
Diffusion-based Curriculum Reinforcement Learning

Erdi Sayar1, Giovanni Iacca2, Ozgur S. Oguz3, Alois Knoll1
Technical University of Munich1 University of Trento2 Bilkent University3

erdi.sayar@tum.de, giovanni.iacca@unitn.it,
ozgur@cs.bilkent.edu.tr, knoll@in.tum.de

Abstract

Curriculum Reinforcement Learning (CRL) is an approach to facilitate the learning
process of agents by structuring tasks in a sequence of increasing complexity.
Despite its potential, many existing CRL methods struggle to efficiently guide
agents toward desired outcomes, particularly in the absence of domain knowledge.
This paper introduces DiCuRL (Diffusion Curriculum Reinforcement Learning), a
novel method that leverages conditional diffusion models to generate curriculum
goals. To estimate how close an agent is to achieving its goal, our method uniquely
incorporates a Q-function and a trainable reward function based on Adversarial In-
trinsic Motivation within the diffusion model. Furthermore, it promotes exploration
through the inherent noising and denoising mechanism present in the diffusion
models and is environment-agnostic. This combination allows for the generation
of challenging yet achievable goals, enabling agents to learn effectively without
relying on domain knowledge. We demonstrate the effectiveness of DiCuRL in
three different maze environments and two robotic manipulation tasks simulated in
MuJoCo, where it outperforms or matches nine state-of-the-art CRL algorithms
from the literature.

1 Introduction

Reinforcement learning (RL) is a computational method that allows an agent to discover optimal
actions through trial and error by receiving rewards and adapting its strategy to maximize cumulative
rewards. Deep RL, which integrates deep neural networks (NNs) with RL, is an effective way to
solve large-dimensional decision-making problems, such as learning to play video games [1, 2], chess
[3], Go [4], and robot manipulation tasks [5, 6, 7, 8]. One of the main advantages of deep RL is that
it can tackle difficult search problems where the expected behaviors and rewards are often sparsely
observed. The drawback, however, is that it typically needs to thoroughly explore the state space,
which can be costly especially when the dimensionality of this space grows.

Some methods, such as reward shaping [9], can mitigate the burden of exploration, but they require
domain knowledge and prior task inspection, which limits their applicability. Alternative strategies
have been proposed to enhance the exploration efficiency in a domain-agnostic way, such as priori-
tizing replay sampling [8, 10, 11], or generating intermediate goals [12, 13, 14, 15, 16, 17, 18, 19].
This latter approach, known as Curriculum Reinforcement Learning (CRL), focuses on designing a
suitable curriculum to guide the agent gradually toward the desired goal.

Various approaches have been proposed for the generation of curriculum goals. Some methods focus
on interpolation between a source task distribution and a target task distribution [20, 21, 22, 17].
However, these methods often rely on assumptions that may not hold in complex RL environments,
such as specific parameterization of distributions, hence ignoring the manifold structure in space.
Other approaches adopt optimal transport [13, 23], but they are typically applied in less challenging
exploration scenarios. Curriculum generation based on uncertainty awareness has also been explored,
but such methods often struggle with identifying uncertain areas as the goal space expands [15, 24, 12].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Some research minimizes the distance between generated curriculum and desired outcome distribu-
tions using Euclidean distance, although this approach can be problematic in certain environments
[19, 25]. Other methods incorporate graph-based planning, but require an explicit specification of
obstacles [26, 27]. Lastly, approaches based on generative AI models have been proposed. For in-
stance, [14] uses GANs to generate tasks of intermediate difficulty, but it relies on arbitrary thresholds.
Alternatively, [28, 29, 30] apply diffusion models in offline RL settings [14, 28, 30].

Despite these advancements, existing CRL approaches still struggle with generating suitable inter-
mediate goals, particularly in complex environments with significant exploration challenges. To
overcome this challenge, in this paper, we propose DICURL (Diffusion Curriculum Reinforcement
Learning). Our method leverages conditional diffusion models to dynamically generate curriculum
goals, guiding agents towards desired goals while simultaneously considering the Q-function and a
trainable reward function based on Adversarial Intrinsic Motivation (AIM) [31].

Contributions Unlike previous offline RL approaches [28, 29, 30] that train and use diffusion models
for planning or policy generation relying on pre-existing data, DICURL facilitates online learning,
enabling agents to learn effectively without requiring domain-specific knowledge. This is achieved by
three key elements. 1 The diffusion model captures the distribution of visited states and facilitates
exploration through its inherent noising and denoising mechanism. 2 As the Q-function predicts the
cumulative reward starting from a state and a given goal while following a policy, we can determine
feasible goals by maximizing the Q-function, ensuring that the generated goals are challenging yet
achievable for the agent. 3 The AIM reward function estimates the agent’s proximity to the desired
goal and allows us to progressively shift the curriculum towards the desired goal.

We compare our proposed approach with nine state-of-the-art CRL baselines in three different maze
environments and two robotic manipulation tasks simulated in MuJoCo [32]. Our results show that
DICURL surpasses or performs on par with the state-of-the-art CRL algorithms.

2 Related Work

Curriculum Reinforcement Learning CRL [33] algorithms generally adjust the sequence of learning
experiences to improve the agent’s performance or accelerate training. These algorithms focus on
formulating intermediate goals that progressively guide the agent toward the desired goal, and have
been successfully applied to various tasks, mainly in the field of robot manipulation [34, 35, 36, 37].

Hindsight Experience Replay (HER) [38] tackles the challenge of sparse reward RL tasks by employ-
ing hindsight goals, considering the achieved goals as pseudo-goals, and substituting them for the
desired goal. However, HER struggles to solve tasks when the desired goals are far from the initial
position. Hindsight Goal Generation (HGG) [19] addresses the inefficiency issue inherent in HER
by generating hindsight goals through maximizing a value function and minimizing the Wasserstein
distance between the achieved goal and the desired goal distribution.

CURROT [23] and GRADIENT [13] both employ optimal transport for the generation of inter-
mediate goals. CURROT formulates CRL as a constrained optimization problem and uses the
Wasserstein distance to measure the distance between distributions. Conversely, GRADIENT intro-
duces task-dependent contextual distance metrics and can manage non-parametric distributions in
both continuous and discrete context settings; moreover, it directly interprets the interpolation as the
geodesic from the source to the target distribution.

GOAL-GAN [14] generates intermediate goals using a Generative Adversarial Network (GAN) [39],
without considering the target distribution. A goal generator is used to propose goal regions, and
a goal discriminator is trained to evaluate if a goal is at the right level of difficulty for the current
policy. The specification of goal regions is done using an indicator reward function, and policies are
conditioned on the goal as well as the state, similarly to a universal value function approximator [40].

PLR [15] uses selective sampling to prioritize instances with higher estimated learning potential
for future revisits during training. Learning potential is estimated using TD-Errors, resulting in the
creation of a more challenging curriculum. VSD [16] estimates the epistemic uncertainty of the
value function and selects goals based on this uncertainty measure. The value function confidently
assigns high values to easily achievable goals and low values to overly challenging ones. ACL [18]
maximizes the learning progress by considering two main measures: the rate of improvement in
prediction accuracy and the rate of increase in network complexity. This signal acts as an indicator of

2

the current rate of improvement of the learner. The ALP-GMM [17] fits Gaussian Mixture Models
(GMM) using an Absolute Learning Progress (ALP) score, which is defined as the absolute difference
in rewards between the current episode and the previous episodes. The teacher generates curriculum
goals by sampling environments to maximize the student’s ALP, which is modeled by the GMM.

Finally, OUTPACE [12] employs a trainable intrinsic reward mechanism, known as Adversarial
Intrinsic Motivation (AIM) [31] (the same used in our method) which is designed to minimize the
Wasserstein distance between the state visitation distribution and the goal distribution. This function
increases along the optimal goal-reaching trajectory. For curriculum goal generation, OUTPACE uses
Conditional Normalized Maximum Likelihood (CNML), to classify state success labels based on
their association with visited states, out-of-distribution samples, or the desired goal distribution. The
method also prioritizes uncertain and temporally distant goals using meta-learning-based uncertainty
quantification [41] and Wasserstein-distance-based temporal distance approximation.

Diffusion Models for Reinforcement Learning UniPi [42] leverages diffusion models to generate
a video as a planner, conditioned on an initial image frame and a text description of a current goal.
Subsequently, a task-specific policy is employed to infer action sequences from the generated video
using an inverse dynamic model. AVDC [43] constructs a video-based robot policy by synthesizing
a video that renders the desired task execution and directly regresses actions from the synthesized
video without requiring any action labels or inverse dynamic model. It takes RGBD observations
and a textual goal description as inputs, synthesizes a video of the imagined task execution using a
diffusion model, and estimates the optical flow between adjacent frames in the video. Then, using the
optical flow and depth information, it computes robot commands.

Diffusion Policy [44] uses a diffusion model to learn a policy through a conditional denoising
diffusion process. BESO [45] adopts an imitation learning approach that learns a goal-specified
policy without any rewards from an offline dataset. DBC [46] uses a diffusion model to learn state-
action pairs sampled from an expert demonstration dataset and increases generalization using the
joint probability of the state-action pairs. Finally, Diffusion BC [47] uses a diffusion model to imitate
human behavior and capture the full distribution of observed actions on robot control tasks and 3D
gaming environments.

Limitations of current works and distinctive aspects of DICURL The aforementioned studies
typically require offline data for training. Both [42] and [43] employ diffusion models to synthesize
videos for rendering the desired task execution, and actions are then inferred from such videos.
Studies such as [44, 45, 46, 47] also focus on learning policies from offline datasets. Despite these
efforts, reliance on inadequate demonstration data can lead to suboptimal performance [44]. Distinct
from these approaches, our method instead does not rely on prior expert data or any pre-collected
datasets. As an off-policy RL method, DICURL collects in fact data through interaction with the
environment.

3 Background

We now introduce the background concepts on multi-goal RL, Soft Actor-Critic (SAC), Wasserstein
distance, Adversarial Intrinsic Motivation (AIM), and diffusion models.

3.1 Multi-Goal Reinforcement Learning

In the context of multi-goal RL, we can formulate the RL problem as a goal-oriented Markov decision
process (MDP) characterized by continuous state and action spaces. This MDP is defined by the
tuple ⟨S,A,G, T , p, γr⟩. Here, S represents the state space, A denotes the action space, and G is the
goal space. The transition dynamics, T (s′|s, a), describes the probability of transitioning to the next
state s′ given the current state s and action a. The joint probability distribution over the initial states
and the desired goal distribution is represented by p(s0, g), and γr ∈ [0, 1] is a discount factor.

We utilize the AIM reward function rφ, as outlined in Section 3.3. The objective is to identify
the optimal policy π that maximizes the expected cumulative reward approximated by the value
function Qπ(s, g, a). This function can be expanded to the Universal Value Function (UVF), a
goal-conditioned value function incorporating the goal into value estimation. The UVF, defined as
V π(s, g), where s is the current state, g is the goal, and π is the policy, estimates the expected return

3

from state s under policy π, given goal g. The UVF has been shown to successfully generalize to
unseen goals, which makes it a viable approach for multi-goal RL [40].

3.2 Soft Actor-Critic

Soft Actor-Critic (SAC) [48] is an off-policy RL algorithm that learns a policy maximizing the sum
of the expected discounted cumulative reward and the entropy of the policy, namely: J(π) =∑T
t=0 Est∼B r + αeH(π(· | st, g)). The policy πψ(a | s) : S 7→ P(A) defines a map from

state to distributions over actions, parameterized by ψ. A state-action value function is defined
as Qϕ(s, g, a) : S × G × A → R, parameterized by ϕ. The policy parameters can be learned by
directly minimizing the expected KL divergence and the Q-value is trained by minimizing the soft
Bellman residual, which are defined as the following loss functions:

Lπ = E(s,g)∼B
[
Ea∼πψ [αe log (πψ(a | s, g)−Qϕ(s, g, a))]

]
(1)

LQ = E(s,a,r,s′,g)∼B

[
Qϕ (s, g, a)− (r + γrEs′∼B [Vϕ(s

′, g)])
2
]

(2)

where Vϕ(s, g) = Ea∼π [Qϕ(s, g, a)− log πψ (a | s, g)], B is the replay buffer and αe is the temper-
ature parameter that controls the stochasticity of the optimal policy.

3.3 Wasserstein Distance and Adversarial Intrinsic Motivation Reward Function

The Wasserstein distance offers a way to quantify the amount of work required to transport one
distribution to another distribution. The Wasserstein-p distance Wp between two distributions µ and
ν on a metric space (X , d), where X is a set and d denotes a metric on X , is defined as follows [49]:

Wp(µ, ν) : = inf
γ∈Π(µ,ν)

(∫
X
d(x, y)pdγ(x, y)

)1/p

= inf
γ∈Π(µ,ν)

E(X,Y)∼γ [d(X,Y)p]
1/p (3)

where Π(µ, ν) denotes the set of all possible joint distributions γ(x, y) whose marginals are µ and
ν. Intuitively, γ(x, y) tells what is the least amount of work, as measured by d, that needs to be
done to convert the distribution µ into the distribution ν [50]. A timestep quasi-metric dπ (s, g) can
be used as a distance metric. It estimates the work needed to transport one distribution to another,
representing the number of transition steps required to reach the goal state g ∈ G for the first time
when following the policy π.

As proposed by Durugkar et al. [31], the AIM reward function can be learned by minimizing the
Wasserstein distance between the state visitation distribution ρπ and the desired goal distribution
G. Through the minimization of the Wasserstein distance W1 (ρπ,G) (for p = 1, W1 is known as
the Kantorovich–Rubinstein distance), a reward function can be formulated to estimate the work
required to transport the state visitation distribution ρπ to the desired goal distribution G and is
expressed as follows: W1 (ρπ,G) = sup∥f∥L≤1 [Eg∼G [f (g)]− Es∼ρπ [f(s)]]. If the state visitation
distribution ρπ(s) comprises states that optimally progress towards the goal g, the potential function
f(s) increases along the trajectory, reaching its maximum value at f(g). The reward function, which
can be approximated using a neural network, denoted as rπφ, increases as the states approach the
desired goal g ∈ G. rπφ can be trained using the data collected by the policy π. Leveraging the
estimation of the Wasserstein distance W1 (ρπ,G), the loss function for training the parameterized
reward function rπφ is defined as follows:

Lφ = E(s,g)∼B
[
fπφ (s)− fπφ (g)

]
+ λ · E(s,s′,g)∼B

[
max

(∣∣fπφ (s)− fπφ (s′)
∣∣− 1, 0

)2]
(4)

where the second component of the sum is a penalty term and the coefficient λ is necessary to ensure
smoothness [31]. The reward can be calculated as rφ(s, g) = fπφ (s)− fπφ (g), which is the negative
of the Wasserstein distance −W1 (ρπ,G).

3.4 Diffusion Models

Diffusion models [51] express a probability distribution p(x0) through latent variables in the form
pθ (x0) :=

∫
pθ (x0:N) dx1:N , where x1, . . . ,xN are latent variables of the same dimensionality

as the data x0 ∼ p (x0). They are characterized by a forward and a reverse diffusion process.

4

The forward diffusion process approximates the posterior q (x1:N | x0) using a Markov chain that
perturbs the input data by gradually adding Gaussian noise x0 ∼ q (x0) in N steps with a predefined
variance schedule β1, . . . , βN . This process is defined as:

q (x1:N | x0) :=

N∏
k=1

q (xk | xk−1) (5)

q (xk | xk−1) := N
(
xk;

√
1− βkxk−1, βkI

)
The reverse diffusion process aims to recover the original input data from the noisy (diffused) data.
It learns to progressively reverse the diffusion process step by step and approximates the joint
distribution pθ (x0:N). This process is defined as:

pθ (x0:N) := p (xN)

N∏
k=1

pθ (xk−1 | xk) (6)

pθ (xk−1 | xk) := N (xk−1;µθ (xk, k) ,Σθ (xk, k))

where p (xN) = N (xN ;0, I). The optimization of the reverse diffusion process is achieved by
maximizing the evidence lower bound (ELBO) Eq

[
ln pθ(x0:N)

q(x1:N |x0)

]
[52]. Once trained, sampling data

from Gaussian noise xN ∼ p (xN) and running through the reverse diffusion process from k = N to
k = 0 yields an approximation of the original data distribution.

4 Methodology
As discussed earlier, in multi-goal RL, the desired goal is sampled from a desired goal distribution
in each episode, and the agent aims to achieve multiple goals. By integrating a curriculum design
into multi-goal RL, we can reformulate a task in such a way that it starts with easier goals and
progressively increases in difficulty. Our curriculum diffusion-model-based goal-generation method
works as follows. Given the presence of two different types of timesteps for the diffusion process
and the RL task, we denote the diffusion timesteps using subscripts k ∈ {1, . . . , N} and the RL
trajectory timesteps using subscripts t ∈ {1, . . . , T}. Our curriculum goal generation takes the state
s as an input. It then outputs a curriculum goal set Gc, which is obtained through the reverse diffusion
process of a conditional diffusion model as follows:

Gc = pθ (g0:N | s) = N (gN ;0, I)

N∏
k=1

pθ (gk−1 | gk, s) (7)

where g0 is the end sample of the reverse diffusion process used as a curriculum goal. Commonly,
pθ (gk−1 | gk, s) is a conditional distribution parametrized by θ and is chosen to model a multivariate
Gaussian distribution N (gk−1;µθ (gk, s, k) ,Σθ (gk, s, k)). Following [51], rather than learning
the variances of the forward diffusion process, we assign a fixed covariance matrix Σθ (gi, s, i) = βiI
and a mean defined as:

µθ (gk, s, k) =
1
√
αk

(
gk −

βk√
1− ᾱk

ϵθ (gk, s, k)

)
. (8)

Initially, we sample a Gaussian noise gN ∼ N (0, I). We then apply the reverse diffusion process
parameterized by θ starting from the last step N and proceeding backward to step 1:

gk−1 | gk =
gk√
αk
− βk√

αk (1− ᾱk)
ϵθ (gk, s, k) +

√
βkϵ (9)

ϵ ∼ N (0, I), for k = N, . . . , 1 .

For the case k = 1 (last term of the reverse diffusion process), we set ϵ to 0, to enhance the sampling
quality by ignoring

√
βk and edge effects. In fact, as empirically demonstrated by [51], training

the diffusion model yields better results when utilizing a simplified loss function that excludes
the weighting term. Thus, we adopt the following simplified loss function to train the conditional
ϵθ-model, where ϵθ is a function approximator designed to predict ϵ1.

1Details about deriving the conditional diffusion model equation are provided in Supp. Mat. A.

5

Ld(θ) = Ek∼U,ϵ∼N (0,I),(s,g0)∼B

[∥∥ϵ− ϵθ
(√
ᾱkg0 +

√
1− ᾱkϵ, s, k

)∥∥2] , (10)

where U is a uniform distribution over the discrete set {1, . . . , N} and B denotes the replay buffer
collected by policy π.

To sample feasible curriculum goals for the agent, we integrate the Q-function and the AIM reward
function into the loss. The total loss function for training the diffusion model is defined as follows:

L = ξd · Ld(θ)− Es,a∼B,g0∼Gc,gd∼G [ξq ·Qϕ(s,g0, π(s,g0)) + ξr · rφ(g0, gd)] (11)

The rationale is that, while minimizing the lossLd allows us to accurately capture the state distribution,
we also aim to simultaneously maximize the expected value of Q and the AIM reward function rφ,
using the weights ξd, ξq , and ξr to adjust the relative importance of the three components of the loss
function. More in detail, the Q-function predicts the cumulative reward starting from a state and
following the policy, while the AIM reward function estimates how close an agent is to achieving
its goal. By maximizing Q and the AIM reward, we can generate curriculum goals that are neither
overly simplistic nor excessively challenging, progressing towards the desired goal.

In Eq. (11), g0 is obtained by sampling experiences from the replay buffer using Eq. (9) through
a reverse diffusion process parameterized by θ. Therefore, taking the gradient of Q and the AIM
reward rφ involves back-propagating through the entire diffusion process. After we obtain the set of
curriculum goals Gc from the diffusion model, we use a bipartite graph G ({Vx, Vy}, E) with edge
costs w, composed of vertices Vx (i.e., the curriculum goal candidates derived from the diffusion
model) and vertices Vy (i.e., the desired goals), where E represents the edge weights, and select the
optimal curriculum goal gc2. We employ the Minimum Cost Maximum Flow algorithm in order to
solve the bipartite matching problem and identify the edges with the minimal cost w:

max
Ĝc:|Ĝc|=K

∑
g0t=0,..T∈Ĝd,gi+∈Ĝ+

w where: w =

√
(gi − ḡ)2

N
. (12)

The specifics of the generation of intermediate goals through diffusion models are explained in
Algorithm 1, while the overall algorithm is outlined in Algorithm 2.

In Algorithm 1, during the training iterations, we sample Gaussian noise gN ∼ N (0, I) to denoise
the data in the reverse diffusion process. Between lines 5 and 7, we iterate from time step N to 1,
where we perform the reverse diffusion process using Eq. (9) and subtract the predicted noise ϵθ
from gN to denoise the noisy goal iteratively. We then uniformly sample a timestep k from the range
between 1 and N (line 8) and sample a Gaussian noise ϵ ∼ N (0, I) (line 9) in order to calculate the
diffusion loss defined in Eq. (10). In line 10, we calculate the diffusion loss, the Q-value, and the
AIM reward function using the generated goal g0 from the reverse diffusion process. Then in line
11, we calculate the total loss defined in Eq. (11) and update the diffusion model parameters θ using
gradient descent. Finally, we return the generated goal g0.

In Algorithm 2 we begin by defining an off-policy algorithm denoted as A. While any off-policy
algorithm could be employed, we choose Soft Actor-Critic (SAC) to align with the baseline algorithms
tested in our experiments. In line 5, we sample the initial state and provide the curriculum goal gc to
the policy, along with the current state. The policy generates an action (line 7), and executes it in the
environment (line 8). Subsequently, the next state and reward are obtained (line 9). Then, we provide
the minibatch b to the curriculum goal generator in line 11 to generate a curriculum goal set Gc. Then
we find the optimal curriculum goal gc using bipartite graph optimization (line 12). Furthermore, the
loss functions defined in Eq. (1) and Eq. (2) are calculated, and the networks approximating π and Q,
as well as the AIM reward function rφ defined in Eq. (4), are updated. Between line 15 and 21, we
run n test rollouts and extract the achieved state of the agent using ϕ and calculate the success rate in
reaching the desired goal within a threshold value κ.

2In principle, instead of sampling experiences from the replay buffer and providing them to the diffusion
model to generate a curriculum goal set, only the state of the last timestep, sT , could be provided to the diffusion
model to obtain a curriculum goal. The difference is that giving the sampled experiences to the diffusion model
generates many curriculum points, while using only the last timestep sT generates only a single curriculum
point, eliminating the need to apply any selection strategy. This is investigated in Supp. Mat. B.

6

Algorithm 1 Diffusion Curriculum Goal Generator

1: Input: state s, no. of reverse diffusion timestep N , training step M
2: Obtain states s from the minibatch b
3: for i = 1, . . . ,M do ▷ Training iterations
4: gN ∼ N (0, I)
5: for k = N, . . . , 1 do ▷ Reverse diffusion process
6: ϵ ∼ N (0, I)

7: gk−1 = 1√
αk

(
gk − βk√

1−ᾱk
ϵθ(gk, k, s)

)
+
√
βkϵ ▷ Using Eq. (9)

8: k ∼ Uniform({1, . . . , N})
9: ϵ ∼ N (0, I)

10: Calculate diffusion Ld(θ), Q(s,g0, π(s)), r(gd,g0) ▷ Calculate with the generated goal g0

11: Calculate total loss L = ξdLd(θ)− ξqQ(s,g0, π(s))− ξrr(g0, gd) ▷ Eq 11
12: θ ← θ − η∇θL ▷ Take gradient descent step and update the diffusion weights

return g0

Algorithm 2 RL Training and Evaluation

1: Input: no. of episodes E, timesteps T
2: Select an off-policy algorithm A ▷ In our case, A is SAC
3: Initialize replay buffer B ← ∅, gc ← {gd} and networks Qϕ, πψ , rφ
4: for episode = 0 . . . E do
5: Sample initial state s0
6: for t = 0 . . . T do
7: at = π(st, gc)
8: Execute at, obtain next state st+1

9: Store transition (st, at, rt, st+1, gc) in B
10: Sample a minibatch b from replay buffer B
11: Gc ← DiffusionCurriculumGenerator(b)
12: Find gc that maximizes w in Eq. (12)
13: Update Q and π with b to minimize LQ and Lπ in Eq. (1) and in Eq. (2)
14: Update the AIM reward function rφ
15: success← 0 ▷ Success rate
16: Sample a desired goal gd ∼ G
17: for i = 1 . . . ntestrollout do
18: at = π(st, gd)
19: Execute at, obtain next state st+1 and reward rt
20: if |ϕ(st+1)− gd| ≤ κ then
21: success =← success+ 1/ntestrollout

5 Experiments
To evaluate our proposed method, we conducted experiments across three maze environments
simulated in MuJoCo3: PointUMaze, PointNMaze, and PointSpiralMaze. In these environments, a
goal is interpreted as the (x, y) position of the agent achieved in an episode. These environments
have been specifically chosen due to their structural characteristics, which are ideal for testing
environment-agnostic curriculum generation strategies. Moreover, they present a variety of complex
and diverse navigation challenges, requiring an agent to learn effective exploration and exploitation.

We compared our approach DICURL against nine state-of-the-art CRL algorithms, namely ACL [18],
GOAL-GAN [14], HGG [19], ALP-GMM [17], VDS [16], PLR [15], CURROT [23], GRADI-
ENT [13], and OUTPACE [12], each one run with 5 different random seeds. The primary conceptual
differences between ours and baseline algorithms are summarized in Table 1. Details on the baseline
algorithms, parametrization, training setup, and maze environments are given in Supp. Mat. C. Our
codebase is available at: https://github.com/erdiphd/DiCuRL/.

3Details available at https://robotics.farama.org/envs/maze/point_maze/.

7

https://github.com/erdiphd/DiCuRL/
https://robotics.farama.org/envs/maze/point_maze/

The results, shown in Fig. 14 and detailed in Table 25, demonstrate the effectiveness of the proposed
DICURL method. Notably, DICURL outperforms or matches all the baseline methods. For the
PointNMaze and PointSpiralMaze, the success rate of all methods, except for ours and OUTPACE
(and HGG for PointNMaze), is close to zero (detailed results are reported in Supp. Mat. C). ACL,
GoalGAN, ALP-GMM, VDS, and PLR, which lack awareness of the target distribution, underper-
form compared to target-aware methods such as our proposed approach, OUTPACE, GRADIENT,
CURROT, and HGG. HGG encounters difficulties because of infeasible curriculum proposals. This
is a result of its reliance on the Euclidean distance metric.

Both CURROT and GRADIENT generate curriculum goals using the optimal transport method and
the Wasserstein distance metric, relying on the geometry of the environment. This dependence might
be the reason for their inconsistent and poor performance across the different environments.

OUTPACE, utilizes instead the Wasserstein distance and an uncertainty classifier for uncertainty-
aware CRL, exhibiting similar performance to our approach but with slower convergence and higher
variance in success rate. This is likely due to the fact that OUTPACE’s curriculum heavily relies on
the visited state distributions, which necessitate an initial exploration by the agent. While also our
approach depends on visited states, incorporating the Qand AIM reward functions into curriculum
generation facilitates exploration beyond them, potentially explaining the performance differences
between DICURL and OUTPACE.

Lastly, we recall that our approach generates curriculum goals based on the reverse diffusion process,
which allows the generated curriculum goals to gradually shift from the initial state distribution to the
desired goal distribution. Fig. 2 shows an example of a curriculum set generated by DICURL, for
the case of the PointUMaze environment, at each iteration of the reverse diffusion process. Fig. 3,
instead, shows the differences between the curriculum goals generated by DICURL, GRADIENT,
and HGG in the PointSpiralMaze environment: it can be seen how DICURL manages to generate
curriculum goals that explore the whole environment more effectively than the baseline algorithms.
Supp. Mat. D shows the curriculum goals generated in the other two environments and illustrates
the dynamics of the diffusion process during training for the case of PointUMaze. To demonstrate
the applicability of DICURL to robot manipulation tasks, we evaluated it on the FetchPush and
FetchPickAndPlace tasks using a sparse reward setting. Further details can be found in Supp. Mat. E.

Table 1: Comparison of DICURL with previous CRL methods from the literature (sorted by year).

Algorithm Curriculum Target dist. Geometry- Off- External Venue, yearmethod curriculum agnostic policy reward
ACL [18] LSTM ✗ ✓ ✗ ✗ PMLR, 2017
GoalGAN [14] GAN ✗ ✓ ✗ ✗ PMLR, 2018
HGG [19] Q, B, W2 G+ ✗ ✓ ✗ NeurIPS, 2019
ALP-GMM [17] GMM ✗ ✓ ✓ ✗ PMLR, 2020
VDS [16] Q, B ✗ ✓ ✓ ✗ NeurIPS, 2020
PLR [15] TD-Error ✗ ✓ ✗ ✗ PMLR, 2021
CURROT [23] W2 G+, U ✗ ✓ ✗ PMLR, 2022
GRADIENT [13] W2 G+ ✗ ✓ ✓ NeurIPS, 2022
OUTPACE [12] CNML G+ ✓ ✓ ✓ ICLR, 2023

DICURL (Ours) Diffusion G+ ✓ ✓ ✓

Ablation Study We conducted an ablation study to investigate the impact of the AIM reward function
rφ and Qϕ function in generating curriculum goals with our method (DICURL). For that, we omitted,
separately, the reward function rφ and the Qϕ function from Eq. 11, and plotted the success rate
(with three different seeds) in Fig. 4a for the most challenging maze environment, PointSpiralMaze.
The results indicate that the agent performs worse without the AIM reward function rφ and fails
to achieve the task without the Qϕ function. The generated curriculum goals without the rφ or Qϕ
function are shown in Fig. 4b and 4c, respectively. Fig. 4d, instead, illustrates the AIM reward value
across different training episodes in a clockwise direction. Specifically, the first row and first column

4A simplified version of the same figure is shown in Supp. Mat. F.
5We omit baselines unable to reach a success rate of 1.0 within the allotted timesteps on any of the

environments.

8

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointUMaze

(a) PointUMaze

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointNMaze

(b) PointNMaze

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointSpiralMaze

DiCuRL
(ours)
OUTPACE
HGG
GRADIENT
CURROT
ACL
ALP-GMM
GoalGAN
PLR
VDS

(c) PointSpiralMaze

Figure 1: Test success rate for the algorithms under comparison on the three maze tasks.

Table 2: No. of timesteps (rounded) to reach success rate 1.0 (average ± std. dev. across 5 runs).
NaN indicates that a success rate of 1.0 is not reached within the maximum budget of 1e6 timesteps.

Algorithm PointUMaze PointNMaze PointSpiralMaze
DICURL (Ours) 28333 ± 3036 108428 ± 34718 305833 ± 43225
OUTPACE 29800 ± 4166 113333 ± 24267 396875 ± 111451
HGG 48750 ± 24314 NaN NaN
GRADIENT 263431 ± 114795 NaN NaN

Figure 2: The curriculum goal set Gc generated by DICURL during the reverse diffusion process
(lines 5-7 in Algorithm 1) for the PointUMaze environment. The color indicates the goals generated
at a specific iteration step during the reverse diffusion process of the diffusion model. Then these
goals are selected in Eq. (12) based on the given cost function.

in Fig. 4d represent the reward values at the very beginning of training. As training progresses, the
reward values shift towards the left corner of the maze environment (1st row, 2nd column). In the
middle of training, the reward values are concentrated around the left corner of the maze environment
(2nd row, 2nd column), and, by the end of training, the reward values converge to the desired goal
area (2nd row, 1st column). This progression explains why the generated curriculum goals are not
guiding the agent effectively but are instead distributed in the corner points shown in Fig. 4c. We
have also demonstrated the behavior of the AIM reward function across different training episodes
in our Supp. Mat. D for the PointUMaze environment. Additionally, we examined the impact of
SAC with a fixed initial state [0, 0] and SAC with a random initial state. To do that, we removed
the curriculum goal generation mechanism and assigned the desired goal, and then trained the agent
using either SAC with a fixed initial state [0, 0] or SAC with a random initial state. For the random
initial state, we sampled goals randomly in the environment. To avoid starting the agent inside the
maze walls, we performed an infeasibility check, resampling the initial state until it was feasible. We
compared our approach using three different seeds with both the fixed initial state + SAC and the
random initial state + SAC across all maze environments, and the success rates are shown in Fig. 5.

9

(a) DICURL (b) OUTPACE (c) GRADIENT

Figure 3: Curriculum goals generated by DICURL, GRADIENT, and HGG in the PointSpiralMaze
environment. The colors ranging from red to purple indicate the curriculum goals across different
episodes of the training, and the orange dot and red dot are the agent and desired goal, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

d,Qϕ, rφ
d,Qϕ

d, rφ

(a) (b) (c) (d)

Figure 4: (a) Test success rate in the ablation study of DiCuRL on the PointSpiralMaze environment.
(b) Curriculum goals when using only Qϕ. (c) Curriculum goals when using only the AIM reward rφ.
(d) AIM reward rφ across different training episodes (around 60k, 100k, 250k and 600k timesteps),
displayed clockwise from the top-left to the bottom-left quadrant.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointUMaze

DiCuRL
SAC + random
SAC + fixed

(a) PointUMaze

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointNMaze

(b) PointNMaze

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointSpiralMaze

(c) PointSpiralMaze

Figure 5: Test success rate comparison between DiCuRL, SAC with random initial position, and SAC
with fixed initial position. Note that the success rate for the PointUMaze environment in Fig. 5a is
shown up to timestep 105, whereas the others are shown up to 106.

6 Conclusion and Limitations
In this work, we introduced DICURL, a novel approach that utilizes diffusion models to generate
curriculum goals for an RL agent. The diffusion model is trained to minimize its loss function while
simultaneously maximizing the expected value of Q and the AIM reward function. The minimization
of the diffusion loss helps capture the visited state distribution, while the maximization of Q and
AIM reward function helps generate goals at an appropriate difficulty level and at the same time
guide the generated curriculum goals closer to the desired goal. Furthermore, the generated goals
promote exploration due to the inherent noising and denoising mechanism of the diffusion model.
Our proposed approach has two main limitations. First, while diffusion models excel at handling high-
dimensional data, such as images [53], incorporating the AIM reward into a combined loss function
can hinder the curriculum goal generation in such settings as the AIM reward may underperform
in higher dimensionalities. Secondly, we employ the Minimum Cost Maximum Flow algorithm
to select the optimal curriculum goals from the set generated by the diffusion model. However,
alternative selection strategies could potentially be more effective. Future work will aim to address
these limitations and extend our approach to more complex environments.

10

7 Acknowledgments
This study was supported by the CiLoCharging project, which is funded by the Bundesministerium für
Wirtschaft und Klimaschutz (BMWK) of Germany under funding number 01ME20002C. Additionally,
this work was supported by TUBITAK under the 2232 program, project number 121C148 (“LiRA”).
We would like to express our gratitude to Arda Sarp Yenicesu for his assistance in writing this paper.

References
[1] Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Graves, Alex and Antonoglou,

Ioannis and Wierstra, Daan and Riedmiller, Martin. Playing Atari with deep reinforcement
learning, 2013. arXiv:1312.5602.

[2] Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Rusu, Andrei A and Veness,
Joel and Bellemare, Marc G and Graves, Alex and Riedmiller, Martin and Fidjeland, Andreas K
and Ostrovski, Georg and others. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

[3] Silver, David and Hubert, Thomas and Schrittwieser, Julian and Antonoglou, Ioannis and Lai,
Matthew and Guez, Arthur and Lanctot, Marc and Sifre, Laurent and Kumaran, Dharshan and
Graepel, Thore and others. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

[4] Silver, David and Huang, Aja and Maddison, Chris J and Guez, Arthur and Sifre, Laurent and
Van Den Driessche, George and Schrittwieser, Julian and Antonoglou, Ioannis and Panneershel-
vam, Veda and Lanctot, Marc and others. Mastering the game of Go with deep neural networks
and tree search. Nature, 529:484–489, 2016.

[5] Rajeswaran, Aravind and Lowrey, Kendall and Todorov, Emanuel V and Kakade, Sham M.
Towards generalization and simplicity in continuous control. In Advances in Neural Information
Processing Systems, volume 30, San Diego, CA, USA, 2017. Neural Information Processing
Systems Foundation.

[6] Ng, Andrew Y and Coates, Adam and Diel, Mark and Ganapathi, Varun and Schulte, Jamie
and Tse, Ben and Berger, Eric and Liang, Eric. Autonomous inverted helicopter flight via
reinforcement learning. In International Symposium on Experimental Robotics, pages 363–372,
Berlin Heidelberg, Germany, 2006. Springer.

[7] Timothy P. Lillicrap and Jonathan J. Hunt and Alexander Pritzel and Nicolas Heess and Tom
Erez and Yuval Tassa and David Silver and Daan Wierstra. Continuous control with deep
reinforcement learning, 2019. arXiv:1509.02971.

[8] Sayar, Erdi and Bing, Zhenshan and D’Eramo, Carlo and Oguz, Ozgur S and Knoll, Alois.
Contact Energy Based Hindsight Experience Prioritization, 2023. arXiv:2312.02677.

[9] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In International Conference on Machine
Learning, volume 99, pages 278–287. Citeseer, 1999.

[10] Rui Zhao and Volker Tresp. Energy-based hindsight experience prioritization. In Aude Billard,
Anca Dragan, Jan Peters, and Jun Morimoto, editors, Conference on Robot Learning, volume 87
of Proceedings of Machine Learning Research, pages 113–122. PMLR, 29–31 Oct 2018.

[11] Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized multi-goal rein-
forcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 7553–7562. PMLR, 09–15 Jun 2019.

[12] Daesol Cho, Seungjae Lee, and H. Jin Kim. Outcome-directed reinforcement learning by
uncertainty & temporal distance-aware curriculum goal generation. In International Conference
on Learning Representations. OpenReview.net, 2023.

11

[13] Peide Huang, Mengdi Xu, Jiacheng Zhu, Laixi Shi, Fei Fang, and DING ZHAO. Curriculum
reinforcement learning using optimal transport via gradual domain adaptation. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 10656–10670. Curran Associates, Inc.,
2022.

[14] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation
for reinforcement learning agents. In International Conference on Machine Learning, pages
1515–1528. PMLR, 2018.

[15] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In Marina
Meila and Tong Zhang, editors, International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 4940–4950. PMLR, 18–24 Jul 2021.

[16] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value
disagreement. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 7648–7659. Curran
Associates, Inc., 2020.

[17] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms
for curriculum learning of deep rl in continuously parameterized environments. In Leslie Pack
Kaelbling, Danica Kragic, and Komei Sugiura, editors, Conference on Robot Learning, volume
100 of Proceedings of Machine Learning Research, pages 835–853. PMLR, 30 Oct–01 Nov
2020.

[18] Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu.
Automated curriculum learning for neural networks. In Doina Precup and Yee Whye Teh,
editors, International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1311–1320. PMLR, 06–11 Aug 2017.

[19] Ren, Zhizhou and Dong, Kefan and Zhou, Yuan and Liu, Qiang and Peng, Jian. Exploration via
Hindsight Goal Generation. arXiv:1906.04279.

[20] Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D’Eramo, Jan Peters, and Joni Pajarinen.
A probabilistic interpretation of self-paced learning with applications to reinforcement learning.
Journal of Machine Learning Research, 22(182):1–52, 2021.

[21] Pascal Klink, Carlo D' Eramo, Jan R Peters, and Joni Pajarinen. Self-paced deep reinforcement
learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 9216–9227. Curran Associates,
Inc., 2020.

[22] Pascal Klink, Hany Abdulsamad, Boris Belousov, and Jan Peters. Self-paced contextual
reinforcement learning. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura, editors,
Conference on Robot Learning, volume 100 of Proceedings of Machine Learning Research,
pages 513–529. PMLR, 30 Oct–01 Nov 2020.

[23] Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Curriculum rein-
forcement learning via constrained optimal transport. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages
11341–11358. PMLR, 17–23 Jul 2022.

[24] Kevin Li, Abhishek Gupta, Ashwin Reddy, Vitchyr H Pong, Aurick Zhou, Justin Yu, and Sergey
Levine. Mural: Meta-learning uncertainty-aware rewards for outcome-driven reinforcement
learning. In Marina Meila and Tong Zhang, editors, International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 6346–6356. PMLR,
18–24 Jul 2021.

[25] Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
experience replay. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

12

[26] Zhenshan Bing, Matthias Brucker, Fabrice O. Morin, Rui Li, Xiaojie Su, Kai Huang, and
Alois Knoll. Complex robotic manipulation via graph-based hindsight goal generation. IEEE
Transactions on Neural Networks and Learning Systems, 33(12):7863–7876, 2022.

[27] Zhenshan Bing, Hongkuan Zhou, Rui Li, Xiaojie Su, Fabrice O. Morin, Kai Huang, and Alois
Knoll. Solving robotic manipulation with sparse reward reinforcement learning via graph-based
diversity and proximity. IEEE Transactions on Industrial Electronics, 70(3):2759–2769, 2023.

[28] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
vari, Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 9902–9915. PMLR, 17–23
Jul 2022.

[29] Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchi-
cal planning with diffusion, 2024. arXiv:2401.02644.

[30] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning, 2022. arXiv:2208.06193.

[31] Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation
for reinforcement learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 8622–8636. Curran Associates, Inc., 2021.

[32] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[33] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1–50, 2020.

[34] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom
Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. In International Conference on Machine Learning, pages
4344–4353. PMLR, 2018.

[35] Tim Hertweck, Martin Riedmiller, Michael Bloesch, Jost Tobias Springenberg, Noah Siegel,
Markus Wulfmeier, Roland Hafner, and Nicolas Heess. Simple sensor intentions for exploration,
2020. arXiv:2005.07541.

[36] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine.
Visual reinforcement learning with imagined goals. Advances in Neural Information Processing
Systems, 31, 2018.

[37] Dmytro Korenkevych, A Rupam Mahmood, Gautham Vasan, and James Bergstra. Autoregres-
sive policies for continuous control deep reinforcement learning, 2019. arXiv:1903.11524.

[38] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[39] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[40] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-
proximators. In Francis Bach and David Blei, editors, International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 1312–1320, Lille,
France, 07–09 Jul 2015. PMLR.

13

[41] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Doina Precup and Yee Whye Teh, editors, International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1126–1135.
PMLR, 06–11 Aug 2017.

[42] Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans,
and Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in
Neural Information Processing Systems, 36, 2024.

[43] Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to
act from actionless videos through dense correspondences, 2023. arXiv:2310.08576.

[44] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2023.
arXiv:2303.04137.

[45] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation
learning using score-based diffusion policies, 2023. arXiv:2304.02532.

[46] Hsiang-Chun Wang, Shang-Fu Chen, Ming-Hao Hsu, Chun-Mao Lai, and Shao-Hua Sun.
Diffusion model-augmented behavioral cloning, 2023. arXiv:2302.13335.

[47] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models, 2023. arXiv:2301.10677.

[48] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy
and Andreas Krause, editors, International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1861–1870. PMLR, 10–15 Jul 2018.

[49] Villani, Cédric and others. Optimal transport: old and new, volume 338. Springer, Berlin
Heidelberg, Germany, 2009.

[50] Arjovsky, Martin and Chintala, Soumith and Bottou, Léon. Wasserstein generative adversarial
networks. In International Conference on Machine Learning, pages 214–223, Sydney, Australia,
2017. PMLR.

[51] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[52] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, April 2017.

[53] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10684–10695, 2022.

[54] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei,
editors, International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

[55] Calvin Luo. Understanding diffusion models: A unified perspective, 2022. arXiv:2208.11970.

[56] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017. arXiv:1707.06347.

14

Supplemental Material

A Conditional Diffusion Model

Diffusion models [51, 54] are usually defined as Markov chains and trained using variational inference.
The forward diffusion process gradually adds Gaussian noise to the data, while the reverse diffusion
process subtracts the learned noise from the data.

Given the goal data g0 sampled from the real goal distribution g0 ∼ G, we can define the forward
diffusion process using Markov chains and add a small amount of Gaussian noise in each timestep
k according to a variance schedule {βk ∈ (0, 1)}Nk=1, and generate a sequence of noisy goal data
samples g1, . . . ,gN :

q (g1:N | g0) :=

N∏
k=1

q (gk | gk−1) (13)

q (gk | gk−1) := N
(
gk;
√
1− βkgk−1, βkI

)
.

As the index of the timestep k increases, the goal sample g0 gradually loses its features and becomes
an isotropic Gaussian noise when N →∞.

Instead of sampling data recursively for a given timestep k, we can sample gk in a closed form using
the reparameterization trick6:

gk ∼ N
(
gk;
√
1− βkgk−1, βkI

)
. (14)

Let αk = 1− βk and ᾱk =
∏N
i=1 αi. We can write:

gk =
√
αkgk−1 +

√
1− αkϵk−1 (15)

gk =
√
αkαk−1gk−2 +

√
1− αkϵk−1 +

√
αk(1− αk−1)ϵk−2 . (16)

We then merge two Gaussian distributions with different variance N (0, σ2
1) and N (0, σ2

2) into a new
Gaussian distribution N (0, σ2

1 + σ2
2). Specifically, we can merge the two equations above, where√

1− αk + αk(1− αk−1) =
√
1− αkαk−1:

gk =
√
αkαk−1gk−2 +

√
1− αkαk−1ϵ̄k−2 (17)

gk =

√√√√ N∏
i=1

αkg0 +

√√√√1−
N∏
i=1

αkϵ0 (18)

where ϵk ∼ N (0, 1).

Now, we can write:
gk =

√
ᾱkg0 +

√
1− ᾱkϵ (19)

q (gk | g0) = N
(
gk;
√
ᾱkg0, (1− ᾱk)I

)
(20)

Using the equation above, we can sample data in a closed form at any arbitrary timestep k.

As mentioned in the main text, the reverse diffusion process aims to recover the original input data
from the noisy (diffused) data. It learns to progressively reverse the diffusion process step by step,
and approximates the joint distribution pθ (x0:T). This process is defined as:

pθ (g0:N) := p (gN)

T∏
k=1

pθ (gk−1 | gk) (21)

pθ (gk−1 | gk) := N (gk−1;µθ (gk, k) ,Σθ (gk, k))

6The reparameterization trick works by separating the deterministic and the stochastic parts of the sampling
operation. Instead of directly sampling from the distribution z ∼ N (µ, σ), we can sample ϵ from the normal
distribution N (0, 1), multiply it by standard deviation σ, and add mean µ: z = µ+ σϵ

15

The reverse conditional probability is tractable when conditioned by g0.

By Bayes rule, we have:

q (gk−1 | gk,g0) =
q (gk | gk−1,g0)q (gk−1 | g0)

q (gk | g0)
. (22)

As we assume that the diffusion model is a Markov chain, the future state depends only on the present
state, namely:

q (gk | gk−1,g0) = q (gk | gk−1) = N (gk;
√
αkgk−1, (1− αk)I) (23)

q (gk−1 | g0) = N (gk−1;
√
ᾱk−1g0, (1− ᾱk−1)I) (24)

q (gk | g0) = N
(
gk;
√
ᾱkg0, (1− ᾱk) I

)
(25)

q (gk−1 | gk,g0) =
N
(
gk;
√
αkgk−1, (1− αk)I

)
N (gk−1;

√
ᾱk−1g0, (1− ᾱk−1)I)

N (gk;
√
ᾱkg0, (1− ᾱk) I)

(26)

where:

N (gk;
√
αkgk−1, (1− αk)I) =

1

(2π)
n/2 |(1− αk)I|1/2

exp

(
−1

2
(gk −

√
αkgk−1)

T I

(1− αk)
(gk −

√
αkgk−1)

)
(27)

≈ exp

(
−
(gk −

√
αkgk−1)

2

2(1− αk)I

)
(28)

N (gk−1;
√
ᾱk−1g0, (1− ᾱk−1)I) =

1

(2π)
n/2 |(1− ᾱk−1)I|1/2

exp

(
−1

2
(gk−1 −

√
ᾱk−1g0)

T I

(1− ᾱk−1)
(gk−1 −

√
ᾱk−1g0)

)
(29)

≈ exp

(
− (gk−1 −

√
ᾱk−1g0)

2

2(1− ᾱk−1)

)
(30)

N
(
gk;
√
ᾱkg0, (1− ᾱk)I

)
=

1

(2π)
n/2 |(1− ᾱk)I|1/2

exp

(
−1

2
(gk −

√
ᾱkg0)

T I

(1− ᾱk)
(gk −

√
ᾱkg0)

)
(31)

≈ exp

(
− (gk −

√
ᾱkg0)

2

2(1− ᾱk)

)
(32)

We then can write:

q (gk−1 | gk,g0) ≈ exp

(
− 1

2I

((
gk −

√
αkgk−1

)
2

(1− αk)
+

(gk−1 −
√
ᾱk−1g0)2

1− ᾱk−1
−

(gk −
√
ᾱkg0)2

1− ᾱk

))

(33)

≈ exp

(
− 1

2I

((
gk −

√
αkgk−1

)2
(1− αk)

+
(gk−1 −

√
ᾱk−1g0)

2

1− ᾱk−1
− (gk −

√
ᾱkg0)

2

1− ᾱk

))
(34)

≈ exp

(
− 1

2I

((
g2
k − 2

√
αkgkgk−1 + αkg

2
k−1

)
(1− αk)

+

(
g2
k−1 − 2

√
ᾱk−1gk−1g0 + ᾱk−1g

2
0

)
1− ᾱk−1

− (gk −
√
ᾱkg0)

2

1− ᾱk

))
(35)

= exp

(
− 1

2I

((
−2√αkgkgk−1 + αkg

2
k−1

)
(1− αk)

+

(
g2
k−1 − 2

√
ᾱk−1gk−1g0

)
1− ᾱk−1

+ C (gk,g0)

))
(36)

≈ exp

(
− 1

2I

(
−
2
√
αkgkgk−1

(1− αk)
+

αkg
2
k−1

(1− αk)
+

g2
k−1

1− ᾱk−1
− 2
√
ᾱk−1gk−1g0

1− ᾱk−1

))
(37)

16

= exp

(
− 1

2I

((
αk

1− αk
+

1

1− ᾱk−1

)
g2
k−1 − 2

(√
αkgk

1− αk
+

√
ᾱk−1g0

1− ᾱk−1

)
gk−1

))
(38)

= exp

(
− 1

2I

((
αk(1− ᾱk−1) + 1− αk
(1− αk)(1− ᾱk−1)

+

)
g2
k−1 − 2

(√
αkgk

1− αk
+

√
ᾱk−1g0

1− ᾱk−1

)
gk−1

))
(39)

= exp

(
− 1

2I

((
αk − ᾱk + 1− αk
(1− αk)(1− ᾱk−1)

)
g2
k−1 − 2

(√
αkgk

1− αk
+

√
ᾱk−1g0

1− ᾱk−1

)
gk−1

))
(40)

= exp

(
− 1

2I

((
1− ᾱk

(1− αk)(1− ᾱk−1)

)
g2
k−1 − 2

(√
αkgk

1− αk
+

√
ᾱk−1g0

1− ᾱk−1

)
gk−1

))
(41)

= exp

− 1

2I

(1− ᾱk
(1− αk)(1− ᾱk−1)

)g2
k−1 − 2

 √
αkgk

1−αk +
√
ᾱk−1g0

1−ᾱk−1

1−ᾱk
(1−αk)(1−ᾱk−1)

gk−1

(42)

= exp

− 1

2I

(1− ᾱk
(1− αk)(1− ᾱk−1)

)g2
k−1 − 2

(√
αkgk

1−αk +
√
ᾱk−1g0

1−ᾱk−1

)
(1− αk)(1− ᾱk−1)

1− ᾱk
gk−1

(43)

= exp

(
− 1

2I

((
1

(1−αk)(1−ᾱk−1)
1−ᾱk

)(
g2
k−1 − 2

√
αk(1− ᾱk−1)gk +

√
ᾱk−1(1− αk)g0

1− ᾱk
gk−1

)))
(44)

≈ N

gk−1;

√
αk(1− ᾱk−1)gk +

√
ᾱk−1(1− αk)g0

1− ᾱk︸ ︷︷ ︸
µ(gk,g0)

,
(1− αk)(1− ᾱk−1)

1− ᾱk︸ ︷︷ ︸
Σ(k)

I

(45)

where C (gk,g0) is a constant term with respect to gk−1 and is calculated using only gk, g0, and αk.

The Eq. (45) shows that at every step gk−1 ∼ q (gk−1 | gk,g0) follows a normal distribution with
mean µ(gk,g0) and variance Σ(k).

Given this, the goal is to learn a denoising model pθ (gk−1 | gk) by approximating the ground-truth
denoising transition q (gk−1 | gk,g0). This can be done by minimizing the KL divergence between
pθ (gk−1 | gk) and q (gk−1 | gk,g0).

The KL divergence between two Gaussian distributions N (x;µx,Σx) and N (y;µy,Σy) is defined
as:

DKL (N (x;µx,Σx) || N (y;µy,Σy)) =
1

2

[
log
|Σy|
|Σx|

− d+ tr(Σ−1
y Σx) + (µy − µx)TΣ−1

y (µy − µx)
]
.

(46)

The KL divergence between the denoising model pθ (gk−1 | gk) and the ground-truth denoising
transition q (gk−1 | gk,g0) is:

argmin
θ
DKL (q (gk−1 | gk,g0) || pθ (gk−1 | gk)) . (47)

The learning of the denoising model can be written as:

argmin
θ
DKL (N (gk−1;µ(gk,g0),Σ) || N (gk−1;µθ,Σ)) (48)

argmin
θ

1

2

[
log
|Σ|
|Σ|
− d+ tr(Σ−1Σ) + (µθ − µ(gk,g0))

TΣ−1(µθ − µ(gk,g0))

]
(49)

17

argmin
θ

1

2

[
log 1− d+ d+ (µθ − µ(gk,g0))

TΣ−1(µθ − µ(gk,g0))
]

(50)

argmin
θ

1

2

[
(µθ − µ(gk,g0))

TΣ−1(µθ − µ(gk,g0))
]

(51)

argmin
θ

1

2

[
(µθ − µ(gk,g0))

T (I)−1(µθ − µ(gk,g0))
]

(52)

argmin
θ

1

2

[
∥µθ − µ(gk,g0)∥22

]
. (53)

We can rearrange Eq. (19) as follows:

g0 =
gk −

√
1− ᾱkϵ√
ᾱk

(54)

and rewrite µ(gk,g0) in Eq. (45) as follows:

µ(gk,g0) =

√
αk(1− ᾱk−1)gk +

√
ᾱk−1(1− αk)gk−

√
1−ᾱkϵ√
ᾱk

1− ᾱk
(55)

where ᾱk =
∏N
i=1 αi.

Then:

µ(gk,g0) =

√
αk(1− ᾱk−1)gk +

√
α1α2 . . . αk−1(1− αk)gk−

√
1−ᾱkϵ√

α1α2...αk

1− ᾱk
(56)

=

√
αk(1− ᾱk−1)gk

1− ᾱk
+

(1− αk)gk
(1− ᾱk)

√
αk
− (1− αk)

√
1− ᾱkϵ

(1− ᾱk)
√
αk

(57)

=

√
αk(1− ᾱk−1)gk

1− ᾱk
+

(1− αk)gk
(1− ᾱk)

√
αk
− (1− αk)

√
1− ᾱkϵ

(1− ᾱk)
√
αk

(58)

=

(√
αk(1− ᾱk−1)

1− ᾱk
+

(1− αk)
(1− ᾱk)

√
αk

)
gk −

(1− αk)
√
1− ᾱk

(1− ᾱk)
√
αk

ϵ (59)

=

(
αk(1− ᾱk−1)

(1− ᾱk)
√
αk

+
1− αk

(1− ᾱk)
√
αk

)
gk −

(1− αk)√
1− ᾱk

√
αk
ϵ (60)

=

(
αk − ᾱk + 1− αk
(1− ᾱk)

√
αk

)
gk −

1− αk√
1− ᾱk

√
αk
ϵ (61)

=
1
√
αk

gk −
1− αk√

1− ᾱk
√
αk
ϵ (62)

We can model the denoising transition mean as follows:

µθ (gk, k) =
1
√
αk

gk −
1− αk√

1− ᾱk
√
αk
ϵθ(gk, k) . (63)

Given this, the minimization of the KL divergence can be written as:

argmin
θ
DKL (q (gk−1 | gk,g0) || pθ (gk−1 | gk)) (64)

argmin
θ
DKL (N (gk−1;µ(gk,g0),Σ) || N (gk−1;µθ,Σ)) (65)

argmin
θ

1

2

[∥∥∥∥ 1
√
αk

gk −
1− αk√

1− ᾱk
√
αk
ϵθ(gk, k)−

1
√
αk

gk +
1− αk√

1− ᾱk
√
αk
ϵ

∥∥∥∥2
2

]
(66)

argmin
θ

1

2

[∥∥∥∥ 1− αk√
1− ᾱk

√
αk
ϵ− 1− αk√

1− ᾱk
√
αk
ϵθ(gk, k)

∥∥∥∥2
2

]
(67)

argmin
θ

1

2

(1− αk)2

(1− ᾱk)αk

[
∥ϵ− ϵθ(gk, k)∥22

]
. (68)

18

Thus far, we have only modeled the goal distribution pθ(g). To transform this into a conditional
diffusion model, we can incorporate the state s information at each diffusion timestep k [55] in Eq.
(21):

pθ (g0:N) := p (gN)

T∏
k=1

pθ (gk−1 | gks) (69)

pθ (gk−1 | gk) := N (gk−1;µθ (gk, s, k) ,Σθ (gk, s, k)) .

To conclude, we can model the denoising transition mean by rewriting Eq. (70) based on the state s
as follows:

µθ (gk, s, k) =
1
√
αk

gk −
1− αk√

1− ᾱk
√
αk
ϵθ(gk, s, k) . (70)

B sT Strategy

In contrast to selecting optimal curriculum goals via bipartite graph optimization, as shown in Eq. 12
in the main text7 we performed an additional experiment where we considered only the state from the
final timestep T , under the assumption that it is closer to achieving the desired goal. The state sT at
the last timestep of each episode is then input into the diffusion model, which generates curriculum
goals to be achieved in the subsequent episode. The resulting variant is detailed in Algorithm 3, with
the RL training process described in Algorithm 4.

As demonstrated by this additional experiment, the assumption that the final state is closer to the
desired goal does not always hold true. As a matter of fact, the state at the last timestep in some
episodes might be even further away from the desired goal compared to the states in previous timesteps.
Consequently, the curriculum goals generated by the diffusion model may not gradually shift from
the initial position toward the desired goal. If the state at the last timestep is not progressively moving
towards the desired goal, the curriculum goals generated by the diffusion model may jump to different
areas within the maze environment. This can lead to a decrease in sample efficiency and a slower
success rate. This issue is illustrated in Fig. 6, where it can be seen, that particularly in the case
of PointSpiralMaze, the variant of our algorithm that makes use of this strategy (that we call “sT
strategy”) converges later than the main described in the main text.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointUMaze

DiCuRL
DiCuRL sT

(a) PointUMaze

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointNMaze

DiCuRL
DiCuRL sT

(b) PointNMaze

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointSpiralMaze

DiCuRL
DiCuRL sT

(c) PointSpiralMaze

Figure 6: Test success rate for the original DICURL algorithm described in the main text compared
to a variant that makes use of the sT strategy.

7As a reminder, in the proposed algorithm we sample a mini-batch b (containing many states from different
timesteps) from the replay buffer B and provide it to the curriculum goal generator (i.e., the diffusion model) to
generate a curriculum goal distribution Gc, and then select the optimal curriculum goal gc using bipartite graph
optimization by maximizing the cost function given in Eq. 12.

19

Algorithm 3 Diffusion Curriculum Goal Generator with the sT Strategy

1: Input: no. of reverse diffusion timestep N , training step M
2: for i = 1, . . . ,M do ▷ Training iterations
3: gN ∼ N (0, I)
4: for k = N, . . . , 1 do ▷ Reverse diffusion process
5: ϵ ∼ N (0, I)

6: gk−1 = 1√
αk

(
gk − βk√

1−ᾱk
ϵθ(gk, k, sT)

)
+
√
βkϵ ▷ using Eq. (9)

7: k ∼ Uniform({1, . . . , N})
8: ϵ ∼ N (0, I)
9: Calculate diffusion Ld(θ), Q(s,g0, π(s)), r(gd,g0) ▷ Calculate with the generated goal g0

10: Calculate total loss L = ξdLd(θ)− ξqQ(s,g0, π(s))− ξrr(g0, gd) ▷ Eq 11
11: θ ← θ − η∇θL ▷ Take gradient descent step and update the diffusion weights

return g0

Algorithm 4 RL Training with the sT Strategy

1: Input: no. of episodes E, timesteps T
2: Select an off-policy algorithm A ▷ In our case, A is SAC
3: Initialize replay buffer B ← ∅, gc ← gd and networks Qϕ, πψ , rφ
4: for episode = 0 . . . E do
5: Sample initial state s0
6: for t = 0 . . . T do
7: at = π(st, gc)
8: Execute at, obtain next state st+1

9: Store transition (st, at, rt, st+1, gc) in B
10: Sample a minibatch b from replay buffer B
11: gc ← DiffusionCurriculumGenerator(sT)
12: Update Q and π with b to minimize LQ and Lπ in Eq. (1) and in Eq. (2)
13: Update the AIM reward function rφ
14: success← 0 ▷ Success Rate
15: Sample a desired goal gd ∼ G
16: for i = 1 . . . ntestrollout do
17: at = π(st, gd)
18: Execute at, obtain next state st+1 and reward rt
19: if |ϕ(st+1)− gd| ≤ κ then
20: success =← success+ 1/ntestrollout

C Experimental Details

For implementing DICURL, we utilized the original implementation of OUTPACE [12] and aug-
mented this codebase with our diffusion model for curriculum goal generation. We conducted our
experiments on a cluster computer using an NVIDIA RTX A5000 GPU, 64GB of RAM, and a 4-core
CPU. For the PointSpiralMaze environment, the total compute time of the main method and the sT
strategy is approximately 23 hours and 5 hours, respectively. For the remaining environments, the
main method and the sT strategy require approximately 11.5 hours and 2.5 hours, respectively.

Baselines. The baseline CRL algorithms are trained as follows:

• HGG [19]: We utilized the default settings from the original implementation, which can be found
at https://github.com/Stilwell-Git/Hindsight-Goal-Generation.

• CURROT [23]: We adhered to the default settings of the original implementation, available at
https://github.com/psclklnk/currot.

• ALP-GMM [17], VDS [16], PLR [15], ACL [18], GoalGAN [14]: We followed the default settings
from the implementation available at https://github.com/psclklnk/currot.

20

https://github.com/Stilwell-Git/Hindsight-Goal-Generation
https://github.com/psclklnk/currot
https://github.com/psclklnk/currot

• GRADIENT [13]: We used the default settings from the implementation available at https:
//github.com/PeideHuang/gradient.

• OUTPACE [12]: We implemented the default settings from the implementation available at
https://github.com/jayLEE0301/outpace_official.

Training details. All baseline models, except for the GRADIENT method, were trained using the
Soft Actor-Critic (SAC) [48]. Although the original implementations of these algorithms primarily
use on-policy methods, adaptations were made in the CURROT repository to utilize the off-policy
SAC algorithm. This modification, available in the CURROT repository, allows for a more direct
comparison of sample efficiency across all models. The GRADIENT method was trained using
both the SAC and Proximal Policy Optimization (PPO) algorithms [56]. However, we present only
the results obtained with the PPO algorithm, as it outperforms SAC in the three considered maze
environments. All our algorithms’ hyperparameters used in the experiments are reported in Table 3.

Table 3: Hyperparameters for DICURL.
Parameter Value Parameter Value
Critic hidden dim 512 Discount factor γr 0.99
Critic hidden depth 3 rφ Update frequency 1000
Critic target τ 0.01 No. of gradient steps for rφ update 10
Critic target update frequency 2 No. of ensemble networks for rφ 5
Actor hidden dim 512 learning rate for rφ 1e-4
Actor hidden depth 3 RL optimizer Adam
Actor update frequency 2 Diffusion network updates per episode 25
RL batch size 512 Diffusion loss coefficient ξd 1
Init. temperature αinit of SAC 0.3 Q-function coefficient ξq 10
Replay buffer B size 1e6 AIM reward function coefficient ξr 1
Diffusion training iterations 300 Reverse diffusion timesteps 10
Diffusion learning rate 3e-4 Diffusion loss type l2
Diffusion update frequency 2500 No. of training timesteps 1e6

Environment details. In each task, the agent’s state s is represented as a vector, comprising its
position, velocity along the x and y axes, orientation angle, and angular velocity around the z-axis.
The agent’s actions are determined by its velocity and angular velocity. The agent starts each episode
from an initial state of [0, 0]. The desired goal distribution is derived by introducing uniform noise
to the desired goal position. The desired goal positions are set to [0, 8], [8, 16], and [8,−8], while
the dimensions of the map are 12 × 12, 12 × 20, 20 × 20, respectively for the PointUMaze, the
PointNMaze, and the PointSpiralMaze task. A task is considered successful when the agent reaches
the sampled desired goal within a threshold distance of 0.5.

Detailed results. We report in Table 4 the detailed results in terms of no. of timesteps needed to
reach a success rate of 0.3 for all the algorithms under comparison. It can be seen that most of the
algorithms do not reach this rate within the given budget.

D Generated Curriculum Goals

Fig. 7 and Fig. 8 show the differences between the curriculum goals generated by DICURL,
OUTPACE, GRADIENT, and HGG, respectively in the PointUMaze and PointNMaze environment.
As shown in the case of PointSpiralMaze reported in the main text, also in these two environments
DICURL manages to generate curriculum goals that explore the whole environment more effectively
than GRADIENT and HGG.

D.1 Dynamics of the Diffusion Process during Training

Considering the case of the PointUMaze environment, the curriculum goal sets, denoted as
g9,g8, . . . ,g0 in Fig. 10, generated during the initial phase of training (∼2000 timesteps), are

21

https://github.com/PeideHuang/gradient
https://github.com/PeideHuang/gradient
https://github.com/jayLEE0301/outpace_official

Table 4: No. of timesteps (rounded) to reach success rate 0.3 (average ± std. dev. across 5 runs).
NaN indicates that a success rate of 0.3 is not reached within the maximum budget of 1e6 timesteps.

Algorithm PointUMaze PointNMaze PointSpiralMaze
DICURL (Ours) 25000 ± 3958 99000 ± 32031 305 ± 43225
OUTPACE 27600 ± 4176 106666 ± 25603 396875 ± 111451
HGG 34750 ± 14956 68000 ± 15000.0 NaN
GRADIENT 166986 ± 86132 755573 ± 65967 NaN
CURROT 700000 ± 234520 NaN NaN
ALP-GMM 660000 ± 205912 NaN NaN
GoalGAN 960000 ± 290516 NaN NaN
PLR 833333 ± 253859 NaN NaN
VDS 838461 ± 294927 NaN NaN
ACL 1000000 ± 316227 NaN NaN

(a) DICURL (b) OUTPACE

(c) GRADIENT (d) HGG

Figure 7: Curriculum goals generated by DICURL, OUTPACE, GRADIENT, and HGG in the
PointUMaze environment. The colors ranging from red to purple indicate the curriculum goals across
different episodes of the training, and the orange dot and red dot are the agent and desired goal,
respectively.

obtained through the reverse diffusion process. This process starts from Gaussian noise g9 and
culminates in the final curriculum goal set g0, as expressed in lines 5 and 7 in Algorithm 1. It can
be observed that the final curriculum goal set g0 is generated diagonally. This pattern arises due to
the combined loss function of the AIM reward and the Q-value, along with the diffusion loss, as
expressed in Eq. (11).

The AIM reward function, relative to the desired goal gd, and the Q-value, derived from a sampled
mini-batch b from the replay buffer B at timestep ∼ 2000, are depicted in Fig. 11a and Fig. 11b,
respectively, using a 10-level contour plot. It can be observed that the reward values increase
diagonally, while the Q-value has not yet shown a discernible pattern. As a result, the curriculum
goal set generated by the diffusion model exhibits a pattern similar to the reward value.

22

(a) DICURL (b) OUTPACE

(c) GRADIENT (d) HGG

Figure 8: Curriculum goals generated by DICURL, OUTPACE, GRADIENT, and HGG in the
PointNMaze environment. The colors ranging from red to purple indicate the curriculum goals across
different episodes of the training, and the orange dot and red dot are the agent and desired goal,
respectively.

In the mid-training stage (∼15000 timesteps), the final curriculum goal set g0 reflects the explored
region of the environment, extending up to the top right corner, as shown in Fig. 12. This behavior
aligns with the agent’s exploration progress.

The AIM reward function in Fig. 13a exhibits higher and better-converged values compared to Fig.
11a, particularly in the top right corner. Similarly, the Q-value in Fig. 13b demonstrates its highest
values concentrated from the middle right side to the top right corner. These observations suggest
that the final curriculum goal set g0 has indeed been formed, encompassing the explored area up to
the top right corner.

In the near-optimal policy learning phase (∼ 30000 timesteps), the final curriculum goal set g0

encompasses the entire environment, extending from the initial position to the desired goal, as
depicted in Fig. 14. This behavior aligns with the agent’s progress towards achieving the optimal
policy.

The AIM reward function in Fig. 15a appears to be converging to the desired goal more slowly. The
Q-value in Fig. 15b demonstrates its highest values concentrated around the desired goal area. These
observations suggest that the final curriculum goal set g0 has indeed been formed, encompassing
the entire environment. Furthermore, it appears that the Q-value converges to the desired goal
more rapidly than the AIM reward function. This observation aligns with our choice of a higher
hyperparameter coefficient ξq for the Q-value function compared to hyperparameter coefficient ξr

23

(a) DICURL (b) OUTPACE

(c) GRADIENT (d) HGG

Figure 9: Curriculum goals generated by DICURL, GRADIENT, and HGG in the PointSpiralMaze
environment. The colors ranging from red to purple indicate the curriculum goals across different
episodes of the training, and the orange dot and red dot are the agent and desired goal, respectively.

Figure 10: The curriculum goal set Gc generated by DICURL during the reverse diffusion process in
the early stage of the training (∼2000 timesteps) for the PointUMaze environment.

for the reward function in the total loss function shown in Eq. (11). This prioritizes the Q-value’s
influence on shaping the curriculum goals, promoting faster convergence towards the desired behavior.

24

(a) AIM reward (b) Q-Value

Figure 11: Visualization of the AIM reward function and Q-function in the early stage of the training
(∼2000 timesteps) for the PointUMaze environment.

Figure 12: The curriculum goal set Gc generated by DICURL during the reverse diffusion process in
the middle stage of the training (∼15000 timesteps) for the PointUMaze environment.

(a) AIM reward (b) Q-Value

Figure 13: Visualization of the AIM reward function and Q-function in the middle stage of the
training (∼15000 timesteps) for the PointUMaze environment.

25

Figure 14: The curriculum goal set Gc generated by DICURL during the reverse diffusion process in
the near-optimal stage of the training (∼30000 timesteps) for the PointUMaze environment.

(a) AIM reward (b) Q-Value

Figure 15: Visualization of the AIM reward function and Q-function in the near-optimal stage of the
training (∼30000 timesteps) for the PointUMaze environment.

E Robot Manipulation Tasks

To demonstrate the applicability of our method to different tasks, particularly in robot manipulation
tasks, we implemented our approach using the original HGG algorithm [19] repository, which can be
found at https://github.com/Stilwell-Git/Hindsight-Goal-Generation. We converted
the HGG code from TensorFlow to PyTorch to integrate it with our diffusion model, which is based
on PyTorch. We selected two robot manipulation tasks, FetchPush and FetchPickAndPlace, and
increased the environment difficulty by expanding the desired goal area. This is shown in Fig. 16c
and 16d, where the yellow area indicates the object sampling region and the blue area indicates
the desired goal sampling region. The action space is four-dimensional, where three dimensions
represent the Cartesian displacement of the end effector, and the last dimension controls the opening
and closing of the gripper. The state space is 25-dimensional, including the end-effector position,
position, and rotation of the object, the linear and angular velocity of the object, and the left and
right gripper velocity. More detailed information regarding the action space and observation space
of these robotic tasks can be found in the Gymnasium library documentation. For these additional
experiments, we compared our method with HGG and HER using the DDPG algorithm, to ensure
alignment with the baselines, using five different seeds. The results are shown in Fig. 16a and Fig.
16b, respectively for FetchPush and FetchPickAndPlace. Note that in this setting, all RL algorithms
(including ours) use a binary reward (i.e., a sparse reward). However, since our curriculum goal

26

https://github.com/Stilwell-Git/Hindsight-Goal-Generation

generation algorithm is based on the AIM reward, we implemented the AIM reward function solely
to generate curriculum goals while still using the sparse reward setting to train the DDPG algorithm
using the diffusion model to generate curriculum goals.

0 5000 10000 15000 20000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

DiCuRL
(ours)
HER
HGG

(a) FetchPush

0 5000 10000 15000 20000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

DiCuRL
(ours)
HER
HGG

(b) FetchPickAndPlace (c) FetchPickAndPlace (d) FetchPush

Figure 16: (a, b) Test success rate with solid lines indicating mean success rates and shaded areas
variability over five seeds. (c, d) Overview of the two robot manipulation tasks. Blue and yellow
regions denote the sampling areas for objects and goals, respectively.

Code available at: https://github.com/erdiphd/DiCuRL/tree/robot_manipulation

F Test Success Rate in Maze Tasks (Simplified Visualization)

In Fig. 1 in the main text, we presented the success rate of ten different algorithms (including ours)
across the three maze tasks. To facilitate the visual comparison of the algorithms’ performance, we
provide in Fig. 17 a simplified visualization that reduces the line overlap by showing only the four
top-performing algorithms (including ours).

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointUMaze

(a) PointUMaze

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Timesteps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PointNMaze

(b) PointNMaze

0 1 2 3 4 5
Timesteps ×105

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

PointSpiralMaze

DiCuRL
(ours)
OUTPACE
HGG
GRADIENT

(c) PointSpiralMaze

Figure 17: Test success rate for the algorithms under comparison on the three maze tasks.

27

https://github.com/erdiphd/DiCuRL/tree/robot_manipulation

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the theoretical results are detailed in Supp. Mat. A.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all the experimental details along with our codebase.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See Section 5, and Supp. Mat. C and E.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Supp. Mat. C.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide all results in terms of mean and standard deviation.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Supp. Mat. C.

9. Code Of Ethics

28

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We summarize the importance and impact of this research in the Introduction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

29

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models) used in the
paper are properly credited through appropriate citations or website URLs.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide our code on GitHub (see Section 5 and Supp. Mat. E), as well as
all the details about training and computational setup (see Supp. Mat. C).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

30

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Related Work
	Background
	Multi-Goal Reinforcement Learning
	Soft Actor-Critic
	Wasserstein Distance and Adversarial Intrinsic Motivation Reward Function
	Diffusion Models

	Methodology
	Experiments
	Conclusion and Limitations
	Acknowledgments
	Conditional Diffusion Model
	sT Strategy
	Experimental Details
	Generated Curriculum Goals
	Dynamics of the Diffusion Process during Training

	Robot Manipulation Tasks
	Test Success Rate in Maze Tasks (Simplified Visualization)

