setting on QAMPARI appear in Table 2. Across both

324 Table 1: Comparison of methods on the TriviaQA dataset in the Single-Answer setting **with 95% CIs**
 325 **in brackets**. * Results are from the original paper (Stengel-Eskin et al., 2024) **and include standard**
 326 **error**.

Method	ECE (\downarrow)	AUROC (\uparrow)	Accuracy (\uparrow)
Verbalize	0.3459 [0.3375,0.3543]	0.5858 [0.5778,0.5936]	0.6310 [0.6222,0.6397]
Chain-of-Thought	0.3065 [0.2981,0.3157]	0.6379 [0.6284,0.6475]	0.6273 [0.6181,0.6363]
Top-K	0.1611 [0.1529,0.1695]	0.6673 [0.6580,0.6768]	0.6023 [0.5936,0.6110]
Surrogate Token	0.3686 [0.3595,0.3783]	0.5923 [0.5818,0.6027]	0.5933 [0.5844,0.6016]
Sequence Probability	0.3156 [0.3074,0.3237]	0.7804 [0.7725,0.7876]	0.5955 [0.5864,0.6040]
Self-Consistency	0.1134 [0.1066,0.1210]	0.8213 [0.8129,0.8298]	0.6224 [0.6131,0.6317]
PPO-M	0.3262 [0.3173,0.3346]	0.5274 [0.5227,0.5319]	0.5749 [0.5662,0.5835]
PPO-C	0.3607 [0.3524,0.3697]	0.5439 [0.5384,0.5491]	0.5258 [0.5164,0.5358]
LACIE*	0.1200 \pm 0.02	0.7200 \pm 0.02	n/a
Trained Probe	0.0189 [0.0147,0.0275]	0.8173 [0.8099,0.8250]	0.5925 [0.5834,0.6017]
Rewarding Doubt (ours)	0.0226 [0.0176,0.0302]	0.8592 [0.8523,0.8664]	0.6309 [0.6222,0.6399]

340
 341 tasks, Rewarding Doubt substantially improves the model’s confidence calibration over zero-shot
 342 verbalization.

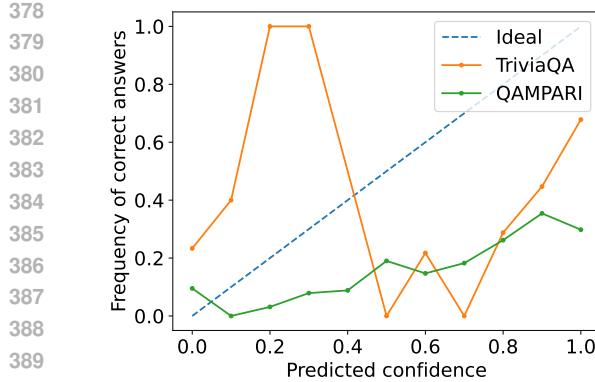
343
 344 In the Single-Answer setting on TriviaQA, Rewarding Doubt achieves an ECE of 0.0226 and an AU-
 345 ROC of 0.8592, clearly outperforming all zero-shot baselines as well as LACIE, which is based on
 346 DPO-based optimization. The second fine-tuned method, Trained Probe, which relies on supervised
 347 fine-tuning, reports a slightly lower ECE (0.0189), both methods achieve near-perfect results. Fur-
 348 ther the AUROC of Rewarding Doubt is notably higher, suggesting that although both methods offer
 349 strong calibration, Rewarding Doubt better discriminates between correct and incorrect answers. In
 350 the Multiple-Answer setting on QAMPARI, Rewarding Doubt also outperforms baselines, achieving
 351 an ECE of 0.0816 and an AUROC of 0.6947. In comparison, Verbalize, Sequence Probability, and
 352 Trained Probe perform notably worse. Our findings support the claim by Azaria & Mitchell (2023)
 353 that a model’s internal state encodes information about the truthfulness of statements, which can
 354 serve as an indicator of uncertainty. However, without fine-tuning, the model struggles to utilize this
 355 internal information effectively. Our approach enables the model to make use of this correlation and
 356 translate it into an accurate expression of the probability that a given answer is correct.

357 The calibration curves in Figure 4 further illustrate these improvements. For both TriviaQA and
 358 QAMPARI, the fine-tuned model’s confidence much more closely aligns with the ideal 45° line than
 359 the zero-shot Verbalize baseline. Additionally, we observe a shift in the confidence distribution after
 360 fine-tuning. As shown in Figure 5, in a zero-shot setting the LLM (Verbalize) predominantly assigns
 361 high confidence scores (8 or above), reflecting overconfidence, a pattern also noted by Xiong et al.
 362 (2024), who attribute it to supervised pretraining that favors confident expressions. After fine-tuning
 363 with Rewarding Doubt, the model’s confidence scores (shown in Figure 5b) span a wider range,
 364 including lower values, indicating a more nuanced expression of uncertainty. This shift suggests
 365 that fine-tuning mitigates overconfidence and better aligns the model’s confidence with its actual
 366 performance.

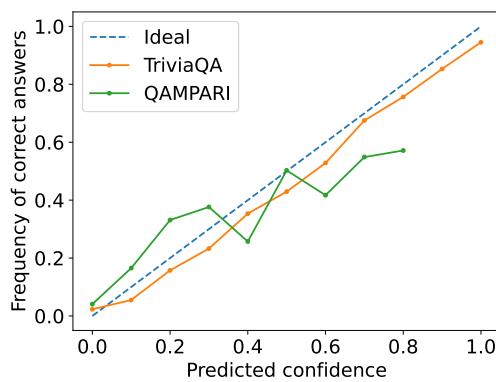
367 Table 2: Comparison of methods on the QAMPARI dataset in the Multiple-Answer setting **with**
 368 **95% CIs in brackets**.

Method	ECE (\downarrow)	AUROC (\uparrow)	Accuracy (\uparrow)
Verbalize	0.5319 [0.5172,0.5461]	0.6047 [0.5837,0.6267]	0.2550 [0.2410,0.2698]
Sequence probability	0.5324 [0.5225,0.5432]	0.5942 [0.5775,0.6110]	0.1928 [0.1829,0.2024]
Trained probe	0.1117 [0.0997,0.1262]	0.6481 [0.6241,0.6726]	0.2233 [0.2094,0.2384]
Rewarding doubt (ours)	0.0816 [0.0723,0.0951]	0.6947 [0.6776,0.7113]	0.2480 [0.2348,0.2609]

375
 376 To test the consistency of our method across different models, we perform an ablation study across
 377 diverse LLM architectures and sizes. Specifically, we apply Rewarding Doubt to Qwen-2.5 (3B
 378 and 7B) and Gemma-2 (9B) models, in addition to LLaMA-3.1-8B. Table 3 reports performance

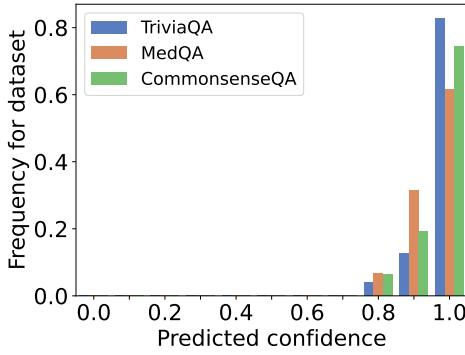


(a) Base model

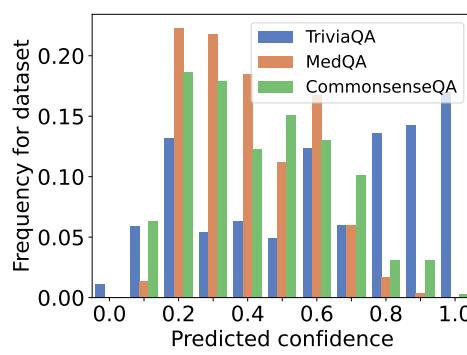


(b) Fine-tuned by Rewarding Doubt

Figure 4: Calibration curves of the zero-shot base model (Verbalize) and the model fine-tuned by Rewarding Doubt.



(a) Base model



(b) Fine-tuned by Rewarding Doubt

Figure 5: Histograms of predicted confidences of the zero-shot base model (Verbalize) and the model fine-tuned on the TriviaQA dataset.

for each model before and after fine-tuning with our method. Despite architectural and pretraining differences, Rewarding Doubt consistently reduces calibration error and improves AUROC across all models, without degrading downstream accuracy.

Stability of Answer Correctness Training confidence calibration with our method only targets the uncertainty estimation abilities and does not aim to alter the responses of the model. This is achieved by only rewarding the model on its expressed confidence, while the answer is generated beforehand independently from the model update step. Our results show a stable accuracy for all experiments without notable differences in accuracy between the base model (Verbalize) and the model adapted with Rewarding Doubt, showing that confidence calibration training with Rewarding Doubt does not affect task performance.

Generalization Capabilities To assess the generalization abilities of Rewarding Doubt, we evaluated the model trained on TriviaQA in out-of-domain settings using the CommonsenseQA (Talmor et al., 2019) and MedQA (Jin et al., 2020) datasets. Results are shown in Table 4. On MedQA, Rewarding Doubt significantly outperforms Verbalize in both metrics, while on CommonsenseQA, it achieves a comparable ECE, however paired with a much higher AUROC. This discrepancy highlights a limitation of relying solely on ECE for evaluating calibration. ECE does not reflect how well a model discriminates between correct and incorrect predictions across different confidence levels. A model consistently assigning moderate confidence values could appear well-calibrated under ECE, yet fail to offer meaningful distinctions between uncertain and certain cases. AUROC, in

432 Table 3: Calibration and accuracy of Verbalize vs. Rewarding Doubt across different LLMs **with**
433 **95% CIs in brackets.**

Model	Method	ECE (\downarrow)	AUROC (\uparrow)	Accuracy (\uparrow)
LLaMA-3.1-8B	Verbalize	0.2771 [0.2689,0.2862]	0.6766 [0.6667,0.6863]	0.6662 [0.6577,0.6745]
	Trained probe	0.0152 [0.0118,0.0235]	0.8495 [0.8420,0.8567]	0.6231 [0.6143,0.6322]
	Rew. Doubt	0.0256 [0.0209,0.0327]	0.8793 [0.8729,0.8860]	0.6497 [0.6407,0.6585]
Qwen-2.5-3B	Verbalize	0.5330 [0.5252,0.5435]	0.5981 [0.5927,0.6035]	0.4185 [0.4085,0.4247]
	Trained probe	0.0186 [0.0134,0.0268]	0.7975 [0.7880,0.8066]	0.2540 [0.2463,0.2624]
	Rew. Doubt	0.1483 [0.1415,0.1546]	0.9065 [0.9012,0.9122]	0.4193 [0.4097,0.4283]
Qwen-2.5-7B	Verbalize	0.3619 [0.3530,0.3705]	0.5818 [0.5762,0.5879]	0.5239 [0.5148,0.5331]
	Trained probe	0.0989 [0.0920,0.1057]	0.8737 [0.8676,0.8797]	0.4793 [0.4696,0.4881]
	Rew. Doubt	0.1298 [0.1237,0.1368]	0.8928 [0.8866,0.8988]	0.5283 [0.5193,0.5368]
Gemma-2-9B	Verbalize	0.3206 [0.3122,0.3288]	0.5615 [0.5548,0.5682]	0.6690 [0.6603,0.6773]
	Trained probe	0.0301 [0.0253,0.0373]	0.8694 [0.8629,0.8769]	0.6464 [0.6380,0.6551]
	Rew. Doubt	0.0922 [0.0861,0.0994]	0.8649 [0.8570,0.8725]	0.6832 [0.6743,0.6918]

450 Table 4: Comparison of generalization results on CommonsenseQA (CsQA) and MedQA, trained
451 on the TriviaQA dataset with 95% CIs in brackets.

	Method	ECE (\downarrow)	AUROC (\uparrow)	Accuracy (\uparrow)
CsQA	Verbalize	0.2820 [0.2206,0.3422]	0.5425 [0.4740,0.6069]	0.6860 [0.6277,0.7444]
	Trained Probe	0.4819 [0.4655,0.5130]	0.5374 [0.5021,0.5708]	0.7108 [0.6847,0.7355]
	Rewarding doubt (ours)	0.2930 [0.2693,0.3179]	0.6385 [0.6065,0.6715]	0.7163 [0.6918,0.7410]
MedQA	Verbalize	0.4480 [0.4200,0.4753]	0.5075 [0.4803,0.5338]	0.5067 [0.4784,0.5350]
	Trained Probe	0.2099 [0.1881,0.2439]	0.5513 [0.5207,0.5844]	0.5051 [0.4792,0.5318]
	Rewarding doubt (ours)	0.1145 [0.0893,0.1408]	0.6649 [0.6355,0.6954]	0.5161 [0.4886,0.5420]

463 contrast, directly measures this discriminative ability. Thus, the substantial improvements in AU-
464 ROC underscore that Rewarding Doubt produces more useful and actionable confidence estimates.
465 Compared to the Trained Probe, the best-performing baseline, Rewarding Doubt consistently out-
466 performs, showing a stronger ability to generalize to new datasets.

467 We also explore generalization across experimental settings in Table 5 by applying a model trained
468 in a Single-Answer setting to a Multiple-Answer task. Although under-performing a model trained
469 specifically for that task, it still outperforms the base model considerably, demonstrating transfer-
470 ability of the learned confidence estimation patterns. This suggests promising applications for im-
471 proving confidence estimation in more complex or less structured scenarios, such as fact verification
472 and calibration in free-text generation, even when specialized training data is unavailable.

473 Our current experiments focus on settings where answer quality can be evaluated via exact rule-
474 based metrics, yielding a binary correctness signal, the Rewarding Doubt framework could be ex-
475 tended to work with correctness signals provided by an LLM-as-a-judge system, a reward model
476 trained on human preferences or continuous NLG metrics.

477 Overall, our experiments show that Rewarding Doubt provides a robust and efficient way to enhance
478 calibration, while generalizing across tasks, and maintaining stable task performance, making it an
479 effective approach for accurate confidence calibration and expression in LLMs. Beyond improve-
480 ments in calibration, our method also offers practical advantages. While fine-tuning requires an
481 initial training investment, inference remains highly efficient, as only a small, constant number of
482 tokens need to be generated to express confidence. In contrast, zero-shot methods like Chain-of-
483 Thought and Self-Consistency have substantial computational overhead during inference by requir-
484 ing lengthy reasoning chains or multiple generations. Rewarding Doubt introduces no such over-
485 head, does not rely on an additional model, and directly provides actionable confidence estimates
through verbalization directly by the LLM, making it highly suitable for real-world deployment.

486
 487 Table 5: Comparison of the base and fine-tuned model on the Qampari dataset in different settings
 488 with 95% CIs in brackets.

489	Training	Evaluation	ECE (\downarrow)	AUROC (\uparrow)
490	Base model	Single fact	0.5875 [0.5597,0.6151]	0.5787 [0.5408,0.6125]
491	Single fact	Single fact	0.1536 [0.1320,0.1813]	0.7240 [0.6889,0.7577]
492	Base model	Multi fact	0.5319 [0.5172,0.5461]	0.6047 [0.5837,0.6267]
493	Single fact	Multi fact	0.1777 [0.1679,0.1890]	0.6617 [0.6468,0.6779]
494	Multi fact	Multi fact	0.1061 [0.0935,0.1206]	0.7268 [0.7065,0.7468]
495				

496
 497 **Limitations** Due to computational constraints, we only tested Rewarding Doubt on models with
 498 sizes ranging from 3B to 9B parameters. While we expect similar effectiveness on larger models,
 499 empirical validation on such scales would be valuable.

501 6 CONCLUSION

502 In this work, we propose Rewarding Doubt, a novel approach that enables LLMs to express confi-
 503 dence in their answers more accurately using natural language. We leverage reinforcement learning
 504 with a reward function based on the logarithmic scoring rule that incentivizes well-calibrated confi-
 505 dence expressions. Fine-tuning with our method significantly improves the model’s ability to esti-
 506 mate a calibrated confidence, effectively reducing the overconfidence patterns commonly observed
 507 in LLMs. This not only enhances the trustworthiness in AI-generated responses but also lays the
 508 groundwork for more reliable human-AI collaboration, where models can transparently communi-
 509 cate uncertainty, an essential step toward safer and more accountable AI systems.

512 REPRODUCIBILITY STATEMENT

513 In order to ensure reproducibility, we describe implementation details of Rewarding Doubt as well
 514 as the used baselines in Section 4 and Appendix D. Further, Appendix A provides the exact prompts
 515 used for different experiments. Lastly, we included our code in the submission and will publish it
 516 upon acceptance.

519 REFERENCES

520 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 521 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 522 report. *arXiv*, 2023.

523 Samuel Joseph Amouyal, Tomer Wolfson, Ohad Rubin, Ori Yoran, Jonathan Herzig, and Jonathan
 524 Berant. Qampari: An open-domain question answering benchmark for questions with many an-
 525 swers from multiple paragraphs, 2023. URL <https://arxiv.org/abs/2205.12665>.

526 Amos Azaria and Tom Mitchell. The internal state of an llm knows when it’s lying, 2023. URL
 527 <https://arxiv.org/abs/2304.13734>.

528 David Bani-Harouni, Nassir Navab, and Matthias Keicher. Magda: Multi-agent guideline-driven
 529 diagnostic assistance. In *International workshop on foundation models for general medical AI*,
 530 pp. 163–172. Springer, 2024.

531 Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
 532 Oudeyer. Grounding large language models in interactive environments with online reinforce-
 533 ment learning. In *International Conference on Machine Learning*, pp. 3676–3713. PMLR, 2023.

534 Lida Chen, Zujie Liang, Xiantao Wang, Jiaqing Liang, Yanghua Xiao, Feng Wei, Jinglei Chen,
 535 Zhenghong Hao, Bing Han, and Wei Wang. Teaching large language models to express knowl-
 536 edge boundary from their own signals. *arXiv preprint arXiv:2406.10881*, 2024.

540 Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wenwei Zhang, Zhangyue Yin, Shimin Li, Linyang
 541 Li, Zhengfu He, Kai Chen, and Xipeng Qiu. Can ai assistants know what they don't know? *arXiv*
 542 *preprint arXiv:2401.13275*, 2024.

543 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 544 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
 545 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, 2023.

546 Leda Cosmides and John Tooby. Are humans good intuitive statisticians after all? rethinking some
 547 conclusions from the literature on judgment under uncertainty. *cognition*, 58(1):1–73, 1996.

548 Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya Kailkhura,
 549 and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty quantification of
 550 free-form large language models. In *Proceedings of the 62nd Annual Meeting of the Association*
 551 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 5050–5063, 2024.

552 Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koepll, Preslav Nakov, and Iryna Gurevych. A
 553 survey of confidence estimation and calibration in large language models, 2024. URL <https://arxiv.org/abs/2311.08298>.

554 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 555 Al-Dahle, et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

556 Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
 557 mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language
 558 models: Applications, challenges, limitations, and practical usage. *Authorea Preprints*, 2023.

559 Daniel Han, Michael Han, et al. Unslloth. 2023. URL <http://github.com/unslothai/unslloth>.

560 Haixia Han, Tingyun Li, Shisong Chen, Jie Shi, Chengyu Du, Yanghua Xiao, Jiaqing Liang, and
 561 Xin Lin. Enhancing confidence expression in large language models through learning from past
 562 experience. *arXiv preprint arXiv:2404.10315*, 2024.

563 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 564 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-
 565 ference on Learning Representations*, 2022.

566 Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu,
 567 and Lei Ma. Look before you leap: An exploratory study of uncertainty measurement for large
 568 language models, 2023. URL <https://arxiv.org/abs/2307.10236>.

569 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
 570 ease does this patient have? a large-scale open domain question answering dataset from medical
 571 exams, 2020. URL <https://arxiv.org/abs/2009.13081>.

572 Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 573 supervised challenge dataset for reading comprehension. In *Proceedings of the 55th Annual Meet-
 574 ing of the Association for Computational Linguistics*, Vancouver, Canada, July 2017. Association
 575 for Computational Linguistics.

576 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 577 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer
 578 El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bow-
 579 man, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna
 580 Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom
 581 Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Ka-
 582 plan. Language models (mostly) know what they know, 2022. URL <https://arxiv.org/abs/2207.05221>.

583 Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar finetuning
 584 examples control how language models hallucinate. *arXiv preprint arXiv:2403.05612*, 2024.

594 Sanyam Kapoor, Nate Gruver, Manley Roberts, Arka Pal, Samuel Dooley, Micah Goldblum,
 595 and Andrew Wilson. Calibration-tuning: Teaching large language models to know what they
 596 don't know. In Raúl Vázquez, Hande Celikkanat, Dennis Ulmer, Jörg Tiedemann, Swabha
 597 Swayamdipta, Wilker Aziz, Barbara Plank, Joris Baan, and Marie-Catherine de Marneffe (eds.),
 598 *Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024)*, pp. 1–14,
 599 St Julians, Malta, March 2024. Association for Computational Linguistics. URL <https://aclanthology.org/2024.uncertainlp-1.1/>.

600

601 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
 602 uncertainty estimation in natural language generation. *arXiv preprint arXiv:2302.09664*, 2023.

603

604 Jixuan Leng, Chengsong Huang, Banghua Zhu, and Jiaxin Huang. Taming overconfidence in llms:
 605 Reward calibration in rlhf. *ArXiv*, abs/2410.09724, 2024. URL <https://arxiv.org/abs/2410.09724>.

606

607 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
 608 words. *arXiv preprint arXiv:2205.14334*, 2022.

609

610 Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box hallu-
 611 cination detection for generative large language models. *arXiv preprint arXiv:2303.08896*, 2023.

612

613 Sabrina J Mielke, Arthur Szlam, Emily Dinan, and Y-Lan Boureau. Reducing conversational agents'
 614 overconfidence through linguistic calibration. *Transactions of the Association for Computational
 615 Linguistics*, 10:857–872, 2022.

616

617 Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz, Jure Leskovec,
 618 Eric J Topol, and Pranav Rajpurkar. Foundation models for generalist medical artificial intelli-
 619 gence. *Nature*, 616(7956):259–265, 2023.

620

621 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 622 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 623 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 27730–27744, 2022.

624

625 Chantal Pellegrini, Ege Özsoy, Benjamin Busam, Benedikt Wiestler, Nassir Navab, and Matthias
 626 Keicher. Radialog: Large vision-language models for x-ray reporting and dialog-driven assis-
 627 tance. In *Medical Imaging with Deep Learning*, 2025.

628

629 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 630 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

631

632 Jingzhe Shi, Jialuo Li, Qinwei Ma, Zaiwen Yang, Huan Ma, and Lei Li. Chops: Chat with cus-
 633 tomer profile systems for customer service with llms, 2024. URL <https://arxiv.org/abs/2404.01343>.

634

635 Elias Stengel-Eskin, Peter Hase, and Mohit Bansal. Lacie: Listener-aware finetuning for confidence
 636 calibration in large language models. *arXiv preprint arXiv:2405.21028*, 2024.

637

638 Jingyun Sun, Chengxiao Dai, Zhongze Luo, Yangbo Chang, and Yang Li. Lawluo: A multi-
 639 agent collaborative framework for multi-round chinese legal consultation, 2024. URL <https://arxiv.org/abs/2407.16252>.

640

641 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
 642 tion answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Con-
 643 ference of the North American Chapter of the Association for Computational Linguistics: Human
 644 Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Min-
 645 nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL
 646 <https://aclanthology.org/N19-1421>.

647

648 Shuchang Tao, Liuyi Yao, Hanxing Ding, Yuexiang Xie, Qi Cao, Fei Sun, Jinyang Gao, Huawei
 649 Shen, and Bolin Ding. When to trust llms: Aligning confidence with response quality. *arXiv
 650 preprint arXiv:2404.17287*, 2024.

648 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
 649 Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated
 650 confidence scores from language models fine-tuned with human feedback. *arXiv preprint*
 651 *arXiv:2305.14975*, 2023.

652 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 653 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 654 efficient foundation language models. *arXiv*, 2023.

655 Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaeckermann, Mohamed Amin, Pi-Chuan Chang,
 656 Andrew Carroll, Charles Lau, Ryutaro Tanno, Ira Ktena, et al. Towards generalist biomedical ai.
 657 *NEJM AI*, 1(3):A10a2300138, 2024.

658 Dennis Ulmer, Martin Gubri, Hwaran Lee, Sangdoo Yun, and Seong Joon Oh. Calibrating large
 659 language models using their generations only. *arXiv preprint arXiv:2403.05973*, 2024.

660 Fanqi Wan, Xinting Huang, Leyang Cui, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge
 661 verification to nip hallucination in the bud. *arXiv preprint arXiv:2401.10768*, 2024.

662 Cheng Wang. Calibration in deep learning: A survey of the state-of-the-art, 2024. URL <https://arxiv.org/abs/2308.01222>.

663 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 664 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 665 *arXiv preprint arXiv:2203.11171*, 2022.

666 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 667 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 668 neural information processing systems*, 35:24824–24837, 2022.

669 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
 670 express their uncertainty? an empirical evaluation of confidence elicitation in llms, 2024. URL
 671 <https://arxiv.org/abs/2306.13063>.

672 Hongshen Xu, Zichen Zhu, Situo Zhang, Da Ma, Shuai Fan, Lu Chen, and Kai Yu. Rejection im-
 673 proves reliability: Training llms to refuse unknown questions using rl from knowledge feedback,
 674 2024. URL <https://arxiv.org/abs/2403.18349>.

675 Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neubig, and Pengfei Liu. Alignment for honesty.
 676 *Advances in Neural Information Processing Systems*, 37:63565–63598, 2024.

677 Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing Lian, Xingyao Wang, Yangyi Chen, Heng Ji,
 678 and Tong Zhang. R-tuning: Instructing large language models to say ‘i don’t know’. In *Proceed-
 679 ings of the 2024 Conference of the North American Chapter of the Association for Computational
 680 Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 7106–7132, 2024.

681 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
 682 ing text generation with bert. *arXiv preprint arXiv:1904.09675*, 2019.

683 Wei Zhou, Xiangyu Peng, and Mark Riedl. Dialogue shaping: Empowering agents through npc
 684 interaction. *arXiv preprint arXiv:2307.15833*, 2023.

685 Ziang Zhou, Tianyuan Jin, Jieming Shi, and Qing Li. Steerconf: Steering llms for confidence
 686 elicitation. *arXiv preprint arXiv:2503.02863*, 2025.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 APPENDIX
703704 A PROMPTS
705

706 For all the question-answering settings, the model is directly prompted to answer a question without
 707 a preceding example or context. For our method the model was prompted to answer the question
 708 and additionally provide a verbalized confidence. For the other baselines that do not need a
 709 verbalized confidence but infer it indirectly, the model is prompted to only give the correct answer.
 710 The specifics for multiple-choice are slightly changed but hold mostly the same meaning. The exact
 711 prompts for each method can be seen in Table 6 for open questions and Table 7 for multiple-choice
 712 questions. The prompts for each Multi-Answer method can be seen in Table 8. We decided not to
 713 give the model a role like "expert" in the system prompt but keep it neutral, as we observed that the
 714 role we give the model affects the verbalized confidence.

716 Table 6: The prompts for each method for the open short form questions.
717

718 Method	719 Prompt
720 Verbalize/ Rewarding Doubt	721 You will get questions. Answer with the correct answer. Additionally provide a confidence between 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, of how sure you are the answer is correct. A value close to 0 means you think there is a high probability that the answer is wrong. The closer the value is to 10, the higher you think is the probability that the answer is correct. The output should have the format 'Answer: <answer>, Confidence: <confidence>' and nothing else.
722 CoT	723 You will get questions. Read the question, analyze step by step, provide your reasoning steps, answer and your confidence in the response. The confidence should be between 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. A value close to 0 means you think there is a high probability that you could be wrong. The closer the value is to 5, the lower you think is the chance that you could be wrong. The output should have the format 'Thoughts: <reasoning steps>, Answer: <just the answer and nothing else>, Confidence: <confidence>'.
724 Top-K	725 You will get test questions with possible options. Read the question and enumerate your 5 best guesses and the probability for each that is correct (0% to 100%). Just answer with the options and nothing else. The answer should have the format 1. <answer> <probability to be correct>\n 2. <answer> <probability to be correct>\n and so on
726 Sequence Probability/ Trained Probe	727 You will get questions. Answer with the correct answer only and nothing else.
728 Surrogate Token	729 (<i>user</i>) You will get questions. Answer with the correct answer only and nothing else. (<i>model</i>) <response> (<i>user</i>) Is the proposed answer: True False 730 \n The proposed answer is:
731 Self-Consistency	732 You will get questions. Read the question, analyze step by step, provide your reasoning steps and answer. The output should have the format 'Thoughts: <reasoning steps>, Answer: <just the answer and nothing else>'

746
747
748
749
750
751
752
753
754
755

756 Table 7: The prompts for each method for multiple choice questions.
757

758 Method	759 Prompt
760 Verbalize/ Rewarding Doubt	761 You will get test questions with possible options. Answer with the correct 762 option. Additionally provide a confidence between 0, 1, 2, 3, 4, 5, 6, 7, 8, 763 9, 10, of how sure you are the answer is correct. A value close to 0 means 764 you think there is a high probability that the answer is wrong. The closer 765 the value is to 10, the higher you think is the probability that the answer 766 is correct. The output should have the format 'Answer: <answer_index>, 767 Confidence: <confidence>' and nothing else. 768
769 CoT	770 You will get test questions with possible options. Read the question, analyze 771 step by step, provide your reasoning steps, answer and your confidence 772 in the response. The confidence should be between 0, 1, 2, 3, 4, 5, 6, 7, 773 8, 9, 10. A value close to 0 means you think there is a high probability 774 that you could be wrong. The closer the value is to 5, the lower you think 775 is the chance that you could be wrong. The output should have the for- 776 mat 'Thoughts: <reasoning steps>, Answer: <answer_index>, Confidence: 777 <confidence>' and nothing else. 778
779 Sequence Prob- 780 ability/ Trained 781 Probe	782 You will get test questions with possible options. Answer with the correct 783 option index only and nothing else. 784
785 Surrogate To- 786 ken	787 (<i>user</i>) You will get test questions with possible options. Answer with the 788 correct option index only and nothing else. (<i>model</i>) <response> (<i>user</i>) Is 789 the proposed answer: True False \n The proposed answer is: 790
791 Self- 792 Consistency	793 You will get test questions with possible options. Read the question, analyze 794 step by step, provide your reasoning steps and the correct option index. 795 The output should have the format 'Thoughts: <reasoning steps>, Answer: 796 <answer_index>' and nothing else. 797

783 Table 8: The prompts for each method for multiple fact questions.
784

785 Method	786 Prompt
787 Verbalize/ Rewarding Doubt	788 Instructions: 1. You will get a question with multiple possible answers. 2. 789 Enumerate all possible answers you know. After each individual answer 790 state your confidence in this answer. The format should be 'Answer: <an- 791 swer>, Confidence: <confidence> \n' for each individual answer. 3. The 792 confidence should be an integer number between 0 and 10. 0 means you 793 know for certain the answer is wrong. 10 means you know for certain the 794 answer is correct. 4. Do not say anything else. Do not write multiple an- 795 swers in one answer block. 5. When asked about dates, answer with the 796 specific year. 797
798 Sequence Prob- 799 ability/ Trained 800 Probe	801 Instructions: 1. You will get a question with multiple possible answers. 2. 802 Enumerate all possible answers you know. Write each single answer in this 803 format "Answer: <answer>\n". 3. Do not say anything else. Do not write 804 multiple answers in one answer block or any other comments. 4. When 805 asked about dates, answer with the specific year. 5. Do not repeat answers. 806

807

B PROOF

808 In the following, we prove Proposition 1 with the reward function
809

$$810 R(a, \hat{p}, j) = \begin{cases} \log(\hat{p}), & \text{if } j(a) = 1 \text{ (correct)} \\ 811 \log(1 - \hat{p}), & \text{if } j(a) = 0 \text{ (incorrect)} \end{cases}$$

812 *Proof.* The proof is analogous to the proof that the logarithmic scoring function is a proper scoring
813 function.
814

810 Let $f(\hat{p}) = \mathbb{E}[R(a, \hat{p}, j)]$ be the expected reward for all values of \hat{p} and p^* :

$$812 \quad f(\hat{p}) = p^* \log(\hat{p}) + (1 - p^*) \log(1 - \hat{p}).$$

813 Taking the first derivative w.r.t. \hat{p} :

$$815 \quad f'(\hat{p}) = \frac{p^*}{\hat{p}} - \frac{1 - p^*}{1 - \hat{p}}$$

818 and setting

$$819 \quad f'(\hat{p}) = 0 \implies p^*(1 - \hat{p}) = \hat{p}(1 - p^*) \implies \hat{p} = p^*$$

820 showing the only critical point in $(0, 1)$ of f' is at $\hat{p} = p^*$.

821 The second derivative:

$$823 \quad f''(\hat{p}) = -\frac{p^*}{\hat{p}^2} - \frac{1 - p^*}{(1 - \hat{p})^2}$$

825 is strictly negative for $\hat{p} \in (0, 1)$. Hence, $f(\hat{p})$ is concave and has its global maximum at $\hat{p} = p^*$. \square

827 As the logarithm of 0 is undefined, we add a small constant ϵ in the reward function we use for
828 training:

$$830 \quad R(a, \hat{p}, j) = \begin{cases} \log(\max(\hat{p}, \epsilon)), & \text{if } j(a) = 1 \text{ (correct)} \\ \log(\min(1 - \hat{p}, 1 - \epsilon)), & \text{if } j(a) = 0 \text{ (incorrect)} \end{cases}$$

833 Through this clipping all confidence predictions between 0 and ϵ , and 1 and $1 - \epsilon$, respectively,
834 are rewarded equally. This leads to the model not being able to differentiate between confidence
835 estimations within these ranges. We argue this effect is minor for a sufficiently small ϵ and can be
836 disregarded in practice.

C CLIPPED REWARD FUNCTION

841 The clipped reward function as described in Section 3, is defined as follows:

$$843 \quad R(a, \hat{p}, j) = \begin{cases} \log(\max(\hat{p}, \epsilon)), & \text{if } j(a) = 1 \text{ (correct)} \\ \log(\min(1 - \hat{p}, 1 - \epsilon)), & \text{if } j(a) = 0 \text{ (incorrect)} \end{cases} \quad (2)$$

846 where $\epsilon > 0$ is a small positive constant of 0.001 introduced for numerical stability to avoid evaluating
847 the logarithm at zero.

D IMPLEMENTATION DETAILS OF BASELINES

851 For the Sequence Probability, we compute the average probability for each token in the response. In
852 the Self-Consistency method, we let the model explore ten reasoning pathways, and the similarity of
853 each resulting output is evaluated using the BERTScore metric Zhang et al. (2019). For the trained
854 probe Azaria & Mitchell (2023), the original study introduced a custom dataset comprising short
855 statements classified as either true or false. The model’s activations in response to these statements
856 were extracted from specific layers, and a multilayer perceptron (MLP) was subsequently trained
857 on these activations to predict the truthfulness of the statements. To ensure a fair comparison, we
858 adapted this methodology to better align with our data by allowing the model to generate answers
859 to training dataset questions and then extracting its activations from the 24th layer for both the
860 statements and their corresponding answers. The labels for each sample were determined following
861 the same evaluation procedure as described in our evaluation framework. For the architecture of the
862 MLP, we employed the same design as Azaria & Mitchell (2023) and train it for four epochs with
863 a learning rate of 1e-4 until convergence. The exact prompts used for each baseline are provided in
Appendix A.

864 **E SOCIETAL IMPACT**
865866 This work introduces a reinforcement learning approach that enables Large Language Models
867 (LLMs) to express calibrated confidence in their factual answers, advancing safe and trustworthy AI
868 deployment. The method improves reliability and uncertainty awareness in LLMs, which is partic-
869 ularly valuable in high-stakes settings such as medicine, law, or customer support, where overconfi-
870 dent errors can have serious consequences. By optimizing a proper scoring rule during training, our
871 method provides a theoretically sound and generalizable mechanism for aligning confidence with
872 factual correctness—supporting human-AI collaboration and informed decision-making. However,
873 expressing numerical confidence may lead users to overly trust AI systems, especially if the model
874 is well-calibrated statistically but still wrong in important individual cases. This risk calls for careful
875 deployment, appropriate user interfaces that contextualize model confidence, and safeguards against
876 overreliance on AI-generated outputs.
877878 **F USE OF LARGE LANGUAGE MODELS**
879880 We employed ChatGPT to enhance the clarity of the manuscript by focusing on grammar correc-
881 tions, shortening overly complex sentences, and providing alternative wording suggestions. All
882 outputs were manually reviewed before inclusion, and no new technical material, code, results, or
883 figures were generated by the tool.
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917