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ABSTRACT

Computing the polar decomposition and the related matrix sign function has
been a well-studied problem in numerical analysis for decades. Recently, it has
emerged as an important subroutine within the Muon optimizer for training deep
neural networks. However, the requirements of this application differ sharply from
classical settings: deep learning demands GPU-friendly algorithms that prioritize
high throughput over high precision. We introduce Polar Express, a new
method for computing the polar decomposition. Like Newton-Schulz and other
classical polynomial methods, our approach uses only matrix-matrix multiplica-
tions, making it very efficient on GPUs. Inspired by earlier work of Chen & Chow
and Nakatsukasa & Freund, Polar Express adapts the update rule at each it-
eration by solving a minimax optimization problem. We prove that this strategy
minimizes error in a worst-case sense, allowing Polar Express to converge
as rapidly as possible both in the early iterations and asymptotically. We also
address finite-precision issues, making it practical to use in bfloat16. When
integrated into Muon, our method yields consistent improvements in validation
loss for a GPT-2 model trained on one to ten billion tokens from the FineWeb
dataset, outperforming recent alternatives across a range of learning rates.

1 INTRODUCTION

Advanced linear algebra is making its way into deep learning. Efficient algorithms for computing
matrix functions have found exciting new applications in training neural networks. In particular, ap-
proximations to the matrix-inverse are used in the full Adagrad method (Duchi et al., 2011), the ma-
trix square-root and quarter-root appear as subroutines in the Shampoo and Soap optimizers (Gupta
et al., 2018; Shi et al., 2023; Vyas et al., 2025), and most recently, the matrix sign function has
become a key ingredient of the Muon optimizer (Bernstein & Newhouse, 2024b;a; Jordan et al.,
2024b). While the problem of computing these matrix functions has been studied by numerical
analysts for decades, applications in deep learning come with different requirements than those in
computational science. For deep learning, it is critical to take maximum advantage of GPU-friendly
operations like matrix-matrix products and to avoid less parallel operations. Moreover, memory
overhead must be small to handle large models. On the other hand, high accuracy is typically less
important; the gold standard of sixteen digits of accuracy is overkill in deep learning.

Given these considerations, there is a need to develop new matrix function methods that are tailor-
made for deep learning applications. We take on this challenge by designing a state-of-the-art,
GPU-friendly algorithm for computing the matrix sign function, or more generally, for computing
the polar decomposition of a rectangular matrix. We apply our new Polar Express method
(Algorithm 1, Implementation 1) to compute the descent direction in the increasingly popular Muon
optimizer. In Figure 1, we show that using Polar Express within Muon consistently results in
lower validation loss across all learning rates when training a GPT-2 model, as compared to other
matrix sign methods (Cesista et al., 2025; Jordan et al., 2024b).
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Figure 1: Training a GPT-2-Large model (774M params) on 1 billion tokens from the FineWeb
dataset (Aroca-Ouellette et al., 2023). The label muon-<name> refers to implementing Muon using
<name> to compute the polar factor. Left: final validation loss across learning rates. Right: valida-
tion loss across epochs using the best learning rate. The best learning rate (lr) and final validation
loss for each method were muon-You (lr = 0.02): 3.399, muon-Jordan (lr = 0.02): 3.398 and
muon-PolarExp (lr = 0.02): 3.340.

1.1 THE MUON METHOD

The Muon optimizer has recently gained popularity for training large language models, often out-
performing state-of-the-art adaptive gradient methods like Adam and AdamW (Kingma & Ba, 2015;
Loshchilov & Hutter, 2019). Muon has been used to set records for the NanoGPT speedrun (Jordan
et al., 2024b), to expand the Pareto frontier of performance versus training FLOPs for large lan-
guage models (Liu et al., 2025; Shah et al., 2025), and even to train a 1 trillion parameter frontier
LLM (Kimi Team et al., 2025).

The Muon update rule (Bernstein & Newhouse, 2024b) is defined as follows. Let λ, β > 0 be the
learning rate and momentum coefficient hyperparameters. (By default, β = 0.9.) Let Wt ∈ Rm×n

be the weight matrix of a given neural network layer at iteration t, and let Gt ∈ Rm×n be its
(stochastic) gradient. Let Mt ∈ Rm×n be the running momentum estimate of the gradient, where
M0 = 0. The Muon update is given by

Mt = βMt−1 + (1− β)Gt, Wt+1 = Wt − λ polar(Mt).

Whereas standard stochastic gradient descent (SGD) with momentum updates the weight matrix by
taking a step in the direction −Mt, the Muon method steps in the direction −polar(Mt), where
polar(M) denotes the closest semi-orthogonal matrix to M (Higham, 2008, Chapter 8). Con-
cretely, if M = UΣV T is the singular value decomposition (SVD) of M , then

polar(M) := UV T. (1)

The matrix polar(M) can be seen as a generalization of the matrix sign function to rectangular ma-
trices (Benzi & Huang, 2019). Indeed, when M is square symmetric with eigendecomposition M =
V ΛV T, polar(M) exactly coincides with the matrix sign function sign(M) = V sign(Λ)V T

(Higham, 2008, Chapter 5). Equivalently, polar(M) is the left orthogonal factor of the polar de-
composition of M (Higham, 2008, Chapter 8). The motivation for Muon is that −polar(M) gives
the steepest-descent direction with respect to the spectral norm (instead of the Frobenius norm,
as in standard SGD). For analysis and further discussion on Muon we refer the reader to (Jordan
et al., 2024b; Bernstein & Newhouse, 2024b; Pethick et al., 2025; Riabinin et al., 2025; Carlson
et al., 2015a;b). In this paper, we take the Muon update rule as given and focus on the problem of
efficiently computing the polar decomposition polar(M).

1.2 COMPUTING THE POLAR FACTOR

Although polar(M) can be computed directly via an SVD in O(mnmin(m,n)) time, doing so is
prohibitively expensive in deep learning applications, especially as standard SVD algorithms fail to

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

take full advantage of the parallelism available on GPUs. There has been significant work on highly-
parallel methods for the SVD, but the most common approaches actually require computing the
matrix-sign function as a subroutine (Nakatsukasa & Freund, 2016; Nakatsukasa & Higham, 2013).
Numerical analysts have spent decades developing iterative methods for computing polar(M). This
rich line of work includes Newton-Schulz (Higham, 2008, Chapter 8), Padé iteration (Kenney &
Laub, 1991; Higham, 1986), the Newton and scaled Newton iterations (Higham, 2008, Chapter 8),
the QDWH iteration (Nakatsukasa et al., 2010; Nakatsukasa & Higham, 2013), and Zolo-pd (Nakat-
sukasa & Freund, 2016). Unfortunately, as discussed in Appendix B, most of these methods are
based on rational approximations to the function sign(x) and require computing matrix inverses
or QR decompositions. Such methods are ill-suited to GPU acceleration and deep learning applica-
tions. In contrast, the older Newton-Schulz method is based on polynomial approximation of sign(x)
and uses only matrix-matrix products. Thus, Muon initially used Newton-Schulz (Bernstein & New-
house, 2024a). Indeed, Muon stands for “MomentUm Orthogonalized by Newton-Schulz” (Jordan
et al., 2024b). For a more comprehensive discussion on prior work, see Appendix B.

The Newton-Schulz methods. Newton-Schulz constructs a sequence of approximations Xt ≈
polar(M) as follows:

X0 = M/∥M∥F, Xt+1 =
3

2
Xt −

1

2
XtX

⊤
t Xt. (2)

At each iteration, this rule effectively applies the cubic polynomial p(x) = 3
2x − 1

2x
3 to each sin-

gular value of Xt. The scalar fixed-point iteration xt+1 = p(xt) converges to sign(x0) as t → ∞,
provided |x0| ≤ 1. As a result, the matrix iteration satisfies lim

t→∞
Xt = UV ⊤ = polar(X0).

Higher-degree versions of Newton-Schulz follow the same principle. For example, the degree-5
polynomial p(x) = (15x − 10x3 + 3x5)/8 converges even faster. The Newton-Schulz iterations
converge super-exponentially when Xt is sufficiently close to polar(M), but they suffer from slow
initial convergence; when X0 is far from polar(M), the approximation improves slowly over the
first few iterations. Due to the slow initial convergence of Newton-Schulz, Chen & Chow (2014)
developed a version of the Newton-Schulz iteration, which adapts the polynomial at each iteration.
The resulting method achieves a faster initial convergence, while retaining super-exponential con-
vergence in later iterations. Polar Express is inspired by their method.

The Jordan and You methods. In Muon, high accuracy approximations to polar(M) are usually
not necessary. The primary goal is instead to compute a coarse approximation in as few iterations
as possible. To accelerate convergence in the low-accuracy regime, Jordan recently proposed a
fixed-point iteration based on the polynomial p(x) = 3.4445x− 4.7750x3 + 2.0315x5, which was
found using a heuristic numerical search (Jordan et al., 2024b). Unlike Newton-Schulz, the scheme
that Jordan proposed does not converge to polar(M), but plateaus at an error of ≈ 0.3. However,
it reaches this level of accuracy rapidly and outperforms the Newton-Schulz when only a small
number of iterations are performed. Building on this idea, You proposed a method that applies
six different polynomial updates in succession, which were again found by heuristic search. This
method achieves better accuracy than Jordan’s but still fails to converge (Cesista et al., 2025).

1.3 CONTRIBUTIONS

We present Polar Express (Algorithm 1), an iterative method for approximating polar(M).
Our method dynamically adapts the polynomial update rule at each iteration, prioritizing rapid
progress in the initial stage and high accuracy in the later stage. Polar Express constructs
polynomials p1, . . . , pT so that the resulting composition is the optimal approximation to the sign
function with respect to the supremum (L∞) norm (Theorem 3.1). By iteratively applying these
polynomials to M , Polar Express computes an approximation to polar(M) that is optimal
in the worst-case. Our method converges to polar(M) super-exponentially (Theorem 3.3), and it
quickly reaches a good approximation within just five to ten iterations. This early-stage acceleration
is especially valuable in deep learning applications, where runtime efficiency takes precedence over
high accuracy. In contrast, classical methods like Newton-Schulz suffer from a slow initial conver-
gence, while recent heuristic proposals (Jordan et al., 2024b; Cesista et al., 2025) fail to converge.
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Our method is efficient to run on GPUs, using only a few matrix-matrix products per iteration.1 We
give an explicit instantiation of Polar Express in Implementation 1, which incorporates minor
modifications to make it compatible with half-precision arithmetic (see Section 3.4). Implementa-
tion 1 is very short and easy to use, with no dependencies except PyTorch. It serves as a drop-in
replacement for previous methods. In numerical experiments, Polar Express outperforms pre-
vious methods on synthetic matrices and gradient matrices from a GPT-2 transformer (Figure 3). We
demonstrate the effectiveness of using Polar Express within the Muon optimizer in Figure 1,
showing that it consistently improves the training of GPT-2 language models on 1 billion tokens of
the FineWeb dataset (Aroca-Ouellette et al., 2023). Our method has been adopted into the NanoGPT
speedrun (Jordan et al., 2024a), a heavily optimized implementation that serves as a benchmark for
LLM training efficiency.

Notation. We let ∥M∥F and ∥M∥2 denote the Frobenius norm and spectral norm (largest singular
value) of a matrix M , respectively. We denote the spectrum (set of singular values) by σ(M). Let
Pd be the set of polynomials of degree at most d. For odd d, Podd

d denotes the set of polynomials of
degree at most d containing only odd-degree monomials. For a polynomial p, deg(p) is its degree.
Let sign(x) be the scalar sign function, which satisfies sign(0) = 0, sign(x) = 1 if x > 0 and
sign(x) = −1 if x < 0. For a polynomial p ∈ Podd

d and a matrix M with rank reduced SVD
given by M = UΣV T and positive singular values σ1 ≥ · · · ≥ σrank(M) > 0, we define p(M) :=

Up(Σ)V T, where p(Σ) is the diagonal matrix with diagonal entries p(σi) for i = 1, . . . , rank(M).

2 APPROXIMATIONS BY COMPOSITIONS OF POLYNOMIALS

To design a GPU-friendly method for computing polar(M), we limit ourselves to the following
GPU-friendly operations: (i) linear combinations of matrices (given scalars β, γ ∈ R and matri-
ces B and C, compute βB + γC) and (ii) matrix-matrix products (compute BC). While both
these computational primitives are well-suited for parallel computing environments, matrix-matrix
products come at a higher computational cost than linear combinations. Therefore, our method
attempts to minimize the number of matrix-matrix products. A key observation is that we can com-
pute odd monomials of M = UΣV T using the following formula: M2q+1 := UΣ2q+1V T =
M(MTM)q.2 Hence, for an odd polynomial p(x) = a0x+a1x

3+ · · ·+aqx
2q+1 we can compute

p(M) := a0M + a1M(MTM) + · · ·+ aqM(MTM)q.

It has been shown that for an arbitrary polynomial p, one requires Θ(deg(p)1/2) products to compute
p(M) (Paterson & Stockmeyer, 1973); see also Jarlebring & Lorentzon (2025) for related work.
This compares favorably to the naive approach that forms all monomials in p and then sums them
together, which requires Ω(deg(p)) products. However, if p can be expressed as a composition of T
polynomials, each of degree d

p = pT ◦ pT−1 ◦ · · · ◦ p1, (3)
then the degree of p is dT , and p(M) can be efficiently computed recursively by

X0 = M , Xt = pt(Xt−1) for t = 1, 2, . . . , T. (4)
The final iterate is XT = p(M), which we compute with just O(Td) matrix-matrix products.
Iterative methods for polar(M) can be seen in this light. For instance, the degree-5 Newton-Schulz
method uses the polynomial update pt(x) = 15

8 x − 10
8 x3 + 3

8x
5 for each t = 1, . . . , T . The

composition p = pT ◦ · · · ◦ p1 approximates sign(x), and the approximation error goes to 0 as T
grows. In this paper, we ask the following question: what choice of pT ◦ · · · ◦ p1 gives the best
approximation to sign(x)?

The method we will present is optimal in the following sense: given lower and upper bounds ℓ and u
on the singular values of M , an odd degree d ∈ N, and the number of iterations T ∈ N, our method
computes the composition p⋆(M) that minimizes the worst-case error in the spectral norm. That is,

p⋆ = argmin
p=pT ◦pT−1◦···◦p1

pt∈Podd
d

max
M∈Rm×n

σ(M)⊂[ℓ,u]

∥polar(M)− p(M)∥2 . (5)

1In Appendices I and J, we describe two further algorithmic ideas. They are not used in our Muon experi-
ments but they may be beneficial in other settings, and we believe they merit further study.

2For non-symmetric matrices, e.g. rectangular matrices, we cannot compute even polynomials of the singu-
lar values without first explicitly computing the SVD. We are therefore restricted to odd polynomials.
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Figure 2: The evolution of the first three optimal polynomials p1, p2, and p3 and the corresponding
lower bounds ℓt+1 = pt(ℓt) and upper bounds ut+1 = 2− ℓt+1, as described in Theorem 3.1. The
horizontal black line shows y = 1. The polynomial degree is d = 5. We set ℓ1 = 0.03 and u1 = 1.

Given that polar(M) − p(M) = U(I − p(Σ))V T, and by the unitary invariance of the spectral
norm, we have that (5) is equivalent to3

p⋆ = argmin
p=pT ◦pT−1◦···◦p1

pt∈Podd
d

max
x∈[ℓ,u]

|1− p(x)| . (6)

In other words, the problem given in (5) reduces to that of finding a “uniform” approximation to
the constant function x 7→ 1 over the interval [ℓ, u], as given in (6). Uniform approximation on an
interval by polynomials or rational functions of a given degree is a central topic in approximation
theory (Trefethen, 2020). Here, we seek an approximation of a particular form—a composition of
odd polynomials of fixed degrees. In the next section, we solve the optimization problem of (6) and
use the solution to create Polar Express.

3 THE POLAR EXPRESS

3.1 GREEDY IS OPTIMAL

The key observation is that the polynomial used in each iteration can be chosen greedily, given the
choice of polynomials from the previous iterations. For the first iteration, we choose p1 so as to map
the interval [ℓ, u] as close to 1 as possible. That is, it minimizes maxx∈[ℓ,u] |1− p1(x)|. The image
of p1 will be a new interval [ℓ2, u2], where

ℓ2 = min
x∈[ℓ,u]

p1(x) u2 = max
x∈[ℓ,u]

p1(x) (7)

We now pick p2 to map the interval [ℓ2, u2] as close to 1 as possible, obtaining a new interval [ℓ3, u3]
that is the image of [ℓ, u] through p2 ◦p1. We continue this process for as many iterations as desired.

The following theorem guarantees that this process finds the solution to (6), and thereby also (5).
The scheme is also outlined in Figure 2, which demonstrates the evolution of the lower bounds ℓt,
the upper bounds ut, and the polynomials pt across iterations. The proof is in Appendix C.

Theorem 3.1. Let d be odd and define ℓ1 = ℓ and u1 = u. For t = 1, . . . , T define

pt = argmin
p∈Podd

d

max
x∈[ℓt,ut]

|1− p(x)|, ℓt+1 = min
x∈[ℓt,ut]

pt(x), ut+1 = max
x∈[ℓt,ut]

pt(x) (8)

The resulting composition p⋆ := pT ◦ pT−1 ◦ · · · ◦ p1 is optimal and the error is given by:

max
x∈[ℓ,u]

|1− p⋆(x)| = min
p=pT ◦pT−1◦···◦p1

pt∈Podd
d

max
x∈[ℓ,u]

|1− p(x)| = 1− ℓT+1. (9)

3For completeness, the equivalence between (5) and (6) is proven in Appendix E.
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Furthermore the new error, lower and upper bounds can be computed through

ℓt+1 = pt(ℓt), ut+1 = 2− ℓt+1, and max
x∈[ℓt,ut]

|1− pt(x)| = 1− ℓt+1. (10)

Remark 3.2 (Why a fixed degree?). We note that choice of the degree of each p1, p2, . . . , pT need
not be the same for Theorem 3.1 to hold. More generally, one may specify a sequence of degrees
d1, . . . , dT and define each pt as pt = argminp∈Podd

dt

maxx∈[ℓt,ut] |p(x) − 1| for t = 1, . . . , T.

However, Lee et al. (2022, Table 2) supports setting dt = 5, as we do.

Fortunately, (10) shows that once pt has been found, we can compute the new lower and upper
bounds ℓt+1 and ut+1 simply by evaluating pt(ℓt). Hence, for any fixed upper and lower bounds
on the singular values of M , we can precompute all the polynomials p1, . . . , pT and the bounds
[ℓ1, u1], . . . , [ℓT+1, uT+1]. Then, applying the iterative procedure of (4), the final iterate XT will
satisfy the following error bound:

∥ polar(M)−XT ∥2 = ∥ polar(M)− p⋆(M)∥2 ≤ 1− ℓT+1. (11)

From the optimality guarantee of Theorem 3.1, we know that our method converges at least as fast
as the Newton-Schulz iteration of the same degree. Combining this fact with an existing analysis of
Newton-Schulz, we immediately get the following convergence guarantee showing that our method
enjoys faster than exponential convergence. The proof can be found in Appendix D.

Theorem 3.3. Let M be a matrix normalized so that σ(M) ⊂ [ℓ, 1]. Let XT = p⋆(M), where
p⋆ is the polynomial from Theorem 3.1 with d = 2q + 1. Then, we have

∥ polar(M)−XT ∥2 ≤ |1− ℓ2|(q+1)T . (12)

Hence, for d = 3 and d = 5 the method converges quadratically and cubically, respectively.

In fact, our method is strictly faster than Newton-Schulz, even if σmin(M) < ℓ. When σmin = ℓ,
Polar Express is about twice as fast as Newton-Schulz (cf. Chen & Chow (2014, Section 3.1)).
Recent work has analyzed the stability and convergence of Muon when the polar factor is computed
inexactly (Shulgin et al., 2025; Refael et al., 2025). Combining these analyses with Theorem 3.3
immediately yields a convergence guarantee for Muon as implemented with Polar Express.

3.2 FINDING THE OPTIMAL POLYNOMIAL FOR EACH ITERATION

Theorem 3.1 shows that we can solve (6) by greedily choosing the optimal approximation pt ∈ Podd
d

for each interval [ℓt, ut] for t = 1, . . . , T . In this section, we show how to find each pt. Since we
are now focused on just one iteration, we drop the subscripts. Given ℓ and u, we wish to solve the
following optimization problem:

argmin
p∈Podd

d

max
x∈[ℓ,u]

|1− p(x)| (13)

That is, we seek a minimax or uniform approximation of the function x 7→ 1 on [ℓ, u] from the
set of odd polynomials. (Equivalently, we seek a minimax optimal approximation to sign(x) on
[−u,−ℓ] ∪ [ℓ, u].) Problems of this form are well-studied in approximation theory and numerical
analysis. The key mathematical insight underlying their solution is the Equioscillation Theorem,
which we state formally for our setting in Lemma C.1. This theorem is the basis of the Remez
algorithm (Pachón & Trefethen, 2009; Parks & McClellan, 1972), a general-purpose method that
finds a (nearly) optimal polynomial approximation of a given degree to any function on any interval.
With a very minor modification to handle the constraint that p be odd, Remez can solve (13).

However, the Remez algorithm is complicated and notoriously difficult to implement correctly.4
Fortunately, we do not need the algorithm in its full generality; we seek only low-degree polynomial
approximations, and the function we wish to approximate is just f(x) = 1. We use the Equioscilla-
tion Theorem to derive (17), an explicit, closed-form solution to (13) for the degree d = 3 case. Up

4For implementations of the general Remez algorithm, we recommend Chebfun or lolremez.
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to rescaling, this turns out to be the same polynomial derived by different means in Chen & Chow
(2014). For d = 5, we present Algorithm 2, a simpler way of solving (13) that is mathematically
equivalent to Remez in our setting. This algorithm is implemented in its entirety in Implementa-
tion 2. For more details, we refer the reader to Appendix F.

3.3 UPPER AND LOWER BOUNDS ON THE SINGULAR VALUES

To instantiate our method, we need upper and lower bounds u and ℓ on the singular values of the
input matrix M . A trivial upper bound is given by ∥M∥F. This can be quite loose in the worst case.
In practice, it is off only by a small constant factor because the gradient matrices of the weights
of dense linear layers in neural networks tend to have small effective rank (Yang et al., 2024). We
therefore rescale M by ∥M∥F and set u = 1. It is difficult to efficiently find a good lower bound on
σmin, so we are forced to guess. Fortunately, the consequences of a bad guess are not severe. The
method converges for any ℓ ∈ (0, u], and even an order of magnitude error only delays convergence
by a few iterations. For matrices stored in floating point arithmetic, the singular values are usually
larger than machine precision ϵmach (Boutsikas et al., 2024). We work in bfloat16, which has
ϵmach = 2−8 ≈ 3.91 · 10−3, so we set ℓ = 10−3. Since we use these bounds for all input matrices,
we can pre-compute the optimal polynomials once and apply them to as many inputs as we want.

3.4 FINITE PRECISION CONSIDERATIONS

When working in finite-precision arithmetic, especially the half-precision bfloat16 format used
in deep learning, we must take some care to avoid blowups and other problems due to numerical
error. To this end, we make a few small but crucial changes to the method in the offline stage
that stabilize it with a negligible effect on accuracy. One issue arises when numerical round-off
creates singular values that are slightly larger than our current upper bound ut. To fix it, we replace
each polynomial pt by x 7→ pt(x/1.01), effectively increasing ut. Another issue, identified by
Nakatsukasa & Higham (2013), is due to the non-monotonicity of pt. We address it by using slightly
suboptimal (but less oscillatory) polynomials in the early iterations, as suggested by Chen & Chow
(2014). For a detailed discussion on the finite precision considerations, we refer to Appendix G.

3.5 THE ALGORITHM

Algorithm 1 The General Polar Express

input: Matrix M , iteration count T , degree d, approxi-
mate lower bound ℓ.
output: An approximation XT to polar(M).

1
2 ℓ1 = ℓ, u1 = 1.
3 for t = 1, 2, . . . , T do
4 Solve using Remez (Appendix F):

pt = argmin
p∈Podd

d

max
x∈[max(ℓt,ut/10), ut]

|1− p(x)|

5 pt ← pt(·/1.01)
6 ℓt+1 ← pt(ℓt), ut+1 ← 2− ℓt+1

7 end for
8
9

10 Set X0 = M/(∥M∥F + 10−2).
11 for t = 1, 2, . . . , T do
12 Xt = pt(Xt−1)
13 end for
14 return XT .

Offline: precompute polynomials in float64

Online: apply precomputed polynomials in bfloat16

We give the pseudocode of our proposed
method for any degree in Algorithm 1.
We give the specific Python code of the
Polar Express with degree d = 5
and ℓ = 10−3 used in our GPT experi-
ments in Implementations 1 and 2 in Ap-
pendix A. Both incorporate the finite pre-
cision considerations discussed in Sec-
tion 3.4. Our algorithm precomputes the
polynomials p1, . . . , pT of Theorem 3.1
in full precision using the results of Sec-
tion 3.2 (or the Remez algorithm for d >
5). This stage is offline because the coef-
ficients of the polynomials are only com-
puted and stored once. For every subse-
quent call to the algorithm, these coef-
ficients are reused and the offline stage
is skipped. For instance, in Implemen-
tation 1 these polynomials have been
precomputed and stored in the variable
coeffs list.

The online stage can be performed in lower precision (bfloat16) for greater speed on a GPU.
Horner’s rule can be used to carry out each iteration. For instance, if pt = ax + bx3 + cx5, then

7
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Figure 3: Convergence of degree-5 polynomial methods. Polar Express outperforms other methods
at every iteration when tuned properly. Left panel: synthetic matrix with σmax = 1, σmin = 10−6.
Right panel: gradient from randomly-initialized GPT-2 model on a batch of language modeling data.
Shaded region shows 90% interval over 512 batches of data.

Xt = Xt−1 (aI + Yt−1 (bI + cYt−1)) where Yt−1 = X⊤
t−1Xt−1. A simple implementation of

the offline stage of Algorithm 1 is given in Implementation 2. For deep learning applications, we
recommend using d = 5 and T = 5 or 6 with ℓ1 = 10−3. With these parameters, the offline
stage as implemented in Implementation 2 gives the polynomials encoded in coeffs list in
Implementation 1. All told, our proposal for Muon is to apply the composition of these polynomials
to M/(∥M∥F + 10−2).

4 NUMERICAL EXPERIMENTS

4.1 CONVERGENCE OF POLAR EXPRESS

We compare Polar Express against degree-5 Newton-Schulz and the methods of Jordan et al.
(2024b) and Cesista et al. (2025). We first generate a random matrix whose singular values are
evenly spaced on a logarithmic scale between 10−6 and 1, with singular vectors chosen randomly.
The left panel of Figure 3 shows the results. Since all the methods in this plot use degree-5 poly-
nomials, their computational and runtime costs are all proportional to the number of iterations. As
expected, Newton-Schulz converges but makes almost no progress for the first 17 iterations. Jor-
dan’s method rapidly achieves an error of ≈ 0.3 after just 11 iterations, but ceases to converge fur-
ther. You’s method, which is only defined for six iterations, converges at a similar rate as Jordan’s
method. When Polar Express is instantiated with ℓ = σmin, it dominates the other methods
at every iteration, achieving excellent accuracy after just 11 iterations and converging about twice
as fast as Newton-Schulz to any given error. Even when ℓ is wrong by two orders of magnitude in
either direction, the method remains competitive, though it does not outperform Jordan’s method
until iteration 13 or 14. We also test convergence on a non-synthetic matrix: the gradient of a weight
matrix from the fourth transformer block of a GPT-2 model (Figure 3, right). Again, the best-tuned
version of Polar Express outperforms the other methods, but setting ℓ to be many orders of
magnitude too small can delay convergence. Note that Figure 3 measures error in the spectral norm.
For many applications we may be satisfied with a looser measure of error, like the Frobenius norm.

4.2 TRAINING GPT-2

We compare the performance of using Polar Express (Implementation 1) inside Muon against
Jordan’s (Jordan et al., 2024b) and You’s (Cesista et al., 2025) methods. We train two architectures:
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Figure 4: Training a GPT-2-Small (124M) model on 1 Billion tokens of the FineWeb data set (Aroca-
Ouellette et al., 2023). muon-<method> denotes Muonwith 5 iterations of <method> to compute
polar(M). No weight decay is used. Left: final validation loss vs. learning rate. The best final val-
idation losses for each method were adamw(lr =0.0005): 4.197, muon-Jordan(lr =0.01): 3.639,
muon-You(lr =0.01): 3.629 and muon-PolarExp(lr =0.005): 3.588. Right: Validation loss vs.
training iteration.

GPT-2-Small (nembd = 768, nlayer = 12, nhead = 12) and GPT-2-Large (nembd = 1280, nlayer =
36, nhead = 20), both with a vocabulary size of 50,257 and a context length of 1024. We train
on 1B tokens of the FineWeb dataset (Aroca-Ouellette et al., 2023) for one epoch with batch size
32. All runs use mixed precision (bfloat16) on 4 H100 GPUs with the learning rate schedule
proposed in Jordan et al. (2024a)—a constant phase for the first 40% of training steps followed by
linear decay. All methods for the matrix sign computations are performed in bfloat16 precision
and use five iterations. Following nano-gpt (Jordan et al., 2024a), we assign Muon to all param-
eters with at least two dimensions (e.g., excluding RMS norm parameters), except for embeddings,
unembeddings, and positional encodings. These excluded parameters are optimized with AdamW.

Figures 1 and 4 show the resulting in terms of validation loss for the GPT-Large and GPT-Small
models, respectively. In both cases, muon-PolarExp achieves a better validation loss than
muon-Jordan or muon-You. The advantage is remarkably consistent across all learning rates
and epochs. While not shown in Figures 1 and 4, muon-PolarExp also achieves a better training
loss than the baselines, and the improvements in training loss are nearly identical to the improve-
ments in validation loss. Furthermore, since all three of these matrix sign methods are equally
expensive (they all apply a degree 5 polynomial at each iteration), improved validation loss in terms
of training steps also implies improved loss in terms of wall clock time. For figures displaying the
improvements in training loss and wall-clock time, see Appendix H.2, Figure 11.

4.3 ABLATIONS

Accuracy of polar approximation We now explore how the accuracy of approximating
polar(M) affects the optimization quality of Muon. Our main experiments with GPT-2 use 5 it-
erations. We trained GPT-2 Small with Muon using between 2 and 30 iterations of Polar Express
instead. For comparison, we also implemented Muon with the exact polar factor, computed using
torch.linalg.svd. Figure 5 shows the results. The left plot shows that when using only 2 or 3
iterations of Polar Express, the final validation loss is worse than when using 5 or 6 iterations.
However, increasing the accuracy of the polar approximation further—even computing it exactly
with the SVD—does not improve the optimization quality. The right plot shows that changing the
number of iterations does not meaningfully change the runtime of Muon; in our setting, the runtime
of computing polar(M) is dominated by the forward and backward passes. However, the SVD is so
costly that using it doubles the runtime of each training step. These results validate the standard way
of implementing Muon: using 5 or 6 iterations of an iterative approximation like Polar Express

9
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Figure 5: Ablating the number of iterations of Polar Express used to implement Muon, and
comparing to computing polar(M) exactly via an SVD. Left: using > 6 iterations or the SVD does
not improve final validation loss. Right: Runtime of Muon is not sensitive to the number of iterations
of Polar Express, but the SVD makes it significantly slower. All runs use GPT-2-Small with 1
Billion tokens of FineWeb data, learning rate 0.05, and weight decay 0.1.
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Figure 6: Training GPT-2-Large on 10 billion tokens of FineWeb with weight decay 0.1. Best final
validation losses were muon-Jordan (lr = 0.002): 2.921, muon-You (lr = 0.002): 2.919 and
muon-PolarExp (lr = 0.002): 2.913.

rather than computing polar(M) exactly. For further experiments supporting this conclusion, see
Appendix H.1, Figure 9.

Weight decay We also experimented with adding weight decay of 0.1 to the GPT-2 training runs,
keeping all else the same. The results are presented in Appendix H.2, Figure 12. They are quite
similar to Figures 1 and 4. We again find that muon-PolarExp outperforms the other methods.

Number of Training Tokens Our main experiments with GPT-2 use 1 billion tokens of training
data from FineWeb (Aroca-Ouellette et al., 2023). We now select a subset of our training runs
and extend them to 10 billion tokens. 10 billion tokens roughly matches the Chinchilla scaling
rule for GPT-2-Large (774M params) and exceeds it for GPT-2-Small, as per Table 3 in Hoffmann
et al. (2022). Figure 6 shows the results for GPT-2-Large with weight decay. (For GPT-2-Small,
see Appendix H.2, Figure 13b). Polar Express still outperforms the baselines by a small but
consistent margin.
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Reproducibility statement A complete Pytorch implementation of our method is given in Ap-
pendix A. Details of our experiments, including hyperparameters, are given in Sections 4.1 and 4.2.
Source code to reproduce our experiments is given in the supplementary materials. Proofs of all
theoretical claims can be found in the appendices.
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A CODE FOR POLAR EXPRESS

Implementation 1 gives a Python implementation of the online stage of Algorithm 1 for degree
= 5, which we use in our numerical experiments. It uses hard-coded polynomials generated from
Implementation 2 and incorporates a numerical safety factor of 1.01 as described in Section 3.4.
This implementation is designed for ease of use. It is short, it has no dependencies besides PyTorch,
and it is a drop-in replacement for previous implementations of matrix sign methods (Cesista et al.,
2025; Jordan et al., 2024b), such as Modula (2024).

Implementation 1 Python code for Polar Express of degree = 5.
from itertools import repeat
import torch

coeffs_list = [
(8.28721201814563, -23.595886519098837, 17.300387312530933),
(4.107059111542203, -2.9478499167379106, 0.5448431082926601),
(3.9486908534822946, -2.908902115962949, 0.5518191394370137),
(3.3184196573706015, -2.488488024314874, 0.51004894012372),
(2.300652019954817, -1.6689039845747493, 0.4188073119525673),
(1.891301407787398, -1.2679958271945868, 0.37680408948524835),
(1.8750014808534479, -1.2500016453999487, 0.3750001645474248),
(1.875, -1.25, 0.375), # subsequent coeffs equal this numerically

]
# safety factor for numerical stability (but exclude last polynomial)
coeffs_list = [(a / 1.01, b / 1.01**3, c / 1.01**5)

for (a, b, c) in coeffs_list[:-1]] + [coeffs_list[-1]]

@torch.compile
def PolarExpress(G: torch.Tensor, steps: int) -> torch.Tensor:

assert G.ndim >= 2
X = G.bfloat16() # for speed
if G.size(-2) > G.size(-1): X = X.mT # this reduces FLOPs
X = X / (X.norm(dim=(-2, -1), keepdim=True) * 1.01 +1e-7)
hs = coeffs_list[:steps] + list(

repeat(coeffs_list[-1], steps - len(coeffs_list)))
for a, b, c in hs:

A = X @ X.mT
B = b * A + c * A @ A
X = a * X + B @ X # X <- aX + bXˆ3 + cXˆ5

if G.size(-2) > G.size(-1): X = X.mT
return X

Implementation 2 gives a Python implementation of the offline stage of Algorithm 1. This code was
used to construct the coefficients of the polynomials given in Implementation 1, which in turn were
used in our Muon experiments (Section 4.2). It uses ℓ = 10−3 and u = 1 by default. It incorporates
Algorithm 2 and the finite precision modifications described in Section 3.4.

Implementation 2 Polar Express, Offline Stage
from math import inf, sqrt
import numpy as np

def optimal_quintic(l, u):
assert 0 <= l <= u
if 1 - 5e-6 <= l / u:

# Above this threshold, the equioscillating polynomials
# is numerically equal to...
return (15/8)/u, (-10/8)/(u**3), (3/8)/(u**5)

# This initialization becomes exact as l -> u
q = (3*l + 1) / 4
r = (l + 3) / 4
E, old_E = inf, None
while not old_E or abs(old_E - E) > 1e-15:
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old_E = E
LHS = np.array([

[l, l**3, l**5, 1],
[q, q**3, q**5, -1],
[r, r**3, r**5, 1],
[u, u**3, u**5, -1],

])
a, b, c, E = np.linalg.solve(LHS, np.ones(4))
q, r = np.sqrt((-3*b + np.array([-1, 1]) *

sqrt(9*b**2 - 20*a*c)) / (10*c))
return float(a), float(b), float(c)

def optimal_composition(l, num_iters, cushion=0.02407327424182761):
u = 1
coefficients = []
for _ in range(num_iters):

a, b, c = optimal_quintic(max(l, cushion*u), u)
# Due to cushioning, this may be centered around 1 with
# respect to 0.024*u, u. Recenter it around 1 with respect
# to l, u, meaning find c so that 1 - c*p(l) = c*p(u) - 1:
pl = a*l + b*l**3 + c*l**5
pu = a*u + b*u**3 + c*u**5
rescalar = 2/(pl + pu)
a *= rescalar; b *= rescalar; c *= rescalar
# Optionally incorporate safety factor here:
# a /= 1.01; b /= 1.01**3; c /= 1.01**5
coefficients.append((a, b, c))
l = a*l + b*l**3 + c*l**5
u = 2 - l

return coefficients

print(*optimal_composition(1e-3, 10), sep="\n")

B RELATED WORK

Computing polar(M) is an important and longstanding problem in numerical linear algebra, with
applications spanning electronic structure calculations, lattice quantum chromodynamics, orthogo-
nal Procrustes analysis, parallel algorithms for computing the SVD, and beyond; see e.g. (Higham,
1986; Kaneko et al., 2013; Douglas Carroll & Arabie, 1998; Gower & Dijksterhuis, 2004; Neu-
berger, 1998; Szabo & Ostlund, 1996).

Newton-Schulz and polynomial Padé methods. The earliest methods in the literature are poly-
nomial iterations like (2). Several nearly simultaneous papers introduced the family of polynomial
Padé iterations, comprising Newton-Schulz and its higher-degree analogues (Kovářı́k, 1970; Björck
& Bowie, 1971; Higham, 1986; Leipnik, 1971). These higher-degree methods are also sometimes
called “Newton-Schulz”; when doing so, we will specify the degree for clarity. In these methods,
each iteration refines the current approximation Xt by applying a low-degree odd matrix polyno-
mial, where any odd monomial x 7→ x2q+1 is defined for rectangular matrices by the formula
Xt 7→Xt

(
X⊤

t Xt

)q
. Our Polar Express method also takes this form, though unlike Newton-

Schulz, it changes the polynomial at each iteration.

The polynomials used in Padé methods are chosen to match the value and first few derivatives of
sign(x) at the points x = ±1. For instance, the update rule of the third method in this family
is defined by p(x) = 1

16

(
35x− 35x3 + 21x5 − 5x7

)
, which is the unique degree-7 polynomial

satisfying p(±1) = ±1 and p′(±1) = p′′(±1) = p′′′(±1) = 0. These methods converge so long as
all singular values of X0 lie in (0, 1], a condition guaranteed by the initialization of (2). Furthermore,
the order of convergence of the degree 2q+1 method is q+1 (Björck & Bowie, 1971). In particular,
the Newton-Schulz method (q = 1) converges quadratically.

17
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Newton’s method and rational Padé. In the numerical analysis literature, polynomial methods
were succeeded by rational iterations like Newton’s method (Higham, 1986), defined as follows5:

X0 = M Xt+1 =
1

2

(
Xt +X−⊤

t

)
(14)

Newton’s method also converges quadratically. Like Newton-Schulz, it works because the rational
function r(x) = 1

2 (x+ x−1) has a stable fixed point at 1; unlike for Newton-Schulz, this point is a
global attractor for the whole positive real line. At first glance, Newton’s method has nothing to do
with the Padé iterations discussed above. However, after a change of variables Yt = X−1

t , it can be
reinterpreted as Yt+1 = 2Yt(I +Y ⊤

t Yt)
−1, which is sometimes called inverse Newton. Observing

that r(x) = 2x
1+x2 satisfies r(±1) = ±1 and r′(±1) = 0, we see that (inverse) Newton is also a

Padé method, though a rational rather than polynomial one. In fact, given a odd degree 2qn + 1
for the numerator and an even degree 2qd for the denominator, there is a unique rational function
that matches the value and first qn + qd derivatives of sign(x) at x = ±1. This directly yields a
Padé method for computing polar(M) whose order of convergence is qn + qd + 1. For instance,
r(x) = 3x+x3

1+3x2 is called Halley’s method, which converges cubically. When qd = 0, we recover the
polynomial Padé methods.

There are two main weakness of Newton’s method and the Padé iterations: slow convergence in the
initial phase and the need to compute explicit inverses. To accelerate initial convergence, Higham
popularized the technique of rescaling the matrix after every Newton iteration (Higham, 1986).
Intuitively, rescaling Xt so that σmax = 1/σmin centers the spectrum around 1, where convergence
is fastest. Several easily-computable choices of scaling factor exist to accomplish this approximately.
Note that this rescaling scheme would fail for Newton-Schulz, which likewise suffers from slow
initial convergence but which would diverge if σmax ≫ 1.

Computing matrix inverses is difficult to parallelize and to implement stably in low precision arith-
metic. However, a trick was developed for stably computing many rational methods without explicit
inverses; QR decompositions can be used instead (Nakatsukasa et al., 2010; Zhang et al., 2007).
Applying this trick to Halley’s method and combining with a special rescaling scheme yields the
QDWH (QR-based dynamically weighted Halley) method, which converges in just six iterations for
any reasonably conditioned matrix (Nakatsukasa et al., 2010).

Adaptive rational methods from optimal approximations. A landmark 2016 paper introduced a
new paradigm to design iterative methods for computing polar(M) (Nakatsukasa & Freund, 2016).
The main insight is as follows. Padé methods choose the update rule to be an approximation to
sign(x) of a given degree that is optimally accurate in the neighborhood of x = 1. Instead, we should
choose the approximation to sign(x) that is optimal over an interval [ℓ, 1] ⊂ R≥0 that contains the
singular values. Moreover, after each step of the algorithm, the range of the singular values changes;
therefore, we adapt the update rule at each iteration to match the new interval. When the range of the
singular values is large, this approach ensures that the update rule shrinks it as quickly as possible.
As the algorithm proceeds and the interval shrinks to a small neighborhood of 1, the update rule
approaches that of a Padé method, maintaining the same high order of convergence as it has.

Within the class of odd rational functions whose numerators and denominators have degree 2q + 1
and 2q, respectively, an explicit formula for this optimal approximation to sign(x) on any interval
[ℓ, 1] was found by Zolotarev. It was shown that these rationals have remarkable convergence prop-
erties for any q (Nakatsukasa & Freund, 2016). For q = 1, this optimal approximation coincides
exactly with the dynamically weighted Halley’s method (QDWH) referenced above. For even faster
convergence than QDWH, (Nakatsukasa & Freund, 2016) proposed the Zolo-pd method, which uses
q = 17. Finally, these methods all admit the same QR-based implementation trick as QDWH.

Adaptive polynomial methods. In this paper, we adopt the paradigm of Zolo-pd (Nakatsukasa
& Freund, 2016) but with polynomials rather than rationals of degree (2q + 1, 2q). This choice
avoids the need for QR factorizations, relying solely on GPU-friendly matrix-matrix multiplications
in low-precision arithmetic. While this class of methods has not been fully developed in the numer-
ical analysis literature, similar ideas have been rediscovered in different guises. In an unpublished

5Our description of Newton’s method and other rational methods assumes square non-singular M . Non-
square problems can be reduced to the square case by an initial QR decomposition, but this is not an option for
purely polynomial methods like ours.
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manuscript that predates Zolo-pd, Chen & Chow (2014) describe a rescaling strategy for Newton-
Schulz. Though motivated differently, their method is equivalent to ours for degree-3 polynomials
(unlike our work, they do not consider general odd degree). They also observe numerical instability
that prevents the method from converging to all the way to machine precision. Using the insights
of Nakatsukasa & Higham (2012), they propose a simple mitigation for this issue that we adopt in
Section 3.4. Our work gives the approach from Nakatsukasa & Higham (2012) a stronger theoretical
foundation that connects to the paradigm of Zolo-pd. Concretely, we prove that choosing an optimal
polynomial at each iteration leads to a composed polynomial that is globally optimal in the sense of
(5).

Independently, a group of cryptographers developed a similar method for approximating the scalar
function sign(x) in the context of homomorphic encryption schemes (Lee et al., 2022). Their focus
is mainly on tuning the analogues in their setting of the polynomial degree and number of iterations,
whereas we focus on demonstrating optimality and efficiently constructing the update polynomials
for degree 3 and 5. In addition, we consider matrix-valued inputs in low-precision arithmetic—
not scalars in exact arithmetic—and we demonstrate our method’s effectiveness within the Muon
algorithm for training deep neural networks.

Application within Muon. The designers of Muon realized that, due to the extreme efficiency
requirements and lax accuracy requirements of their setting, rational-based methods from the nu-
merical analysis literature are inapplicable. However, polynomial-based iteration schemes can take
full advantage of GPUs because they use only matrix-matrix products in half-precision arithmetic,
not inverses or QR decompositions. The preference for speed over accuracy motivates methods
that aim to quickly produce coarse approximations, even at the cost of asymptotic convergence.
Examples include the proposals of Jordan (Jordan et al., 2024b) and You (Cesista et al., 2025), as
discussed in Section 1.2. Like Chen & Chow (2014), Jordan found that convergence in the initial
phase can be accelerated by choosing update rules that have a large derivative near zero, so as to
increase the small singular values as much as possible at each iteration. You furthermore chose to
use different update rules at each iteration, allowing extra flexibility to tune the trade-off between
speed and accuracy. Both used degree-5 polynomials that were found through gradient descent on
heuristic objective functions. These proposals were previously compared to Newton-Schultz6, but
never to Nakatsukasa & Higham (2012). We find that our method (which generalizes Nakatsukasa
& Higham (2012)) outperforms them all.

Finally, we remark that concurrent work of Grishina, Smirnov, and Rakhuba also proposes an adap-
tive polynomial method that generalizes Nakatsukasa & Higham (2012) and applies it to accelerat-
ing Muon (Grishina et al., 2025). Like Nakatsukasa & Higham (2012), this work does not establish
global optimality of the composed polynomial as we do in Section 3 or address finite precision
considerations.

C PROOF OF THEOREM 3.1

The aim of this section is to prove Theorem 3.1. We begin with a result that provides a few essential
properties for the the polynomial solving (6) when T = 1. This result is known as Chebyshev’s
theorem (Chebyshev, 1947) or the equioscillation theorem (Trefethen, 2020, Chapter 10).

Lemma C.1. Let d = 2q + 1 and u, ℓ > 0. Consider the problem

min
p∈Podd

d

max
x∈[ℓ,u]

|1− p(x)|. (15)

There exists a unique polynomial p⋆ ∈ Podd
d solving (15). Furthermore, p⋆ is the unique solution

to the above problem if and only if there exist q + 2 distinct points {x0, . . . , xq+1} ⊂ [ℓ, u] such

6Jordan et al. (2024b) actually compares to 2x − 3
2
x3 + 1

2
x5, whereas the true degree-5 Newton-Schulz

polynomial is (15x − 10x3 + 3x5)/8. However, the difference in performance is negligible for the first few
iterations.
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that
1− p⋆(xi) = η(−1)i max

x∈[ℓ,u]
|1− p⋆(x)|, for i = 0, . . . , q + 1,

for η = 1 or η = −1.

Proof. A discussion can be found in Eremenko & Yuditskii (2007). Here we include a formal proof
for completeness.

By Chebyshev’s Theorem (Achieser, 1992; Chebyshev, 1947; Cheney, 1966) it is sufficient to show
that Podd

d satisfies the Haar condition: any non-zero p ∈ Podd
d = span{x, . . . , x3, . . . , x2q+1} can

have at most q roots in [ℓ, u].

Since deg(p) = d = 2q + 1 we know that p can have at most 2q + 1 roots in R. However, since
p(0) = 0 and p(x) = −p(−x) we know that p has one root at zero, and the remaining roots come
in symmetric pairs (x,−x). Because of this, p can have at most q roots in the positive orthant, and
thus it can have at most q roots in [ℓ, u] ⊂ (0,∞). Hence, Podd

d satisfies the Haar condition, which
yields the desired result.

The proof of Theorem 3.1 will be by induction on T . We begin by establishing the base case, T = 1,
which is handled by the following result.

Lemma C.2. Let u, ℓ > 0 and define

p⋆ := argmin
p∈P∗

d

max
x∈[ℓ,u]

|1− p(x)|.

Then

p⋆(ℓ) = min
x∈[ℓ,u]

p⋆(x), max
x∈[ℓ,u]

p⋆(x) = 2− p⋆(ℓ), and max
x∈[ℓ,u]

|1− p⋆(x)| = 1− p⋆(ℓ).

Proof. Throughout the proof we assume d = 2q + 1. We begin with proving

p⋆(ℓ) = min
x∈[ℓ,u]

p⋆(x).

Consider the polynomial e(x) := 1 − p⋆(x). The proof will contain three steps. We first rule out
the trivial case that p⋆ ̸= 0, since p(x) = 2

ℓ+ux would then be a better approximation. Hence, p⋆

cannot be the zero polynomial.

Step 1: e(x) has exactly q stationary points inside the open interval (ℓ, u).

Note that e(x) has at most 2q stationary points in R, since its derivative e′(x) is a polynomial of
degree 2q. Furthermore, since p⋆ is odd, we have that e′(x) = −p′(x) is even of degree 2q, and thus
can have at most q stationary points contained in (0,+∞). Hence, there can be at most q stationary
points of e(x) inside the interval [ℓ, u].

By Lemma C.1 there are q + 2 points x0, . . . , xq+1 ∈ [ℓ, u] where e(x) is maximized or minimized
in [ℓ, u]. These points are either stationary points or they are endpoints of the interval [ℓ, u]. Let next
be the number of stationary points and nstat be the number of endpoints in the set {x0, . . . , xq+1}.
Since a point can be both a stationary point and an endpoint we have q+2 ≤ nend +nstat. However,
nend ≤ 2 and nstat ≤ q, which follows from the previous paragraph where we showed that there are
at most q stationary points of e(x) in [ℓ, u]. So nend + nstat ≤ q+2, and consequently we must have
nend = 2 and nstat = q, as required.

Step 2: x = ℓ is a maximum of e(x) on the interval [ℓ, u]

By Lemma C.1 and the discussion from Step 1, we know that |e(x)| is maximized at q + 2 points
inside [ℓ, u] and q of these points are contained inside the open interval (ℓ, u). Hence, x = ℓ must
either be a maximum or a minimum of e(x). We will show that x = ℓ must be a maximum by
contradiction.
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Suppose x = ℓ was a minimum of e(x) on [ℓ, u]. First note that p⋆ is trivially non-negative on [ℓ, u],
or else p(x) = 0 would be a better polynomial. Hence, since p⋆(0) = 0 we must have p∗′(δ) > 0
for some δ ∈ [0, ℓ], or else the zero polynomial p(x) = 0 would be a better approximation. Hence,
for some δ ∈ [0, ℓ] we have e′(δ) < 0.

We must also have e′(ℓ) ≥ 0 or else x = ℓ is not a minimum of e(x). Since e′(δ) < 0 for some
δ ∈ [0, ℓ] and e′(ℓ) ≥ 0, by the intermediate value theorem there exists a point x∗ ∈ [0, ℓ] such that
e′(x∗) = 0. However, by the discussion above we know that all stationary points of e are contained
inside the open interval (ℓ, u). Hence, x = ℓ cannot be a minimum of e(x) on [ℓ, u]. However, by
Step 1 we know that the endpoints of [ℓ, u] must be either minima or maxima of e(x). Hence, x = ℓ
is a maximum of e(x) on [ℓ, u].

Step 3: Obtaining the desired equalities

Since e(x) has a maximum in [ℓ, u] at x = ℓ, we have p⋆(ℓ) = min
x∈[ℓ,u]

p⋆(x). The other two equalities

are immediate consequences of the equioscillation property of p⋆ Lemma C.1 and that x = ℓ is a
minimum of p⋆ over the set [ℓ, u].

With the above-mentioned result in hand, we are ready to prove Theorem 3.1.

Theorem 3.1. Let d be odd and define ℓ1 = ℓ and u1 = u. For t = 1, . . . , T define

pt = argmin
p∈Podd

d

max
x∈[ℓt,ut]

|1− p(x)|, ℓt+1 = min
x∈[ℓt,ut]

pt(x), ut+1 = max
x∈[ℓt,ut]

pt(x) (8)

The resulting composition p⋆ := pT ◦ pT−1 ◦ · · · ◦ p1 is optimal and the error is given by:

max
x∈[ℓ,u]

|1− p⋆(x)| = min
p=pT ◦pT−1◦···◦p1

pt∈Podd
d

max
x∈[ℓ,u]

|1− p(x)| = 1− ℓT+1. (9)

Furthermore the new error, lower and upper bounds can be computed through

ℓt+1 = pt(ℓt), ut+1 = 2− ℓt+1, and max
x∈[ℓt,ut]

|1− pt(x)| = 1− ℓt+1. (10)

Proof. The proof of (10) is an immediate consequence of Lemma C.2, since for each t = 1, . . . , T ,
pt is the optimal approximation in Podd

d to x 7→ 1.

We now proceed with the proof of (9), which will be by induction. The proof for T = 1 is an
immediate consequence of Lemma C.2 and we also have p⋆(ℓ) = ℓ2 by (10). Now suppose the
result is true for all t ≤ T − 1. For t = 1, . . . , T − 1, note that the image of pt on [ℓt, ut] is exactly
[ℓt+1, ut+1] by i). Hence, if we define g(x) := pT−1 ◦ · · · ◦ p1(x), then the image of g on [ℓ, u] is
[ℓT , uT ]. Furthermore, by i) we also have g(ℓ) = ℓT . Pick any f such that f ̸= g and

f = p̃T−1 ◦ · · · ◦ p̃1,

for some p̃1, . . . , p̃T−1 ∈ Podd
d . Let the image of f on [ℓ, u] be [a, b]. We will prove that a

b ≤ ℓT
uT

by
contradiction.

Suppose a
b > ℓT

uT
. Define c = 2

a+b . Then, the image of the scaled function cf on [ℓ, u] is [ca, cb]
and cf satisfies

max
x∈[ℓ,u]

|1− cf(x)| = max {1− ca, cb− 1} = b− a

a+ b
.
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Recall by our inductive hypothesis, we have max
x∈[ℓ,u]

|1− g(x)| = 1− ℓT = uT − 1 where the second

equality holds by (10). It follows that

a

b
>

ℓT
uT

⇔ a

b
>

ℓT
2− ℓT

⇔ ℓT <
2a

a+ b

⇔ 1− ℓT >
b− a

a+ b

⇔ max
x∈[ℓ,u]

|1− g(x)| > max
x∈[ℓ,u]

|1− cf(x)|,

which leads to a contradiction to our inductive hypothesis that g is optimal. Hence, we must have
a
b ≤ ℓT

uT
.

Consequently, using that a
b ≤ ℓT

uT
, we will show that for any p̃T ∈ Podd

d and for any f = p̃T−1 ◦
· · · ◦ p̃1, p̃T ◦ f cannot be a better approximation than pT ◦ g. In particular, we have

max
x∈[ℓ,u]

|1− p̃T (f(x))| ≥ min
p∈P∗

d

max
x∈[ℓ,u]

|1− p(f(x))|

= min
p∈P∗

d

max
x∈[a,b]

|1− p(x)|

= min
p∈P∗

d

max
x∈[a/b,1]

|1− p(x)|

≥ min
p∈P∗

d

max
x∈[ℓT /uT ,1]

|1− p(x)|

= min
p∈P∗

d

max
x∈[ℓT ,uT ]

|1− p(x)|

= min
p∈P∗

d

max
x∈[ℓ,u]

|1− p(g(x))|

= max
x∈[ℓT ,uT ]

|1− pT (g(x))| = 1− pT (ℓT ) = 1− ℓT+1,

where the second and third equality follow by changing variables y = x/b so that

min
p∈P∗

d

max
x∈[a,b]

|1− p(x)| = min
p∈P∗

d

max
y∈[a/b,1]

|1− p(by)| = min
p∈P∗

d

max
y∈[a/b,1]

|1− p(y)|

and this last equality follows because the space P∗
d is invariant under input rescaling; that is, for any

b ̸= 0, the map x 7→ bx preserves the space span{x, x3, . . . , xd}. This concludes the proof.

D PROOF OF THEOREM 3.3

In this section we provide the proof of the convergence guarantee stated in Theorem 3.3.

Theorem 3.3. Let M be a matrix normalized so that σ(M) ⊂ [ℓ, 1]. Let XT = p⋆(M), where
p⋆ is the polynomial from Theorem 3.1 with d = 2q + 1. Then, we have

∥ polar(M)−XT ∥2 ≤ |1− ℓ2|(q+1)T . (12)

Hence, for d = 3 and d = 5 the method converges quadratically and cubically, respectively.

Proof. Define
p⋆ = argmin

p=pT ◦pT−1◦···◦p1

pt∈P∗
d

max
x∈[ℓ,u]

|1− p(x)| .
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Then Algorithm 1 returns XT = p⋆(M). Let h ∈ Pq be the [q/0] Padé-approximant to (1−x)−1/2

(Kenney & Laub, 1991, Section 3) and define p(x) = xh(1− x2) ∈ Podd
d . Define f = p ◦ · · · ◦ p as

the composition of p with itself T times. Then, by Theorem 3.1, (Kenney & Laub, 1991, Theorem
3.1), and f(x) ≥ 0 for x ≥ 0 we have

∥ sign(M)−XT ∥2 ≤ max
x∈[ℓ,1]

|1− p⋆(x)|

≤ max
x∈[ℓ,1]

|1− f(x)|

≤ max
x∈[ℓ,1]

[
|1− x2|(d+1)T

1 + f(x)

]

≤ |1− ℓ2|(d+1)T ,

as required.

E PROOF OF EQUIVALENCE BETWEEN (5) AND (6)

In this section we provide a proof for the equivalence between (5) and (6). It is sufficient to show
that for any fixed polynomial p we have

ε1 := max
M∈Rm×n

σ(M)⊂[ℓ,u]

∥polar(M)− p(M)∥2 = max
x∈[ℓ,u]

|1− p(x)| := ε2.

For any fixed M , by the unitary invariance of the spectral norm we immediately have

∥polar(M)− p(M)∥2 = max
σi∈σ(M)

|1− p(σi)| ≤ max
x∈[ℓ,u]

|1− p(x)| .

Consequently, ε1 ≤ ε2.

Suppose that x∗ ∈ [ℓ, u] is chosen so that |1 − p(x∗)| = maxx∈[ℓ,u] |1− p(x)| . Without loss of
generality, assume m ≥ n. Letting M = x∗UV T, for any matrix U ∈ Rm×n and V ∈ Rn×n with
orthonormal columns, and noting polar(M) = UV T yields

ε1 ≥ ∥polar(M)− p(M)∥2
= ∥In − p(x∗)In∥2
= |1− p(x∗)|
= max

x∈[ℓ,u]
|1− p(x)| = ε2

Consequently, ε1 ≥ ε2. Hence, ε1 = ε2, as desired.

F REMEZ ALGORITHM

In this section, we show in detail how to solve (13). By Theorem 3.1, these solutions give the update
rule for a single step of Polar Express. We give a closed form solution for d = 3. We then
describe how the Remez algorithm (Pachón & Trefethen, 2009; Parks & McClellan, 1972) can be
used to approximate pt for arbitrary d. We then present Algorithm 2, a simplified version of Remez
for solving (13) with d = 5. Recall (13):

argmin
p∈Podd

d

max
x∈[ℓ,u]

|1− p(x)|

We begin with the case when d = 3. We seek a polynomial of the form p(x) = ax + bx3. The
Equioscillation Theorem (Lemma C.1) stipulates that p must have an equioscillating set of size 3.
For p to achieve its maximum error at a point x, x must be a local extremum of p(x) − 1 on the
interval [ℓ, u]. Thus, for x to be eligible for membership in the equioscillating set, it must either
be a true local extremum of p(x) − 1 that happens to lie in [ℓ, u], or else one of the endpoints ℓ, u.
However, because p is an odd cubic, it has at most one true local extremum on R≥0. Thus, to build
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an equioscillating set of three points, we must include p’s unique positive local extremum and both

endpoints. This local extremum of p occurs at
√

−a
3b . Therefore, we seek a, b such that

p(ℓ) = 1− E, p

(√
−a
3b

)
= 1 + E, p(u) = 1− E (16)

for some E. This is a system of three equations in three variables. The solution p(x) = ax+ bx3 is
most easily expressed as follows. Let pNS(x) =

3
2x− 1

2x
3. Then

p(x) = βpNS(αx), where α =

√
3

u2 + lu+ ℓ2
and β =

4

2 + ℓu(ℓ+ u)α3
. (17)

One can verify that this polynomial satisfies the equioscillation condition of (16), with
√

−a
3b = 1

α

and E = β − 1. Therefore, it must necessarily be the optimal approximation from Podd
3 . Note that

for u = 1, x 7→ pNS(αx) is the same polynomial derived in Chen & Chow (2014).

Unfortunately, for larger d, finding closed form expressions for optimal approximations from Podd
d

becomes challenging, and we know of no closed form solution. However, we can approximate the
optimal polynomial using the Remez algorithm. Let d = 2q + 1. Again recalling Lemma C.1,
the optimal polynomial must satisfy the equioscillation property at a set of q + 2 points, as in (16).
The Remez algorithm finds the equioscillation points A = {x0, . . . , xq+1} from Lemma C.1 by
iteratively refining a sequence of trial points A(k) = {x(k)

0 , . . . , x
(k)
q+1} so that A(k) converges to A.

From the sequence of trial points A(k) the algorithm also finds a sequence of polynomials p(k) so
that p(k) converges to the optimal polynomial. The convergence is very fast, and usually 10 iterations
is sufficient to converge to the optimal polynomial up to double precision machine epsilon (Pachón
& Trefethen, 2009). More commonly, the Remez algorithm is used to find optimal polynomial
approximations to general continuous functions where d ≈ 100 or even d ≈ 1000. However,
because the polynomial we build to approximate sign(x) is a composition of polynomials, each of
which has a low degree, in our setting the degree d is small, usually d = 5. For d = 5 the Remez
algorithm simplifies significantly. We now describe this simplified algorithm.

We first choose an initial set of trial points A(1), which ideally should come close to satisfying the
equioscillation property. From Lemma C.1, the unique optimal approximation p⋆ ∈ Podd

5 satisfies
the equioscillation property at four points in [ℓ, u]. Since the function we wish to approximate is
constant, the equioscillation points must be extrema of p⋆ on [ℓ, u]. Because p⋆ is a odd quintic,
it can have at most two local extrema on the positive real line, and thus at most two local extrema
on [ℓ, u]. The other two equioscillation points must therefore be the endpoints ℓ and u. Since we
know that ℓ and u must be equioscillation points we always set x(k)

0 = ℓ and x
(k)
3 = u for all k.

We initialize x
(1)
1 and x

(1)
2 to 1

4ℓ +
3
4u and 3

4ℓ +
1
4u, since we observe that as ℓ → u these are

approximately the other two equioscillation points.

We now show how to refine a candidate set of trial points A(k) to produce A(k+1) as well as an
approximately equioscillating polynomial pk. For any fixed set of trial points {ℓ, x(k)

1 , x
(k)
2 , u}, we

can find a degree-5 odd polynomial pk(x) = akx+ bkx
3 + ckx

5 that satisfies

pk(ℓ) = 1− Ek, pk(x
(k)
1 ) = 1 + Ek, pk(x

(k)
2 ) = 1− Ek, pk(u) = 1 + Ek (18)

for some Ek by solving a linear system in ak, bk, ck and Ek. This can be rewritten as follows:



ℓ ℓ3 ℓ5 1

x
(k)
1 (x

(k)
1 )3 (x

(k)
1 )5 −1

x
(k)
2 (x

(k)
2 )3 (x

(k)
2 )5 1

u u3 u5 −1






ak
bk
ck
Ek


 =



1
1
1
1


 . (19)

If A(k) were the extrema of the error function ek(x) = 1 − pk(x) on [ℓ, u], then they would be
an equioscillating set for pk, and pk would be the solution. Therefore, to refine A(k), we find the
extrema of ek(x) = 1 − pk(x). These can occur at ℓ, u and the roots of e′k(x). Setting e′k(x) = 0
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yields the quartic equation 5ckx
4 + 3bkx

2 + ak = 0, whose two solutions are given explicitly by
the quadratic formula after the substitution y = x2. We set x(k+1)

1 and x
(k+1)
2 to be the solutions

to this equation and let A(k+1) = {ℓ, x(k+1)
1 , x

(k+1)
2 , u}. We repeat the procedure until |Ek| :=

max
x∈[ℓ,u]

|1− pk(x)| ≈ max
x∈[ℓ,u]

|1− pk+1(x)| =: |Ek+1|.

We note that the matrix appearing in (19) is a Vandermonde matrix. Vandermonde matrices become
notoriously ill-conditioned as the degree grows large (Golub & Van Loan, 2013, Section 4.6). How-
ever, since in our setting we choose d to be small, there is no ill-conditioning due to large degrees.
Instead, we observe ill-conditioning when ℓ ≈ u. However, as ℓ/u→ 1 the optimal polynomial will
converge to the polynomial x/u

8

(
15− 10(x/u)2 + 3(x/u)4

)
, which can be verified by noting that

as ℓ/u → 1 all equioscillation points x0, x1, x2, x3 must converge to u. For general d = 2q + 1,
the polynomial will converge to (x/ℓ)h(1 − (x/ℓ)2) where h ∈ Pq is the [q/0] Padé approximant
to (1 − x)1/2 (Kenney & Laub, 1991). In fact, this polynomial is extremely close to the optimal
polynomial for sufficiently large ℓ. To see this, let p⋆ be the optimal approximation from Podd

5 and
let p(x) = x/u

8

(
15− 10(x/u)2 + 3(x/u)4

)
. Then,

max
x∈[ℓ,u]

|p⋆(x)− p(x)| ≤ max
x∈[ℓ,u]

|1− p(x)|+ max
x∈[ℓ,u]

|1− p⋆(x)|

≤ 2 max
x∈[ℓ,u]

|1− p(x)|

≤ 2 (1− ℓ/u)
3
.

where we invoked (Kenney & Laub, 1991, Theorem 3.1) and the fact that p⋆ is the optimal approx-
imation to x 7→ 1 from Podd

5 . Hence, when ℓ/u ≥ 1 − ϵ
1/3
d , where ϵdouble ≈ 1.1 × 10−16 is the

double precision machine epsilon, then |p⋆(x) − p(x)| ≤ 2ϵdouble. In other words, up to double
precision machine epsilon, p⋆ is equal to p. Therefore, whenever ℓ/u ≥ 1 − ϵ

1/3
double the algorithm

simply returns the Padé approximant (that is, the scaled Newton-Schulz polynomial).

The full algorithm is given in Algorithm 2. In our experiments, we never observed Algorithm 2 tak-
ing more than five iterations to converge. This algorithm is implemented in full in Implementation 2.

Algorithm 2 Remez algorithm (degree 5 approximation for sign(x))
input: interval [ℓ, u] for u > ℓ > 0.
output: Approximation p ∈ Podd

5 to p⋆ = argmin
p∈Podd

5

max
x∈[ℓ,u]

|1− p(x)|.

define ϵdouble = 1.11× 10−16

if ℓ/u ≥ 1− ϵ
1/3
double then

Return p(x) = x/u
8

(
15− 10(x/u)2 + 3(x/u)4

)
end if
x
(1)
1 = 1

4ℓ+
3
4u, x

(1)
2 = 3

4ℓ+
1
4u.

E0 =∞, E−1 = −∞
k ← 0
while ||Ek| − |Ek−1|| > ϵdouble do

k ← k + 1


ak
bk
ck
Ek


 =



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1 )3 (x
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

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1
1
1
1


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x
(k+1)
1 =

√
−3bk−

√
9b2k−20akck
10ck

, x
(k+1)
2 =

√
−3bk+

√
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10ck

end while
Return p(x) = akx+ bkx

3 + ckx
5
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G FINITE PRECISION CONSIDERATIONS

As highlighted in Section 3.4, one must take care to implement Polar Express in finite preci-
sion. In this section we outline modifications to our method to ensure stability in finite precision
arithmetic.

The first issue arises when numerical round-off creates singular values that are slightly larger than
our current upper bound ut. Our optimal polynomials converge only when the singular values of Xt

are less than ut. In some cases we have

pt(ut + ϵ) > ut+1 + ϵ,

so over many iterations, a singular value that is slightly larger than ut large could grow to∞ instead
of converging to 1.

To fix this issue, we simply replace each polynomial x 7→ pt(x) by x 7→ pt(x/1.01). This safety
factor corrects for round-off errors in previous iterations while only slightly changing the behavior
of the polynomial on the interval [ℓt, ut], though it does cause the singular values to converge to
0.999998 instead of to 1. To correct for this, the safety factor can be omitted in the final iteration.
This fix is reflected in line 5 of Algorithm 1.

The second issue was identified in Nakatsukasa & Higham (2012) and addressed in the context of
polynomial iterations by Chen & Chow (2014). In general, iterative methods for polar(M) aim to
increase each singular value relative to the largest singular value; while σmin(X0) ≪ σmax(X0),
after enough iterations, σmin(Xt) ≈ σmax(Xt) ≈ 1. However, the convergence of each singular
value to σmax may not be monotonic. Over the domain [ℓt, ut], our optimal polynomial pt oscillates
repeatedly between ℓt+1 and ut+1, so some singular values that are near ut may get mapped down
to ℓt+1. It so happens that this non-monotonicity—even at a single iteration—can cause loss of
precision. That is, problems occur if

pt(σi)

σi
≪

max
x∈[σmin,σmax]

pt(x)

σmax
,

where 0 ≤ σmin ≤ σi ≤ σmax are singular values of Xt (Nakatsukasa & Higham, 2012). In the
extreme case pt(σi) < 0, the ith singular vector will change sign, casuing the method to converge
to the polar factor of the wrong matrix. Unlike Newton-Schulz, unscaled Newton, or QDWH, our
method is affected by this loss of precision.

To mitigate this issue, Chen & Chow (2014) propose modifying their update polynomials to enforce
a lower bound on the ratio pt(σi)

σi
. This issue only occurs when ℓt ≪ ut; as ℓt → ut, our optimal

polynomial approaches the Padé approximant and so pt(x)
x ≥ 1 for all x ∈ [0, ut]. We could fully

solve the problem by using the Padé approximant instead of our optimal polynomial, but this would
significantly slow down convergence. Instead we compromise. When ℓt ≥ ut/10, we find that
pt(x)
x ≥ 0.236. Therefore, whenever ℓt < ut/10 we select the update rule as though ℓt = ut/10.

This change slows convergence, but only very slightly. (The choice of 10 is somewhat arbitrary. In
Implementation 2, we use a different factor.) This fix is reflected in line 4 of Algorithm 1.

The third change is copied from the original Muon implementation: normalize M by ∥M∥F+10−2

instead of by ∥M∥F. As before, we set u1 = 1. This fix is reflected in line 10 of Algorithm 1.

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results.

H.1 CONVERGENCE OF POLAR EXPRESS AND ITS IMPACT ON MUON

Convergence in Frobenius Norm In Figure 8, we plot the convergence of Polar Express and
three baselines as measured in the Frobenius norm. We also plot convergence in cosine similarity,
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Figure 7: Effects of stabilizing the update rules with a safety factor and cushioning, as described
in Appendix G. The blue curve is the optimal degree-5 polynomial for the interval [0.005, 1]. It is
has numerical issues because it maps singular values near 0.8 down to almost zero and maps 1 + ϵ

to ≈ ut+1 + 25ϵ. The stabilized version is better because it ensures pt(x)
x ≥ 0.236 and maps all
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Figure 8: Convergence of degree-5 polynomial methods measured in Frobenius norm and cosine
similarity. Test matrices are gradients of two layers of a randomly-initialized GPT-2 model on a
batch of language modeling data. Polar Express outperforms other methods.

which is defined with respect to the Frobenius inner product ⟨A,B⟩ = Tr(A⊤B). Formally, the
cosine similarity between A and B is defined as ⟨A,B⟩

∥A∥F∥B∥F
. We use gradients of GPT-2 layers as test

matrices. While Polar Express is designed to minimize the spectral norm error, convergence
in the Frobenius norm is similar (compare with Figure 3).
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(In)sensitivity of Muon to Small Singular Values Figure 5 shows that using more than five or six
iterations of Polar Express does not improve the performance of Muon. However, Figures 3
and 8 show that five iterations is not enough for Polar Express or any other method to converge.
In practice, Polar Express is taking steps in directions that are meaningfully different from
the exact polar(M) (as computed by an SVD), but still converging equally fast. One possible
explanation for this observation is that Muon may not be sensitive to the convergence of small
singular values of M . Intuitively, the singular vectors associated with these small singular values
correspond to directions which have little effect on the output of the neural network; they may
signify little more than noise in the stochastic gradients.

We now conduct an experiment to test this hypothesis. We compare three ways that a Muon-like
optimizer could handle the small singular values. Assume M has full rank, and partition the singular
value decomposition of M into two parts

M = UΣV ⊤ = [U1 U2]

[
Σ1

Σ2

]
[V1 V2]

⊤
= U1Σ1V

⊤
1 +U2Σ2V

⊤
2 (20)

where Σ1 contains the singular values larger than some threshold γσmax and Σ2 contains those
smaller than γσmax, where σmax is the largest singular value of M . Recall that

polar(M) := UV ⊤ = U1V
⊤
1 +U2V

⊤
2 (21)

is obtained by mapping each singular value of M to 1. We define the truncated polar factor by
mapping the larger singular values to 1 and the smaller singular values to 0:

polarγ(M) := U1V
⊤
1 . (22)

A third possibility is to map the small singular values to −1:

UV ⊤ = U1V
⊤
1 −U2V

⊤
2 (23)

Note that −U2V
⊤
2 is in the opposite direction as the Muon update. If the small singular values

carry meaningful information about the loss landscape, then we expect this partly “uphill” step to
hurt performance. Comparing the three update rules in Equations (21) to (23) can tell us how small
singular values affect Muon.

We train GPT-2 Small using each of these three update rules with learning rate 0.05 and weight
decay 0.1. We sweep three different options for the cutoff γ that defines the ‘small” singular values:
10−4, 10−3, and 10−2. The results are plotted in Figure 9. They show that the treatment of singular
values smaller than 10−4σmax does not matter at all for the performance of Muon, and those smaller
than 10−3σmax have a very minor effect. Notably, even reversing the direction of the Muon step
in the bottom singular subspace barely worsens performance, showing that the gradient information
in this subspace not very informative. The bottom panel of Figure 9 shows how five iterations of
Polar Express (with ℓ = 10−3) affect small singular values. Singular values greater than 10−3

are all mapped close to 1, while those smaller than 10−4 are all mapped close to 0. Thus, while
Polar Express does not fully converge after five iterations, it does converge in the ways that
matter for Muon.

Convergence of Top Singular Values As discussed in the previous paragraph, we hypothesize
that Muon may not be sensitive to the convergence of the small singular values of M when approx-
imating polar(M). Therefore, in Figure 10, we plot the convergence of Polar Express and the
baselines when all singular values smaller than 10−3 are ignored. Specifically, if alg(M) denotes
the output of an algorithm for approximating polar(M), then we compare

U1U
⊤
1 · alg(M) · V1V

⊤
1 to polar10−3(M),

where polar10−3(M) = U1V
⊤
1 = U1U

⊤
1 · polar(M) ·V1V

⊤
1 is the truncated polar factor defined

above. The results show that Polar Express converges in just six iterations as measured in
the relative Frobenius norm and just five iterations when measuring in cosine similarity. The other
methods converge faster too, but Polar Express still outperforms them. These results may
explain why the performance of Muon saturates at five or six iterations of Polar Express, as
shown in Figure 5.
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Figure 9: Impact of small singular directions of momentum matrix on optimization quality. We
compare three variations of the Muon update rule. Exact Muon (green) processes the momentum
M = UΣV ⊤ by mapping each singular value to 1: polar(M) = UV ⊤. Truncated Muon (orange)
maps the larger singular values to 1 and the smaller singular values to 0. Reverse Muon (blue) maps
the larger ones to 1 and the smaller ones to −1. Computations are performed in bfloat32. All
runs train GPT-2 Small on 1 billion tokens of FineWeb data with learning rate 0.05 and weight
decay 0.1. When the cutoff that defines “large” and “small” singular values is γ ≈ 10−3, all three
methods perform well, showing that the small singular directions do not matter. Bottom panel shows
the polynomial defined by composing five iterations of Polar Express. Five iterations is just
enough for singular values ≥ 10−3 to nearly converge.
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Figure 10: Convergence of degree-5 polynomial methods, considering only singular values larger
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3. Test matrices are gradients of two layers of a randomly-initialized GPT-2 model on
a batch of language modeling data. Polar Express converges in just five or six iterations and
outperforms other methods.
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H.2 TRAINING GPT-2

Additional Metrics We report additional results from the experiment of Section 4.2. In addition to
showing validation loss vs. learning rate and training step, we also report training loss vs. learning
rate and training time. The results are shown in Figures 11a and 11b. The upper rows of each
subfigure are identical to Figure 1 and Figure 4, and are repeated here for ease of comparison.

Weight Decay As described in Section 4.3, we reran our GPT-2 training runs with weight decay
of 0.1. This change had little effect on the results, as shown in Figure 12.

Number of Training Tokens We also reran some of our GPT-2 training runs using 10 billion
tokens of training data instead of 1 billion. As described in Section 4.3, 10 billion tokens roughly
matches the Chinchilla scaling rule for GPT-2-Large and exceeds it for GPT-2-Small. Results are
shown in Figure 13. Note that the top row of Figure 13a is identical to Figure 6. Polar Express
still outperforms the baselines across all conditions, but the gap shrinks as the training loss con-
verges.

H.3 IMAGE CLASSIFICATION

We conducted experiments on the CIFAR-10 and CIFAR-100 image classification benchmarks
(Krizhevsky, 2009) using ResNet-20 and ResNet-110 architectures with batch normalization (He
et al., 2016). We used a range of learning rates in the range 10−6 to 1 with a constant learning-rate
schedule, a batch size of 128, and 50 epochs of training data. We used three different random seeds
for each hyperparameter setting to assess stability and variability. As a baseline, we also included
AdamW and SGD with momentum (Kingma & Ba, 2015). Results are given in Figures 14 and 15.
For these experiments we see that all the Muon variants performed well, matching or exceeding
the training loss and validation accuracy of AdamW and sgd-m while also being more stable with
respect to the choice of learning rate. However, we do not see a marked difference between the
varieties of Muon. Indeed, even Newton-Schulz (degree = 5) performs equally well in this context,
despite being significantly less accurate than PolarExpress, Jordan or You.

Next we train a Vision Transformer (patch size 4, embedding dimension 512, depth 6, 8 heads, MLP
dimension 512, dropout 0.1) on CIFAR-10 for 200 epochs with batch size 512 using a constant
learning rate schedule. Results are shown in Figure 16. Muon with Polar Express achieved
the best training and validation loss (closely followed by Jordan’s and You’s methods). However,
improved loss did not entirely translate to better accuracy: both Muon and Newton-Schulz and
Adam performed well in terms of validation accuracy. Overall, these experiments do not show a
consistent advantage for Polar Express. Further work may be beneficial to fully realize the
potential benefits of Muon and to further tune Polar Express for these settings.

I INITIALIZATION FOR MATRICES WITH LARGE SPECTRAL GAPS

In Section 3, we constructed a sequence of polynomials that is adapted to the range of the singular
values [ℓ, u]. Assuming nothing else about the input, these polynomials are optimal since they pro-
vide a good approximation to 1 across the entire interval. However, in many applications, the spec-
trum has large gaps; that is, there are several large outlying singular values that are well-separated
from the rest. For these matrices, it is not necessary for the polynomial to be accurate on the entire
interval [ℓ, u], only on the range of the small singular values plus a few other isolated points. In this
section, we take advantage of this structure to accelerate our method by preprocessing the matrix to
eliminate the largest singular values.

The first step is to find small intervals containing each of these large singular values. To find lower
bounds, we use subspace iteration, which is a generalization of the power method that approximates
multiple singular values simultaneously. Fix k, the number of singular values we wish to eliminate.
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(a) GPT-2-Large (774M params). Best final validation losses were muon-You (lr = 0.02): 3.399,
muon-Jordan (lr = 0.02): 3.398 and muon-PolarExp (lr = 0.02): 3.340.
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(b) GPT-2-Small (124M params). Best final validation losses were adamw (lr = 0.001): 4.197,
muon-Jordan (lr = 0.01): 3.639, muon-You (lr = 0.01): 3.629 and muon-PolarExp (lr = 0.005):
3.588.

Figure 11: Training GPT-2 on 1 billion tokens of FineWeb data (Aroca-Ouellette et al., 2023) with-
out weight decay. The label muon-<method> denotes Muon with 5 iterations of <method> to
compute polar(M). Top left: final validation loss vs. learning rate. Bottom left: final training loss
vs. learning rate. Top right: validation loss vs. number of iterations for best learning rate. Bottom
right: training loss vs. time for best learning rate.
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(a) GPT-2-Large (774M params). Best final validation losses were muon-You (lr = 0.02): 3.390,
muon-Jordan (lr = 0.02): 3.401 and muon-PolarExp (lr = 0.02): 3.344.
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(b) GPT-2-Small (124M params). Best final validation losses were muon-Jordan (lr = 0.01): 3.638,
muon-You (lr = 0.005): 3.641 and muon-PolarExp (lr = 0.005): 3.587.

Figure 12: Training GPT-2 on 1 billion tokens of FineWeb data (Aroca-Ouellette et al., 2023) with
weight decay 0.1. The label muon-<method> denotes Muon with 5 iterations of <method> to
compute polar(M). Top left: final validation loss vs. learning rate. Bottom left: final training loss
vs. learning rate. Top right: validation loss vs. number of iterations for best learning rate. Bottom
right: training loss vs. time for best learning rate.
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(a) GPT-2-Large (774M params) with weight decay 0.1. Best final validation losses were muon-Jordan (lr
= 0.002): 2.921, muon-You (lr = 0.002): 2.919 and muon-PolarExp (lr = 0.002): 2.913.
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(b) GPT-2-Small (124M params) without weight decay. Best final validation losses were adamw (lr = 0.0005):
3.370, muon-Jordan (lr = 0.005): 3.233, muon-You (lr = 0.005): 3.234 and muon-PolarExp (lr =
0.005): 3.231.

Figure 13: Training GPT-2 on 10 billion tokens of FineWeb data (Aroca-Ouellette et al., 2023).
The label muon-<method> denotes Muon with 5 iterations of <method> to compute polar(M).
Top left: final validation loss vs. learning rate. Bottom left: final training loss vs. learning rate. Top
right: validation loss vs. number of iterations for best learning rate. Bottom right: training loss vs.
time for best learning rate.
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Figure 14: CIFAR10 with a RESNET20. Shaded regions show range over three random seeds.
The best validation accuracy for each method was sgd-m (lr = 0.1): 0.855 Adamw (lr = 0.01):
0.878 muon-You (lr = 0.001): 0.887, muon-Newton (lr = 0.001): 0.890, muon-Jordan (lr
= 0.001): 0.891, muon-PolarExp (lr = 0.001): 0.893.
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Figure 15: CIFAR100 with RESNET110. Shaded regions show range over three random
seeds. The best validation accuracy for each method was sgd-m (lr = 0.1): 0.602, Adamw
(lr = 0.01): 0.643, muon-Jordan (lr = 0.001): 0.660, muon-Newton (lr = 0.001): 0.663.
muon-PolarExp (lr = 0.001): 0.663, muon-You (lr = 0.001): 0.665,
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Figure 16: CIFAR10 with a VIT. Shaded regions show range over three random seeds. The best
validation accuracy for each method was sgd-m (lr = 10−1): 0.809, muon-PolarExp (lr =
10−5): 0.860, Adamw (lr = 10−3): 0.861, muon-Jordan (lr = 10−5): 0.861, muon-You (lr
= 10−5): 0.865, muon-Newton (lr = 10−4): 0.874 .
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Letting σ1 ≥ · · · ≥ σn denote the singular values of M , subspace iteration produces estimates
σ̃1 ≥ · · · ≥ σ̃k satisfying σi ≥ σ̃i for all i ∈ 1, . . . , k.7 To find upper bounds on each σi, we can
use the fact that ∥M∥2F =

∑n
j=1 σ

2
j as follows:

σ2
i = ∥M∥2F −

n∑

j=1
j ̸=i

σ2
j ≤ ∥M∥2F −

k∑

j=1
j ̸=i

σ2
j ≤ ∥M∥2F −

k∑

j=1
j ̸=i

σ̃2
j (24)

That is, for each i ∈ [n],

σi ∈


σ̃i,

√√√√√∥M∥2F −
k∑

j=1
j ̸=i

σ̃2
j




Setting i = k+1, the above also provides an upper bound for the tail of the spectrum, σk+1, . . . , σn.

The second step is to find an odd polynomial that well-approximates the constant function on each
of these intervals and on the tail simultaneously. For simplicity, we treat only the k = 1 case here.
Assume that M is normalized to ∥M∥F = 1 and let z = σ̃1 be the lower bound produced by
subspace iteration (which reduces to the power method in this case). Then (24) gives σ1 ∈ [z, 1]

and σ2, . . . , σn ≤
√
1− z2. Assume that these intervals do not overlap, that is,

√
1− z2 ≤ z ⇐⇒

z ≥ 1/
√
2. Then we construct the unique odd cubic polynomial p(x) = ax + bx3 that satisfies

p(
√
1− z2) = 1 and p(z) = 1 by setting

a =
z2(z +

√
1− z2)−

√
1− z2

z
√
1− z2(2z2 − 1)

b =

√
1− z2 − z

z
√
1− z2(2z2 − 1)

(25)

Because p(0) = 0 and p has at most one local extremum on R≥0, these conditions immediately
guarantee that p is concave-increasing on [0,

√
1− z2], so it must lie above the line x 7→ x/

√
1− z2.

Furthermore, p is decreasing on [σ1, 1], so it maps σ1 ∈ [z, 1] to [p(1), 1]. By minimizing p(1) over
all valid z (that is, over the interval z ∈ [1/

√
2, 1]), one can further show that p(1) > 1/

√
2, so σ1

cannot be decreased very much by applying p. Thus, the largest singular value of p(M) is still at
most 1, while the smaller singular values have increased by a potentially large factor of 1/

√
1− z2.

When there is a large outlying singular value, z is close to 1 and this initialization scheme makes
much more progress than a standard iteration of PolarExpress would have.

In Figure 17, we demonstrate the benefit of using the p given by (25) on a synthetic matrix whose
spectrum follows a power law decay. That is, σj(M) = j−5, so this matrix has a large outlying
singular value σ1 ≫ σ2. Applying (25) costs almost as much as performing an iteration of a degree-
5 polynomial method, so for fair comparison, we count it as an additional iteration in this plot. For
both Newton-Schulz and Polar Express, performing the extra spectrum-aware initialization
step described in this section leads to significant speedups in convergence.

J FAST POLYNOMIAL ITERATION FOR RECTANGULAR MATRICES

In this section, we describe a simple method for applying an iterative polynomial method to a rectan-
gular matrix. For matrices with a large aspect ratio, this method yields significant computational sav-
ings. We emphasize that this method is applicable to any computation of the form (pT ◦· · ·◦p1)(X),
where each pt is an odd polynomial. Thus, it can be used to apply Newton-Schulz or Jordan’s poly-
nomials in addition to our own.

As a preliminary, we first describe the baseline approach. Let X ∈ Rm×n with m ≥ n, where α :=
m/n ≥ 1 is called the aspect ratio. Any odd polynomial p of degree d = 2q + 1 can be represented
as p(x) = xh(x2), where h is a polynomial of degree q. Thus, p(X) = Xh(X⊤X). Furthermore,
h can be written in a factored form called Horner’s rule to reduce the number of multiplications. For
instance, if h(y) = a + by + cy2 + dy3, Horner’s rule gives h(y) = a + y (b+ y (c+ dy)). For a

7Let Q0 ∈ Rn×k be a random matrix with orthonormal columns and define Qt+1,Rt+1 =
qr

(
M⊤MQt

)
, where qr is the QR decomposition. Subspace iteration outputs the singular values σ̃1, . . . , σ̃k

of MQT , σ̃1, . . . , σ̃k. By the Cauchy interlacing theorem, σ̃k ≤ σk.
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Figure 17: Benefits of the spectrum-aware initialization scheme of Appendix I. Using this scheme
improves convergence of both Newton-Schulz and Polar Express on a synthetic 32×32 matrix
with σj(M) = j−5. Note that we count the spectrum-aware initialization as an additional iteration.

matrix, h(Y ) = aI + Y (bI + Y (cI + dY )). Thus for Y ∈ Rn×n, computing h(Y ) costs about
(deg(h)− 1) ·n3 operations, and computing p(X) = Xh(X⊤X) costs 2mn2+

(
d−1
2 − 1

)
·n3 =(

d−3
2 + 2α

)
· n3 operations. This process could be repeated for each iteration p1, . . . , pT . Notice

that if we instead computed h(XX⊤)X , the result would be the same but the cost would be higher.

A major drawback of this naive approach is that it has a strong dependence on α, since two rectan-
gular matrix multiplications must be performed in each of the T iterations. When m ≫ n, these
two multiplications dominate the cost. In Algorithm 3, we introduce a simple trick that dramatically
reduces this cost, using just two rectangular matrix multiplications to compute all T iterations.

Algorithm 3 Fast Polynomial Iteration for Rectangular Matrices
input: X ∈ Rm×n with m > 1.5n, odd polynomials p1(x) = xh1(x

2), . . . , pT (x) = xhT (x
2).

output: The matrix (pT ◦ · · · ◦ p1)(X).
Y = X⊤X ▷ mn2

Let Q0 = I
for t = 1, 2, . . . , T do

Rt = Q⊤
t−1Y Qt−1 ▷ 2n3

Qt = Qt−1ht(Rt) ▷ Horner’s rule: deg(ht) · n3

end for
return XQT ▷ mn2

To see why this works, define q0(x) = x,

qt(x) =
(pt ◦ · · · ◦ p1)(x)

x
=

pt ((pt−1 ◦ · · · ◦ p1)(x))
x

=
pt (xqt−1(x))

x
(26)

=
xqt−1(x) · ht

(
(xqt−1(x))

2
)

x
= qt−1(x) · ht

(
x2 · qt−1(x)

2
)

(27)

and rt(x) = x2 · qt−1(x)
2. It is clear by induction that Rt = rt(X),Qt = qt(X), and XQT =

(pt ◦ · · · ◦ p1)(X). As promised, this algorithm uses no rectangular multiplications in the for-loop.
If each pt is degree d, then the total cost is

(
d+3
2 T + 2α

)
· n3. When α > 1.5 T

T−1 , this is smaller
than the naive method. We can use this criterion to select either Algorithm 3 or the baseline method
at runtime.8

Algorithm 3 can introduce numerical errors, especially when working in a low precision format
like bfloat16. We identify two sources of numerical trouble and propose remedies for each.
The first is due to the ill-conditioning of X . Let X = UΣV ⊤ be the SVD. For large T , (pT ◦

8Notice that QT → Y −1/2. This shows that the Polar Express polynomials also give a method of
computing the inverse square root of a PSD matrix.
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Figure 18: Effects of using Algorithm 3 on runtime on a GPU. We run T = 6 iterations of a degree-5
polynomial method on matrices with various dimensions n and aspect ratios α. Restart interval = 6
is Algorithm 3, restart interval = 1 is equivalent to the baseline (that is, not using Algorithm 3),
and restart interval = 3 is an intermediate method that calls Algorithm 3 once to do the first three
iterations and again to do the last three iterations for greater stability. When α ≫ 1, increasing the
restart interval significantly reduces the runtime.

· · · p1)(X) = XQT ≈ polar(X) = UV ⊤. Thus, QT ≈ V ⊤Σ−1V . When X has very small
singular values and the floating point precision is very low, instantiating QT may be unstable. To
mitigate this issue, we use a restarting strategy. Notice that the issue arises only for large T , for
which (pT ◦ · · · ◦ p1)(ϵ) ≈ 1. Limiting ourselves to T = 3 iterations improves the conditioning of
QT because (pT ◦· · ·◦p1)(ϵ)≪ 1. Thus, to compute T > 3 iterations, we begin with X0 and apply
Algorithm 3 with the first three polynomials, producing X3. When then apply Algorithm 3 again
with the next three polynomials to X3, producing X6, and so on. As Xt approaches convergence, its
conditioning improves and we may no longer need to restart at all. Note that restarting Algorithm 3
after every iteration is exactly the same as the baseline method.

Second, while the matrix Y is positive definite in exact arithmetic, numerical round-off can intro-
duce spurious negative eigenvalues that cause the method to diverge to infinity. To combat this issue,
we instead set Y = X⊤X+10−3I during the first application of Algorithm 3. (We also normalize
by ∥X∥F + 10−3 instead of ∥X∥F.) In subsequent restarts of Algorithm 3, we set Y = X⊤X as
before. This is akin to slightly increasing each of the singular values of X , but it does not change
the polar factor of X . Thus, while the output will be slightly different in the early iterations, the
algorithm still converges to the correct answer.

Figure 18 shows that using Algorithm 3 can significantly improve runtime on the GPU when the as-
pect ratio is large enough. As expected, using Algorithm 3 for many iterations significantly reduces
the dependence of the runtime on the aspect ratio. Running six iterations of a degree-5 polynomial
method when α = 4 (as with the linear transformations in each MLP block of a transformer) we
obtain almost a 2x speedup, and when α = 32, we obtain a 5x speedup. If we restart every three
iterations, the trend is the same but the runtime savings are somewhat smaller.

J.1 APPLICATION TO MUON

If these problems can be mitigated, the speed afforded by Algorithm 3 suggests an improvement in
the way Muon is applied to transformers. In sum, the idea is to replace one large matrix with a small
aspect ratio by many smaller matrices with large aspect ratios and apply Algorithm 3 to all of them in
parallel. Each multi-head attention layer contains four square weight matrices WQ,WK ,WV and
WO ∈ Rd×d. The orthogonalization step of Muon is either applied separately to these four matrices
or else to [WQ |WK |WV ] and WO, since typical implementations of multi-head attention store
the weights in this concatenated form. However, we believe it is natural to consider each of these four
weight matrices to be a concatenation of many smaller linear transformations, each corresponding
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to a single attention head. If H is the number of heads, each of these smaller matrices has size
d× d

H ; that is, they have aspect ratio α = H . The gradient matrices of [WQ |WK |WV ] and WO

can be reshaped into 3-tensors in which each slice is one of these smaller matrices. Since typical
transformers like GPT-3 can have as many as 96 heads, this variation of Muon has the potential to
reduce the runtime.

We use this idea to train a GPT-Small model on FineWeb1B. We compare four conditions:

1. The baseline approach used in the rest of this paper
2. Splitting up the gradient matrices of [WQ | WK | WV ] and WO by head and applying

Muon to each piece, as described above
3. Using Algorithm 3, restarted after three iterations
4. Splitting by head and using Algorithm 3

We used Polar Express with weight decay of 0.1 for all conditions and swept learning rates
0.003, 0.005, 0.01. Otherwise, all hyperparameters were the same as in Section 4.2.

Our results showed that these changes had a negligible effect in this setting. They did not affect
the optimization quality. Compared to the baseline, splitting by heads actually reduced the final loss
slightly from 3.59 to 3.55; using Algorithm 3 increased the loss very slightly, from 3.59 to 3.60 when
not splitting by head, and from 3.55 to 3.56 when we did split. However, the runtimes of all 12 runs
were nearly identical, showing that at this scale, the FLOP savings of Algorithm 3 is not beneficial.
The embedding size of GPT-Small is just 768. These techniques may be more impactful when using
a larger model. It may also have more impact outside of deep learning, where Polar Express
would be run for more than the 5 iterations used in our experiments. We leave exploration of these
settings to future work.

38


	Introduction
	The Muon Method
	Computing the Polar Factor
	Contributions

	Approximations by Compositions of Polynomials
	The Polar Express
	Greedy is optimal
	Finding the optimal polynomial for each iteration
	Upper and lower bounds on the singular values
	Finite precision considerations
	The algorithm

	Numerical Experiments
	Convergence of Polar Express
	Training GPT-2
	Ablations

	Code for Polar Express
	Related Work
	Proof of Theorem
	Proof of Theorem
	Proof of equivalence between matrix and scalar optimization problems
	Remez algorithm
	Finite precision considerations
	Additional Experimental Results
	Convergence of Polar Express and Its Impact on Muon
	Training GPT-2
	Image Classification

	Initialization for Matrices with Large Spectral Gaps
	Fast Polynomial Iteration for Rectangular Matrices
	Application to Muon


