
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE POLAR EXPRESS: OPTIMAL MATRIX SIGN
METHODS AND THEIR APPLICATION TO THE MUON
ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Computing the polar decomposition and the related matrix sign function has
been a well-studied problem in numerical analysis for decades. Recently, it has
emerged as an important subroutine within the Muon optimizer for training deep
neural networks. However, the requirements of this application differ sharply from
classical settings: deep learning demands GPU-friendly algorithms that prioritize
high throughput over high precision. We introduce Polar Express, a new
method for computing the polar decomposition. Like Newton-Schulz and other
classical polynomial methods, our approach uses only matrix-matrix multiplica-
tions, making it very efficient on GPUs. Inspired by earlier work of Chen & Chow
and Nakatsukasa & Freund, Polar Express adapts the update rule at each it-
eration by solving a minimax optimization problem. We prove that this strategy
minimizes error in a worst-case sense, allowing Polar Express to converge
as rapidly as possible both in the early iterations and asymptotically. We also
address finite-precision issues, making it practical to use in bfloat16. When
integrated into Muon, our method yields consistent improvements in validation
loss for a GPT-2 model trained on one to ten billion tokens from the FineWeb
dataset, outperforming recent alternatives across a range of learning rates.

1 INTRODUCTION

Advanced linear algebra is making its way into deep learning. Efficient algorithms for computing
matrix functions have found exciting new applications in training neural networks. In particular, ap-
proximations to the matrix-inverse are used in the full Adagrad method (Duchi et al., 2011), the ma-
trix square-root and quarter-root appear as subroutines in the Shampoo and Soap optimizers (Gupta
et al., 2018; Shi et al., 2023; Vyas et al., 2025), and most recently, the matrix sign function has
become a key ingredient of the Muon optimizer (Bernstein & Newhouse, 2024b;a; Jordan et al.,
2024b). While the problem of computing these matrix functions has been studied by numerical
analysts for decades, applications in deep learning come with different requirements than those in
computational science. For deep learning, it is critical to take maximum advantage of GPU-friendly
operations like matrix-matrix products and to avoid less parallel operations. Moreover, memory
overhead must be small to handle large models. On the other hand, high accuracy is typically less
important; the gold standard of sixteen digits of accuracy is overkill in deep learning.

Given these considerations, there is a need to develop new matrix function methods that are tailor-
made for deep learning applications. We take on this challenge by designing a state-of-the-art,
GPU-friendly algorithm for computing the matrix sign function, or more generally, for computing
the polar decomposition of a rectangular matrix. We apply our new Polar Express method
(Algorithm 1, Implementation 1) to compute the descent direction in the increasingly popular Muon
optimizer. In Figure 1, we show that using Polar Express within Muon consistently results in
lower validation loss across all learning rates when training a GPT-2 model, as compared to other
matrix sign methods (Cesista et al., 2025; Jordan et al., 2024b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

10−2

Learning Rate

3.34

3.36

3.38

3.40

3.42

3.44

3.46

F
in

al
V

al
id

at
io

n
L

os
s

muon-You

muon-PolarExp

muon-Jordan

0.0 0.2 0.4 0.6 0.8

Epoch

3.4

3.6

3.8

4.0

4.2

4.4

V
a
li
d

a
ti

o
n

L
o
ss

Figure 1: Training a GPT-2-Large model (774M params) on 1 billion tokens from the FineWeb
dataset (Aroca-Ouellette et al., 2023). The label muon-<name> refers to implementing Muon using
<name> to compute the polar factor. Left: final validation loss across learning rates. Right: valida-
tion loss across epochs using the best learning rate. The best learning rate (lr) and final validation
loss for each method were muon-You (lr = 0.02): 3.399, muon-Jordan (lr = 0.02): 3.398 and
muon-PolarExp (lr = 0.02): 3.340.

1.1 THE MUON METHOD

The Muon optimizer has recently gained popularity for training large language models, often out-
performing state-of-the-art adaptive gradient methods like Adam and AdamW (Kingma & Ba, 2015;
Loshchilov & Hutter, 2019). Muon has been used to set records for the NanoGPT speedrun (Jordan
et al., 2024b), to expand the Pareto frontier of performance versus training FLOPs for large lan-
guage models (Liu et al., 2025; Shah et al., 2025), and even to train a 1 trillion parameter frontier
LLM (Kimi Team et al., 2025).

The Muon update rule (Bernstein & Newhouse, 2024b) is defined as follows. Let λ, β > 0 be the
learning rate and momentum coefficient hyperparameters. (By default, β = 0.9.) Let Wt ∈ Rm×n

be the weight matrix of a given neural network layer at iteration t, and let Gt ∈ Rm×n be its
(stochastic) gradient. Let Mt ∈ Rm×n be the running momentum estimate of the gradient, where
M0 = 0. The Muon update is given by

Mt = βMt−1 + (1− β)Gt, Wt+1 = Wt − λ polar(Mt).

Whereas standard stochastic gradient descent (SGD) with momentum updates the weight matrix by
taking a step in the direction −Mt, the Muon method steps in the direction −polar(Mt), where
polar(M) denotes the closest semi-orthogonal matrix to M (Higham, 2008, Chapter 8). Con-
cretely, if M = UΣV T is the singular value decomposition (SVD) of M , then

polar(M) := UV T. (1)

The matrix polar(M) can be seen as a generalization of the matrix sign function to rectangular ma-
trices (Benzi & Huang, 2019). Indeed, when M is square symmetric with eigendecomposition M =
V ΛV T, polar(M) exactly coincides with the matrix sign function sign(M) = V sign(Λ)V T

(Higham, 2008, Chapter 5). Equivalently, polar(M) is the left orthogonal factor of the polar de-
composition of M (Higham, 2008, Chapter 8). The motivation for Muon is that −polar(M) gives
the steepest-descent direction with respect to the spectral norm (instead of the Frobenius norm,
as in standard SGD). For analysis and further discussion on Muon we refer the reader to (Jordan
et al., 2024b; Bernstein & Newhouse, 2024b; Pethick et al., 2025; Riabinin et al., 2025; Carlson
et al., 2015a;b). In this paper, we take the Muon update rule as given and focus on the problem of
efficiently computing the polar decomposition polar(M).

1.2 COMPUTING THE POLAR FACTOR

Although polar(M) can be computed directly via an SVD in O(mnmin(m,n)) time, doing so is
prohibitively expensive in deep learning applications, especially as standard SVD algorithms fail to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

take full advantage of the parallelism available on GPUs. There has been significant work on highly-
parallel methods for the SVD, but the most common approaches actually require computing the
matrix-sign function as a subroutine (Nakatsukasa & Freund, 2016; Nakatsukasa & Higham, 2013).
Numerical analysts have spent decades developing iterative methods for computing polar(M). This
rich line of work includes Newton-Schulz (Higham, 2008, Chapter 8), Padé iteration (Kenney &
Laub, 1991; Higham, 1986), the Newton and scaled Newton iterations (Higham, 2008, Chapter 8),
the QDWH iteration (Nakatsukasa et al., 2010; Nakatsukasa & Higham, 2013), and Zolo-pd (Nakat-
sukasa & Freund, 2016). Unfortunately, as discussed in Appendix B, most of these methods are
based on rational approximations to the function sign(x) and require computing matrix inverses
or QR decompositions. Such methods are ill-suited to GPU acceleration and deep learning applica-
tions. In contrast, the older Newton-Schulz method is based on polynomial approximation of sign(x)
and uses only matrix-matrix products. Thus, Muon initially used Newton-Schulz (Bernstein & New-
house, 2024a). Indeed, Muon stands for “MomentUm Orthogonalized by Newton-Schulz” (Jordan
et al., 2024b). For a more comprehensive discussion on prior work, see Appendix B.

The Newton-Schulz methods. Newton-Schulz constructs a sequence of approximations Xt ≈
polar(M) as follows:

X0 = M/∥M∥F, Xt+1 =
3

2
Xt −

1

2
XtX

⊤
t Xt. (2)

At each iteration, this rule effectively applies the cubic polynomial p(x) = 3
2x − 1

2x
3 to each sin-

gular value of Xt. The scalar fixed-point iteration xt+1 = p(xt) converges to sign(x0) as t → ∞,
provided |x0| ≤ 1. As a result, the matrix iteration satisfies lim

t→∞
Xt = UV ⊤ = polar(X0).

Higher-degree versions of Newton-Schulz follow the same principle. For example, the degree-5
polynomial p(x) = (15x − 10x3 + 3x5)/8 converges even faster. The Newton-Schulz iterations
converge super-exponentially when Xt is sufficiently close to polar(M), but they suffer from slow
initial convergence; when X0 is far from polar(M), the approximation improves slowly over the
first few iterations. Due to the slow initial convergence of Newton-Schulz, Chen & Chow (2014)
developed a version of the Newton-Schulz iteration, which adapts the polynomial at each iteration.
The resulting method achieves a faster initial convergence, while retaining super-exponential con-
vergence in later iterations. Polar Express is inspired by their method.

The Jordan and You methods. In Muon, high accuracy approximations to polar(M) are usually
not necessary. The primary goal is instead to compute a coarse approximation in as few iterations
as possible. To accelerate convergence in the low-accuracy regime, Jordan recently proposed a
fixed-point iteration based on the polynomial p(x) = 3.4445x− 4.7750x3 + 2.0315x5, which was
found using a heuristic numerical search (Jordan et al., 2024b). Unlike Newton-Schulz, the scheme
that Jordan proposed does not converge to polar(M), but plateaus at an error of ≈ 0.3. However,
it reaches this level of accuracy rapidly and outperforms the Newton-Schulz when only a small
number of iterations are performed. Building on this idea, You proposed a method that applies
six different polynomial updates in succession, which were again found by heuristic search. This
method achieves better accuracy than Jordan’s but still fails to converge (Cesista et al., 2025).

1.3 CONTRIBUTIONS

We present Polar Express (Algorithm 1), an iterative method for approximating polar(M).
Our method dynamically adapts the polynomial update rule at each iteration, prioritizing rapid
progress in the initial stage and high accuracy in the later stage. Polar Express constructs
polynomials p1, . . . , pT so that the resulting composition is the optimal approximation to the sign
function with respect to the supremum (L∞) norm (Theorem 3.1). By iteratively applying these
polynomials to M , Polar Express computes an approximation to polar(M) that is optimal
in the worst-case. Our method converges to polar(M) super-exponentially (Theorem 3.3), and it
quickly reaches a good approximation within just five to ten iterations. This early-stage acceleration
is especially valuable in deep learning applications, where runtime efficiency takes precedence over
high accuracy. In contrast, classical methods like Newton-Schulz suffer from a slow initial conver-
gence, while recent heuristic proposals (Jordan et al., 2024b; Cesista et al., 2025) fail to converge.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Our method is efficient to run on GPUs, using only a few matrix-matrix products per iteration.1 We
give an explicit instantiation of Polar Express in Implementation 1, which incorporates minor
modifications to make it compatible with half-precision arithmetic (see Section 3.4). Implementa-
tion 1 is very short and easy to use, with no dependencies except PyTorch. It serves as a drop-in
replacement for previous methods. In numerical experiments, Polar Express outperforms pre-
vious methods on synthetic matrices and gradient matrices from a GPT-2 transformer (Figure 3). We
demonstrate the effectiveness of using Polar Express within the Muon optimizer in Figure 1,
showing that it consistently improves the training of GPT-2 language models on 1 billion tokens of
the FineWeb dataset (Aroca-Ouellette et al., 2023). Our method has been adopted into the NanoGPT
speedrun (Jordan et al., 2024a), a heavily optimized implementation that serves as a benchmark for
LLM training efficiency.

Notation. We let ∥M∥F and ∥M∥2 denote the Frobenius norm and spectral norm (largest singular
value) of a matrix M , respectively. We denote the spectrum (set of singular values) by σ(M). Let
Pd be the set of polynomials of degree at most d. For odd d, Podd

d denotes the set of polynomials of
degree at most d containing only odd-degree monomials. For a polynomial p, deg(p) is its degree.
Let sign(x) be the scalar sign function, which satisfies sign(0) = 0, sign(x) = 1 if x > 0 and
sign(x) = −1 if x < 0. For a polynomial p ∈ Podd

d and a matrix M with rank reduced SVD
given by M = UΣV T and positive singular values σ1 ≥ · · · ≥ σrank(M) > 0, we define p(M) :=

Up(Σ)V T, where p(Σ) is the diagonal matrix with diagonal entries p(σi) for i = 1, . . . , rank(M).

2 APPROXIMATIONS BY COMPOSITIONS OF POLYNOMIALS

To design a GPU-friendly method for computing polar(M), we limit ourselves to the following
GPU-friendly operations: (i) linear combinations of matrices (given scalars β, γ ∈ R and matri-
ces B and C, compute βB + γC) and (ii) matrix-matrix products (compute BC). While both
these computational primitives are well-suited for parallel computing environments, matrix-matrix
products come at a higher computational cost than linear combinations. Therefore, our method
attempts to minimize the number of matrix-matrix products. A key observation is that we can com-
pute odd monomials of M = UΣV T using the following formula: M2q+1 := UΣ2q+1V T =
M(MTM)q.2 Hence, for an odd polynomial p(x) = a0x+a1x

3+ · · ·+aqx
2q+1 we can compute

p(M) := a0M + a1M(MTM) + · · ·+ aqM(MTM)q.

It has been shown that for an arbitrary polynomial p, one requires Θ(deg(p)1/2) products to compute
p(M) (Paterson & Stockmeyer, 1973); see also Jarlebring & Lorentzon (2025) for related work.
This compares favorably to the naive approach that forms all monomials in p and then sums them
together, which requires Ω(deg(p)) products. However, if p can be expressed as a composition of T
polynomials, each of degree d

p = pT ◦ pT−1 ◦ · · · ◦ p1, (3)
then the degree of p is dT , and p(M) can be efficiently computed recursively by

X0 = M , Xt = pt(Xt−1) for t = 1, 2, . . . , T. (4)
The final iterate is XT = p(M), which we compute with just O(Td) matrix-matrix products.
Iterative methods for polar(M) can be seen in this light. For instance, the degree-5 Newton-Schulz
method uses the polynomial update pt(x) = 15

8 x − 10
8 x3 + 3

8x
5 for each t = 1, . . . , T . The

composition p = pT ◦ · · · ◦ p1 approximates sign(x), and the approximation error goes to 0 as T
grows. In this paper, we ask the following question: what choice of pT ◦ · · · ◦ p1 gives the best
approximation to sign(x)?

The method we will present is optimal in the following sense: given lower and upper bounds ℓ and u
on the singular values of M , an odd degree d ∈ N, and the number of iterations T ∈ N, our method
computes the composition p⋆(M) that minimizes the worst-case error in the spectral norm. That is,

p⋆ = argmin
p=pT ◦pT−1◦···◦p1

pt∈Podd
d

max
M∈Rm×n

σ(M)⊂[ℓ,u]

∥polar(M)− p(M)∥2 . (5)

1In Appendices I and J, we describe two further algorithmic ideas. They are not used in our Muon experi-
ments but they may be beneficial in other settings, and we believe they merit further study.

2For non-symmetric matrices, e.g. rectangular matrices, we cannot compute even polynomials of the singu-
lar values without first explicitly computing the SVD. We are therefore restricted to odd polynomials.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: The evolution of the first three optimal polynomials p1, p2, and p3 and the corresponding
lower bounds ℓt+1 = pt(ℓt) and upper bounds ut+1 = 2− ℓt+1, as described in Theorem 3.1. The
horizontal black line shows y = 1. The polynomial degree is d = 5. We set ℓ1 = 0.03 and u1 = 1.

Given that polar(M) − p(M) = U(I − p(Σ))V T, and by the unitary invariance of the spectral
norm, we have that (5) is equivalent to3

p⋆ = argmin
p=pT ◦pT−1◦···◦p1

pt∈Podd
d

max
x∈[ℓ,u]

|1− p(x)| . (6)

In other words, the problem given in (5) reduces to that of finding a “uniform” approximation to
the constant function x 7→ 1 over the interval [ℓ, u], as given in (6). Uniform approximation on an
interval by polynomials or rational functions of a given degree is a central topic in approximation
theory (Trefethen, 2020). Here, we seek an approximation of a particular form—a composition of
odd polynomials of fixed degrees. In the next section, we solve the optimization problem of (6) and
use the solution to create Polar Express.

3 THE POLAR EXPRESS

3.1 GREEDY IS OPTIMAL

The key observation is that the polynomial used in each iteration can be chosen greedily, given the
choice of polynomials from the previous iterations. For the first iteration, we choose p1 so as to map
the interval [ℓ, u] as close to 1 as possible. That is, it minimizes maxx∈[ℓ,u] |1− p1(x)|. The image
of p1 will be a new interval [ℓ2, u2], where

ℓ2 = min
x∈[ℓ,u]

p1(x) u2 = max
x∈[ℓ,u]

p1(x) (7)

We now pick p2 to map the interval [ℓ2, u2] as close to 1 as possible, obtaining a new interval [ℓ3, u3]
that is the image of [ℓ, u] through p2 ◦p1. We continue this process for as many iterations as desired.

The following theorem guarantees that this process finds the solution to (6), and thereby also (5).
The scheme is also outlined in Figure 2, which demonstrates the evolution of the lower bounds ℓt,
the upper bounds ut, and the polynomials pt across iterations. The proof is in Appendix C.

Theorem 3.1. Let d be odd and define ℓ1 = ℓ and u1 = u. For t = 1, . . . , T define

pt = argmin
p∈Podd

d

max
x∈[ℓt,ut]

|1− p(x)|, ℓt+1 = min
x∈[ℓt,ut]

pt(x), ut+1 = max
x∈[ℓt,ut]

pt(x) (8)

The resulting composition p⋆ := pT ◦ pT−1 ◦ · · · ◦ p1 is optimal and the error is given by:

max
x∈[ℓ,u]

|1− p⋆(x)| = min
p=pT ◦pT−1◦···◦p1

pt∈Podd
d

max
x∈[ℓ,u]

|1− p(x)| = 1− ℓT+1. (9)

3For completeness, the equivalence between (5) and (6) is proven in Appendix E.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Furthermore the new error, lower and upper bounds can be computed through

ℓt+1 = pt(ℓt), ut+1 = 2− ℓt+1, and max
x∈[ℓt,ut]

|1− pt(x)| = 1− ℓt+1. (10)

Remark 3.2 (Why a fixed degree?). We note that choice of the degree of each p1, p2, . . . , pT need
not be the same for Theorem 3.1 to hold. More generally, one may specify a sequence of degrees
d1, . . . , dT and define each pt as pt = argminp∈Podd

dt

maxx∈[ℓt,ut] |p(x) − 1| for t = 1, . . . , T.

However, Lee et al. (2022, Table 2) supports setting dt = 5, as we do.

Fortunately, (10) shows that once pt has been found, we can compute the new lower and upper
bounds ℓt+1 and ut+1 simply by evaluating pt(ℓt). Hence, for any fixed upper and lower bounds
on the singular values of M , we can precompute all the polynomials p1, . . . , pT and the bounds
[ℓ1, u1], . . . , [ℓT+1, uT+1]. Then, applying the iterative procedure of (4), the final iterate XT will
satisfy the following error bound:

∥ polar(M)−XT ∥2 = ∥ polar(M)− p⋆(M)∥2 ≤ 1− ℓT+1. (11)

From the optimality guarantee of Theorem 3.1, we know that our method converges at least as fast
as the Newton-Schulz iteration of the same degree. Combining this fact with an existing analysis of
Newton-Schulz, we immediately get the following convergence guarantee showing that our method
enjoys faster than exponential convergence. The proof can be found in Appendix D.

Theorem 3.3. Let M be a matrix normalized so that σ(M) ⊂ [ℓ, 1]. Let XT = p⋆(M), where
p⋆ is the polynomial from Theorem 3.1 with d = 2q + 1. Then, we have

∥ polar(M)−XT ∥2 ≤ |1− ℓ2|(q+1)T . (12)

Hence, for d = 3 and d = 5 the method converges quadratically and cubically, respectively.

In fact, our method is strictly faster than Newton-Schulz, even if σmin(M) < ℓ. When σmin = ℓ,
Polar Express is about twice as fast as Newton-Schulz (cf. Chen & Chow (2014, Section 3.1)).
Recent work has analyzed the stability and convergence of Muon when the polar factor is computed
inexactly (Shulgin et al., 2025; Refael et al., 2025). Combining these analyses with Theorem 3.3
immediately yields a convergence guarantee for Muon as implemented with Polar Express.

3.2 FINDING THE OPTIMAL POLYNOMIAL FOR EACH ITERATION

Theorem 3.1 shows that we can solve (6) by greedily choosing the optimal approximation pt ∈ Podd
d

for each interval [ℓt, ut] for t = 1, . . . , T . In this section, we show how to find each pt. Since we
are now focused on just one iteration, we drop the subscripts. Given ℓ and u, we wish to solve the
following optimization problem:

argmin
p∈Podd

d

max
x∈[ℓ,u]

|1− p(x)| (13)

That is, we seek a minimax or uniform approximation of the function x 7→ 1 on [ℓ, u] from the
set of odd polynomials. (Equivalently, we seek a minimax optimal approximation to sign(x) on
[−u,−ℓ] ∪ [ℓ, u].) Problems of this form are well-studied in approximation theory and numerical
analysis. The key mathematical insight underlying their solution is the Equioscillation Theorem,
which we state formally for our setting in Lemma C.1. This theorem is the basis of the Remez
algorithm (Pachón & Trefethen, 2009; Parks & McClellan, 1972), a general-purpose method that
finds a (nearly) optimal polynomial approximation of a given degree to any function on any interval.
With a very minor modification to handle the constraint that p be odd, Remez can solve (13).

However, the Remez algorithm is complicated and notoriously difficult to implement correctly.4
Fortunately, we do not need the algorithm in its full generality; we seek only low-degree polynomial
approximations, and the function we wish to approximate is just f(x) = 1. We use the Equioscilla-
tion Theorem to derive (17), an explicit, closed-form solution to (13) for the degree d = 3 case. Up

4For implementations of the general Remez algorithm, we recommend Chebfun or lolremez.

6

https://www.chebfun.org/examples/approx/BestApprox.html
https://github.com/samhocevar/lolremez

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

to rescaling, this turns out to be the same polynomial derived by different means in Chen & Chow
(2014). For d = 5, we present Algorithm 2, a simpler way of solving (13) that is mathematically
equivalent to Remez in our setting. This algorithm is implemented in its entirety in Implementa-
tion 2. For more details, we refer the reader to Appendix F.

3.3 UPPER AND LOWER BOUNDS ON THE SINGULAR VALUES

To instantiate our method, we need upper and lower bounds u and ℓ on the singular values of the
input matrix M . A trivial upper bound is given by ∥M∥F. This can be quite loose in the worst case.
In practice, it is off only by a small constant factor because the gradient matrices of the weights
of dense linear layers in neural networks tend to have small effective rank (Yang et al., 2024). We
therefore rescale M by ∥M∥F and set u = 1. It is difficult to efficiently find a good lower bound on
σmin, so we are forced to guess. Fortunately, the consequences of a bad guess are not severe. The
method converges for any ℓ ∈ (0, u], and even an order of magnitude error only delays convergence
by a few iterations. For matrices stored in floating point arithmetic, the singular values are usually
larger than machine precision ϵmach (Boutsikas et al., 2024). We work in bfloat16, which has
ϵmach = 2−8 ≈ 3.91 · 10−3, so we set ℓ = 10−3. Since we use these bounds for all input matrices,
we can pre-compute the optimal polynomials once and apply them to as many inputs as we want.

3.4 FINITE PRECISION CONSIDERATIONS

When working in finite-precision arithmetic, especially the half-precision bfloat16 format used
in deep learning, we must take some care to avoid blowups and other problems due to numerical
error. To this end, we make a few small but crucial changes to the method in the offline stage
that stabilize it with a negligible effect on accuracy. One issue arises when numerical round-off
creates singular values that are slightly larger than our current upper bound ut. To fix it, we replace
each polynomial pt by x 7→ pt(x/1.01), effectively increasing ut. Another issue, identified by
Nakatsukasa & Higham (2013), is due to the non-monotonicity of pt. We address it by using slightly
suboptimal (but less oscillatory) polynomials in the early iterations, as suggested by Chen & Chow
(2014). For a detailed discussion on the finite precision considerations, we refer to Appendix G.

3.5 THE ALGORITHM

Algorithm 1 The General Polar Express

input: Matrix M , iteration count T , degree d, approxi-
mate lower bound ℓ.
output: An approximation XT to polar(M).

1
2 ℓ1 = ℓ, u1 = 1.
3 for t = 1, 2, . . . , T do
4 Solve using Remez (Appendix F):

pt = argmin
p∈Podd

d

max
x∈[max(ℓt,ut/10), ut]

|1− p(x)|

5 pt ← pt(·/1.01)
6 ℓt+1 ← pt(ℓt), ut+1 ← 2− ℓt+1

7 end for
8
9

10 Set X0 = M/(∥M∥F + 10−2).
11 for t = 1, 2, . . . , T do
12 Xt = pt(Xt−1)
13 end for
14 return XT .

Offline: precompute polynomials in float64

Online: apply precomputed polynomials in bfloat16

We give the pseudocode of our proposed
method for any degree in Algorithm 1.
We give the specific Python code of the
Polar Express with degree d = 5
and ℓ = 10−3 used in our GPT experi-
ments in Implementations 1 and 2 in Ap-
pendix A. Both incorporate the finite pre-
cision considerations discussed in Sec-
tion 3.4. Our algorithm precomputes the
polynomials p1, . . . , pT of Theorem 3.1
in full precision using the results of Sec-
tion 3.2 (or the Remez algorithm for d >
5). This stage is offline because the coef-
ficients of the polynomials are only com-
puted and stored once. For every subse-
quent call to the algorithm, these coef-
ficients are reused and the offline stage
is skipped. For instance, in Implemen-
tation 1 these polynomials have been
precomputed and stored in the variable
coeffs list.

The online stage can be performed in lower precision (bfloat16) for greater speed on a GPU.
Horner’s rule can be used to carry out each iteration. For instance, if pt = ax + bx3 + cx5, then

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
Iteration

10−3

10−2

10−1

100
S

p
ec

tr
al

E
rr

or

Synthetic Matrix
σmin/σmax = 10−6

2 4 6 8 10
Iteration

0.00

0.25

0.50

0.75

1.00

GPT-2 Gradient
Layer 4 mlp.c proj

Newton-Schulz (d = 5)

Jordan

You

PolarExp, ` = 10−8

PolarExp, ` = 10−6

PolarExp, ` = 10−4

Figure 3: Convergence of degree-5 polynomial methods. Polar Express outperforms other methods
at every iteration when tuned properly. Left panel: synthetic matrix with σmax = 1, σmin = 10−6.
Right panel: gradient from randomly-initialized GPT-2 model on a batch of language modeling data.
Shaded region shows 90% interval over 512 batches of data.

Xt = Xt−1 (aI + Yt−1 (bI + cYt−1)) where Yt−1 = X⊤
t−1Xt−1. A simple implementation of

the offline stage of Algorithm 1 is given in Implementation 2. For deep learning applications, we
recommend using d = 5 and T = 5 or 6 with ℓ1 = 10−3. With these parameters, the offline
stage as implemented in Implementation 2 gives the polynomials encoded in coeffs list in
Implementation 1. All told, our proposal for Muon is to apply the composition of these polynomials
to M/(∥M∥F + 10−2).

4 NUMERICAL EXPERIMENTS

4.1 CONVERGENCE OF POLAR EXPRESS

We compare Polar Express against degree-5 Newton-Schulz and the methods of Jordan et al.
(2024b) and Cesista et al. (2025). We first generate a random matrix whose singular values are
evenly spaced on a logarithmic scale between 10−6 and 1, with singular vectors chosen randomly.
The left panel of Figure 3 shows the results. Since all the methods in this plot use degree-5 poly-
nomials, their computational and runtime costs are all proportional to the number of iterations. As
expected, Newton-Schulz converges but makes almost no progress for the first 17 iterations. Jor-
dan’s method rapidly achieves an error of ≈ 0.3 after just 11 iterations, but ceases to converge fur-
ther. You’s method, which is only defined for six iterations, converges at a similar rate as Jordan’s
method. When Polar Express is instantiated with ℓ = σmin, it dominates the other methods
at every iteration, achieving excellent accuracy after just 11 iterations and converging about twice
as fast as Newton-Schulz to any given error. Even when ℓ is wrong by two orders of magnitude in
either direction, the method remains competitive, though it does not outperform Jordan’s method
until iteration 13 or 14. We also test convergence on a non-synthetic matrix: the gradient of a weight
matrix from the fourth transformer block of a GPT-2 model (Figure 3, right). Again, the best-tuned
version of Polar Express outperforms the other methods, but setting ℓ to be many orders of
magnitude too small can delay convergence. Note that Figure 3 measures error in the spectral norm.
For many applications we may be satisfied with a looser measure of error, like the Frobenius norm.

4.2 TRAINING GPT-2

We compare the performance of using Polar Express (Implementation 1) inside Muon against
Jordan’s (Jordan et al., 2024b) and You’s (Cesista et al., 2025) methods. We train two architectures:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10−3 10−2

Learning Rate

3.6

3.8

4.0

4.2

4.4

F
in

al
V

al
id

at
io

n
L

os
s

muon-Jordan

muon-You

adamw

muon-PolarExp

0.0 0.2 0.4 0.6 0.8

Epoch

3.6

3.8

4.0

4.2

4.4

V
a
li
d

a
ti

o
n

L
o
ss

Figure 4: Training a GPT-2-Small (124M) model on 1 Billion tokens of the FineWeb data set (Aroca-
Ouellette et al., 2023). muon-<method> denotes Muonwith 5 iterations of <method> to compute
polar(M). No weight decay is used. Left: final validation loss vs. learning rate. The best final val-
idation losses for each method were adamw(lr =0.0005): 4.197, muon-Jordan(lr =0.01): 3.639,
muon-You(lr =0.01): 3.629 and muon-PolarExp(lr =0.005): 3.588. Right: Validation loss vs.
training iteration.

GPT-2-Small (nembd = 768, nlayer = 12, nhead = 12) and GPT-2-Large (nembd = 1280, nlayer =
36, nhead = 20), both with a vocabulary size of 50,257 and a context length of 1024. We train
on 1B tokens of the FineWeb dataset (Aroca-Ouellette et al., 2023) for one epoch with batch size
32. All runs use mixed precision (bfloat16) on 4 H100 GPUs with the learning rate schedule
proposed in Jordan et al. (2024a)—a constant phase for the first 40% of training steps followed by
linear decay. All methods for the matrix sign computations are performed in bfloat16 precision
and use five iterations. Following nano-gpt (Jordan et al., 2024a), we assign Muon to all param-
eters with at least two dimensions (e.g., excluding RMS norm parameters), except for embeddings,
unembeddings, and positional encodings. These excluded parameters are optimized with AdamW.

Figures 1 and 4 show the resulting in terms of validation loss for the GPT-Large and GPT-Small
models, respectively. In both cases, muon-PolarExp achieves a better validation loss than
muon-Jordan or muon-You. The advantage is remarkably consistent across all learning rates
and epochs. While not shown in Figures 1 and 4, muon-PolarExp also achieves a better training
loss than the baselines, and the improvements in training loss are nearly identical to the improve-
ments in validation loss. Furthermore, since all three of these matrix sign methods are equally
expensive (they all apply a degree 5 polynomial at each iteration), improved validation loss in terms
of training steps also implies improved loss in terms of wall clock time. For figures displaying the
improvements in training loss and wall-clock time, see Appendix H.2, Figure 11.

4.3 ABLATIONS

Accuracy of polar approximation We now explore how the accuracy of approximating
polar(M) affects the optimization quality of Muon. Our main experiments with GPT-2 use 5 it-
erations. We trained GPT-2 Small with Muon using between 2 and 30 iterations of Polar Express
instead. For comparison, we also implemented Muon with the exact polar factor, computed using
torch.linalg.svd. Figure 5 shows the results. The left plot shows that when using only 2 or 3
iterations of Polar Express, the final validation loss is worse than when using 5 or 6 iterations.
However, increasing the accuracy of the polar approximation further—even computing it exactly
with the SVD—does not improve the optimization quality. The right plot shows that changing the
number of iterations does not meaningfully change the runtime of Muon; in our setting, the runtime
of computing polar(M) is dominated by the forward and backward passes. However, the SVD is so
costly that using it doubles the runtime of each training step. These results validate the standard way
of implementing Muon: using 5 or 6 iterations of an iterative approximation like Polar Express

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 10 20 30 SVD
Iterations of Polar Express

3.60

3.65

3.70

3.75

F
in

al
V

al
id

at
io

n
L

os
s

Polar Method
PolarExpress

SVD

2 3 4 5 6 7 10 20 30 SVD
Iterations of Polar Express

0

1

2

3

4

M
ed

ia
n

T
ra

in
in

g
S

te
p

T
im

e
(s

)

Figure 5: Ablating the number of iterations of Polar Express used to implement Muon, and
comparing to computing polar(M) exactly via an SVD. Left: using > 6 iterations or the SVD does
not improve final validation loss. Right: Runtime of Muon is not sensitive to the number of iterations
of Polar Express, but the SVD makes it significantly slower. All runs use GPT-2-Small with 1
Billion tokens of FineWeb data, learning rate 0.05, and weight decay 0.1.

10−3 10−2

Learning Rate

2.92

2.94

2.96

2.98

3.00

3.02

3.04

3.06

F
in

al
V

al
id

at
io

n
L

os
s

muon-Jordan

muon-PolarExp

muon-You

0.0 0.2 0.4 0.6 0.8 1.0

Epoch

2.9

3.0

3.1

3.2

3.3

3.4

3.5

V
a
li
d

a
ti

on
L

os
s

Figure 6: Training GPT-2-Large on 10 billion tokens of FineWeb with weight decay 0.1. Best final
validation losses were muon-Jordan (lr = 0.002): 2.921, muon-You (lr = 0.002): 2.919 and
muon-PolarExp (lr = 0.002): 2.913.

rather than computing polar(M) exactly. For further experiments supporting this conclusion, see
Appendix H.1, Figure 9.

Weight decay We also experimented with adding weight decay of 0.1 to the GPT-2 training runs,
keeping all else the same. The results are presented in Appendix H.2, Figure 12. They are quite
similar to Figures 1 and 4. We again find that muon-PolarExp outperforms the other methods.

Number of Training Tokens Our main experiments with GPT-2 use 1 billion tokens of training
data from FineWeb (Aroca-Ouellette et al., 2023). We now select a subset of our training runs
and extend them to 10 billion tokens. 10 billion tokens roughly matches the Chinchilla scaling
rule for GPT-2-Large (774M params) and exceeds it for GPT-2-Small, as per Table 3 in Hoffmann
et al. (2022). Figure 6 shows the results for GPT-2-Large with weight decay. (For GPT-2-Small,
see Appendix H.2, Figure 13b). Polar Express still outperforms the baselines by a small but
consistent margin.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Reproducibility statement A complete Pytorch implementation of our method is given in Ap-
pendix A. Details of our experiments, including hyperparameters, are given in Sections 4.1 and 4.2.
Source code to reproduce our experiments is given in the supplementary materials. Proofs of all
theoretical claims can be found in the appendices.

REFERENCES

N. I. Achieser. Theory of approximation. Dover Publications, Inc., New York, 1992. ISBN 0-486-
67129-1. Translated from the Russian and with a preface by Charles J. Hyman, Reprint of the
1956 English translation.

Samuel Aroca-Ouellette, Philippe Beaudoin, Guillaume Lajoie, Liam Paull, Joelle Pineau, Pascal
Vincent, and Anirudh Goyal. Fineweb: Learning language models with high quality web data. In
NeurIPS Datasets and Benchmarks Track, 2023. URL https://arxiv.org/abs/2306.
03061.

Michele Benzi and Ru Huang. Some matrix properties preserved by generalized matrix functions.
Spec. Matrices, 7:27–37, 2019. ISSN 2300-7451. doi: 10.1515/spma-2019-0003. URL https:
//doi.org/10.1515/spma-2019-0003.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265, 2024a. URL https://arxiv.org/abs/2410.21265.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024b. URL https://arxiv.org/abs/2409.20325.

Ȧ. Björck and C. Bowie. An iterative algorithm for computing the best estimate of an orthogonal
matrix. SIAM J. Numer. Anal., 8:358–364, 1971. ISSN 0036-1429. doi: 10.1137/0708036. URL
https://doi.org/10.1137/0708036.

Christos Boutsikas, Petros Drineas, and Ilse C. F. Ipsen. Small singular values can increase in lower
precision. SIAM J. Matrix Anal. Appl., 45(3):1518–1540, 2024. ISSN 0895-4798,1095-7162.
doi: 10.1137/23M1557209. URL https://doi.org/10.1137/23M1557209.

David Carlson, Volkan Cevher, and Lawrence Carin. Stochastic Spectral Descent for Restricted
Boltzmann Machines. In Guy Lebanon and S. V. N. Vishwanathan (eds.), Proceedings of the
Eighteenth International Conference on Artificial Intelligence and Statistics, volume 38 of Pro-
ceedings of Machine Learning Research, pp. 111–119, San Diego, California, USA, 09–12 May
2015a. PMLR. URL https://proceedings.mlr.press/v38/carlson15.html.

David E Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher. Precondi-
tioned spectral descent for deep learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015b. URL https://proceedings.neurips.cc/paper_files/
paper/2015/file/f50a6c02a3fc5a3a5d4d9391f05f3efc-Paper.pdf.

Franz Louis Cesista, Jiacheng You, and Keller Jordan. Squeezing 1-2% efficiency gains out of muon
by optimizing the newton-schulz coefficients, 2025. URL http://leloykun.github.io/
ponder/muon-opt-coeffs/.

PL Chebyshev. Questions on smallest quantities connected with the approximate representation of
functions (1859). Collected works, 2:151–235, 1947.

Jie Chen and Edmond Chow. A stable scaling of newton-schulz for improving the sign function
computation of a hermitian matrix. Preprint ANL/MCS-P5059-0114, 2014. URL https://
www.mcs.anl.gov/papers/P5059-0114.pdf.

E. W. Cheney. Introduction to approximation theory. McGraw-Hill Book Co., New York-Toronto-
London, 1966.

11

https://arxiv.org/abs/2306.03061
https://arxiv.org/abs/2306.03061
https://doi.org/10.1515/spma-2019-0003
https://doi.org/10.1515/spma-2019-0003
https://arxiv.org/abs/2410.21265
https://arxiv.org/abs/2409.20325
https://doi.org/10.1137/0708036
https://doi.org/10.1137/23M1557209
https://proceedings.mlr.press/v38/carlson15.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/f50a6c02a3fc5a3a5d4d9391f05f3efc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f50a6c02a3fc5a3a5d4d9391f05f3efc-Paper.pdf
http://leloykun.github.io/ponder/muon-opt-coeffs/
http://leloykun.github.io/ponder/muon-opt-coeffs/
https://www.mcs.anl.gov/papers/P5059-0114.pdf
https://www.mcs.anl.gov/papers/P5059-0114.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

J. Douglas Carroll and Phipps Arabie. Chapter 3 - multidimensional scaling. In Michael H.
Birnbaum (ed.), Measurement, Judgment and Decision Making, Handbook of Perception and
Cognition (Second Edition), pp. 179–250. Academic Press, San Diego, 1998. ISBN 978-0-12-
099975-0. doi: https://doi.org/10.1016/B978-012099975-0.50005-1. URL https://www.
sciencedirect.com/science/article/pii/B9780120999750500051.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011. ISSN 1532-4435,1533-7928.

Alexandre Eremenko and Peter Yuditskii. Uniform approximation of sgnx by polynomials and
entire functions. J. Anal. Math., 101:313–324, 2007. ISSN 0021-7670,1565-8538. doi: 10.1007/
s11854-007-0011-3. URL https://doi.org/10.1007/s11854-007-0011-3.

Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.
ISBN 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

J. C. Gower and G. B. Dijksterhuis. Procrustes problems, volume 30 of Oxford Statistical Sci-
ence Series. Oxford University Press, Oxford, 2004. ISBN 0-19-851058-6. doi: 10.1093/
acprof:oso/9780198510581.001.0001. URL https://doi.org/10.1093/acprof:oso/
9780198510581.001.0001.

Ekaterina Grishina, Matvey Smirnov, and Maxim Rakhuba. Accelerating newton-schulz iteration
for orthogonalization via chebyshev-type polynomials, 2025. URL https://arxiv.org/
abs/2506.10935.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor op-
timization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
1842–1850. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
gupta18a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Nicholas J. Higham. Computing the polar decomposition—with applications. SIAM J. Sci. Statist.
Comput., 7(4):1160–1174, 1986. ISSN 0196-5204. doi: 10.1137/0907079. URL https://
doi.org/10.1137/0907079.

Nicholas J. Higham. Functions of matrices. SIAM, Philadelphia, PA, 2008. ISBN 978-0-
89871-646-7. doi: 10.1137/1.9780898717778. URL https://doi.org/10.1137/1.
9780898717778.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Elias Jarlebring and Gustaf Lorentzon. The polynomial set associated with a fixed number of matrix-
matrix multiplications. arXiv preprint arXiv:2504.01500, 2025. URL https://arxiv.org/
abs/2504.01500.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You Ji-
acheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt: Speedrun-
ning the nanogpt baseline, 2024a. URL https://github.com/KellerJordan/
modded-nanogpt.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/.

12

https://www.sciencedirect.com/science/article/pii/B9780120999750500051
https://www.sciencedirect.com/science/article/pii/B9780120999750500051
https://doi.org/10.1007/s11854-007-0011-3
https://doi.org/10.1093/acprof:oso/9780198510581.001.0001
https://doi.org/10.1093/acprof:oso/9780198510581.001.0001
https://arxiv.org/abs/2506.10935
https://arxiv.org/abs/2506.10935
https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.mlr.press/v80/gupta18a.html
https://doi.org/10.1137/0907079
https://doi.org/10.1137/0907079
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/1.9780898717778
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2504.01500
https://arxiv.org/abs/2504.01500
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tetsuya Kaneko, Simone Fiori, and Toshihisa Tanaka. Empirical arithmetic averaging over the com-
pact Stiefel manifold. IEEE Trans. Signal Process., 61(4):883–894, 2013. ISSN 1053-587X,1941-
0476. doi: 10.1109/TSP.2012.2226167. URL https://doi.org/10.1109/TSP.2012.
2226167.

Charles Kenney and Alan J. Laub. Rational iterative methods for the matrix sign function. SIAM
J. Matrix Anal. Appl., 12(2):273–291, 1991. ISSN 0895-4798. doi: 10.1137/0612020. URL
https://doi.org/10.1137/0612020.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, et al. Kimi k2: Open agentic intelligence, 2025.
URL https://arxiv.org/abs/2507.20534.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL http://arxiv.org/abs/1412.
6980.

Zdislav Kovářı́k. Some iterative methods for improving orthonormality. SIAM J. Numer. Anal., 7:
386–389, 1970. ISSN 0036-1429. doi: 10.1137/0707031. URL https://doi.org/10.
1137/0707031.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report
TR-2009, University of Toronto, 2009. URL https://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf.

Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. Minimax approximation of
sign function by composite polynomial for homomorphic comparison. IEEE Transactions on
Dependable and Secure Computing, 19(6):3711–3727, 2022. doi: 10.1109/TDSC.2021.3105111.

R. B. Leipnik. Rapidly convergent recursive solution of quadratic operator equations. Numer. Math.,
17:1–16, 1971. ISSN 0029-599X,0945-3245. doi: 10.1007/BF01395861. URL https://doi.
org/10.1007/BF01395861.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for LLM training. arXiv preprint
arXiv:2502.16982, 2025. URL https://arxiv.org/abs/2502.16982.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Modula. Newton-schulz algorithm — jiacheng’s six-step method. https://docs.modula.
systems/algorithms/newton-schulz/#jiacheng-s-six-step, 2024. Ac-
cessed: 2025-05-19.

Yuji Nakatsukasa and Roland W. Freund. Computing fundamental matrix decompositions accurately
via the matrix sign function in two iterations: the power of Zolotarev’s functions. SIAM Rev.,
58(3):461–493, 2016. ISSN 0036-1445,1095-7200. doi: 10.1137/140990334. URL https:
//doi.org/10.1137/140990334.

Yuji Nakatsukasa and Nicholas J. Higham. Backward stability of iterations for computing the polar
decomposition. SIAM J. Matrix Anal. Appl., 33(2):460–479, 2012. ISSN 0895-4798,1095-7162.
doi: 10.1137/110857544. URL https://doi.org/10.1137/110857544.

Yuji Nakatsukasa and Nicholas J. Higham. Stable and efficient spectral divide and conquer al-
gorithms for the symmetric eigenvalue decomposition and the SVD. SIAM J. Sci. Comput.,
35(3):A1325–A1349, 2013. ISSN 1064-8275,1095-7197. doi: 10.1137/120876605. URL
https://doi.org/10.1137/120876605.

Yuji Nakatsukasa, Zhaojun Bai, and François Gygi. Optimizing Halley’s iteration for computing
the matrix polar decomposition. SIAM J. Matrix Anal. Appl., 31(5):2700–2720, 2010. ISSN
0895-4798,1095-7162. doi: 10.1137/090774999. URL https://doi.org/10.1137/
090774999.

13

https://doi.org/10.1109/TSP.2012.2226167
https://doi.org/10.1109/TSP.2012.2226167
https://doi.org/10.1137/0612020
https://arxiv.org/abs/2507.20534
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1137/0707031
https://doi.org/10.1137/0707031
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1007/BF01395861
https://doi.org/10.1007/BF01395861
https://arxiv.org/abs/2502.16982
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://docs.modula.systems/algorithms/newton-schulz/#jiacheng-s-six-step
https://docs.modula.systems/algorithms/newton-schulz/#jiacheng-s-six-step
https://doi.org/10.1137/140990334
https://doi.org/10.1137/140990334
https://doi.org/10.1137/110857544
https://doi.org/10.1137/120876605
https://doi.org/10.1137/090774999
https://doi.org/10.1137/090774999

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Herbert Neuberger. Exactly massless quarks on the lattice. Phys. Lett. B, 417(1-2):141–144, 1998.
ISSN 0370-2693,1873-2445. doi: 10.1016/S0370-2693(97)01368-3. URL https://doi.
org/10.1016/S0370-2693(97)01368-3.

Ricardo Pachón and Lloyd N. Trefethen. Barycentric-Remez algorithms for best polynomial approx-
imation in the chebfun system. BIT, 49(4):721–741, 2009. ISSN 0006-3835,1572-9125. doi: 10.
1007/s10543-009-0240-1. URL https://doi.org/10.1007/s10543-009-0240-1.

T Parks and James McClellan. Chebyshev approximation for nonrecursive digital filters with linear
phase. IEEE Transactions on circuit theory, 19(2):189–194, 1972. doi: 10.1109/TCT.1972.
1083419.

Michael S. Paterson and Larry J. Stockmeyer. On the number of nonscalar multiplications necessary
to evaluate polynomials. SIAM J. Comput., 2:60–66, 1973. ISSN 0097-5397. doi: 10.1137/
0202007. URL https://doi.org/10.1137/0202007.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos, 2025. URL https:
//arxiv.org/abs/2502.07529.

Yehonathan Refael, Guy Smorodinsky, Tom Tirer, and Ofir Lindenbaum. Sumo: Subspace-
aware moment-orthogonalization for accelerating memory-efficient llm training. arXiv preprint
arXiv:2505.24749, 2025.

Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making muon &
scion great again! (bridging theory and practice of lmo-based optimizers for llms), 2025. URL
https://arxiv.org/abs/2505.13416.

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon
for pretraining. arXiv preprint arXiv:2505.02222, 2025. URL https://arxiv.org/abs/
2505.02222.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,
Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel Py-
Torch implementation of the distributed Shampoo optimizer for training neural networks at-scale.
arXiv preprint arXiv:2309.06497, 2023. URL https://arxiv.org/abs/2309.06497.

Egor Shulgin, Sultan AlRashed, Francesco Orabona, and Peter Richtárik. Beyond the ideal: Ana-
lyzing the inexact muon update. arXiv preprint arXiv:2510.19933, 2025.

Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction to advanced electronic
structure theory. Courier Corporation, 1996.

Lloyd N. Trefethen. Approximation theory and approximation practice. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, extended edition, 2020. ISBN 978-1-611975-
93-2.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
Sham M. Kakade. SOAP: Improving and stabilizing shampoo using adam for language modeling.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=IDxZhXrpNf.

Greg Yang, James B. Simon, and Jeremy Bernstein. A spectral condition for feature learning, 2024.
URL https://arxiv.org/abs/2310.17813.

Zhenyue Zhang, Hongyuan Zha, and Wenlong Ying. Fast parallelizable methods for computing
invariant subspaces of Hermitian matrices. J. Comput. Math., 25(5):583–594, 2007. ISSN 0254-
9409,1991-7139. URL http://www.jstor.org/stable/43693395.

14

https://doi.org/10.1016/S0370-2693(97)01368-3
https://doi.org/10.1016/S0370-2693(97)01368-3
https://doi.org/10.1007/s10543-009-0240-1
https://doi.org/10.1137/0202007
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2505.13416
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2309.06497
https://openreview.net/forum?id=IDxZhXrpNf
https://openreview.net/forum?id=IDxZhXrpNf
https://arxiv.org/abs/2310.17813
http://www.jstor.org/stable/43693395

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

1.1 The Muon Method . 2

1.2 Computing the Polar Factor . 2

1.3 Contributions . 3

2 Approximations by Compositions of Polynomials 4

3 The Polar Express 5

3.1 Greedy is optimal . 5

3.2 Finding the optimal polynomial for each iteration 6

3.3 Upper and lower bounds on the singular values 7

3.4 Finite precision considerations . 7

3.5 The algorithm . 7

4 Numerical Experiments 8

4.1 Convergence of Polar Express . 8

4.2 Training GPT-2 . 8

4.3 Ablations . 9

A Code for Polar Express 16

B Related Work 17

C Proof of Theorem 3.1 19

D Proof of Theorem 3.3 22

E Proof of equivalence between (5) and (6) 23

F Remez algorithm 23

G Finite precision considerations 26

H Additional Experimental Results 26

H.1 Convergence of Polar Express and Its Impact on Muon 26

H.2 Training GPT-2 . 30

H.3 Image Classification . 30

I Initialization for Matrices with Large Spectral Gaps 30

J Fast Polynomial Iteration for Rectangular Matrices 35

J.1 Application to Muon . 37

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A CODE FOR POLAR EXPRESS

Implementation 1 gives a Python implementation of the online stage of Algorithm 1 for degree
= 5, which we use in our numerical experiments. It uses hard-coded polynomials generated from
Implementation 2 and incorporates a numerical safety factor of 1.01 as described in Section 3.4.
This implementation is designed for ease of use. It is short, it has no dependencies besides PyTorch,
and it is a drop-in replacement for previous implementations of matrix sign methods (Cesista et al.,
2025; Jordan et al., 2024b), such as Modula (2024).

Implementation 1 Python code for Polar Express of degree = 5.
from itertools import repeat
import torch

coeffs_list = [
(8.28721201814563, -23.595886519098837, 17.300387312530933),
(4.107059111542203, -2.9478499167379106, 0.5448431082926601),
(3.9486908534822946, -2.908902115962949, 0.5518191394370137),
(3.3184196573706015, -2.488488024314874, 0.51004894012372),
(2.300652019954817, -1.6689039845747493, 0.4188073119525673),
(1.891301407787398, -1.2679958271945868, 0.37680408948524835),
(1.8750014808534479, -1.2500016453999487, 0.3750001645474248),
(1.875, -1.25, 0.375), # subsequent coeffs equal this numerically

]
safety factor for numerical stability (but exclude last polynomial)
coeffs_list = [(a / 1.01, b / 1.01**3, c / 1.01**5)

for (a, b, c) in coeffs_list[:-1]] + [coeffs_list[-1]]

@torch.compile
def PolarExpress(G: torch.Tensor, steps: int) -> torch.Tensor:

assert G.ndim >= 2
X = G.bfloat16() # for speed
if G.size(-2) > G.size(-1): X = X.mT # this reduces FLOPs
X = X / (X.norm(dim=(-2, -1), keepdim=True) * 1.01 +1e-7)
hs = coeffs_list[:steps] + list(

repeat(coeffs_list[-1], steps - len(coeffs_list)))
for a, b, c in hs:

A = X @ X.mT
B = b * A + c * A @ A
X = a * X + B @ X # X <- aX + bXˆ3 + cXˆ5

if G.size(-2) > G.size(-1): X = X.mT
return X

Implementation 2 gives a Python implementation of the offline stage of Algorithm 1. This code was
used to construct the coefficients of the polynomials given in Implementation 1, which in turn were
used in our Muon experiments (Section 4.2). It uses ℓ = 10−3 and u = 1 by default. It incorporates
Algorithm 2 and the finite precision modifications described in Section 3.4.

Implementation 2 Polar Express, Offline Stage
from math import inf, sqrt
import numpy as np

def optimal_quintic(l, u):
assert 0 <= l <= u
if 1 - 5e-6 <= l / u:

Above this threshold, the equioscillating polynomials
is numerically equal to...
return (15/8)/u, (-10/8)/(u**3), (3/8)/(u**5)

This initialization becomes exact as l -> u
q = (3*l + 1) / 4
r = (l + 3) / 4
E, old_E = inf, None
while not old_E or abs(old_E - E) > 1e-15:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

old_E = E
LHS = np.array([

[l, l**3, l**5, 1],
[q, q**3, q**5, -1],
[r, r**3, r**5, 1],
[u, u**3, u**5, -1],

])
a, b, c, E = np.linalg.solve(LHS, np.ones(4))
q, r = np.sqrt((-3*b + np.array([-1, 1]) *

sqrt(9*b**2 - 20*a*c)) / (10*c))
return float(a), float(b), float(c)

def optimal_composition(l, num_iters, cushion=0.02407327424182761):
u = 1
coefficients = []
for _ in range(num_iters):

a, b, c = optimal_quintic(max(l, cushion*u), u)
Due to cushioning, this may be centered around 1 with
respect to 0.024*u, u. Recenter it around 1 with respect
to l, u, meaning find c so that 1 - c*p(l) = c*p(u) - 1:
pl = a*l + b*l**3 + c*l**5
pu = a*u + b*u**3 + c*u**5
rescalar = 2/(pl + pu)
a *= rescalar; b *= rescalar; c *= rescalar
Optionally incorporate safety factor here:
a /= 1.01; b /= 1.01**3; c /= 1.01**5
coefficients.append((a, b, c))
l = a*l + b*l**3 + c*l**5
u = 2 - l

return coefficients

print(*optimal_composition(1e-3, 10), sep="\n")

B RELATED WORK

Computing polar(M) is an important and longstanding problem in numerical linear algebra, with
applications spanning electronic structure calculations, lattice quantum chromodynamics, orthogo-
nal Procrustes analysis, parallel algorithms for computing the SVD, and beyond; see e.g. (Higham,
1986; Kaneko et al., 2013; Douglas Carroll & Arabie, 1998; Gower & Dijksterhuis, 2004; Neu-
berger, 1998; Szabo & Ostlund, 1996).

Newton-Schulz and polynomial Padé methods. The earliest methods in the literature are poly-
nomial iterations like (2). Several nearly simultaneous papers introduced the family of polynomial
Padé iterations, comprising Newton-Schulz and its higher-degree analogues (Kovářı́k, 1970; Björck
& Bowie, 1971; Higham, 1986; Leipnik, 1971). These higher-degree methods are also sometimes
called “Newton-Schulz”; when doing so, we will specify the degree for clarity. In these methods,
each iteration refines the current approximation Xt by applying a low-degree odd matrix polyno-
mial, where any odd monomial x 7→ x2q+1 is defined for rectangular matrices by the formula
Xt 7→Xt

(
X⊤

t Xt

)q
. Our Polar Express method also takes this form, though unlike Newton-

Schulz, it changes the polynomial at each iteration.

The polynomials used in Padé methods are chosen to match the value and first few derivatives of
sign(x) at the points x = ±1. For instance, the update rule of the third method in this family
is defined by p(x) = 1

16

(
35x− 35x3 + 21x5 − 5x7

)
, which is the unique degree-7 polynomial

satisfying p(±1) = ±1 and p′(±1) = p′′(±1) = p′′′(±1) = 0. These methods converge so long as
all singular values of X0 lie in (0, 1], a condition guaranteed by the initialization of (2). Furthermore,
the order of convergence of the degree 2q+1 method is q+1 (Björck & Bowie, 1971). In particular,
the Newton-Schulz method (q = 1) converges quadratically.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Newton’s method and rational Padé. In the numerical analysis literature, polynomial methods
were succeeded by rational iterations like Newton’s method (Higham, 1986), defined as follows5:

X0 = M Xt+1 =
1

2

(
Xt +X−⊤

t

)
(14)

Newton’s method also converges quadratically. Like Newton-Schulz, it works because the rational
function r(x) = 1

2 (x+ x−1) has a stable fixed point at 1; unlike for Newton-Schulz, this point is a
global attractor for the whole positive real line. At first glance, Newton’s method has nothing to do
with the Padé iterations discussed above. However, after a change of variables Yt = X−1

t , it can be
reinterpreted as Yt+1 = 2Yt(I +Y ⊤

t Yt)
−1, which is sometimes called inverse Newton. Observing

that r(x) = 2x
1+x2 satisfies r(±1) = ±1 and r′(±1) = 0, we see that (inverse) Newton is also a

Padé method, though a rational rather than polynomial one. In fact, given a odd degree 2qn + 1
for the numerator and an even degree 2qd for the denominator, there is a unique rational function
that matches the value and first qn + qd derivatives of sign(x) at x = ±1. This directly yields a
Padé method for computing polar(M) whose order of convergence is qn + qd + 1. For instance,
r(x) = 3x+x3

1+3x2 is called Halley’s method, which converges cubically. When qd = 0, we recover the
polynomial Padé methods.

There are two main weakness of Newton’s method and the Padé iterations: slow convergence in the
initial phase and the need to compute explicit inverses. To accelerate initial convergence, Higham
popularized the technique of rescaling the matrix after every Newton iteration (Higham, 1986).
Intuitively, rescaling Xt so that σmax = 1/σmin centers the spectrum around 1, where convergence
is fastest. Several easily-computable choices of scaling factor exist to accomplish this approximately.
Note that this rescaling scheme would fail for Newton-Schulz, which likewise suffers from slow
initial convergence but which would diverge if σmax ≫ 1.

Computing matrix inverses is difficult to parallelize and to implement stably in low precision arith-
metic. However, a trick was developed for stably computing many rational methods without explicit
inverses; QR decompositions can be used instead (Nakatsukasa et al., 2010; Zhang et al., 2007).
Applying this trick to Halley’s method and combining with a special rescaling scheme yields the
QDWH (QR-based dynamically weighted Halley) method, which converges in just six iterations for
any reasonably conditioned matrix (Nakatsukasa et al., 2010).

Adaptive rational methods from optimal approximations. A landmark 2016 paper introduced a
new paradigm to design iterative methods for computing polar(M) (Nakatsukasa & Freund, 2016).
The main insight is as follows. Padé methods choose the update rule to be an approximation to
sign(x) of a given degree that is optimally accurate in the neighborhood of x = 1. Instead, we should
choose the approximation to sign(x) that is optimal over an interval [ℓ, 1] ⊂ R≥0 that contains the
singular values. Moreover, after each step of the algorithm, the range of the singular values changes;
therefore, we adapt the update rule at each iteration to match the new interval. When the range of the
singular values is large, this approach ensures that the update rule shrinks it as quickly as possible.
As the algorithm proceeds and the interval shrinks to a small neighborhood of 1, the update rule
approaches that of a Padé method, maintaining the same high order of convergence as it has.

Within the class of odd rational functions whose numerators and denominators have degree 2q + 1
and 2q, respectively, an explicit formula for this optimal approximation to sign(x) on any interval
[ℓ, 1] was found by Zolotarev. It was shown that these rationals have remarkable convergence prop-
erties for any q (Nakatsukasa & Freund, 2016). For q = 1, this optimal approximation coincides
exactly with the dynamically weighted Halley’s method (QDWH) referenced above. For even faster
convergence than QDWH, (Nakatsukasa & Freund, 2016) proposed the Zolo-pd method, which uses
q = 17. Finally, these methods all admit the same QR-based implementation trick as QDWH.

Adaptive polynomial methods. In this paper, we adopt the paradigm of Zolo-pd (Nakatsukasa
& Freund, 2016) but with polynomials rather than rationals of degree (2q + 1, 2q). This choice
avoids the need for QR factorizations, relying solely on GPU-friendly matrix-matrix multiplications
in low-precision arithmetic. While this class of methods has not been fully developed in the numer-
ical analysis literature, similar ideas have been rediscovered in different guises. In an unpublished

5Our description of Newton’s method and other rational methods assumes square non-singular M . Non-
square problems can be reduced to the square case by an initial QR decomposition, but this is not an option for
purely polynomial methods like ours.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

manuscript that predates Zolo-pd, Chen & Chow (2014) describe a rescaling strategy for Newton-
Schulz. Though motivated differently, their method is equivalent to ours for degree-3 polynomials
(unlike our work, they do not consider general odd degree). They also observe numerical instability
that prevents the method from converging to all the way to machine precision. Using the insights
of Nakatsukasa & Higham (2012), they propose a simple mitigation for this issue that we adopt in
Section 3.4. Our work gives the approach from Nakatsukasa & Higham (2012) a stronger theoretical
foundation that connects to the paradigm of Zolo-pd. Concretely, we prove that choosing an optimal
polynomial at each iteration leads to a composed polynomial that is globally optimal in the sense of
(5).

Independently, a group of cryptographers developed a similar method for approximating the scalar
function sign(x) in the context of homomorphic encryption schemes (Lee et al., 2022). Their focus
is mainly on tuning the analogues in their setting of the polynomial degree and number of iterations,
whereas we focus on demonstrating optimality and efficiently constructing the update polynomials
for degree 3 and 5. In addition, we consider matrix-valued inputs in low-precision arithmetic—
not scalars in exact arithmetic—and we demonstrate our method’s effectiveness within the Muon
algorithm for training deep neural networks.

Application within Muon. The designers of Muon realized that, due to the extreme efficiency
requirements and lax accuracy requirements of their setting, rational-based methods from the nu-
merical analysis literature are inapplicable. However, polynomial-based iteration schemes can take
full advantage of GPUs because they use only matrix-matrix products in half-precision arithmetic,
not inverses or QR decompositions. The preference for speed over accuracy motivates methods
that aim to quickly produce coarse approximations, even at the cost of asymptotic convergence.
Examples include the proposals of Jordan (Jordan et al., 2024b) and You (Cesista et al., 2025), as
discussed in Section 1.2. Like Chen & Chow (2014), Jordan found that convergence in the initial
phase can be accelerated by choosing update rules that have a large derivative near zero, so as to
increase the small singular values as much as possible at each iteration. You furthermore chose to
use different update rules at each iteration, allowing extra flexibility to tune the trade-off between
speed and accuracy. Both used degree-5 polynomials that were found through gradient descent on
heuristic objective functions. These proposals were previously compared to Newton-Schultz6, but
never to Nakatsukasa & Higham (2012). We find that our method (which generalizes Nakatsukasa
& Higham (2012)) outperforms them all.

Finally, we remark that concurrent work of Grishina, Smirnov, and Rakhuba also proposes an adap-
tive polynomial method that generalizes Nakatsukasa & Higham (2012) and applies it to accelerat-
ing Muon (Grishina et al., 2025). Like Nakatsukasa & Higham (2012), this work does not establish
global optimality of the composed polynomial as we do in Section 3 or address finite precision
considerations.

C PROOF OF THEOREM 3.1

The aim of this section is to prove Theorem 3.1. We begin with a result that provides a few essential
properties for the the polynomial solving (6) when T = 1. This result is known as Chebyshev’s
theorem (Chebyshev, 1947) or the equioscillation theorem (Trefethen, 2020, Chapter 10).

Lemma C.1. Let d = 2q + 1 and u, ℓ > 0. Consider the problem

min
p∈Podd

d

max
x∈[ℓ,u]

|1− p(x)|. (15)

There exists a unique polynomial p⋆ ∈ Podd
d solving (15). Furthermore, p⋆ is the unique solution

to the above problem if and only if there exist q + 2 distinct points {x0, . . . , xq+1} ⊂ [ℓ, u] such

6Jordan et al. (2024b) actually compares to 2x − 3
2
x3 + 1

2
x5, whereas the true degree-5 Newton-Schulz

polynomial is (15x − 10x3 + 3x5)/8. However, the difference in performance is negligible for the first few
iterations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

that
1− p⋆(xi) = η(−1)i max

x∈[ℓ,u]
|1− p⋆(x)|, for i = 0, . . . , q + 1,

for η = 1 or η = −1.

Proof. A discussion can be found in Eremenko & Yuditskii (2007). Here we include a formal proof
for completeness.

By Chebyshev’s Theorem (Achieser, 1992; Chebyshev, 1947; Cheney, 1966) it is sufficient to show
that Podd

d satisfies the Haar condition: any non-zero p ∈ Podd
d = span{x, . . . , x3, . . . , x2q+1} can

have at most q roots in [ℓ, u].

Since deg(p) = d = 2q + 1 we know that p can have at most 2q + 1 roots in R. However, since
p(0) = 0 and p(x) = −p(−x) we know that p has one root at zero, and the remaining roots come
in symmetric pairs (x,−x). Because of this, p can have at most q roots in the positive orthant, and
thus it can have at most q roots in [ℓ, u] ⊂ (0,∞). Hence, Podd

d satisfies the Haar condition, which
yields the desired result.

The proof of Theorem 3.1 will be by induction on T . We begin by establishing the base case, T = 1,
which is handled by the following result.

Lemma C.2. Let u, ℓ > 0 and define

p⋆ := argmin
p∈P∗

d

max
x∈[ℓ,u]

|1− p(x)|.

Then

p⋆(ℓ) = min
x∈[ℓ,u]

p⋆(x), max
x∈[ℓ,u]

p⋆(x) = 2− p⋆(ℓ), and max
x∈[ℓ,u]

|1− p⋆(x)| = 1− p⋆(ℓ).

Proof. Throughout the proof we assume d = 2q + 1. We begin with proving

p⋆(ℓ) = min
x∈[ℓ,u]

p⋆(x).

Consider the polynomial e(x) := 1 − p⋆(x). The proof will contain three steps. We first rule out
the trivial case that p⋆ ̸= 0, since p(x) = 2

ℓ+ux would then be a better approximation. Hence, p⋆

cannot be the zero polynomial.

Step 1: e(x) has exactly q stationary points inside the open interval (ℓ, u).

Note that e(x) has at most 2q stationary points in R, since its derivative e′(x) is a polynomial of
degree 2q. Furthermore, since p⋆ is odd, we have that e′(x) = −p′(x) is even of degree 2q, and thus
can have at most q stationary points contained in (0,+∞). Hence, there can be at most q stationary
points of e(x) inside the interval [ℓ, u].

By Lemma C.1 there are q + 2 points x0, . . . , xq+1 ∈ [ℓ, u] where e(x) is maximized or minimized
in [ℓ, u]. These points are either stationary points or they are endpoints of the interval [ℓ, u]. Let next
be the number of stationary points and nstat be the number of endpoints in the set {x0, . . . , xq+1}.
Since a point can be both a stationary point and an endpoint we have q+2 ≤ nend +nstat. However,
nend ≤ 2 and nstat ≤ q, which follows from the previous paragraph where we showed that there are
at most q stationary points of e(x) in [ℓ, u]. So nend + nstat ≤ q+2, and consequently we must have
nend = 2 and nstat = q, as required.

Step 2: x = ℓ is a maximum of e(x) on the interval [ℓ, u]

By Lemma C.1 and the discussion from Step 1, we know that |e(x)| is maximized at q + 2 points
inside [ℓ, u] and q of these points are contained inside the open interval (ℓ, u). Hence, x = ℓ must
either be a maximum or a minimum of e(x). We will show that x = ℓ must be a maximum by
contradiction.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Suppose x = ℓ was a minimum of e(x) on [ℓ, u]. First note that p⋆ is trivially non-negative on [ℓ, u],
or else p(x) = 0 would be a better polynomial. Hence, since p⋆(0) = 0 we must have p∗′(δ) > 0
for some δ ∈ [0, ℓ], or else the zero polynomial p(x) = 0 would be a better approximation. Hence,
for some δ ∈ [0, ℓ] we have e′(δ) < 0.

We must also have e′(ℓ) ≥ 0 or else x = ℓ is not a minimum of e(x). Since e′(δ) < 0 for some
δ ∈ [0, ℓ] and e′(ℓ) ≥ 0, by the intermediate value theorem there exists a point x∗ ∈ [0, ℓ] such that
e′(x∗) = 0. However, by the discussion above we know that all stationary points of e are contained
inside the open interval (ℓ, u). Hence, x = ℓ cannot be a minimum of e(x) on [ℓ, u]. However, by
Step 1 we know that the endpoints of [ℓ, u] must be either minima or maxima of e(x). Hence, x = ℓ
is a maximum of e(x) on [ℓ, u].

Step 3: Obtaining the desired equalities

Since e(x) has a maximum in [ℓ, u] at x = ℓ, we have p⋆(ℓ) = min
x∈[ℓ,u]

p⋆(x). The other two equalities

are immediate consequences of the equioscillation property of p⋆ Lemma C.1 and that x = ℓ is a
minimum of p⋆ over the set [ℓ, u].

With the above-mentioned result in hand, we are ready to prove Theorem 3.1.

Theorem 3.1. Let d be odd and define ℓ1 = ℓ and u1 = u. For t = 1, . . . , T define

pt = argmin
p∈Podd

d

max
x∈[ℓt,ut]

|1− p(x)|, ℓt+1 = min
x∈[ℓt,ut]

pt(x), ut+1 = max
x∈[ℓt,ut]

pt(x) (8)

The resulting composition p⋆ := pT ◦ pT−1 ◦ · · · ◦ p1 is optimal and the error is given by:

max
x∈[ℓ,u]

|1− p⋆(x)| = min
p=pT ◦pT−1◦···◦p1

pt∈Podd
d

max
x∈[ℓ,u]

|1− p(x)| = 1− ℓT+1. (9)

Furthermore the new error, lower and upper bounds can be computed through

ℓt+1 = pt(ℓt), ut+1 = 2− ℓt+1, and max
x∈[ℓt,ut]

|1− pt(x)| = 1− ℓt+1. (10)

Proof. The proof of (10) is an immediate consequence of Lemma C.2, since for each t = 1, . . . , T ,
pt is the optimal approximation in Podd

d to x 7→ 1.

We now proceed with the proof of (9), which will be by induction. The proof for T = 1 is an
immediate consequence of Lemma C.2 and we also have p⋆(ℓ) = ℓ2 by (10). Now suppose the
result is true for all t ≤ T − 1. For t = 1, . . . , T − 1, note that the image of pt on [ℓt, ut] is exactly
[ℓt+1, ut+1] by i). Hence, if we define g(x) := pT−1 ◦ · · · ◦ p1(x), then the image of g on [ℓ, u] is
[ℓT , uT]. Furthermore, by i) we also have g(ℓ) = ℓT . Pick any f such that f ̸= g and

f = p̃T−1 ◦ · · · ◦ p̃1,

for some p̃1, . . . , p̃T−1 ∈ Podd
d . Let the image of f on [ℓ, u] be [a, b]. We will prove that a

b ≤ ℓT
uT

by
contradiction.

Suppose a
b > ℓT

uT
. Define c = 2

a+b . Then, the image of the scaled function cf on [ℓ, u] is [ca, cb]
and cf satisfies

max
x∈[ℓ,u]

|1− cf(x)| = max {1− ca, cb− 1} = b− a

a+ b
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Recall by our inductive hypothesis, we have max
x∈[ℓ,u]

|1− g(x)| = 1− ℓT = uT − 1 where the second

equality holds by (10). It follows that

a

b
>

ℓT
uT

⇔ a

b
>

ℓT
2− ℓT

⇔ ℓT <
2a

a+ b

⇔ 1− ℓT >
b− a

a+ b

⇔ max
x∈[ℓ,u]

|1− g(x)| > max
x∈[ℓ,u]

|1− cf(x)|,

which leads to a contradiction to our inductive hypothesis that g is optimal. Hence, we must have
a
b ≤ ℓT

uT
.

Consequently, using that a
b ≤ ℓT

uT
, we will show that for any p̃T ∈ Podd

d and for any f = p̃T−1 ◦
· · · ◦ p̃1, p̃T ◦ f cannot be a better approximation than pT ◦ g. In particular, we have

max
x∈[ℓ,u]

|1− p̃T (f(x))| ≥ min
p∈P∗

d

max
x∈[ℓ,u]

|1− p(f(x))|

= min
p∈P∗

d

max
x∈[a,b]

|1− p(x)|

= min
p∈P∗

d

max
x∈[a/b,1]

|1− p(x)|

≥ min
p∈P∗

d

max
x∈[ℓT /uT ,1]

|1− p(x)|

= min
p∈P∗

d

max
x∈[ℓT ,uT]

|1− p(x)|

= min
p∈P∗

d

max
x∈[ℓ,u]

|1− p(g(x))|

= max
x∈[ℓT ,uT]

|1− pT (g(x))| = 1− pT (ℓT) = 1− ℓT+1,

where the second and third equality follow by changing variables y = x/b so that

min
p∈P∗

d

max
x∈[a,b]

|1− p(x)| = min
p∈P∗

d

max
y∈[a/b,1]

|1− p(by)| = min
p∈P∗

d

max
y∈[a/b,1]

|1− p(y)|

and this last equality follows because the space P∗
d is invariant under input rescaling; that is, for any

b ̸= 0, the map x 7→ bx preserves the space span{x, x3, . . . , xd}. This concludes the proof.

D PROOF OF THEOREM 3.3

In this section we provide the proof of the convergence guarantee stated in Theorem 3.3.

Theorem 3.3. Let M be a matrix normalized so that σ(M) ⊂ [ℓ, 1]. Let XT = p⋆(M), where
p⋆ is the polynomial from Theorem 3.1 with d = 2q + 1. Then, we have

∥ polar(M)−XT ∥2 ≤ |1− ℓ2|(q+1)T . (12)

Hence, for d = 3 and d = 5 the method converges quadratically and cubically, respectively.

Proof. Define
p⋆ = argmin

p=pT ◦pT−1◦···◦p1

pt∈P∗
d

max
x∈[ℓ,u]

|1− p(x)| .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Then Algorithm 1 returns XT = p⋆(M). Let h ∈ Pq be the [q/0] Padé-approximant to (1−x)−1/2

(Kenney & Laub, 1991, Section 3) and define p(x) = xh(1− x2) ∈ Podd
d . Define f = p ◦ · · · ◦ p as

the composition of p with itself T times. Then, by Theorem 3.1, (Kenney & Laub, 1991, Theorem
3.1), and f(x) ≥ 0 for x ≥ 0 we have

∥ sign(M)−XT ∥2 ≤ max
x∈[ℓ,1]

|1− p⋆(x)|

≤ max
x∈[ℓ,1]

|1− f(x)|

≤ max
x∈[ℓ,1]

[
|1− x2|(d+1)T

1 + f(x)

]

≤ |1− ℓ2|(d+1)T ,

as required.

E PROOF OF EQUIVALENCE BETWEEN (5) AND (6)

In this section we provide a proof for the equivalence between (5) and (6). It is sufficient to show
that for any fixed polynomial p we have

ε1 := max
M∈Rm×n

σ(M)⊂[ℓ,u]

∥polar(M)− p(M)∥2 = max
x∈[ℓ,u]

|1− p(x)| := ε2.

For any fixed M , by the unitary invariance of the spectral norm we immediately have

∥polar(M)− p(M)∥2 = max
σi∈σ(M)

|1− p(σi)| ≤ max
x∈[ℓ,u]

|1− p(x)| .

Consequently, ε1 ≤ ε2.

Suppose that x∗ ∈ [ℓ, u] is chosen so that |1 − p(x∗)| = maxx∈[ℓ,u] |1− p(x)| . Without loss of
generality, assume m ≥ n. Letting M = x∗UV T, for any matrix U ∈ Rm×n and V ∈ Rn×n with
orthonormal columns, and noting polar(M) = UV T yields

ε1 ≥ ∥polar(M)− p(M)∥2
= ∥In − p(x∗)In∥2
= |1− p(x∗)|
= max

x∈[ℓ,u]
|1− p(x)| = ε2

Consequently, ε1 ≥ ε2. Hence, ε1 = ε2, as desired.

F REMEZ ALGORITHM

In this section, we show in detail how to solve (13). By Theorem 3.1, these solutions give the update
rule for a single step of Polar Express. We give a closed form solution for d = 3. We then
describe how the Remez algorithm (Pachón & Trefethen, 2009; Parks & McClellan, 1972) can be
used to approximate pt for arbitrary d. We then present Algorithm 2, a simplified version of Remez
for solving (13) with d = 5. Recall (13):

argmin
p∈Podd

d

max
x∈[ℓ,u]

|1− p(x)|

We begin with the case when d = 3. We seek a polynomial of the form p(x) = ax + bx3. The
Equioscillation Theorem (Lemma C.1) stipulates that p must have an equioscillating set of size 3.
For p to achieve its maximum error at a point x, x must be a local extremum of p(x) − 1 on the
interval [ℓ, u]. Thus, for x to be eligible for membership in the equioscillating set, it must either
be a true local extremum of p(x) − 1 that happens to lie in [ℓ, u], or else one of the endpoints ℓ, u.
However, because p is an odd cubic, it has at most one true local extremum on R≥0. Thus, to build

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

an equioscillating set of three points, we must include p’s unique positive local extremum and both

endpoints. This local extremum of p occurs at
√

−a
3b . Therefore, we seek a, b such that

p(ℓ) = 1− E, p

(√
−a
3b

)
= 1 + E, p(u) = 1− E (16)

for some E. This is a system of three equations in three variables. The solution p(x) = ax+ bx3 is
most easily expressed as follows. Let pNS(x) =

3
2x− 1

2x
3. Then

p(x) = βpNS(αx), where α =

√
3

u2 + lu+ ℓ2
and β =

4

2 + ℓu(ℓ+ u)α3
. (17)

One can verify that this polynomial satisfies the equioscillation condition of (16), with
√

−a
3b = 1

α

and E = β − 1. Therefore, it must necessarily be the optimal approximation from Podd
3 . Note that

for u = 1, x 7→ pNS(αx) is the same polynomial derived in Chen & Chow (2014).

Unfortunately, for larger d, finding closed form expressions for optimal approximations from Podd
d

becomes challenging, and we know of no closed form solution. However, we can approximate the
optimal polynomial using the Remez algorithm. Let d = 2q + 1. Again recalling Lemma C.1,
the optimal polynomial must satisfy the equioscillation property at a set of q + 2 points, as in (16).
The Remez algorithm finds the equioscillation points A = {x0, . . . , xq+1} from Lemma C.1 by
iteratively refining a sequence of trial points A(k) = {x(k)

0 , . . . , x
(k)
q+1} so that A(k) converges to A.

From the sequence of trial points A(k) the algorithm also finds a sequence of polynomials p(k) so
that p(k) converges to the optimal polynomial. The convergence is very fast, and usually 10 iterations
is sufficient to converge to the optimal polynomial up to double precision machine epsilon (Pachón
& Trefethen, 2009). More commonly, the Remez algorithm is used to find optimal polynomial
approximations to general continuous functions where d ≈ 100 or even d ≈ 1000. However,
because the polynomial we build to approximate sign(x) is a composition of polynomials, each of
which has a low degree, in our setting the degree d is small, usually d = 5. For d = 5 the Remez
algorithm simplifies significantly. We now describe this simplified algorithm.

We first choose an initial set of trial points A(1), which ideally should come close to satisfying the
equioscillation property. From Lemma C.1, the unique optimal approximation p⋆ ∈ Podd

5 satisfies
the equioscillation property at four points in [ℓ, u]. Since the function we wish to approximate is
constant, the equioscillation points must be extrema of p⋆ on [ℓ, u]. Because p⋆ is a odd quintic,
it can have at most two local extrema on the positive real line, and thus at most two local extrema
on [ℓ, u]. The other two equioscillation points must therefore be the endpoints ℓ and u. Since we
know that ℓ and u must be equioscillation points we always set x(k)

0 = ℓ and x
(k)
3 = u for all k.

We initialize x
(1)
1 and x

(1)
2 to 1

4ℓ +
3
4u and 3

4ℓ +
1
4u, since we observe that as ℓ → u these are

approximately the other two equioscillation points.

We now show how to refine a candidate set of trial points A(k) to produce A(k+1) as well as an
approximately equioscillating polynomial pk. For any fixed set of trial points {ℓ, x(k)

1 , x
(k)
2 , u}, we

can find a degree-5 odd polynomial pk(x) = akx+ bkx
3 + ckx

5 that satisfies

pk(ℓ) = 1− Ek, pk(x
(k)
1) = 1 + Ek, pk(x

(k)
2) = 1− Ek, pk(u) = 1 + Ek (18)

for some Ek by solving a linear system in ak, bk, ck and Ek. This can be rewritten as follows:



ℓ ℓ3 ℓ5 1

x
(k)
1 (x

(k)
1)3 (x

(k)
1)5 −1

x
(k)
2 (x

(k)
2)3 (x

(k)
2)5 1

u u3 u5 −1






ak
bk
ck
Ek


 =



1
1
1
1


 . (19)

If A(k) were the extrema of the error function ek(x) = 1 − pk(x) on [ℓ, u], then they would be
an equioscillating set for pk, and pk would be the solution. Therefore, to refine A(k), we find the
extrema of ek(x) = 1 − pk(x). These can occur at ℓ, u and the roots of e′k(x). Setting e′k(x) = 0

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

yields the quartic equation 5ckx
4 + 3bkx

2 + ak = 0, whose two solutions are given explicitly by
the quadratic formula after the substitution y = x2. We set x(k+1)

1 and x
(k+1)
2 to be the solutions

to this equation and let A(k+1) = {ℓ, x(k+1)
1 , x

(k+1)
2 , u}. We repeat the procedure until |Ek| :=

max
x∈[ℓ,u]

|1− pk(x)| ≈ max
x∈[ℓ,u]

|1− pk+1(x)| =: |Ek+1|.

We note that the matrix appearing in (19) is a Vandermonde matrix. Vandermonde matrices become
notoriously ill-conditioned as the degree grows large (Golub & Van Loan, 2013, Section 4.6). How-
ever, since in our setting we choose d to be small, there is no ill-conditioning due to large degrees.
Instead, we observe ill-conditioning when ℓ ≈ u. However, as ℓ/u→ 1 the optimal polynomial will
converge to the polynomial x/u

8

(
15− 10(x/u)2 + 3(x/u)4

)
, which can be verified by noting that

as ℓ/u → 1 all equioscillation points x0, x1, x2, x3 must converge to u. For general d = 2q + 1,
the polynomial will converge to (x/ℓ)h(1 − (x/ℓ)2) where h ∈ Pq is the [q/0] Padé approximant
to (1 − x)1/2 (Kenney & Laub, 1991). In fact, this polynomial is extremely close to the optimal
polynomial for sufficiently large ℓ. To see this, let p⋆ be the optimal approximation from Podd

5 and
let p(x) = x/u

8

(
15− 10(x/u)2 + 3(x/u)4

)
. Then,

max
x∈[ℓ,u]

|p⋆(x)− p(x)| ≤ max
x∈[ℓ,u]

|1− p(x)|+ max
x∈[ℓ,u]

|1− p⋆(x)|

≤ 2 max
x∈[ℓ,u]

|1− p(x)|

≤ 2 (1− ℓ/u)
3
.

where we invoked (Kenney & Laub, 1991, Theorem 3.1) and the fact that p⋆ is the optimal approx-
imation to x 7→ 1 from Podd

5 . Hence, when ℓ/u ≥ 1 − ϵ
1/3
d , where ϵdouble ≈ 1.1 × 10−16 is the

double precision machine epsilon, then |p⋆(x) − p(x)| ≤ 2ϵdouble. In other words, up to double
precision machine epsilon, p⋆ is equal to p. Therefore, whenever ℓ/u ≥ 1 − ϵ

1/3
double the algorithm

simply returns the Padé approximant (that is, the scaled Newton-Schulz polynomial).

The full algorithm is given in Algorithm 2. In our experiments, we never observed Algorithm 2 tak-
ing more than five iterations to converge. This algorithm is implemented in full in Implementation 2.

Algorithm 2 Remez algorithm (degree 5 approximation for sign(x))
input: interval [ℓ, u] for u > ℓ > 0.
output: Approximation p ∈ Podd

5 to p⋆ = argmin
p∈Podd

5

max
x∈[ℓ,u]

|1− p(x)|.

define ϵdouble = 1.11× 10−16

if ℓ/u ≥ 1− ϵ
1/3
double then

Return p(x) = x/u
8

(
15− 10(x/u)2 + 3(x/u)4

)
end if
x
(1)
1 = 1

4ℓ+
3
4u, x

(1)
2 = 3

4ℓ+
1
4u.

E0 =∞, E−1 = −∞
k ← 0
while ||Ek| − |Ek−1|| > ϵdouble do

k ← k + 1


ak
bk
ck
Ek


 =




ℓ ℓ3 ℓ5 1

x
(k)
1 (x

(k)
1)3 (x

(k)
1)5 −1

x
(k)
2 (x

(k)
2)3 (x

(1)
2)5 1

u u3 u5 −1




−1 

1
1
1
1




x
(k+1)
1 =

√
−3bk−

√
9b2k−20akck
10ck

, x
(k+1)
2 =

√
−3bk+

√
9b2k−20akck
10ck

end while
Return p(x) = akx+ bkx

3 + ckx
5

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G FINITE PRECISION CONSIDERATIONS

As highlighted in Section 3.4, one must take care to implement Polar Express in finite preci-
sion. In this section we outline modifications to our method to ensure stability in finite precision
arithmetic.

The first issue arises when numerical round-off creates singular values that are slightly larger than
our current upper bound ut. Our optimal polynomials converge only when the singular values of Xt

are less than ut. In some cases we have

pt(ut + ϵ) > ut+1 + ϵ,

so over many iterations, a singular value that is slightly larger than ut large could grow to∞ instead
of converging to 1.

To fix this issue, we simply replace each polynomial x 7→ pt(x) by x 7→ pt(x/1.01). This safety
factor corrects for round-off errors in previous iterations while only slightly changing the behavior
of the polynomial on the interval [ℓt, ut], though it does cause the singular values to converge to
0.999998 instead of to 1. To correct for this, the safety factor can be omitted in the final iteration.
This fix is reflected in line 5 of Algorithm 1.

The second issue was identified in Nakatsukasa & Higham (2012) and addressed in the context of
polynomial iterations by Chen & Chow (2014). In general, iterative methods for polar(M) aim to
increase each singular value relative to the largest singular value; while σmin(X0) ≪ σmax(X0),
after enough iterations, σmin(Xt) ≈ σmax(Xt) ≈ 1. However, the convergence of each singular
value to σmax may not be monotonic. Over the domain [ℓt, ut], our optimal polynomial pt oscillates
repeatedly between ℓt+1 and ut+1, so some singular values that are near ut may get mapped down
to ℓt+1. It so happens that this non-monotonicity—even at a single iteration—can cause loss of
precision. That is, problems occur if

pt(σi)

σi
≪

max
x∈[σmin,σmax]

pt(x)

σmax
,

where 0 ≤ σmin ≤ σi ≤ σmax are singular values of Xt (Nakatsukasa & Higham, 2012). In the
extreme case pt(σi) < 0, the ith singular vector will change sign, casuing the method to converge
to the polar factor of the wrong matrix. Unlike Newton-Schulz, unscaled Newton, or QDWH, our
method is affected by this loss of precision.

To mitigate this issue, Chen & Chow (2014) propose modifying their update polynomials to enforce
a lower bound on the ratio pt(σi)

σi
. This issue only occurs when ℓt ≪ ut; as ℓt → ut, our optimal

polynomial approaches the Padé approximant and so pt(x)
x ≥ 1 for all x ∈ [0, ut]. We could fully

solve the problem by using the Padé approximant instead of our optimal polynomial, but this would
significantly slow down convergence. Instead we compromise. When ℓt ≥ ut/10, we find that
pt(x)
x ≥ 0.236. Therefore, whenever ℓt < ut/10 we select the update rule as though ℓt = ut/10.

This change slows convergence, but only very slightly. (The choice of 10 is somewhat arbitrary. In
Implementation 2, we use a different factor.) This fix is reflected in line 4 of Algorithm 1.

The third change is copied from the original Muon implementation: normalize M by ∥M∥F+10−2

instead of by ∥M∥F. As before, we set u1 = 1. This fix is reflected in line 10 of Algorithm 1.

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results.

H.1 CONVERGENCE OF POLAR EXPRESS AND ITS IMPACT ON MUON

Convergence in Frobenius Norm In Figure 8, we plot the convergence of Polar Express and
three baselines as measured in the Frobenius norm. We also plot convergence in cosine similarity,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

`t+1

ut+1

Before
stabilizing

After
stabilizing 0.236x

Figure 7: Effects of stabilizing the update rules with a safety factor and cushioning, as described
in Appendix G. The blue curve is the optimal degree-5 polynomial for the interval [0.005, 1]. It is
has numerical issues because it maps singular values near 0.8 down to almost zero and maps 1 + ϵ

to ≈ ut+1 + 25ϵ. The stabilized version is better because it ensures pt(x)
x ≥ 0.236 and maps all

x ≤ 1.01 to at most ut+1.

0.0

0.5

1.0

R
el

at
iv

e
F

ro
b

en
iu

s
E

rr
or

GPT-2 Gradient
Layer 1 attn.c attn

GPT-2 Gradient
Layer 3 mlp.c fc

2 4 6 8 10
Iteration

0.25

0.50

0.75

1.00

C
os

in
e

S
im

il
ar

it
y

2 4 6 8 10
Iteration

Newton-Schulz (d = 5) Jordan You PolarExp, ` = 10−3

Figure 8: Convergence of degree-5 polynomial methods measured in Frobenius norm and cosine
similarity. Test matrices are gradients of two layers of a randomly-initialized GPT-2 model on a
batch of language modeling data. Polar Express outperforms other methods.

which is defined with respect to the Frobenius inner product ⟨A,B⟩ = Tr(A⊤B). Formally, the
cosine similarity between A and B is defined as ⟨A,B⟩

∥A∥F∥B∥F
. We use gradients of GPT-2 layers as test

matrices. While Polar Express is designed to minimize the spectral norm error, convergence
in the Frobenius norm is similar (compare with Figure 3).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(In)sensitivity of Muon to Small Singular Values Figure 5 shows that using more than five or six
iterations of Polar Express does not improve the performance of Muon. However, Figures 3
and 8 show that five iterations is not enough for Polar Express or any other method to converge.
In practice, Polar Express is taking steps in directions that are meaningfully different from
the exact polar(M) (as computed by an SVD), but still converging equally fast. One possible
explanation for this observation is that Muon may not be sensitive to the convergence of small
singular values of M . Intuitively, the singular vectors associated with these small singular values
correspond to directions which have little effect on the output of the neural network; they may
signify little more than noise in the stochastic gradients.

We now conduct an experiment to test this hypothesis. We compare three ways that a Muon-like
optimizer could handle the small singular values. Assume M has full rank, and partition the singular
value decomposition of M into two parts

M = UΣV ⊤ = [U1 U2]

[
Σ1

Σ2

]
[V1 V2]

⊤
= U1Σ1V

⊤
1 +U2Σ2V

⊤
2 (20)

where Σ1 contains the singular values larger than some threshold γσmax and Σ2 contains those
smaller than γσmax, where σmax is the largest singular value of M . Recall that

polar(M) := UV ⊤ = U1V
⊤
1 +U2V

⊤
2 (21)

is obtained by mapping each singular value of M to 1. We define the truncated polar factor by
mapping the larger singular values to 1 and the smaller singular values to 0:

polarγ(M) := U1V
⊤
1 . (22)

A third possibility is to map the small singular values to −1:

UV ⊤ = U1V
⊤
1 −U2V

⊤
2 (23)

Note that −U2V
⊤
2 is in the opposite direction as the Muon update. If the small singular values

carry meaningful information about the loss landscape, then we expect this partly “uphill” step to
hurt performance. Comparing the three update rules in Equations (21) to (23) can tell us how small
singular values affect Muon.

We train GPT-2 Small using each of these three update rules with learning rate 0.05 and weight
decay 0.1. We sweep three different options for the cutoff γ that defines the ‘small” singular values:
10−4, 10−3, and 10−2. The results are plotted in Figure 9. They show that the treatment of singular
values smaller than 10−4σmax does not matter at all for the performance of Muon, and those smaller
than 10−3σmax have a very minor effect. Notably, even reversing the direction of the Muon step
in the bottom singular subspace barely worsens performance, showing that the gradient information
in this subspace not very informative. The bottom panel of Figure 9 shows how five iterations of
Polar Express (with ℓ = 10−3) affect small singular values. Singular values greater than 10−3

are all mapped close to 1, while those smaller than 10−4 are all mapped close to 0. Thus, while
Polar Express does not fully converge after five iterations, it does converge in the ways that
matter for Muon.

Convergence of Top Singular Values As discussed in the previous paragraph, we hypothesize
that Muon may not be sensitive to the convergence of the small singular values of M when approx-
imating polar(M). Therefore, in Figure 10, we plot the convergence of Polar Express and the
baselines when all singular values smaller than 10−3 are ignored. Specifically, if alg(M) denotes
the output of an algorithm for approximating polar(M), then we compare

U1U
⊤
1 · alg(M) · V1V

⊤
1 to polar10−3(M),

where polar10−3(M) = U1V
⊤
1 = U1U

⊤
1 · polar(M) ·V1V

⊤
1 is the truncated polar factor defined

above. The results show that Polar Express converges in just six iterations as measured in
the relative Frobenius norm and just five iterations when measuring in cosine similarity. The other
methods converge faster too, but Polar Express still outperforms them. These results may
explain why the performance of Muon saturates at five or six iterations of Polar Express, as
shown in Figure 5.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

3.588

3.750

4.000

4.250

4.500

4.750

5.000

F
in

al
V

al
id

at
io

n
L

os
s

3.589
3.669

3.587

4.884

3.5943.612

Singular Value Map

σ 7→
{

1 σ > γσmax

−1 σ < γσmax

σ 7→
{

1 σ > γσmax

0 σ < γσmax

σ 7→ 1 (true polar)

10−4 10−3 10−2

Cutoff (γ)

0

1

P
ol

ar
E

x
p

re
ss

(γ
)

Figure 9: Impact of small singular directions of momentum matrix on optimization quality. We
compare three variations of the Muon update rule. Exact Muon (green) processes the momentum
M = UΣV ⊤ by mapping each singular value to 1: polar(M) = UV ⊤. Truncated Muon (orange)
maps the larger singular values to 1 and the smaller singular values to 0. Reverse Muon (blue) maps
the larger ones to 1 and the smaller ones to −1. Computations are performed in bfloat32. All
runs train GPT-2 Small on 1 billion tokens of FineWeb data with learning rate 0.05 and weight
decay 0.1. When the cutoff that defines “large” and “small” singular values is γ ≈ 10−3, all three
methods perform well, showing that the small singular directions do not matter. Bottom panel shows
the polynomial defined by composing five iterations of Polar Express. Five iterations is just
enough for singular values ≥ 10−3 to nearly converge.

0.0

0.5

1.0

R
el

at
iv

e
F

ro
b

en
iu

s
E

rr
or

GPT-2 Gradient
Layer 1 attn.c attn

GPT-2 Gradient
Layer 3 mlp.c fc

2 4 6 8 10
Iteration

0.25

0.50

0.75

1.00

C
os

in
e

S
im

il
ar

it
y

2 4 6 8 10
Iteration

Newton-Schulz (d = 5) Jordan You PolarExp, ` = 10−3

Figure 10: Convergence of degree-5 polynomial methods, considering only singular values larger
than σmax/10

3. Test matrices are gradients of two layers of a randomly-initialized GPT-2 model on
a batch of language modeling data. Polar Express converges in just five or six iterations and
outperforms other methods.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

H.2 TRAINING GPT-2

Additional Metrics We report additional results from the experiment of Section 4.2. In addition to
showing validation loss vs. learning rate and training step, we also report training loss vs. learning
rate and training time. The results are shown in Figures 11a and 11b. The upper rows of each
subfigure are identical to Figure 1 and Figure 4, and are repeated here for ease of comparison.

Weight Decay As described in Section 4.3, we reran our GPT-2 training runs with weight decay
of 0.1. This change had little effect on the results, as shown in Figure 12.

Number of Training Tokens We also reran some of our GPT-2 training runs using 10 billion
tokens of training data instead of 1 billion. As described in Section 4.3, 10 billion tokens roughly
matches the Chinchilla scaling rule for GPT-2-Large and exceeds it for GPT-2-Small. Results are
shown in Figure 13. Note that the top row of Figure 13a is identical to Figure 6. Polar Express
still outperforms the baselines across all conditions, but the gap shrinks as the training loss con-
verges.

H.3 IMAGE CLASSIFICATION

We conducted experiments on the CIFAR-10 and CIFAR-100 image classification benchmarks
(Krizhevsky, 2009) using ResNet-20 and ResNet-110 architectures with batch normalization (He
et al., 2016). We used a range of learning rates in the range 10−6 to 1 with a constant learning-rate
schedule, a batch size of 128, and 50 epochs of training data. We used three different random seeds
for each hyperparameter setting to assess stability and variability. As a baseline, we also included
AdamW and SGD with momentum (Kingma & Ba, 2015). Results are given in Figures 14 and 15.
For these experiments we see that all the Muon variants performed well, matching or exceeding
the training loss and validation accuracy of AdamW and sgd-m while also being more stable with
respect to the choice of learning rate. However, we do not see a marked difference between the
varieties of Muon. Indeed, even Newton-Schulz (degree = 5) performs equally well in this context,
despite being significantly less accurate than PolarExpress, Jordan or You.

Next we train a Vision Transformer (patch size 4, embedding dimension 512, depth 6, 8 heads, MLP
dimension 512, dropout 0.1) on CIFAR-10 for 200 epochs with batch size 512 using a constant
learning rate schedule. Results are shown in Figure 16. Muon with Polar Express achieved
the best training and validation loss (closely followed by Jordan’s and You’s methods). However,
improved loss did not entirely translate to better accuracy: both Muon and Newton-Schulz and
Adam performed well in terms of validation accuracy. Overall, these experiments do not show a
consistent advantage for Polar Express. Further work may be beneficial to fully realize the
potential benefits of Muon and to further tune Polar Express for these settings.

I INITIALIZATION FOR MATRICES WITH LARGE SPECTRAL GAPS

In Section 3, we constructed a sequence of polynomials that is adapted to the range of the singular
values [ℓ, u]. Assuming nothing else about the input, these polynomials are optimal since they pro-
vide a good approximation to 1 across the entire interval. However, in many applications, the spec-
trum has large gaps; that is, there are several large outlying singular values that are well-separated
from the rest. For these matrices, it is not necessary for the polynomial to be accurate on the entire
interval [ℓ, u], only on the range of the small singular values plus a few other isolated points. In this
section, we take advantage of this structure to accelerate our method by preprocessing the matrix to
eliminate the largest singular values.

The first step is to find small intervals containing each of these large singular values. To find lower
bounds, we use subspace iteration, which is a generalization of the power method that approximates
multiple singular values simultaneously. Fix k, the number of singular values we wish to eliminate.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

10−2

Learning Rate

3.34

3.36

3.38

3.40

3.42

3.44

3.46

F
in

al
V

al
id

at
io

n
L

os
s

muon-You

muon-PolarExp

muon-Jordan

0.0 0.2 0.4 0.6 0.8

Epoch

3.4

3.6

3.8

4.0

4.2

4.4

V
a
li

d
at

io
n

L
os

s

10−2

Learning Rate

3.34

3.36

3.38

3.40

3.42

3.44

3.46

F
in

al
L

os
s

muon-You

muon-PolarExp

muon-Jordan

0 2000 4000 6000 8000

Time (s)

3.4

3.6

3.8

4.0

4.2

4.4

L
o
ss

(a) GPT-2-Large (774M params). Best final validation losses were muon-You (lr = 0.02): 3.399,
muon-Jordan (lr = 0.02): 3.398 and muon-PolarExp (lr = 0.02): 3.340.

10−3 10−2

Learning Rate

3.6

3.8

4.0

4.2

4.4

F
in

al
V

al
id

at
io

n
L

os
s

muon-Jordan

muon-You

adamw

muon-PolarExp

0.0 0.2 0.4 0.6 0.8

Epoch

3.6

3.8

4.0

4.2

4.4

V
al

id
at

io
n

L
o
ss

10−3 10−2

Learning Rate

3.6

3.8

4.0

4.2

4.4

F
in

al
L

os
s

muon-Jordan

muon-You

adamw

muon-PolarExp

0 200 400 600 800 1000 1200

Time (s)

3.6

3.8

4.0

4.2

4.4

V
al

id
a
ti

on
L

os
s

(b) GPT-2-Small (124M params). Best final validation losses were adamw (lr = 0.001): 4.197,
muon-Jordan (lr = 0.01): 3.639, muon-You (lr = 0.01): 3.629 and muon-PolarExp (lr = 0.005):
3.588.

Figure 11: Training GPT-2 on 1 billion tokens of FineWeb data (Aroca-Ouellette et al., 2023) with-
out weight decay. The label muon-<method> denotes Muon with 5 iterations of <method> to
compute polar(M). Top left: final validation loss vs. learning rate. Bottom left: final training loss
vs. learning rate. Top right: validation loss vs. number of iterations for best learning rate. Bottom
right: training loss vs. time for best learning rate.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

10−2

Learning Rate

3.34

3.36

3.38

3.40

3.42

3.44

3.46
F

in
al

V
al

id
at

io
n

L
os

s

muon-You

muon-Jordan

muon-PolarExp

0.0 0.2 0.4 0.6 0.8

Epoch

3.4

3.6

3.8

4.0

4.2

4.4

V
a
li

d
at

io
n

L
os

s

10−2

Learning Rate

3.36

3.38

3.40

3.42

3.44

3.46

F
in

al
L

os
s

muon-You

muon-Jordan

muon-PolarExp

0 2000 4000 6000 8000

Time (s)

3.4

3.6

3.8

4.0

4.2

4.4

L
os

s

(a) GPT-2-Large (774M params). Best final validation losses were muon-You (lr = 0.02): 3.390,
muon-Jordan (lr = 0.02): 3.401 and muon-PolarExp (lr = 0.02): 3.344.

10−2

Learning Rate

3.58

3.60

3.62

3.64

3.66

3.68

3.70

3.72

F
in

al
V

al
id

at
io

n
L

os
s

muon-Jordan

muon-You

muon-PolarExp

0.0 0.2 0.4 0.6 0.8

Epoch

3.6

3.8

4.0

4.2

4.4

V
al

id
at

io
n

L
os

s

10−2

Learning Rate

3.60

3.62

3.64

3.66

3.68

3.70

3.72

F
in

al
L

os
s

muon-Jordan

muon-You

muon-PolarExp

0 250 500 750 1000 1250 1500

Time (s)

3.6

3.8

4.0

4.2

4.4

L
os

s

(b) GPT-2-Small (124M params). Best final validation losses were muon-Jordan (lr = 0.01): 3.638,
muon-You (lr = 0.005): 3.641 and muon-PolarExp (lr = 0.005): 3.587.

Figure 12: Training GPT-2 on 1 billion tokens of FineWeb data (Aroca-Ouellette et al., 2023) with
weight decay 0.1. The label muon-<method> denotes Muon with 5 iterations of <method> to
compute polar(M). Top left: final validation loss vs. learning rate. Bottom left: final training loss
vs. learning rate. Top right: validation loss vs. number of iterations for best learning rate. Bottom
right: training loss vs. time for best learning rate.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

10−3 10−2

Learning Rate

2.92

2.94

2.96

2.98

3.00

3.02

3.04

3.06

F
in

al
V

al
id

at
io

n
L

os
s

muon-Jordan

muon-PolarExp

muon-You

0.0 0.2 0.4 0.6 0.8 1.0

Epoch

2.9

3.0

3.1

3.2

3.3

3.4

3.5

V
a
li

d
at

io
n

L
os

s

10−3 10−2

Learning Rate

2.92

2.94

2.96

2.98

3.00

3.02

3.04

3.06

F
in

al
L

os
s

muon-Jordan

muon-PolarExp

muon-You

0 10000 20000 30000 40000 50000 60000

Time (s)

2.9

3.0

3.1

3.2

3.3

3.4

3.5

L
o
ss

(a) GPT-2-Large (774M params) with weight decay 0.1. Best final validation losses were muon-Jordan (lr
= 0.002): 2.921, muon-You (lr = 0.002): 2.919 and muon-PolarExp (lr = 0.002): 2.913.

10−3 10−2

Learning Rate

3.20

3.25

3.30

3.35

3.40

3.45

3.50

F
in

al
V

al
id

at
io

n
L

os
s

muon-Jordan

muon-You

muon-PolarExp

adamw

0.0 0.2 0.4 0.6 0.8 1.0

Epoch

3.2

3.3

3.4

3.5

3.6
V

al
id

at
io

n
L

os
s

10−3 10−2

Learning Rate

3.20

3.25

3.30

3.35

3.40

3.45

3.50

F
in

al
L

os
s

muon-Jordan

muon-You

muon-PolarExp

adamw

0 10000 20000 30000

Time (s)

3.2

3.3

3.4

3.5

3.6

L
os

s

(b) GPT-2-Small (124M params) without weight decay. Best final validation losses were adamw (lr = 0.0005):
3.370, muon-Jordan (lr = 0.005): 3.233, muon-You (lr = 0.005): 3.234 and muon-PolarExp (lr =
0.005): 3.231.

Figure 13: Training GPT-2 on 10 billion tokens of FineWeb data (Aroca-Ouellette et al., 2023).
The label muon-<method> denotes Muon with 5 iterations of <method> to compute polar(M).
Top left: final validation loss vs. learning rate. Bottom left: final training loss vs. learning rate. Top
right: validation loss vs. number of iterations for best learning rate. Bottom right: training loss vs.
time for best learning rate.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

10−6 10−5 10−4 10−3 10−2 10−1 100 101

Learning rate

0.60

0.65

0.70

0.75

0.80

0.85

0.90
V

al
id

at
io

n
sc

or
e

adamw

muon-Jordan

muon-Newton

muon-PolarExp

muon-You

sgd-m

10−6 10−5 10−4 10−3 10−2 10−1 100 101

Learning rate

10−1

100

T
ra

in
in

g
lo

ss

adamw

muon-Jordan

muon-Newton

muon-PolarExp

muon-You

sgd-m

Figure 14: CIFAR10 with a RESNET20. Shaded regions show range over three random seeds.
The best validation accuracy for each method was sgd-m (lr = 0.1): 0.855 Adamw (lr = 0.01):
0.878 muon-You (lr = 0.001): 0.887, muon-Newton (lr = 0.001): 0.890, muon-Jordan (lr
= 0.001): 0.891, muon-PolarExp (lr = 0.001): 0.893.

10−6 10−5 10−4 10−3 10−2 10−1 100

Learning rate

0.40

0.45

0.50

0.55

0.60

0.65

0.70

V
al

id
at

io
n

sc
or

e

adamw

muon-Jordan

muon-Newton

muon-PolarExp

muon-You

sgd-m

10−6 10−5 10−4 10−3 10−2 10−1 100

Learning rate

10−1

100

T
ra

in
in

g
lo

ss

adamw

muon-Jordan

muon-Newton

muon-PolarExp

muon-You

sgd-m

Figure 15: CIFAR100 with RESNET110. Shaded regions show range over three random
seeds. The best validation accuracy for each method was sgd-m (lr = 0.1): 0.602, Adamw
(lr = 0.01): 0.643, muon-Jordan (lr = 0.001): 0.660, muon-Newton (lr = 0.001): 0.663.
muon-PolarExp (lr = 0.001): 0.663, muon-You (lr = 0.001): 0.665,

10−6 10−4 10−2 100 102

Learning rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
al

id
at

io
n

sc
or

e

adamw

muon-Jordan

muon-Newton

muon-PolarExp

muon-You

sgd-m

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

Learning rate

10−2

10−1

100

T
ra

in
in

g
lo

ss

adamw

muon-Jordan

muon-Newton

muon-PolarExp

muon-You

sgd-m

Figure 16: CIFAR10 with a VIT. Shaded regions show range over three random seeds. The best
validation accuracy for each method was sgd-m (lr = 10−1): 0.809, muon-PolarExp (lr =
10−5): 0.860, Adamw (lr = 10−3): 0.861, muon-Jordan (lr = 10−5): 0.861, muon-You (lr
= 10−5): 0.865, muon-Newton (lr = 10−4): 0.874 .

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Letting σ1 ≥ · · · ≥ σn denote the singular values of M , subspace iteration produces estimates
σ̃1 ≥ · · · ≥ σ̃k satisfying σi ≥ σ̃i for all i ∈ 1, . . . , k.7 To find upper bounds on each σi, we can
use the fact that ∥M∥2F =

∑n
j=1 σ

2
j as follows:

σ2
i = ∥M∥2F −

n∑

j=1
j ̸=i

σ2
j ≤ ∥M∥2F −

k∑

j=1
j ̸=i

σ2
j ≤ ∥M∥2F −

k∑

j=1
j ̸=i

σ̃2
j (24)

That is, for each i ∈ [n],

σi ∈


σ̃i,

√√√√√∥M∥2F −
k∑

j=1
j ̸=i

σ̃2
j




Setting i = k+1, the above also provides an upper bound for the tail of the spectrum, σk+1, . . . , σn.

The second step is to find an odd polynomial that well-approximates the constant function on each
of these intervals and on the tail simultaneously. For simplicity, we treat only the k = 1 case here.
Assume that M is normalized to ∥M∥F = 1 and let z = σ̃1 be the lower bound produced by
subspace iteration (which reduces to the power method in this case). Then (24) gives σ1 ∈ [z, 1]

and σ2, . . . , σn ≤
√
1− z2. Assume that these intervals do not overlap, that is,

√
1− z2 ≤ z ⇐⇒

z ≥ 1/
√
2. Then we construct the unique odd cubic polynomial p(x) = ax + bx3 that satisfies

p(
√
1− z2) = 1 and p(z) = 1 by setting

a =
z2(z +

√
1− z2)−

√
1− z2

z
√
1− z2(2z2 − 1)

b =

√
1− z2 − z

z
√
1− z2(2z2 − 1)

(25)

Because p(0) = 0 and p has at most one local extremum on R≥0, these conditions immediately
guarantee that p is concave-increasing on [0,

√
1− z2], so it must lie above the line x 7→ x/

√
1− z2.

Furthermore, p is decreasing on [σ1, 1], so it maps σ1 ∈ [z, 1] to [p(1), 1]. By minimizing p(1) over
all valid z (that is, over the interval z ∈ [1/

√
2, 1]), one can further show that p(1) > 1/

√
2, so σ1

cannot be decreased very much by applying p. Thus, the largest singular value of p(M) is still at
most 1, while the smaller singular values have increased by a potentially large factor of 1/

√
1− z2.

When there is a large outlying singular value, z is close to 1 and this initialization scheme makes
much more progress than a standard iteration of PolarExpress would have.

In Figure 17, we demonstrate the benefit of using the p given by (25) on a synthetic matrix whose
spectrum follows a power law decay. That is, σj(M) = j−5, so this matrix has a large outlying
singular value σ1 ≫ σ2. Applying (25) costs almost as much as performing an iteration of a degree-
5 polynomial method, so for fair comparison, we count it as an additional iteration in this plot. For
both Newton-Schulz and Polar Express, performing the extra spectrum-aware initialization
step described in this section leads to significant speedups in convergence.

J FAST POLYNOMIAL ITERATION FOR RECTANGULAR MATRICES

In this section, we describe a simple method for applying an iterative polynomial method to a rectan-
gular matrix. For matrices with a large aspect ratio, this method yields significant computational sav-
ings. We emphasize that this method is applicable to any computation of the form (pT ◦· · ·◦p1)(X),
where each pt is an odd polynomial. Thus, it can be used to apply Newton-Schulz or Jordan’s poly-
nomials in addition to our own.

As a preliminary, we first describe the baseline approach. Let X ∈ Rm×n with m ≥ n, where α :=
m/n ≥ 1 is called the aspect ratio. Any odd polynomial p of degree d = 2q + 1 can be represented
as p(x) = xh(x2), where h is a polynomial of degree q. Thus, p(X) = Xh(X⊤X). Furthermore,
h can be written in a factored form called Horner’s rule to reduce the number of multiplications. For
instance, if h(y) = a + by + cy2 + dy3, Horner’s rule gives h(y) = a + y (b+ y (c+ dy)). For a

7Let Q0 ∈ Rn×k be a random matrix with orthonormal columns and define Qt+1,Rt+1 =
qr

(
M⊤MQt

)
, where qr is the QR decomposition. Subspace iteration outputs the singular values σ̃1, . . . , σ̃k

of MQT , σ̃1, . . . , σ̃k. By the Cauchy interlacing theorem, σ̃k ≤ σk.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ec
tr

al
E

rr
or

Method:

Newton-Schulz
(d = 5)

PolarExp

Initializer:

Standard

Spectrum-Aware

Figure 17: Benefits of the spectrum-aware initialization scheme of Appendix I. Using this scheme
improves convergence of both Newton-Schulz and Polar Express on a synthetic 32×32 matrix
with σj(M) = j−5. Note that we count the spectrum-aware initialization as an additional iteration.

matrix, h(Y) = aI + Y (bI + Y (cI + dY)). Thus for Y ∈ Rn×n, computing h(Y) costs about
(deg(h)− 1) ·n3 operations, and computing p(X) = Xh(X⊤X) costs 2mn2+

(
d−1
2 − 1

)
·n3 =(

d−3
2 + 2α

)
· n3 operations. This process could be repeated for each iteration p1, . . . , pT . Notice

that if we instead computed h(XX⊤)X , the result would be the same but the cost would be higher.

A major drawback of this naive approach is that it has a strong dependence on α, since two rectan-
gular matrix multiplications must be performed in each of the T iterations. When m ≫ n, these
two multiplications dominate the cost. In Algorithm 3, we introduce a simple trick that dramatically
reduces this cost, using just two rectangular matrix multiplications to compute all T iterations.

Algorithm 3 Fast Polynomial Iteration for Rectangular Matrices
input: X ∈ Rm×n with m > 1.5n, odd polynomials p1(x) = xh1(x

2), . . . , pT (x) = xhT (x
2).

output: The matrix (pT ◦ · · · ◦ p1)(X).
Y = X⊤X ▷ mn2

Let Q0 = I
for t = 1, 2, . . . , T do

Rt = Q⊤
t−1Y Qt−1 ▷ 2n3

Qt = Qt−1ht(Rt) ▷ Horner’s rule: deg(ht) · n3

end for
return XQT ▷ mn2

To see why this works, define q0(x) = x,

qt(x) =
(pt ◦ · · · ◦ p1)(x)

x
=

pt ((pt−1 ◦ · · · ◦ p1)(x))
x

=
pt (xqt−1(x))

x
(26)

=
xqt−1(x) · ht

(
(xqt−1(x))

2
)

x
= qt−1(x) · ht

(
x2 · qt−1(x)

2
)

(27)

and rt(x) = x2 · qt−1(x)
2. It is clear by induction that Rt = rt(X),Qt = qt(X), and XQT =

(pt ◦ · · · ◦ p1)(X). As promised, this algorithm uses no rectangular multiplications in the for-loop.
If each pt is degree d, then the total cost is

(
d+3
2 T + 2α

)
· n3. When α > 1.5 T

T−1 , this is smaller
than the naive method. We can use this criterion to select either Algorithm 3 or the baseline method
at runtime.8

Algorithm 3 can introduce numerical errors, especially when working in a low precision format
like bfloat16. We identify two sources of numerical trouble and propose remedies for each.
The first is due to the ill-conditioning of X . Let X = UΣV ⊤ be the SVD. For large T , (pT ◦

8Notice that QT → Y −1/2. This shows that the Polar Express polynomials also give a method of
computing the inverse square root of a PSD matrix.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

100 101

Aspect Ratio (α = m/n)

10−2

10−1

100

R
u

n
ti

m
e

(s
ec

)

n

1024

2048

4096

Restart Interval

1

3

6

Figure 18: Effects of using Algorithm 3 on runtime on a GPU. We run T = 6 iterations of a degree-5
polynomial method on matrices with various dimensions n and aspect ratios α. Restart interval = 6
is Algorithm 3, restart interval = 1 is equivalent to the baseline (that is, not using Algorithm 3),
and restart interval = 3 is an intermediate method that calls Algorithm 3 once to do the first three
iterations and again to do the last three iterations for greater stability. When α ≫ 1, increasing the
restart interval significantly reduces the runtime.

· · · p1)(X) = XQT ≈ polar(X) = UV ⊤. Thus, QT ≈ V ⊤Σ−1V . When X has very small
singular values and the floating point precision is very low, instantiating QT may be unstable. To
mitigate this issue, we use a restarting strategy. Notice that the issue arises only for large T , for
which (pT ◦ · · · ◦ p1)(ϵ) ≈ 1. Limiting ourselves to T = 3 iterations improves the conditioning of
QT because (pT ◦· · ·◦p1)(ϵ)≪ 1. Thus, to compute T > 3 iterations, we begin with X0 and apply
Algorithm 3 with the first three polynomials, producing X3. When then apply Algorithm 3 again
with the next three polynomials to X3, producing X6, and so on. As Xt approaches convergence, its
conditioning improves and we may no longer need to restart at all. Note that restarting Algorithm 3
after every iteration is exactly the same as the baseline method.

Second, while the matrix Y is positive definite in exact arithmetic, numerical round-off can intro-
duce spurious negative eigenvalues that cause the method to diverge to infinity. To combat this issue,
we instead set Y = X⊤X+10−3I during the first application of Algorithm 3. (We also normalize
by ∥X∥F + 10−3 instead of ∥X∥F.) In subsequent restarts of Algorithm 3, we set Y = X⊤X as
before. This is akin to slightly increasing each of the singular values of X , but it does not change
the polar factor of X . Thus, while the output will be slightly different in the early iterations, the
algorithm still converges to the correct answer.

Figure 18 shows that using Algorithm 3 can significantly improve runtime on the GPU when the as-
pect ratio is large enough. As expected, using Algorithm 3 for many iterations significantly reduces
the dependence of the runtime on the aspect ratio. Running six iterations of a degree-5 polynomial
method when α = 4 (as with the linear transformations in each MLP block of a transformer) we
obtain almost a 2x speedup, and when α = 32, we obtain a 5x speedup. If we restart every three
iterations, the trend is the same but the runtime savings are somewhat smaller.

J.1 APPLICATION TO MUON

If these problems can be mitigated, the speed afforded by Algorithm 3 suggests an improvement in
the way Muon is applied to transformers. In sum, the idea is to replace one large matrix with a small
aspect ratio by many smaller matrices with large aspect ratios and apply Algorithm 3 to all of them in
parallel. Each multi-head attention layer contains four square weight matrices WQ,WK ,WV and
WO ∈ Rd×d. The orthogonalization step of Muon is either applied separately to these four matrices
or else to [WQ |WK |WV] and WO, since typical implementations of multi-head attention store
the weights in this concatenated form. However, we believe it is natural to consider each of these four
weight matrices to be a concatenation of many smaller linear transformations, each corresponding

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

to a single attention head. If H is the number of heads, each of these smaller matrices has size
d× d

H ; that is, they have aspect ratio α = H . The gradient matrices of [WQ |WK |WV] and WO

can be reshaped into 3-tensors in which each slice is one of these smaller matrices. Since typical
transformers like GPT-3 can have as many as 96 heads, this variation of Muon has the potential to
reduce the runtime.

We use this idea to train a GPT-Small model on FineWeb1B. We compare four conditions:

1. The baseline approach used in the rest of this paper
2. Splitting up the gradient matrices of [WQ | WK | WV] and WO by head and applying

Muon to each piece, as described above
3. Using Algorithm 3, restarted after three iterations
4. Splitting by head and using Algorithm 3

We used Polar Express with weight decay of 0.1 for all conditions and swept learning rates
0.003, 0.005, 0.01. Otherwise, all hyperparameters were the same as in Section 4.2.

Our results showed that these changes had a negligible effect in this setting. They did not affect
the optimization quality. Compared to the baseline, splitting by heads actually reduced the final loss
slightly from 3.59 to 3.55; using Algorithm 3 increased the loss very slightly, from 3.59 to 3.60 when
not splitting by head, and from 3.55 to 3.56 when we did split. However, the runtimes of all 12 runs
were nearly identical, showing that at this scale, the FLOP savings of Algorithm 3 is not beneficial.
The embedding size of GPT-Small is just 768. These techniques may be more impactful when using
a larger model. It may also have more impact outside of deep learning, where Polar Express
would be run for more than the 5 iterations used in our experiments. We leave exploration of these
settings to future work.

38

	Introduction
	The Muon Method
	Computing the Polar Factor
	Contributions

	Approximations by Compositions of Polynomials
	The Polar Express
	Greedy is optimal
	Finding the optimal polynomial for each iteration
	Upper and lower bounds on the singular values
	Finite precision considerations
	The algorithm

	Numerical Experiments
	Convergence of Polar Express
	Training GPT-2
	Ablations

	Code for Polar Express
	Related Work
	Proof of Theorem
	Proof of Theorem
	Proof of equivalence between matrix and scalar optimization problems
	Remez algorithm
	Finite precision considerations
	Additional Experimental Results
	Convergence of Polar Express and Its Impact on Muon
	Training GPT-2
	Image Classification

	Initialization for Matrices with Large Spectral Gaps
	Fast Polynomial Iteration for Rectangular Matrices
	Application to Muon

