
Under review as a conference paper at ICLR 2023

ACCELERATED TRAINING VIA PRINCIPLED METHODS
FOR INCREMENTALLY GROWING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We develop an approach to efficiently grow neural networks, within which param-
eterization and optimization strategies are designed by considering their effects
on the training dynamics. Unlike existing growing methods, which follow simple
replication heuristics or utilize auxiliary gradient-based local optimization, we
craft a parameterization scheme which dynamically stabilizes weight, activation,
and gradient scaling as the architecture evolves, and maintains the inference func-
tionality of the network. To address the optimization difficulty resulting from
imbalanced training effort distributed to subnetworks fading in at different growth
phases, we propose a learning rate adaption mechanism that rebalances the gradient
contribution of these separate subcomponents. Experimental results show that
our method achieves comparable or better accuracy than training large fixed-size
models, while saving a substantial portion of the original computation budget for
training. We demonstrate that these gains translate into real wall-clock training
speedups.

1 INTRODUCTION

Modern neural network design typically follows a “larger is better” rule of thumb, with models
consisting of millions of parameters achieving impressive generalization performance across many
tasks, including image classification (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; Real
et al., 2019; Zhai et al., 2022), object detection (Girshick, 2015; Liu et al., 2016; Ghiasi et al.,
2019), semantic segmentation (Long et al., 2015; Chen et al., 2017; Liu et al., 2019a) and machine
translation (Vaswani et al., 2017; Devlin et al., 2019). Within a class of network architecture, deeper
or wider variants of a base model typically yield further improvements to accuracy. Residual networks
(ResNets) (He et al., 2016b) and wide residual networks (Zagoruyko & Komodakis, 2016) illustrate
this trend in convolutional neural network (CNN) architectures. Dramatically scaling up network
size into the billions of parameter regime has recently revolutionized transformer-based language
modeling (Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020).

The size of these models imposes prohibitive training costs and motivate techniques that offer cheaper
alternatives to select and deploy networks. For example, hyperparameter tuning is notoriously
expensive as it commonly relies on training the network multiple times, and recent techniques aim to
circumvent this by making hyperparameters transferable between models of different sizes, allowing
them to be tuned on a small network prior to training the original model once (Yang et al., 2021).

Our approach incorporates these ideas, but extends the scope of transferability to include the pa-
rameters of the model itself. Rather than view training small and large models as separate events,
we grow a small model into a large one through many intermediate steps, each of which introduces
additional parameters to the network. Our contribution is to do so in a manner that preserves the
function computed by the model at each growth step (functional continuity) and offers stable training
dynamics, while also saving compute by leveraging intermediate solutions. More specifically, we
use partially trained subnetworks as scaffolding that accelerates training of newly added parameters,
yielding greater overall efficiency than training a large static model from scratch.

Motivating this general strategy, we view aspects of prior works as hinting that deep network training
may naturally be amenable to dynamically growing model size. For example, residual connections (He
et al., 2016b) introduce depth-wise shortcuts, solving a gradient vanishing issue and thereby making
very deep networks end-to-end trainable. Prior to ResNet, manually circumventing this issue involved

1



Under review as a conference paper at ICLR 2023

𝜼𝟎

𝜼𝟎

𝜼𝟎

𝜼𝟎𝜽

𝜸 𝜸/𝟐 𝜸/𝟐

𝜽 + 𝝐𝟏𝜽 + 𝝐𝟐 𝜹

𝝈
Split / Add

Add Neurons

𝜽, 𝜸 :         Old
𝜸/𝟐:        Split
𝝈, 𝜹:   Grad-based  Init.
𝝐𝟏, 𝝐𝟐 :  Small Noise

Parameterization

Optimization

Split Neurons

𝜼𝟎
Global LR

(a) Existing Methods: Splitting Init, Global LR

𝜼𝟎

𝜼𝟎

𝜼𝟎

𝜽

𝜸

𝜽′
𝜹 + 𝝐𝟐

−𝝈

Grow Neurons

𝜼𝟎
𝜹 + 𝝐𝟏

+𝝈 𝜸′

𝜼𝟏

𝜼𝟏

𝜼𝟏

𝜼𝟏

𝜼𝟎 𝜼𝟏
Separate LR

𝜽, 𝜸 :      Old
𝜽#, 𝜸#: Var. Transfer
𝝈, 𝜹:   Grad-Free Init.
𝝐𝟏, 𝝐𝟐 :   Small Noise

Parameterization

Optimization

Grow

(b) Ours: Function-Preserving Init, Stagewise LR

Figure 1: Dynamic network growth strategies. Different from (a) which reply on either split-
ting (Chen et al., 2016; Liu et al., 2019b; Wu et al., 2020b) or adding neurons with auxiliary local
optimization (Wu et al., 2020a; Evci et al., 2022), our initialization (b) of new neurons is random but
function-preserving. Additionally, our separate learning rate (LR) scheduler governs weight updating
in order to address the discrepancy in total accumulated training between different growth stages.

adding outputs and losses to intermediate layers (Szegedy et al., 2015), effectively causing a shallower
subnetwork to train first and bootstrap the training of the full network. Larsson et al. (2016) show
that end-to-end training of FractalNet, an alternative shortcut architecture, implicitly trains shallower
subnetworks first. If such phenomena, though perhaps difficult to analyze, occurs more broadly, it
suggests that one might achieve computational advantage by adopting an explicit growth strategy that
matches the implicit subnetwork training schedule which occurs within a large static network.

While overparameterization benefits generalization, a more detailed view suggests possible compati-
bility between the desire to maintain an overparameterized deep network and to dynamically grow
such a network. The “double-descent” bias-variance trade-off curve (Belkin et al., 2019) indicates
that large model capacity may be a safe strategy to ensure operation in the modern interpolating
regime with consequently low test error. Small models, as we take for a starting point in dynamic
growth, might not be sufficiently overparameterized and incur higher test error. However, Nakkiran
et al. (2020) experimentally observe double-descent occurs with respect to both model size and
number of training epochs. To remain in the interpolating regime, a model must be overparameterized
relative to the amount it has been trained, which can be satisfied by an appropriate growth schedule.

Competing recent efforts to grow deep models from simple architectures (Chen et al., 2016; Li
et al., 2019; Dai et al., 2019; Liu et al., 2019b; Wu et al., 2020b; Wen et al., 2020; Wu et al., 2020a;
Yuan et al., 2021; Evci et al., 2022) draw inspiration from other sources, such as the progressive
development processes of biological brains. In particular, Net2Net (Chen et al., 2016) grows the
network by randomly splitting learned neurons from previous phases. This replication scheme, shown
in Figure 1(a) is a common paradigm for most existing methods. Splitting steepest descent (Wu
et al., 2020b) determines which neurons to split and how to split them by solving a combinatorial
optimization problem with auxiliary variables. Firefly (Wu et al., 2020a) further improves flexibility
by incorporating optimization for adding new neurons. Both methods outperform simple heuristics,
but require additional training effort in their gradient-based parameterization schemes. Furthermore,
all existing methods use a global learning rate scheduler to govern weight updates, ignoring the
discrepancy in total training time among subnetworks introduced in different growth phases.

We develop a growing framework around the principles of enforcing transferability of parameter
settings from smaller to larger models (extending Yang et al. (2021)), offering functional conti-
nuity, smoothing optimization dynamics, and rebalancing learning rates between older and newer
subnetworks. Figure 1(b) illustrates key differences with prior work. Our core contributions are:

• Parameterization using Variance Transfer: We propose a parameterization scheme accounting
for the variance transition among networks of smaller and larger width in a single training process.
Initialization of new weights is gradient-free and requires neither additional memory nor training.

• Improved Optimization with Rate Adaptation: Subnetworks trained for different lengths have
distinct learning rate schedules, with dynamic relative scaling driven by weight norm statistics.

• Better Performance and Broad Applicability: Our method not only trains networks fast, but
also yields excellent generalization accuracy, even outperforming the original fixed-size models.
Flexibility in designing a network growth curve allows choosing different trade-offs between
training resources and accuracy. Furthermore, adopting an adaptive batch size schedule provides
acceleration in terms of wall-clock training time. We demonstrate results on image classification
and machine translation tasks, across a diverse set of network architectures.

2



Under review as a conference paper at ICLR 2023

2 RELATED WORK

Network Growing. A diverse range of techniques train models by progressively expanding the
network architecture (Wei et al., 2016; Elsken et al., 2018; Dai et al., 2019; Wen et al., 2020; Yuan
et al., 2021). Within this space, the methods of Chen et al. (2016); Liu et al. (2019b); Wu et al.
(2020b;a); Evci et al. (2022) are most relevant to our focus – incrementally growing network width
across multiple training stages. Net2Net (Chen et al., 2016) proposes a gradient-free neuron splitting
scheme via replication, enabling knowledge transfer from previous training phases; initialization of
new weights follows simple heuristics. Liu et al. (2019b)’s Splitting approach derives a gradient-based
scheme for duplicating neurons by formulating a combinatorial optimization problem. FireFly (Wu
et al., 2020a) gains flexibility by also incorporating brand new neurons. Both of these methods
improve Net2Net’s initialization scheme by solving an optimization problem with auxiliary variables,
at the cost of extra training effort. GradMax (Evci et al., 2022), in consideration of training dynamics,
performs initialization via solving a singular value decomposition (SVD) problem.

Neural Architecture Search (NAS) and Pruning. Another subset of methods mix growth with
dynamic reconfiguration aimed at discovering or pruning task-optimized architectures. Network
Morphism (Wei et al., 2016) searches for efficient networks by extending layers while preserving the
parameters. Autogrow (Wen et al., 2020) takes an AutoML approach governed by heuristic growing
and stopping policies. Yuan et al. (2021) combine learned pruning with a sampling strategy that
dynamically increases or decreases network size. Unlike these methods, we focus on the mechanics
of growth when the target architecture is known, addressing the question of how to best transition
weight and optimizer state to continue training an incrementally larger model. NAS and pruning are
orthogonal to, though potentially compatible with, the technical approach we develop.

Hyperparameter Transfer. Yogatama & Mann (2014); Perrone et al. (2018); Horváth et al. (2021)
explore transferrable hyperparameter (HP) tuning. The recent Tensor Program (TP) work of Yang &
Hu (2021); Yang et al. (2021) focuses on zero-shot HP transfer across model scale and establishes a
principled network parameterization scheme to facilitate HP transfer. This serves as an anchor for
our strategy, though, as Section 3 details, modifications are required to account for dynamic growth.

Learning Rate Adaptation. Surprisingly, the existing spectrum of network growing techniques
utilize relatively standard learning rate schedules and do not address potential discrepancy among
subcomponents added at different phases. One might expect that newer weights should have higher
learning rates than older weights. While general-purpose adaptive optimizers (e.g., AdaGrad (Duchi
et al., 2011), RMSProp (Tieleman et al., 2012), Adam (Kingma & Ba, 2015), AvaGrad (Savarese
et al., 2021)) might ameliorate this issue, we choose to explicitly account for the discrepancy. As
layer-adaptive learning rates (LARS) (Ginsburg et al., 2018; You et al., 2020) benefit in some contents,
we explore further learning rate adaption specific to both layer and growth stage.

3 METHOD

3.1 PARAMETERIZATION AND OPTIMIZATION WITH GROWING DYNAMICS

Functionality Preservation. We grow network capacity by expanding the width of computational
units (e.g., hidden dimensions in linear layers, filters in convolutional layers). To illustrate our scheme,
consider a 3-layer fully-connected network with ReLU activations ϕ:

hin = ϕ(W inx), ho = ϕ(W hhin), y = W outho , (1)
where x ∈ RCin is the network input, y ∈ RCout is the output, and hin ∈ RHin ,ho ∈ RHout are the
hidden activations. In this case, W in is a Hin × Cin matrix, while W h is Hout ×Hin and W out

is Cout ×Hout. After training the network for a few epochs, we increase its capacity by increasing
the dimensionality of each hidden state, i.e., from Hin and Hout to Ĥin and Ĥout, respectively. The
layer parameter matrices W have their shapes changed accordingly and become Ŵ .

Figure 2 illustrates the process for initializing Ŵ .1 As Figure 2(a) shows, we first expand W in

along the output dimension by adding two copies of new weights W in
n of shape Ĥin−Hin

2 × Cin,

1We defer the transformation between Wold and Wnew to the next subsection. It involves rescaling by
constant factors, does not affect network functionality, and is omitted in Eq. 1- 4 for simplicity.

3



Under review as a conference paper at ICLR 2023

Table 1: Parameterization and optimization transition for different layers during growing.
Input Layer Hidden Layer Output Layer

Init. Old Weighs Scaling 1
√
Hin/Ĥin Hout/Ĥout

New Weighs Init. 1/Cin 1/Ĥin 1/(Ĥout)
2

LR Adapt. 0-th Stage 1 1 1/H0
out

i-th Stage ||W in
i \W in

i−1||
||W in

0 ||
||W h

i \W h
i−1||

||W h
0 ||

||W out
i \W out

i−1 ||
||W out

0 ||

generating new features hin
n = ϕ(W in

n x) and changing the first set of activations from hin to

ĥin = concat(hin,hin
n ,hin

n ) . (2)
Next, we expand W h across both input and output dimensions, as shown in Figure 2(b). We initialize
new weights W h

e of shape Hout × Ĥin−Hin

2 and add to W h two copies of it with different signs:
+W h

e and −W h
e . This preserves the output of the layer since

ϕ(W hhin +W h
e h

in
n + (−We)h

in
n ) = ϕ(W hhin) = ho .

We then add two copies of new weights W h
n , which has shape Ĥout−Hout

2 × Ĥin, yielding activations

ĥo = concat(ho, ϕ(W h
n ĥ

in), ϕ(W h
n ĥ

in)) . (3)

We similarity expand W out to match the dimension of ĥo. As Figure 2(c) shows, the final output is:

ŷ = ϕ(W outho +W out
e ϕ(W h

n ĥ
in) + (−W out

e )ϕ(W h
n ĥ

in) = y (4)
which preserves the original output features in Eq. 1.

𝑾𝒐𝒍𝒅
𝒊𝒏

𝑾𝒏𝒆𝒘
𝒊𝒏

𝑾𝒏
𝒊𝒏

𝑾𝒏
𝒊𝒏

𝑾𝒏
𝒊𝒏~𝓝(𝟎, 𝟏/𝑯𝒊𝒏)

𝑪𝒊𝒏

𝑯𝒊𝒏

𝑪𝒊𝒏

$𝑯𝒊𝒏
𝑾𝒏𝒆𝒘

𝒊𝒏 = 𝑾𝒐𝒍𝒅
𝒊𝒏

(a) Input Layer

𝑾𝒐𝒍𝒅
𝒉

𝑾𝒏𝒆𝒘
𝒉

−
𝑾𝒆

𝒉
+
𝑾𝒆

𝒉

𝑯𝒊𝒏

𝑯𝒐𝒖𝒕

%𝑯𝒊𝒏

&𝑯𝒐𝒖𝒕
𝑾𝒏

𝒉

𝑾𝒏
𝒉

𝑾𝒏
𝒉~𝓝(𝟎, 𝟏/ )𝑯𝒊𝒏)

𝑾𝒆
𝒉~𝓝(𝟎, 𝟏/ )𝑯𝒊𝒏)

𝑾𝒏𝒆𝒘
𝒉 ≜

𝑯𝒊𝒏
)𝑯𝒊𝒏

𝑾𝒐𝒍𝒅
𝒉

(b) Hidden Layer

𝑾𝒐𝒍𝒅
𝒐𝒖𝒕 𝑾𝒏𝒆𝒘

𝒐𝒖𝒕
−

𝑾𝒆
𝒐𝒖𝒕

+
𝑾𝒆

𝐨𝐮𝐭

𝑯𝒐𝒖𝒕

𝑪𝒐𝒖𝒕

&𝑯𝒐𝒖𝒕

𝑪𝒐𝒖𝒕𝑾𝒆
𝒐𝒖𝒕~𝓝(𝟎, 𝟏/)𝑯𝒐𝒖𝒕

𝟐)

𝑾𝒏𝒆𝒘
𝒐𝒖𝒕 ≜

𝑯𝒐𝒖𝒕
)𝑯𝒐𝒖𝒕

𝑾𝒐𝒍𝒅
𝒐𝒖𝒕

(c) Output Layer

Figure 2: Initialization scheme. In prac-
tice, we also add noise to the expanded
parameter sets for symmetry breaking.

Weights Initialization with Variance Transfer (VT).
Yang et al. (2021) investigate weight scaling with width at
initialization, allowing hyperparameter transfer by calibrat-
ing variance across model size. They modify the variance
of output layer weights from the commonly used 1/fanin

to 1/fan2in. We adopt this same correction for the added
weights with new width: W out and W out

e are initialized

with variances of 1/Hout
2 and 1/Ĥout

2
, respectively.

However, this correction considers training differently-
sized models separately, which fails to accommodate the
training dynamics in which width grows incrementally.
To make the weights of the old subnetwork W out

old ∼
N (0, 1/(Hout)

2) compatible with the entire weight ten-
sor parameterization, we rescale it with the fanin ratio as:
W out

new = W out
old ·Hout/Ĥout. Also see Table 1 (top).

This parameterization rule transfers to modern convolu-
tional networks with batch normalization (BN). Given a
weight scaling ratio of c, the running mean µ and variance
σ of BN layers are modified as cµ and c2σ, respectively.

Stage-wise Learning Rate Adaptation (RA). Following (Yang et al., 2021), we employ a learning
rate scaling factor of ∝ 1/fanin on the output layer when using SGD, compensating for the initial-
ization scheme. However, subnetworks from different growth stages still share a global learning
rate, though they have trained for different lengths. This may cause divergent behavior among the
corresponding weights, making the training iterations after growing sensitive to the scale of the
newly-initialized weights. Instead of adjusting newly added parameters via local optimization (Wu
et al., 2020a; Evci et al., 2022), we govern the update of each subnetwork in a stage-wise manner.

Suppose a layer scales up with width at different growing stages S0 ⊂ S1 ⊂ ... ⊂ SN−1 with
associated weight and gradient tensors as W0 ⊂W1 ⊂ ... ⊂WN−1 and G0 ⊂ G1 ⊂ ... ⊂ GN−1,
respectively. We adapt the learning rate and update the i-th sub-weights Wi \Wi−1 as:

ηi = η0 ∗
f(Si \ Si−1)

f(S0)
, Wi \Wi−1 ← −ηi ∗ (Gi \Gi−1), i > 0 (5)

4



Under review as a conference paper at ICLR 2023

where η0 is the base learning rate and f is an implicit function that maps subnetworks of different
stages to corresponding train-time statistics. Table 1 (bottom) summarizes our LR adaptation rule for
SGD when f is instantiated as weight norm. Alternative heuristics are possible; see Appendix A.1.

3.2 FLEXIBLE AND EFFICIENT GROWTH SCHEDULER

Algorithm 1 : Growing using Var. Transfer and
Learning Rate Adapt. with Flexible Scheduler

Input: Data X , labels Y , task loss L
Output: Grown model S
Initialize: S0 with C0, T0, B0, η0
for n = 0 to N − 1 do

if n > 0 then
Init. Sn from Sn−1 using VT in Table 1.
Update Cn and Tn using Eq. 6 and Eq. 7.
Update Bn using Eq. 8 (optional)
Itertotal = Tn ∗ len(X)//Bn

end if
for i = 1 to Itertotal do

Forward and calculate l = L(Sn(x),y)).
Back propagation with l.
Update each sub-component using Eq. 5.

end for
end for
return SN−1

We train the model for Ttotal epochs by expand-
ing the channel number of each layer to Cfinal

across N growth phases. Existing methods (Liu
et al., 2019b; Wu et al., 2020a) fail to derive a
systemic way for distributing training resources
across a growth trajectory. Toward maximizing
efficiency, we experiment with a coupling be-
tween model size and training epoch allocation.

Architectural Scheduler. We denote initial
channel width as C0 and expand exponentially:

Cn =

{
Cn−1 + ⌊pcCn−1⌉2 if n < N − 1

Cfinal if n = N − 1
(6)

where ⌊·⌉2 rounds to the nearest even number
and pc is the growth rate between stages.

Epoch Scheduler. We denote number of epochs
assigned to n-th training stage as Tn, with∑N−1

n=0 Tn = Ttotal. We similarly adapt Tn via
an exponential growing scheduler:

Tn =

{
Tn−1 + ⌊ptTn−1⌉ if n < N − 1

Ttotal −
∑N−2

i=0 Ti if n = N − 1
(7)

Wall-clock Speedup via Batch Size Adaptation. Though the smaller architectures in early growth
stages require fewer FLOPs, hardware capabilities may still restrict practical gains. When growing
width, in order to ensure that small models fully utilize the benefits of GPU parallelism, we adapt the
batch size along with the exponentially-growing architecture in a reverse order:

Bn−1 =

{
Bbase if n = N

Bn + ⌊pbBn⌉ if n < N
(8)

where Bbase is the batch size of the large baseline model. Algorithm 1 summarizes our full method.

4 EXPERIMENTS

We evaluate on image classification and machine translation tasks. For image classification, we use
CIFAR-10 (Krizhevsky et al., 2014), CIFAR-100 (Krizhevsky et al., 2014) and ImageNet (Deng et al.,
2009). For the neural machine translation, we use the IWSLT’14 dataset (Cettolo et al., 2014) and
report the BLEU (Papineni et al., 2002) score on German to English (De-En) translation task.

Large Baselines via Fixed-size Training. We use VGG-11 (Simonyan & Zisserman, 2015) with
BatchNorm (Ioffe & Szegedy, 2015), ResNet-20 (He et al., 2016a), MobileNetV1 (Howard et al.,
2017) for CIFAR-10 and VGG-19 with BatchNorm, ResNet-18, MobileNetV1 for CIFAR-100. We
follow Huang et al. (2016) for data augmentation and processing, adopting random shifts/mirroring
and channel-wise normalization. CIFAR-10 and CIFAR-100 models are trained for 160 and 200
epochs respectively, with a batch size of 128 and initial learning rate (LR) of 0.1 using SGD. We
adopt a cosine LR schedule and set the weights decay and momentum as 5e-4 and 0.9. For ImageNet,
we train the baseline ResNet-50 and MobileNetV1 (Howard et al., 2017) using SGD with batch
sizes of 256 and 512, respectively. We adopt the same data augmentation scheme as Gross & Wilber
(2016), the cosine LR scheduler with initial LR of 0.1, weight decay of 1e-4 and momentum of 0.9.

5



Under review as a conference paper at ICLR 2023

Table 2: Growing ResNet-20, VGG-11, and MobileNetV1 on CIFAR-10.

ResNet-20 VGG-11 MobileNetv1

Method Train Test Train Test Train Test
Cost(%) ↓Accuracy(%) ↑ Cost(%) ↓Accuracy(%) ↑ Cost(%) ↓Accuracy(%) ↑

Large Baseline 100 92.62± 0.15 100 92.14± 0.22 100 92.27± 0.11

Net2Net 54.90 91.60± 0.21 52.91 91.78± 0.27 53.80 90.34± 0.20
Splitting 70.69 91.80± 0.10 63.76 91.88± 0.15 65.92 91.50± 0.06
FireFly-split 58.47 91.78± 0.11 56.18 91.91± 0.15 56.37 91.56± 0.06
FireFly 68.96 92.10± 0.13 60.24 92.08± 0.16 62.12 91.69± 0.07

Ours 54.90 92.53± 0.11 52.91 92.34± 0.15 53.80 92.01± 0.10

Table 3: Growing ResNet-18, VGG-19, and MobileNetV1 on CIFAR-100.

ResNet-18 VGG-19 MobileNetv1

Method Train Test Train Test Train Test
Cost(%) ↓Accuracy(%) ↑ Cost(%) ↓Accuracy(%) ↑ Cost(%) ↓Accuracy(%) ↑

Large Baseline 100 78.36± 0.12 100 72.59± 0.23 100 72.13± 0.13

Net2Net 52.63 76.48± 0.20 52.08 71.88± 0.24 52.90 70.01± 0.20
Splitting 68.01 77.01± 0.12 60.12 71.96± 0.12 58.39 70.45± 0.10
FireFly-split 56.11 77.22± 0.11 54.64 72.19± 0.14 54.36 70.69± 0.11
FireFly 65.77 77.25± 0.12 57.48 72.79± 0.13 56.49 70.99± 0.10

Ours 52.63 78.12± 0.15 52.08 73.26± 0.14 52.90 71.53± 0.13

For IWSLT’14, we train an Encoder-Decoder Transformer (6 attention blocks each) (Vaswani
et al., 2017). We set width as dmodel = 1/4dffn = 512, the number of heads nhead = 8 and
dk = dq = dv = dmodel/nhead = 64. We train the model using Adam for 20 epochs with learning
rate 1e-3 and (β1, β2) = (0.9, 0.98). Batch size is 1500 and we use 4000 warm up iterations.

Implementation Details. We compare with the growing methods Net2Net (Chen et al., 2016),
Splitting (Liu et al., 2019b), FireFly-split, FireFly (Wu et al., 2020a) and GradMax (Evci et al., 2022).

For image classification, we run the comparison methods except GradMax alongside our algorithm
for all architectures under the same growing scheduler. For the architecture scheduler, we set pc
as 0.2 and C0 as 1/4 of large baselines in Eq. 6 for all layers and grow the seed architecture within
N = 9 stages towards the large ones. For epoch scheduler, we set pt as 0.2, T0 as 8, 10, and 4 in
Eq. 7 on CIAFR-10, CIFAR-100, and ImageNet respectively. Total training epochs Ttotal are the
same as the respective large fixed-size models. For CIFAR-10 and CIFAR-100, we train the models
and report the results averaging over 3 random seeds.

For machine translation, we grow the encoder and decoder layers’ widths while fixing the embedding
layer dimension for a consistent positional encoding table. The total number of growing stages is
4, each trained for 5 epochs. The initial width is 1/8 of the large baseline (i.e. dmodel = 64 and
dk,q,v = 8). We set the growing ratio pc as 1.0 so that dmodel evolves as 64, 128, 256 and 512.

We train all the models on an NVIDIA 2080Ti 12GB GPU for CIFAR-10, CIFAR-100, and IWSLT’14,
and two NVIDIA A40 48GB GPUs for ImageNet.

4.1 CIFAR RESULTS

All models grow from a small seed architecture to the full-sized one in 9 stages,
each trained for {8, 9, 11, 13, 16, 19, 23, 28, 33} epochs (160 total) in CIFAR-10, and
{10, 12, 14, 17, 20, 24, 29, 35, 39} (200 total) in CIFAR-100. Net2Net follows the design of growing
by splitting via simple neuron replication, hence achieving the same training efficiency as our gradient-
free method under the same growing schedule. Splitting and Firely require additional training effort
for their neuron selection schemes and allocate extra GPU memory for auxiliary variables during the
local optimization stage. This is computationally expensive, especially when growing a large model.

ResNet-20, VGG-11, and MobileNetV1 on CIFAR-10. Table 2 shows results in terms of test
accuracy and training cost calculated based on overall FLOPs. For ResNet-20, Splitting and Firefly

6



Under review as a conference paper at ICLR 2023

Table 4: ResNet-50 and MobileNetV1 on ImageNet.

ResNet-50 MobileNet-v1

Method Train Test Train Test
Cost(%) ↓Acc.(%) Cost(%) ↓Acc.(%)

Large 100 76.72 100 70.80

Net2Net 60.12 74.89 63.72 66.19
FireFly 71.20 75.01 86.67 66.40
GradMax - - 86.67 68.60

Ours 60.12 75.90 63.72 69.92

Table 5: Transformer on IWSLT’14.
Transformer

Method Train BLEU
Cost(%) ↓ Score↑

Large 100 32.84

Net2Net 64.64 30.94

Ours-w/o buffer 64.64 31.42
Ours-w buffer 64.64 31.66
Ours-w buffer-RA 64.64 32.08

achieve better test accuracy than Net2Net, which suggest the additional local optimization benefits
neuron selection at the cost of training efficiency. Our method requires only 54.9% of the baseline
training cost and outperforms all competing methods, while yielding only 0.09p.p (percentage points)
performance degradation compared to the static baseline. Moreover, our method can even outperform
the large fixed-size VGG-11 by 0.20p.p test accuracy, while taking only 52.91% of its training cost.
For MobileNetV1, our method also achieves the best trade-off between training efficiency and test
accuracy among all competitors.

ResNet-18, VGG-19, and MobileNetV1 on CIFAR-100. We also evaluate all methods on CIFAR-
100 using different network architectures. Results in Table 3 show that Firely consistently achieves
better test accuracy than Firefly-split, suggesting that adding new neurons provides more flexibility
for exploration than merely splitting. Both Firely and our method achieve better performance than
the original VGG-19, suggesting that network growing might have an additional regularizing effect.
Our method yields the best accuracy and largest training cost reduction.

4.2 IMAGENET RESULTS

We first grow ResNet-50 on ImageNet and compare the performance of our method to Net2Net
and FireFly under the same epoch schedule: {4, 4, 5, 6, 8, 9, 11, 14, 29} (90 total) with 9 growing
phases. We also grow MobileNetV1 from a small seed architecture, which is more challenging than
ResNet-50. We train Net2Net and our method using the same scheduler as for ResNet-50. We also
compare with Firefly-Opt (a variant of FireFly) and GradMax and report their best results from Evci
et al. (2022). Note that both methods not only adopt additional local optimization, but also train
with a less efficient growing scheduler: the final full-sized architecture needs to be trained for a 75%
fraction while ours only requires 32.2%. Table 4 shows that our method dominates all competing
approaches.

4.3 IWSLT14 DE-EN RESULTS

We grow a Transformer from dmodel = 64 to dmodel = 512 within 4 stages, each trained with 5
epochs using Adam. Applying gradient-based growing methods to the Transformer architecture is
non-trivial due to their domain specific design of local optimization. As such, we only compare with
Net2Net. We also design variants of our method for self-comparison, based on the adaptation rules
for Adam in Appendix A.1. As shown in Table 5, our method generalizes well to the Transformer
architecture for the machine translation task. Comparison among variants is also consistent with
Table 7, demonstrating the benefit of learning rate adaptation.

4.4 ANALYSIS

Variance Transfer. We train a simple neural network with 4 convolutional layers on CIFAR-10.
The network consists of 4 resolution-preserving convolutional layers; each convolution has 64,
128, 256 and 512 channels, a 3 × 3 kernel, and is followed by BatchNorm and ReLU activations.
Max-pooling is applied to each layer for a resolution-downsampling of 4, 2, 2, and 2. These CNN
layers are then followed by a linear layer for classification. We first alternate this network into
four variants, given by combinations of training epochs ∈ {13(1×), 30(2.3×)} and initialization
methods ∈ {standard, µtransfer (Yang et al., 2021)}. We also grow from a thin architecture within
3 stages, where the channel number of each layer starts with only 1/4 of the original one, i.e.,
{16, 32, 64, 128} → {32, 64, 128, 256} → {64, 128, 256, 512}, each stage is trained for 10 epochs.

7



Under review as a conference paper at ICLR 2023

2 6 2 4 2 2 20

Learning Rate

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

n 
Lo

ss

Large Standard(2.3x Cost)
Large Standard(1x Cost)
Large with Transfer(2.3x Cost)
Large with Transfer(1x Train Cost)
Growing(Standard)
Growing(Ours Var. Transfer+Standard SGD)
Growing(Ours Var. Transfer+SGD with Rate Adaptation)

(a) Train Loss

2 6 2 4 2 2 20

Learning Rate
55

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y(
%

)

Large Standard(2.3x Cost)
Large Standard(1x Cost)
Large with Transfer(2.3x Cost)
Large with Transfer(1x Train Cost)
Growing(Standard)
Growing(Ours Var. Transfer+Standard SGD)
Growing(Ours Var. Transfer+SGD with Rate Adaptation)

(b) Test Accuracy

Figure 3: Different baselines of 4-layers simple CNN on CIFAR-10.

130 135 140 145 150 155 160
Epochs(Last Stage)

88

89

90

91

92

Te
st

 A
cc

ur
ac

y 
(%

)

Standard Init. + SGD
Var. Transfer + Standard SGD
Var. Transfer + SGD with Rate Adapt.

(a) Test Accuracy

7-th Stage 8-th Stage

(b) Gradients with Global LR

7-th Stage 8-th Stage

(c) Gradients with Rate Adaptation

Figure 4: (a) Performance with Var. Transfer and Rate Adaptation growing ResNet-20. (b) and (c)
visualizes the gradients for different sub-compoents along training in the last two stages.

For network growing, we compare the baselines with standard initialization and variance transfer.
We train all baselines using SGD, with weight decay set as 0 and learning rates sweeping over
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5, 2.0}. In Figure 3(b), growing with Var. Transfer
(blue) achieves overall better test accuracy than standard initialization (orange). Large baselines with
merely µtransfer in initialization consistently underperform standard ones, which validate that the
compensation from the LR re-scaling is necessary in Yang et al. (2021). We also observe, in both
Figure 3(a) and 3(b), all growing baselines outperform fixed-size ones under the same training cost,
demonstrating positive regularization effects. We also show the effect of our initialization scheme
by comparing test performance on standard ResNet-20 on CIFAR-10. As shown in Figure 4(a),
compared with standard initialization, our variance transfer not only achieves better final test accuracy
but also appears more stable. See Appendix A.4 for a fully-connected network example.

Learning Rate Adaptation. We investigate the value of our proposed stage-wise learning rate
adaptation as an optimizer for growing networks. As shown in the red curve in Figure 3, rate
adaptation not only bests the train loss and test accuracy among all baselines, but also appears to be
more robust over different learning rates. In Figure 4(a), rate adaptation further improves final test
accuracy for ResNet-20 on CIFAR-10, under the same initialization scheme.

Figure 4(b) and 4(c) visualize the gradients of different sub-components for the 17-th convolutional
layer of ResNet-20 during last two growing phases of standard SGD and rate adaptation, respectively.
Our rate adaptation mechanism rebalances subcomponents’ gradient contributions to appear in
lower divergence than global LR, when components are added at different stages and trained for
different durations. In Figure 5, we observe that the LR for newly added Subnet-8 (red) in last stage
starts around 1.8× the base LR, then quick adapts to a smoother level. This demonstrates that our
method is able to automatically adapt the updates applied to new weights, without any additional
local optimization costs (Wu et al., 2020b; Evci et al., 2022). All above show our method has a
positive effect in terms of stabilizing training dynamics, which is lost if one attempts to train different
subcomponents using a global LR scheduler. Appendix A.2 and A.3 provide more visualizations.

8



Under review as a conference paper at ICLR 2023

130 135 140 145 150 155 160
Epochs (Last Stage)

1.0

1.2

1.4

1.6

1.8

Ra
te

 A
da

pt
at

io
n 

Fa
ct

or
s

Subnet-0(Seed Arch.)
Subnet-1
Subnet-2

Subnet-3
Subnet-4
Subnet-5

Subnet-6
Subnet-7
Subnet-8

Figure 5: Visualization of our adaptive LR.

Better

Figure 6: Comparison of growing schedules.

0 1 2 3 4 5 6 7 8
Stages

0

200

400

600

800

1000

1200

G
PU

 M
em

or
y 

(M
)

Large Model Fix-BatchSize Grow Ada-BatchSize Grow

(a) ResNet-18 GPU memory allocations

0 1 2 3 4 5 6 7 8
Stages

0

10

20

30

40

Tr
ai

n 
Ti

m
e/

Ep
oc

h 
(s

)

Large Model Fix-BatchSize Grow Ada-BatchSize Grow

(b) ResNet-18 training time

Figure 7: Track of GPU memory allocations and wall clock training time for each growing phase.

Flexible Growing Scheduler. Our growing scheduler gains the flexibility to explore the best trade-
offs between training budgets and test performance in a unified configuration scheme (Eq. 6 and Eq. 7).
We compare the exponential epoch scheduler (pt ∈ {0.2, 0.25, 0.3, 0.35}) to a linear one (pt = 0)
in ResNet-20 growing on CIFAR-10, denoted as ‘Exp.’ and ‘Linear’ baselines in Figure 6. Both
baselines use the architectural schedulers with pc ∈ {0.2, 0.25, 0.3, 0.35}, each generates trade-offs
between train costs and test accuracy by alternating T0. The exponential scheduler yields better
overall trade-offs than the linear one with the same pc. In addition to different growing schedulers,
we also plot a baseline for fixed-size training with different models. Growing methods with both
schedulers consistently outperforms the fixed-size baselines, demonstrating that the regularization
effect of network growth benefits generalization performance.

Wall-clock Training Speedup. We benchmark GPU memory consumption and wall-clock training
time on CIFAR-100 for each stage during training on single NVIDIA 2080Ti GPU. The large
baseline ResNet-18 trains for 140 minutes to achieve 78.36% accuracy. As shown in the green bar
of Figure 7(b), the growing method only achieves marginal wall-clock acceleration, under the same
fixed batch size. As such, the growing ResNet-18 takes 120 minutes to achieve 78.12% accuracy.
The low GPU utilization in the green bar in Figure 7(a) hinders FLOPs savings from translating
into real-world training acceleration. In contrast, the red bar of Figure 7 shows that our batch size
adaptation results in a large proportion of wall clock acceleration by filling the GPU memory, and
corresponding parallel execution resources, while maintaining test accuracy. ResNet-18 trains for 84
minutes (1.7× speedup) and achieves 78.01% accuracy.

5 CONCLUSION

We propose an efficient and accurate method for network growing, based on principled rules regarding
both parameterization and optimization. Our parameter transition from older to newer subnetworks is
general and quick to execute when expanding the network. Our carefully designed learning rate adap-
tation mechanism improves optimization dynamics in networks consisting of subcomponents with
heterogeneous training durations. Applications to widely-used architectures on image classification
and machine translation tasks demonstrate that our method bests the accuracy of competitors, even
outperforming the original fixed-size models, while saving considerable training cost.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report
on the 11th IWSLT evaluation campaign. In Proceedings of the 11th International Workshop on
Spoken Language Translation: Evaluation Campaign, 2014.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv:1706.05587, 2017.

Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. In Yoshua Bengio and Yann LeCun (eds.), ICLR, 2016.

Xiaoliang Dai, Hongxu Yin, and Niraj K. Jha. Nest: A neural network synthesis tool based on a
grow-and-prune paradigm. IEEE Trans. Computers, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 2011.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Simple and efficient architecture search for
convolutional neural networks. In ICLR Workshop, 2018.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Fabian Pedregosa, and Max Vladymyrov.
Gradmax: Growing neural networks using gradient information. In ICLR, 2022.

Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V. Le. Nas-fpn: Learning scalable feature
pyramid architecture for object detection. arXiv:1904.07392, 2019.

Boris Ginsburg, Igor Gitman, and Yang You. Large batch training of convolutional networks with
layer-wise adaptive rate scaling, 2018.

Ross B. Girshick. Fast R-CNN. In ICCV, 2015.

Sam Gross and Michael Wilber. Training and investigating residual nets. http://torch.ch/
blog/2016/02/04/resnets.html, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016b.

Samuel Horváth, Aaron Klein, Peter Richtárik, and Cédric Archambeau. Hyperparameter transfer
learning with adaptive complexity. In AISTATS, 2021.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv:1704.04861, 2017.

10

http://torch.ch/blog/2016/02/04/resnets.html
http://torch.ch/blog/2016/02/04/resnets.html


Under review as a conference paper at ICLR 2023

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. In ECCV, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), ICLR, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convolu-
tional neural networks. In NeurIPS, 2012.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. http://www.cs.
toronto.edu/˜kriz/cifar.html, 2014.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. arXiv preprint arXiv:1605.07648, 2016.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. arXiv preprint
arXiv:1904.00310, 2019.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and
Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation.
In CVPR, 2019a.

Qiang Liu, Wu Lemeng, and Wang Dilin. Splitting steepest descent for growing neural architectures.
2019b.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu,
and Alexander C. Berg. SSD: single shot multibox detector. In ECCV, 2016.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, 2015.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. In ICLR, 2020.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In ACL, 2002.

Valerio Perrone, Rodolphe Jenatton, Matthias W. Seeger, and Cédric Archambeau. Scalable hyperpa-
rameter transfer learning. In NeurIPS, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In AAAI, 2019.

Pedro Savarese, David McAllester, Sudarshan Babu, and Michael Maire. Domain-independent
dominance of adaptive methods. In CVPR, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR,
pp. 1–9, 2015.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Chengcheng Wan, Henry Hoffmann, Shan Lu, and Michael Maire. Orthogonalized SGD and nested
architectures for anytime neural networks. In ICML, 2020.

11

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html


Under review as a conference paper at ICLR 2023

Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. Network morphism. In ICML, 2016.

Wei Wen, Feng Yan, Yiran Chen, and Hai Li. Autogrow: Automatic layer growing in deep convolu-
tional networks. In KDD, 2020.

Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly neural architecture descent: a general
approach for growing neural networks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), NeurIPS, 2020a.

Lemeng Wu, Mao Ye, Qi Lei, Jason D Lee, and Qiang Liu. Steepest descent neural architecture opti-
mization: Escaping local optimum with signed neural splitting. arXiv preprint arXiv:2003.10392,
2020b.

Greg Yang and Edward J. Hu. Tensor programs IV: feature learning in infinite-width neural networks.
In ICML, 2021.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
NeurIPS, 2021.

Dani Yogatama and Gideon Mann. Efficient transfer learning method for automatic hyperparameter
tuning. In AISTATS, 2014.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In ICLR, 2020.

Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael Maire. Growing efficient deep networks
by structured continuous sparsification. In ICLR, 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In CVPR, 2022.

12



Under review as a conference paper at ICLR 2023

A APPENDIX

Table 6: Rate Adaptation Rule for Adam (Kingma & Ba, 2015) and AvaGrad (Savarese et al., 2021).
Our LR Adaptation

Adam 0-th Stage mt[0]/
√
vt[0]

i-th Stage mt[i]\mt[i−1]√
vt[i]\vt[i−1]

AvaGrad 0-th Stage ηt[0]

||ηt[0]/
√

dt[0]||2
⊙mt[0]

i-th Stage ηt[i]\ηt[i−1]

||ηt[i]\ηt[i−1]/
√

dt[i]−dt[i−1]||2
⊙ (mt[i] \mt[i−1])

Table 7: Generalize to Adam and AvaGrad for ResNet-20 on CIFAR-10.
Optimizer Training Method Preserve Opt. Buffer Train Cost (%) Test Acc. (%) )

Adam Large fixed-size NA 100 92.29
Adam Growing No 54.90 91.44
Adam Growing Yes 54.90 91.61

Adam+our RA. Growing Yes 54.90 92.13
AvaGrad Large fixed-size NA 100 92.45
AvaGrad Growing No 54.90 90.71
AvaGrad Growing Yes 54.90 91.27

AvaGrad+our RA. Growing Yes 54.90 91.72

A.1 GENERALIZATION TO OTHER OPTIMIZERS

We generalize our LR adaptation rule to Adam (Kingma & Ba, 2015) and AvaGrad (Savarese et al.,
2021) in Table 6. Both methods are adaptive optimizers where different heuristics are adopted to
derive a parameter-wise learning rate strategy, which provides primitives that can be extended using
our stage-wise adaptation principle for network growing. For example, vanilla Adam adapts the
global learning rate with running estimates of the first moment mt and the second moment vt of the
gradients, where the number of global training steps t is an integer when training a fixed-size model.
When growing networks, our learning rate adaptation instead considers a vector t which tracks each
subcomponent’s ‘age’ (i.e. number of steps it has been trained for). As such, for a newly grown
subcomponent at a stage i > 0, t[i] starts as 0 and the learning rate is adapted from mt/

√
vt (global)

to mt[i]\mt[i−1]√
vt[i]\vt[i−1]

(stage-wise). Similarly, we also generalize our approach to AvaGrad by adopting

ηt, dt,mt of the original paper as a stage-wise variables.

Preserving Optimizer State/Buffer Essential to adaptive methods are training-time statistics (e.g.
running averages mt and vt in Adam) which are stored as buffers and used to compute parameter-
wise learning rates. Different from fixed-size models, parameter sets are expanded when growing
networks, which in practice requires re-instantiating a new optimizer at each growth step. Given that
our initialization scheme maintains functionality of the network, we are also able to preserve and
inherit buffers from previous states, effectively maintaining the optimizer’s state intact when adding
new parameters. We investigate the effects of this state preservation experimentally.

Results with Adam and AvaGrad Table 7 shows the results growing ResNet-20 on CIFAR-10 with
Adam and Avagrad. For the large, fixed-size baseline, we train Adam with lr = 0.1, ϵ = 0.1 and
AvaGrad with lr = 0.5, ϵ = 10.0, which yields the best results for ResNet-20 following Savarese
et al. (2021). We consider different settings for comparison, (1) optimizer without buffer preservation:
the buffers are refreshed at each new growing phase (2) optimizer with buffer preservation: the
buffer/state is inherited from the previous phase, hence being preserved at growth steps (3) optimizer
with buffer and rate adaptation (RA): applies our rate adaptation strategy described in Table 6
while also preserving internal state/buffers. We observes that (1) consistently underperforms (2),
which suggests that preserving the state/buffers in adaptive optimizers is crucial when growing

13



Under review as a conference paper at ICLR 2023

Table 8: Comparisons among Standard SGD, LARS and Ours for ResNet-20 Growth on CIFAR-10.

Optimizer Test Acc. (%) )

Standard SGD 91.95± 0.09
SGD with Layer-wise Adapt.(LARS) 91.32± 0.11

Ours 92.53± 0.11

networks. (3) bests the other settings for both Adam and AvaGrad, indicating that our rate adaptation
strategy generalizes effectively to Adam and AvaGrad for the growing scenario. Together, these also
demonstrate that our method has the flexibility to incorporate different statistics that are tracked and
used by distinct optimizers, where we take Adam and AvaGrad as examples. Finally, our proposed
stage-wise rate adaptation strategy can be employed to virtually any optimizer.

Comparison with Layer-wise Adaptive Optimizer We also consider LARS (Ginsburg et al.,
2018; You et al., 2020), a layer-wise adaptive variant of SGD, to compare different adap-
tation concepts: layer-wise versus layer + stage-wise (ours). Note that although LARS
was originally designed for training with large batches, we adopt a batch size of 128 when
growing ResNet-20 on CIFAR-10. We search the initial learning rate (LR) for LARS over
{1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 5e-1} and observe that a value of 0.02 yields the best
results. We adopt the default initial learning rate of 0.1 for both standard SGD and our method. As
shown in Table 8, LARS underperforms both standard SGD and our adaptation strategy, suggesting
that layer-wise learning rate adaptation by itself – i.e. without accounting for stage-wise discrepancies
– is not sufficient for successful growing of networks.

A.2 MORE VISUALIZATIONS ON RATE ADAPTATION

We show additional plots of stage-wise rate adaptation when growing a ResNet-20 on CIFAR-10.
Figure 8 shows the of adaptation factors based on the LR of the seed architecture from 1st to 8th
stages (the stage index starts at 0). We see an overall trend that for newly-added weights, its learning
rate starts at > 1× of the base LR then quickly adapts to a relatively stable level. This demonstrates
that our approach is able to efficiently and automatically adapt new weights to gradually and smoothly
fade in throughout the current stage’s optimization procedure.

9 10 11 12 13 14 15 16 17
Epochs (1-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

e 
A

da
pt

at
io

n 
Fa

ct
or

s

Subnet-0(Seed Arch.) Subnet-1

(a) 1-st Stage

18 20 22 24 26 28
Epochs (2-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

e 
A

da
pt

at
io

n 
Fa

ct
or

s

Subnet-0(Seed Arch.) Subnet-1 Subnet-2

(b) 2-nd Stage

30 32 34 36 38 40
Epochs (3-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

e 
A

da
pt

at
io

n 
Fa

ct
or

s

Subnet-0(Seed Arch.)
Subnet-1

Subnet-2 Subnet-3

(c) 3-rd Stage

42 44 46 48 50 52 54 56
Epochs (4-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

e 
A

da
pt

at
io

n 
Fa

ct
or

s

Subnet-0(Seed Arch.)
Subnet-1

Subnet-2
Subnet-3

Subnet-4

(d) 4-th Stage

58 60 62 64 66 68 70 72 74 76
Epochs (5-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

e 
A

da
pt

at
io

n 
Fa

ct
or

s

Subnet-0(Seed Arch.)
Subnet-1

Subnet-2
Subnet-3

Subnet-4
Subnet-5

(e) 5-th Stage

77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5
Epochs (6-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

e 
A

da
pt

at
io

n 
Fa

ct
or

s

Subnet-0(Seed Arch.)
Subnet-1
Subnet-2

Subnet-3
Subnet-4

Subnet-5
Subnet-6

(f) 6-th Stage

100 105 110 115 120 125
Epochs (7-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

e 
A

da
pt

at
io

n 
Fa

ct
or

s

Subnet-0(Seed Arch.)
Subnet-1
Subnet-2

Subnet-3
Subnet-4
Subnet-5

Subnet-6
Subnet-7

(g) 7-th Stage

130 135 140 145 150 155 160
Epochs (8-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

e 
A

da
pt

at
io

n 
Fa

ct
or

s

Subnet-0(Seed Arch.)
Subnet-1
Subnet-2

Subnet-3
Subnet-4
Subnet-5

Subnet-6
Subnet-7
Subnet-8

(h) 8-th Stage

Figure 8: Visualization of Rate Adaptation Factor Dynamics across All Growing Stages (except 0-th)

14



Under review as a conference paper at ICLR 2023

A.3 MORE VISUALIZATIONS ON SUB-COMPONENT GRADIENTS

We further compare global LR and our rate adaptation by showing additional visualizations of sub-
component gradients of different layers and stages when growing ResNet-20 on CIFAR-10. We select
the 2nd (layer1-block1-conv1) and 17th (layer3-block2-conv2) convolutional layers and plot the gra-
dients of each sub-component at the 3rd and 5th growing stages, respectively, in Figures 9, 10, 11, 12.
These demonstrate that our rate adaptation strategy is able to re-balance and stabilize the gradient’s
contribution of different subcomponents, hence improving the training dynamics compared to a
global scheduler.

28 30 32 34 36 38 40
Epochs (3-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t 

N
o
rm

1e 3
Subnet-0
Subnet-1
Subnet-2
Subnet-3

(a) Using Global

28 30 32 34 36 38 40
Epochs (3-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
G

ra
d
ie

n
t 

N
o
rm

1e 3
Subnet-0
Subnet-1
Subnet-2
Subnet-3

(b) Using RA

Figure 9: Gradients of 2nd conv at 3rd stage.

57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0
Epochs (5-th Stage)

1

2

3

4

5

G
ra

d
ie

n
t 

N
or

m

1e 4
Subnet-0
Subnet-1
Subnet-2
Subnet-3
Subnet-4
Subnet-5

(a) Using Global

57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0
Epochs (5-th Stage)

1

2

3

4

5

6

7

G
ra

d
ie

n
t 

N
or

m

1e 4
Subnet-0
Subnet-1
Subnet-2
Subnet-3
Subnet-4
Subnet-5

(b) Using RA

Figure 10: Gradients of 2nd conv at 5th stage.

28 30 32 34 36 38 40
Epochs (3-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t 

N
o
rm

1e 4

Subnet-0
Subnet-1
Subnet-2
Subnet-3

(a) Using Global

28 30 32 34 36 38 40
Epochs (3-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t 

N
o
rm

1e 4
Subnet-0
Subnet-1
Subnet-2
Subnet-3

(b) Using RA

Figure 11: Gradients of 17th conv at 3rd stage.

57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0
Epochs (5-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t 

N
o
rm

1e 4

Subnet-0
Subnet-1
Subnet-2
Subnet-3
Subnet-4
Subnet-5

(a) Using Global

57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0
Epochs (5-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t 

N
o
rm

1e 4
Subnet-0
Subnet-1
Subnet-2
Subnet-3
Subnet-4
Subnet-5

(b) Using RA

Figure 12: Gradients of 17th conv at 5th stage.

A.4 SIMPLE EXAMPLE ON FULLY-CONNECTED NEURAL NETWORKS

Additionally, we train a simple fully-connected neural network with 8 hidden layers on CIFAR-10
– each hidden layer has 500 neurons and is followed by ReLU activations. The network is has a
final linear layer with 10 neurons for classification. Note that each CIFAR-10 image is flattened to a

2 6 2 5 2 4 2 3 2 2 2 1

Learning Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

n 
Lo

ss

Large Model 1x Train Cost
Large Model 2x Train Cost
Growing (Standard)
Growing (Ours Var. Transfer + Standard SGD)
Growing (Ours Var. Transfer + SGD with Rate Adaptation)

(a) Train Loss

2 6 2 5 2 4 2 3 2 2 2 1

Learning Rate

50

51

52

53

54

55

Te
st

 A
cc

ur
ac

y(
%

)

Large Model 1x Train Cost
Large Model 2x Train Cost
Growing (Standard)
Growing (Ours Var. Transfer + Standard SGD)
Growing (Ours Var. Transfer + SGD with Rate Adaptation)

(b) Test Accuracy

Figure 13: Results of Simple Fully-connected Neural Network.

15



Under review as a conference paper at ICLR 2023

3072-dimensional (32× 32× 3) vector as prior to being given as input to the network. We consider
two variants of this baseline network by adopting training epochs (costs) ∈ {25(1×), 50(2×)}. We
also grow from a thin architecture to the original one within 10 stages, each stage consisting of 5
epochs, where the number of units of each hidden layer grows from 50 to 100, 150, ..., 500. The total
training cost is equivalent to the fixed-size one trained for 25 epochs. We train all baselines using
SGD, with weight decay set as 0 and learning rates sweeping over {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}:
results are shown in Figure 13(a). Compared to standard initialization (green), the loss curve given
by growing variance transfer (blue) is more similar to the curve of the large baseline – all using
standard SGD – which is also consistent with the observations when training model of different scales
separately (Yang et al., 2021). Rate adaptation (in red) further lowers training loss. Interestingly,
we observe in Figure 13(b) that the test accuracy behavior differs from the training loss one given
in Figure 13(a), which may suggest that regularization is missing due to, for example, the lack of
parameter-sharing schemes (like CNN) in this fully-connected network.

Table 9: Growing ResNet-18 using Incremental CIFAR-100.

Progressive Class Progressive Data

Method Train Test Train Test
Cost (%) ↓Accuracy (%) ↑ Cost (%) ↓Accuracy (%) ↑

Large fixed-size Model 100 76.80 100 76.65

Ours 65.36 76.50 65.36 76.34
Ours-Dynamic-OSGD 68.49 77.53 68.49 77.85

A.5 EXTENSION TO CONTINUOUSLY INCREMENTAL DATASTREAM

Another direct and intuitive application for our method is to fit continuously incremental datastream
where D0 ⊂ D1, ... ⊂ Dn... ⊂ DN−1. The network complexity scales up together with the data so
that larger capacity can be trained on more data samples. Orthogonalized SGD (OSGD) (Wan et al.,
2020) address the optimization difficulty in this context, which dynamically re-balances task-specific
gradients via prioritizing the specific loss influence. We further extend our optimizer by introducing a
dynamic variant of orthogonalized SGD, which progressively adjusts the priority of tasks on different
subnets during network growth.

Suppose the data increases from Dn−1 to Dn, we first accumulate the old gradients Gn−1 using one
additional epoch on Dn−1 and then grow the network width. For each batch of Dn, we first project
gradients of the new architecture (n-th stage), denoted as Gn, onto the parameter subspace that is
orthogonal to Gpad

n−1, a zero-padded version of Gn−1 with desirable shape. The final gradients G∗
n

are then calculated by re-weighting the original Gn and its orthogonal counterparts:

G∗
n = Gn − λ ∗ projGpad

n−1
(Gn), λ : 1→ 0 (9)

where λ is a dynamic hyperparameter which weights the original and orthogonal gradients. When
λ = 1, subsequent outputs do not interfere with earlier directions of parameters updates. We then
anneal λ to 0 so that the newly-introduced data and subnetwork can smoothly fade in throughout the
training procedure.

Implementation Details. We implement the task in two different settings, denoted as‘ progressive
class’ and ‘progressive data’ on CIFAR-100 dataset within 9 stages. In the progressive class setting,
we first randomly select 20 classes in the first stage and then add 10 new classes at each growing
stage. In the progressive data setting, we sequentially sample a fraction of the data with replacement
for each stage, i.e. 20%, 30%, ..., 100%.

ResNet-18 on Continuous CIFAR-100: We evaluate our method on continuous datastreams by
growing a ResNet-18 on CIFAR-100 and comparing the final test accuracies. As shown in Ta-
ble 9, compared with the large baseline, our growing method achieves 1.53× cost savings with a
slight performance degradation in both settings. The dynamic OSGD variant outperforms the large
baseline with 1.46× acceleration, demonstrating that the new extension improves the optimization
on continuous datastream through gradually re-balancing the task-specific gradients of dynamic
networks.

16


	Introduction
	Related Work
	Method
	Parameterization and Optimization with Growing Dynamics
	Flexible and Efficient Growth Scheduler

	Experiments
	CIFAR Results
	ImageNet Results
	IWSLT14 De-En Results
	Analysis

	Conclusion
	Appendix
	Generalization to Other Optimizers
	More Visualizations on Rate Adaptation
	More Visualizations on Sub-Component Gradients
	Simple Example on Fully-Connected Neural Networks
	Extension to Continuously Incremental Datastream


