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Abstract

Incorporating inductive bias by embedding geometric entities (such as rays) as input
has proven successful in multi-view learning. However, the methods adopting this
technique typically lack equivariance, which is crucial for effective 3D learning.
Equivariance serves as a valuable inductive prior, aiding in the generation of
robust multi-view features for 3D scene understanding. In this paper, we explore
the application of equivariant multi-view learning to depth estimation, not only
recognizing its significance for computer vision and robotics but also addressing
the limitations of previous research. Most prior studies have either overlooked
equivariance in this setting or achieved only approximate equivariance through
data augmentation, which often leads to inconsistencies across different reference
frames. To address this issue, we propose to embed SE(3) equivariance into
the Perceiver IO architecture. We employ Spherical Harmonics for positional
encoding to ensure 3D rotation equivariance, and develop a specialized equivariant
encoder and decoder within the Perceiver IO architecture. To validate our model,
we applied it to the task of stereo depth estimation, achieving state of the art results
on real-world datasets without explicit geometric constraints or extensive data
augmentation.

1 Introduction

Equivariance is a valuable property in computer vision, leveraging various symmetries to reduce
sample and model complexity while boosting generalization. It has seen broad application in fields
such as 3D shape analysis [48, 52, 13], panoramic image prediction [10, 54, 19], and robotics
[46, 25, 42, 2]. In particular, there is an increasing interest in equivariant scene representation from
multiple viewpoints [43, 55], as the multi-view setting is a fundamental challenge in the field and
equivariant representations are desirable for their robustness and efficiency.

Meanwhile, multi-view depth estimation has always been a core topic in computer vision. Previous
works [27, 31, 26] leverage the explicit geometric constraint to construct the feature cost-volume
for depth prediction. Recently, the paradigm of combining implicit representations with generalist
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architectures has been widely adopted and gaining success. Inserting inductive bias via the embedding
of geometric entities (rays) in the multi-view setting [58, 47, 44] has become popular. Notably, in
multi-view depth estimation, Yifan et al. [57] effectively combined geometric epipolar embeddings
with image features for stereo depth estimation, outperforming traditional methods that depend
on explicit geometric constraints. State-of-the-art work by [23] integrated multi-view geometric
embeddings with image features for video depth estimation. These methods show that the implicit
multi-view geometry learned by the Perceiver IO architecture, which is a more efficient general
architecture compared to the vision transformer [14], can improve upon approaches that rely on
traditional explicit geometric constraints, such as cost volumes, bundle adjustment, and projective
geometry. However, the implicit multi-view geometry promoted by the Perceiver IO architecture lacks
equivariance. This limitation becomes apparent when transforming the coordinate frame representing
input geometry, such as camera poses, ray directions, or 3D coordinates. These transformations
change the input in such a way that non-equivariant architectures are unable to achieve the same
results, as shown in Figure 1.

Figure 1: Given a sparse set of posed images (red),
the task is to estimate depth for a novel view-
point (blue). The Perceiver IO struggles to ac-
curately predict depth when the reference frame
(gray) changes, equivalent to an inverse transforma-
tion applied to the object and cameras. In contrast,
our model delivers the consistent result due to its
equivariant design.

Although [23] have tried to approximate equiv-
ariance through extensive data augmentation,
achieving true equivariance at an architectural
level remains an ongoing challenge. In this pa-
per, we propose to embed equivariance with re-
spect to SE(3) transformation of the global co-
ordinate frame, i.e., gauge equivariance, to the
Perceiver IO model. We substitute traditional
Fourier positional encodings for the ray embed-
ding with Spherical Harmonics, which are more
suitable to represent 3D rotations. We custom-
develop a SE(3) equivariant attention module
to seamlessly interact with different types of
equivariant features. This is achieved using a
combination of invariant attention weights and
equivariant fundamental layers. During the de-
coding stage, this equivariant latent space is
disentangled into the equivariant frame and in-
variant global features. Our approach not only
simplifies the integration of existing modules
without requiring a specialized design, but also allows the network to focus on effective scene analy-
sis via an invariant latent space, reducing the effects of global transformations. The equivariant frame
is used to “standardize” the query ray, serving as an invariant input for the decoder. This method
ensures that both sets of inputs for the decoder are invariant, leading to an invariant output regardless
of the decoder used. Consequently, we can employ the conventional Perceiver IO decoder in our
equivariant framework. In summary, our key contributions are as follows:

• We integrate SE(3) equivariance into a multi-view depth estimation model by design, using
spherical harmonics as positional encodings for ray embeddings, as well as a specialized
equivariant encoder.

• By leveraging the equivariant learned latent space, we introduce a novel scene representation
scheme for multi-view settings, featuring a disentangled equivariance frame and an invariant
scene representation.

• We assess our model’s ability to learn 3D structures through wide-baseline stereo depth
estimation. Our model delivers state-of-the-art results in this task, significantly surpassing
the non-equivariant baseline.

2 Related Work

Equivariant Networks Equivariant Networks are garnering interest in vision for their efficiency
and powerful inductive bias. These networks can be categorized by the data structures over which
they operate, spanning 2D images [15, 39], graphs [45, 38], 3D point clouds [60, 5], manifolds [9, 37],
and spherical images [17, 7]. From an architectural perspective, methods can also be classified by the

2



Figure 2: Our proposed Equivariant Perceiver IO (EPIO) architecture. (a) We take as input the
concatenation of per-pixel image, ray, and camera embeddings, the latter two calculated using
spherical harmonics. (b) The output of our equivariant encoder is a global latent code, including both
global invariant and equivariant components. From those, we extract an equivariant reference frame
through an equivariant MLP, while simultaneously obtaining invariant latents through inner product.
(c) When a query camera is positioned in this equivariant reference frame, its pose becomes invariant,
which enables the use of conventional Fourier basis to encode it. (d) Given an invariant latent and
invariant pose, we use a conventional Perceiver IO decoder to generate predictions for each query ray.

tools they rely on, such as group convolution [8, 16, 36, 20], steerable convolution on homogeneous
spaces [53, 51, 52, 11, 54], and recently transformers [41, 40, 33, 24]. In the context of this paper, we
highlight significant SE(3) equivariant transformer works. Fuchs et al. [22] first introduced an SE(3)
equivariant transformer for point clouds, using steerable kernels for transformers and focusing on local
features in point clouds. Liao and Smidt [33], Liao et al. [34] adopted a message-passing architecture
for 3D equivariant transformers in point clouds. Xu et al. [55] applied similar techniques for ray space.
Our approach differs by using direct input-level positional encodings, rather than modifying the
kernel with relative poses. We learn a global, non-hierarchical representation. Safin et al. [43] inserts
pairwise relative poses in self-attention with a conventional attention module, requiring quadratic
computation and lacking compact scene representation, unlike our method. Closely related to our
work, Assaad et al. [1] proposed vector neuron transformers embedded in the Perceiver IO encoder for
point clouds. However, they replace the original latent array with a learnable transformation, did not
use spherical harmonics for equivariant positional encoding, or design an equivariant decoder within
the Perceiver IO framework. We treat the original latent array as invariant, and learn a disentangled
representation for the decoder with versatile queries. Esteves et al. [18] uses spherical harmonics for
positional encoding, primarily to enhance spherical function learning, not for equivariance.

Implicit Multi-View Geometry Even in the age of deep learning, traditional multi-view stereo
methods like COLMAP [21] are still widely used for structure-from-motion. These methods are
accurate but slow due to complex post-processing steps. To speed things up while maintaining
accuracy, learning-based methods adapt traditional cost volume-based techniques for depth estimation
[29, 3, 26, 27]. Recently, transformers [50] have become prevalent approaches, replacing CNNs in
terms of popularity and performance. The Stereo Transformer [32] replaces cost volumes with an
attention-based matching procedure inspired by sequence modeling. IIB [57] leverages Perceiver IO
[28] for generalized stereo estimation by incorporating the epipolar geometric bias into the model.
Liu et al. [35], Chen et al. [4] inject 3D geometry into the transformer akin to IIB for object detection,
while Chen et al. [4] learns equivariance in a data-driven way. A closely related study to ours is
DeFiNe [23], in which camera information is incorporated into Perceiver IO and used to decode
predictions from arbitrary viewpoints. However, their approach relies on data augmentation to
approximate equivariance in the Perceiver IO, whereas our design inherently ensures equivariance at
an architectural level.

3 Method

In this section we start with some preliminaries about Perceiver IO and our baseline, Depth Field
Networks (DeFiNe) [23], a state-of-the-art method integrating camera geometries into Perceiver IO
for multi-view depth estimation. We then outline the concept of equivariance in multi-view scenarios
in Section 3.2. Given these preliminaries, in Section 3.3 we delve into the details of our proposed
equivariant positional encoding for rays, in Section 3.4 we elaborate on the attention mechanisms
used in our model, and in Section 3.5 we describe our choice of encoder parameterization. Finally,
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in Section 3.6 we describe our decoder procedure, focusing on the task of depth estimation. The
pipeline of our proposed SE(3) equivariant model in multi-view context is shown in Figure 2.

3.1 Preliminaries: Input-level Inductive Biases to Perceiver IO

The Perceiver IO [28] is a generalist transformer architecture that encodes input data I ∈ RNi×Ci

into a latent space R ∈ RNR×CR by cross-attending I with R. Further refinement of this latent
space R is achieved using self-attention layers, followed by cross-attention to decode predictions
O ∈ RNo×Co using queries Q ∈ RNo×Cq . Many works exploit its generic nature by introducing
inductive biases at an input level, namely, providing prior knowledge about the data for implicit
reasoning. Specifically, DeFiNe [23] uses camera geometries to construct 3D positional encodings
for the multi-view problem. Given N images {Ii}Ni=1 from a set of cameras with poses {Ti}Ni=1

and intrinsics {Ki}Ni=1, DeFiNe calculates 3D rays {riuv}
(H,W )
uv=(1,1) from each camera center ti to

each pixel (u, v) on image Ii, and obtains positional encodings PE(riuv, ti) with a mapping PE(·).
These positional encodings are combined with image embeddings F = {f i

uv} from a visual feature
extractor to be encoded by R such that:

R1 = cross-attn(R0, {f i
uv ⊕ PE(riuv, ti)})

Rk = self-attn(Rk−1), k = 2, . . . ,K

To obtain predictions for a set of M novel viewpoints, we can similarly calculate 3D query
rays from poses {T ′

j}Mj=1 and intrinsics {Kj}Mj=1 and map them to query positional encodings
Q = {PE(rjuv, tj)}, which will be used to decode the latent space R via cross attention:
O = cross-attn(Q,RK). In this way, prior knowledge, i.e., 3D camera geometries, is directly
fed into the model as additional input features for the implicit learning of multi-view geometry.

3.2 Equivariance Definition in Multiview Context

After introducing the input-level inductive bias framework, it is worth noting that the poses of
the encoding cameras, as well as the query viewpoints, are defined in a global reference frame
TG. However, this choice of global reference frame is subject to change, and the property of
equivariance ensures that predictions remain identical under these changes. Assuming the global
reference frame undergoes a transform T−1 ∈ SE(3) to T ′

G = T−1TG, the ray representations
become (Rr

i(j)
uv , Rti(j) + t) when representing T = (R, t). The equivariant model Φ should satisfy

Φ({f i
uv ⊕ PE(Rriuv, Rti + t)}, {PE(Rrjuv, Rtj + t)})

= Φ({f i
uv ⊕ PE(riuv, ti)}, {PE(rjuv, tj)}).

For further details on the definition of the equivariance, please see Appendix A.2.

3.3 Equivariant Positional Encoding

To ensure the positional encoding process is equivariant w.r.t a transformation group G, we would
like to enforce that Φ(·, PE(ρXg x)) = Φ(·, ρYg PE(x)) for any g ∈ G, where ρX is the group
representation on coordinate space, and ρY is the group representation on the positional encoding
space. The traditional Fourier basis is translationally equivariant, as detailed in Appendix B. Kitaev
et al. [30] used this to attain translational equivariance, employing a conjugate product for invariant
attention. However, this approach lacks rotational equivariance.

This raises a key question: Are there any basis functions equivariant to both 3D translations and
rotations? Unfortunately, none exist. However, a common method in equivariant works for transla-
tional equivariance is to subtract the center point, a technique we apply in our context as illustrated
in Figure 3. This enables translational invariance, leaving the model to focus solely on achieving
rotational equivariance. To address the 3D rotational equivariance, we turn to spherical harmonics
(SPH), known for their inherent rotation-equivariant properties. They offer a way to accommodate
3D rotational changes, thereby achieving SE(3) equivariance.

3.3.1 Spherical Harmonics

We provide a detailed introduction to Spherical Harmonics in Appendix A.4, where we also discuss
how their application in previous equivariant transformers differs from their use in our model. Below,
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Figure 3: Comparison between an equivariant input embedding in our model (left) and the conven-
tional input embedding in DeFiNe (right). (a) Pipeline used to generate input embeddings for the
encoder, resulting in cross-attention keys and values. (b) To generate geometric information, we
calculate embeddings for each ray riuv and camera relative position ti − t̄; (c) The final composed
embedding format includes both image embeddings, which are invariant, and geometric embeddings,
which are equivariant. In contrast, the conventional approach by Perceiver IO, as highlighted in
parts (a) and (c), integrates Fourier positional encodings with image embeddings to form the input
embeddings. Furthermore, as indicated in (b), Perceiver IO utilizes each ray riuv and the absolute
translation ti for positional encoding purposes.

we present a brief overview of Spherical Harmonics for clarity. Similar to the varying frequencies
of sines and cosines in Fourier series, spherical harmonics are characterized by different degrees
(orders), denoted as l ∈ N. An order-l spherical harmonics, denoted as Y l : R3 → R2l+1, follows
the transformation rule: Y l(Rr) = Dl(R)Y l(r), Y l(r) = ∥r∥lY l(r̂), where R ∈ SO(3), r̂ is the
unit vector, Dl : SO(3) → R(2l+1)×(2l+1) is called the Wigner-D matrix, serving as the irreducible
representation of SO(3) corresponding to the order l. The Wigner-D matrix is an orthogonal matrix,
that is Dl(R)(Dl(R))T = I . These important properties allow us to achieve equivariance in the
Perceiver IO transformer architecture.

3.3.2 Equivariant Hidden features

In our model, we embed both camera centers and viewing rays using spherical harmonics. The
embedding is given by: PE(riuv, ti) =

⊕
l∈L(Y

l(riuv)⊕ Y l(ti − t̄)), where each part corresponds
to the same order of spherical harmonics (Figure 3). Here, L = {1, 2, . . . , lmax} and t̄ = 1

N

∑N
i=1 ti,

highlighting the extraction of the cameras’ central position for translational invariance. Due to the
properties of spherical harmonics, the positional encoding of transformed input, PE(Rriuv, Rti + t),
is equal to

⊕
l∈L(D

l(R)(Y l(riuv) ⊕ Y l(ti − t̄))) = R · PE(riuv, ti), for any rotation R ∈ SO(3)

and translation t ∈ R3. In other words, it guarantees that these embeddings are both rotationally
equivariant and translationally invariant. The transformation of these embeddings operates by
multiplying each block with its respective Wigner-D matrix.

The image remains unchanged when the reference frame is transformed, as its contents are unaffected.
Mathematically, this property is akin to multiplying by a 0-order Wigner Matrix, equivalent to an
identity. Thus, combining image features with positional encodings (Figure 3) transform as:

(f i
uv, PE(Rriuv, Rti + t)) = (D0(R)f i

uv, R · PE(riuv, ti))

= R · (f i
uv, PE(riuv, ti))

In our model, the equivariant hidden features mirror the structure of our embeddings, composed as⊕
l∈L Hl with subscripts indicating the feature type and L = {0, 1, · · · , lmax}. The size for each

feature type Hl follows (2l + 1, Cl), where 2l + 1 is the intrinsic dimension and Cl is the number of
channels. For more a intuitive understanding, we visualize these embeddings in Appendix C (Figure
10). Similar to the input embeddings, any rotation R in SO(3) rotates the hidden features as
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(a) (b)

Figure 4: Left: Our equivariant module is distinct from traditional implementations [50] in its
fundamental layers and the key-query product, that are crafted to be respectively equivariant and
invariant. Right: Equivariant latent array used as additional input to the encoder. We apply equivariant
positional encoding to each camera rotation, which is then averaged. We leverage an equivariant
linear layer to get a global geometric latent ⊕lGl, which is concatenated with the conventional latent
array R0 to compose our proposed equivariant latent array R′

0.

R ·
⊕
l∈L

Hl =
⊕
l∈L

Dl(R)Hl

where Dl are the Wigner-D matrices. We disregard any translation action since the input and queries
become translation-invariant after center subtraction.

3.4 Basic Attention Modules

This section highlights the equivariant attention module, fundamental to ensure encoder equivariance
as depicted in Figure 4a. It consists of basic equivariant layers and an invariant multi-head inner
product. Our architecture, unlike typical equivariant transformers [22, 33], does not enforce geometric
constraints in the equivariant kernel. Instead, it incorporates all geometric features at an input-level.
Our module, utilizing the Perceiver IO structure, learns global latent representations, in contrast to
other methods that emphasize the hierarchical learning of local features.

Equivariant Foundamental Layers For the fundamental layers, we use the equivariant linear layer
and layer normalization commonly used in previous works [48, 22, 33, 34], and provide additional
details in Appendix A.3. For equivariant nonlinear layers, there have been multiple proposed methods
for features with the same format as ours: Norm-based Nonlinearity, Gate Nonlinearity, and Fourier-
based Nonlinearity. Here, we take inspiration from the nonlinearity of Vector Neuron [13] and adapt
a similar vector operation to higher-order features. Please see Appendix E for details of equivariant
nonliearity. To better understand the differences between the basic layers in equivariant attention
module and those in conventional one, we have visualize them in Appendix A.3 and Appendix E.

Multi-Head Attention Inner Product As done in previous equivariant transformer works [22, 33],
we can obtain the invariant attention matrix through inner product of the same types of features.
These transformers that emphasize the hierarchical learning of local features suggest using tensor
products of edge feature and node feature to mix different feature types, which is computationally
demanding. We discard the tensor product and only calculate attention weights using various feature
types and then multiply these weights with multi-type features to efficiently integrate different types
of feature. Please see Appendix F for more details. Alternatively, we can mix feature types by treating
them as Fourier coefficients for spheres, apply transformers on the sphere, and use Fourier Transform
to obtain new coefficients. Please refer to Appendix H for details.
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3.5 Equivariant Encoder

3.5.1 Equivariant Cross-attention

As shown in the left part in Figure 3 and Section 3.3.2, the cross-attention input is in the format⊕
l∈L Hl with Cl = 2 for l ≥ 1 and C0 being the channel number of f i

uv. To facilitate a clearer
understanding, a comparison of this input embedding with the one used in DeFiNE is also depicted
in Figure 3. The latent array R0 = ((R0)1, (R0)2, · · · , (R0)NR

) ∈ RNR×CR can be treated as
a scalar (0-order) feature, remaining constant during transformations in the reference frame. To
make the latent array also learn the geometric information, we apply a technique similar to [1],
learning equivariant features from the input’s averaged geometric information. Specifically, we apply
the positional encoding (PE) for each camera rotation, with each order being the concatenation of
embeddings of the rotation matrix’s three columns. The PE is then averaged over cameras. For the
specific formulation please see Appendix I.

We obtain a global geometric latent G using an equivariant linear layer, where the size of the weight
matrix Wl for each type l is (3, NRC

l), with Cl being the channel count for type-l feature in
each latent. We then append this equivariant feature to the latent R0, forming a new latent array
R′

0 = ((R′
0)1, (R

′
0)2, · · · , (R′

0)NR
), where (R′

0)i = (R0)i ⊕
⊕

l∈L(Gl)i with L = {1, 2, · · · lmax}
and (Gl)i ∈ R(2l+1)×Cl

. Figure 4b illustrates the construction of this equivariant latent array. With
both an equivariant input embedding and latent array, we apply equivariant cross-attention to get the
equivariant latent output.

3.5.2 Equivariant Self-Attention

We apply a self-attention equivariant attention mechanism to the equivariant output of cross-attention,
producing a conditioned equivariant latent code. For visualization purposes (Figure 5), we can treat
the equivariant latent code as the Fourier coefficients of spherical functions. Note that we do not
map the features to a 2D color image. Since we have features with type-0, type-1, and type-2, etc,
but we randomly select each channel from different types of feature and apply the inverse Fourier
transform to get a spherical function and visualize it on a 3D sphere. For a proof of this result (i.e.,
the visualized sphere is also rotated when the latent code is rotated), please see Appendix D.

3.6 Decoder

Figure 5: Equivariant latent code and predicted frame. For simplicity,
we use object rotation to denote the inverse rotation of the reference
frame. When the object is rotated, our latent code and predicted canon-
ical frame are also rotated.

In Figure 2 we show that,
before inputting the equiv-
ariant latent space and geo-
metric query to the decoder,
they are converted into an
invariant form by establish-
ing an equivariant frame.
Specifically, the equivari-
ant latent space RK is rep-
resented as

⊕
l∈L(RK)l.

From its type-1 feature
(RK)1, we employ an
equivariant MLP and the
Gram-Schmidt orthogonal-
ization [59] to derive an
equivariant frame, repre-
sented by a rotation matrix
R. As depicted in Figure
5, the equivariant frame’s
rotation aligns with that of
both the equivariant latent
and the 3D scene. Applying the inverse of R to RK results in a rotation-invariant latent code⊕

l∈L Dl(R)T (RK)l, obtaining an invariant representation. See Appendix J for a proof.
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Figure 6: Stereo depth estimation results on ScanNet, using our proposed EPIO architecture.

For the embedding of camera center and viewing rays, we apply RT to rjuv and tj − t̄ to obtain
invariant coordinates (see Appendix J for a proof), denoted as RT rjuv and RT (tj − t̄). We then
use traditional sine and cosine positional encoding for these invariant coordinates, which allows us
to leverage higher frequency information beyond the dimensional constraints of SPH. Since both
the latent hidden state and the query are invariant to the transformation, this enables us to apply
conventional cross-attention mechanisms to obtain invariant outputs and predictions, capturing higher
frequency details and improving expressiveness.

4 Experimental Results

4.1 Datasets and Implementation

We use ScanNet [12] and DeMoN [49] to validate our model on the task of stereo depth estimation.
For ScanNet, we use the same setting as [31], which downsamples scenes by a factor of 20 and
splits them to obtain 94212 training and 7517 test pairs. The DeMoN dataset includes the SUN3D,
RGBD-SLAM and Scenes11 datasets, where SUN3D and RGBD-SLAM are real world datasets
and Scenes11 is a synthetic dataset. There are a total of 166285 training image pairs from 50420
scenes, and we use the same test split as [31] (80 pairs in SUN3D, 80 pairs in RGBD and 168 pairs
in Scenes11). We include details on the network architecture and implementation in Appendix L.

4.2 Stereo Depth Estimation

We compare our equivariant model with other state-of-the-art methods on stereo depth estimation,
and report quantitative results in Table 1. As we can see, it significantly outperforms competing
methods on all real-world datasets and shows comparable results to the state-of-the-art on Scenes11,
a synthetic dataset. This superior performance on real-world datasets is evidence of the benefits of
using equivariance in multi-view scene representation. Synthetic datasets, unaffected by real-world
lighting conditions, camera miscalibration and view-dependent artifacts, might benefit approaches
such as DPSNet [27] and NAS [31] that use cost volume to achieve view consistency. It’s also
noteworthy that NAS [31] uses additional ground truth surface normals as supervision.

Method Abs.Rel. ↓ RMSE ↓ δ < 1.25 ↑
DeFiNe (w/o VCA) 0.117 0.291 0.870
Ours (w/o VCA) 0.104 0.247 0.893

DeFiNe (w/o jitter) 0.099 0.261 0.891
DeFiNe 0.093 0.246 0.911
Ours (w/o jitter) 0.086 0.229 0.923

Table 2: Comparison of our EPIO model and DeFiNe on ScanNet
regarding the use of data augmentation. VCA stands for virtual camera
augmentation, and jitter stands for canonical camera jittering.

We denote our model with
“Equi” and our baseline, De-
FiNe, with “Nonequi” to
highlight that both use the
same architecture, Perceiver
IO, with the key difference
being the presence of equiv-
ariance in our model.

Additionally, to assess the
advantages of incorporat-
ing equivariance into our
model, we conducted a com-
parative analysis of our model against our nonequivariant DeFiNe baseline [23], both with and without
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Dataset Method Abs.Rel. ↓ RMSE ↓ δ < 1.25 ↑ Dataset Method Abs.Rel. ↓ RMSE ↓ δ < 1.25 ↑

ScanNet

DPSNet 0.126 0.315 -

RGBD-SLAM

DeMoN 0.157 1.780 0.801
NAS 0.107 0.281 - DeepMVS 0.294 0.868 0.549
IIB 0.116 0.281 0.908 DPSNet 0.151 0.695 0.804

DeFiNe 0.093 0.246 0.911 NAS 0.131 0.619 0.857
Ours 0.086 0.229 0.923 IIB 0.095 0.550 0.907

Ours 0.080 0.433 0.912

SUN3D

DeMoN 0.214 2.421 0.733

Scenes11

DeMoN 0.556 2.603 0.496
DeepMVS 0.282 0.944 0.562 DeepMVS 0.210 0.891 0.688
DPSNet 0.147 0.449 0.781 DPSNet 0.050 0.466 0.961

NAS 0.127 0.378 0.829 NAS 0.038 0.371 0.975
IIB 0.099 0.293 0.902 IIB 0.055 0.523 0.963

Ours 0.090 0.260 0.912 Ours 0.069 0.617 0.965
Table 1: Stereo depth estimation results compared with the state-of-the-art: DPSNet [27], NAS [31],
IIB [57], DeFine [23], DeMoN [49], DeepMVS [26].

(a) (b)

Figure 7: The figure (a) shows the equivariance of changing reference frame (Red: reference frame):
For the same input and varying camera frames as reference, the Perceiver IO’s predictions change,
but our model’s predictions stay consistent and the predicted frame is equivariant to the reference
frame transformation. The figure (b) shows the approximate equivariance for different camera sets.

data augmentation. We explore two kinds of data augmentation: virtual camera augmentation (VCA),
in which novel viewpoints are generated via pointcloud reprojection; and canonical camera jittering
(CCJ), in which the reference frame is perturbed with random rotation and translation, reported in
Table 2.

To further showcase our equivariant properties, we visualize the predicted canonical frame and
reconstructed 3D point clouds from depth maps. In Figure 7a, we see that, for the same scene,
when we switch the reference frame (in red) between cameras, the output point clouds change when
using the standard Perceiver IO architecture, while ours remain constant, since the predicted depth
is equivariant to transformations. Furthermore, even when we use different image pairs within the
same scene, which theoretically cannot be guaranteed equivariant due to changes in image content,
our model still predicts near-consistent canonical frames and point clouds, as illustrated in Figure
7b.In the meanwile, we compare our model with current state-of-art depth estimation model Depth
anything [56], and we provide the results in Appendix O.1.

4.3 Ablation Study

We performed an ablation study on the geometric positional encodings, spherical harmonics encoding,
equivariant attention, and the decoder architecture, and report the quantitative results in Table 3. As
expected, when positional encoding is not used, results are significantly degraded due to missing
geometric information. Our results demonstrate that the model leverages geometric information to
learn implicit multi-view geometry. Although using Fourier positional encodings with our method
breaks the equivariant properties, we conducted ablations by replacing spherical harmonics with
Fourier encodings to assess the specific contribution of spherical harmonics.
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As shown in the table, Fourier encodings, which are not equivariant, are incompatible with an
equivariant architecture, resulting in significantly worse performance. Additionally, we replaced
the equivariant attention module with a conventional one in another ablation study. Removing
the equivariant attention layers also disrupts the equivariance of our architecture, leading to a
substantial drop in performance since the model loses its theoretical equivariance. We also ex-
plore the impact of the maximum order of spherical harmonics in the positional encodings, in-
dicated by lmax. For network architecture, we evaluated the impact of not learning the canon-
ical frame, that is, we use the equivariant attention module in the decoder followed by trans-
ferring the equivariant output to invariant output via inner product, see Appendix K for details.
We noticed that higher order of spherical harmonics improve depth estimation, since high fre-
quency promotes fine-grained learning and differentiate positions in a higher-dimensional space.

Variation Abs.Rel.↓ RMSE↓ δ < 1.25 ↑
w/o camera information 0.229 0.473 0.661
w/ Fourier 0.131 0.318 0.843
w/o equi-attention 0.127 0.314 0.851
Type lmax = 1 0.134 0.310 0.869
Type lmax = 2 0.125 0.302 0.875
Type lmax = 4 0.116 0.283 0.898
EquiDecoder 0.128 0.317 0.857

Full Model 0.086 0.229 0.923

Table 3: Ablation study on the choice of positional encoding frequency
and decoder architecture.

Unlike Fourier basis, the
dimension of the spherical
harmonics grows two times
linearly with increasing or-
der, which is a limitation
of our method, and there-
fore we keep the highest
SPH order as 8 in our final
model. This is also a reason
why learning a equivariant
canonical frame for invari-
ant decoding with Fourier
basis and a conventional de-
coder is a better approach
than directly using an equivariant decoder. Another factor is that learning a canonical frame enforces
all inputs to the decoder to be invariant, which should facilitate 3D reasoning. Moreover, we per-
formed additional small-scale experiments to study the impact of the number of available views, see
Appendix O.2.

5 Conclusion and Discussion

We introduce an SE(3) equivariant model designed to learn the equivariant 3D scene prior across
multiple views, utilizing spherical harmonics for positional encoding and specialized equivariant
attention mechanisms within the Perceiver IO architecture. Additionally, our design exploits its
equivariant latent space to disentangle equivariant frames and invariant scene details, enabling the
seamless integration of various existing decoders in conjunction with our specialized encoder. our
model’s capability in 3D structure comprehension is showcased through its superior performance
in stereo depth estimation, significantly exceeding that of non-equivariant models. Our architecture
can be modified to accommodate a wider range of vision tasks, which we leave to future work (for a
more detailed discussion please see Appendix M).

Limitation As discussed in Section 4.3, unlike the Fourier basis, the dimension of spherical
harmonics increases linearly at twice the rate with each order. This limits the number of spherical
harmonics and the maximum frequency utilized, resulting in an inability to preserve detailed features
in cameras and images. Additionally, the presence of different types of features, each with its own
linear and nonlinear layers, slightly slows down the forward process compared to traditional methods.
Moreover, we observe instability in training the equivariant network, which may be due to the
magnitude explosion of high-order spherical harmonics.
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Appendix

A Preliminaries

A.1 Perceiver IO

The Perceiver IO [28] efficiently encodes multi-modality inputs by utilizing cross-attention between
the inputs themselves and a learnable, fixed-dimension latent code. This latent code is then refined
through a series of self-attention layers. In the decoding phase, the model employs cross-attention
between a given query and the refined latent code to generate predictions.

In DeFiNe [23], this framework is used to address scenarios involving multiple cameras with
predetermined relative poses, denoted as {Ti}Ni=1, and their respective images {Ii}Ni=1. Within this
context, the system queries arbitrary camera poses, represented as {T ′

j}Mj=1. Importantly, this queried
pose Tj can either be one of the already established camera positions (as it is common in stereo depth
estimation), or a position outside the range of the input cameras (which is typical in video depth
estimation). Based on input data and queried pose, the network generates the corresponding predicted
output D̂j for the query.

Like other vision tasks that utilize the Perceiver framework, DeFiNe uses as input a composite of
geometric information and corresponding image features, while the query utilizes only geometric
information. Specifically, the input is formulated as

{
f i
uv ⊕ PE(riuv)⊕ PE(ti)

}
, where f i

uv repre-
sents image features associated with each pixel (u, v) in camera i. PE(riuv) denotes the positional
encoding with Fourier cosine and sine series of the ray direction riuv calculated relative to camera Ti,
PE(ti) refers to the positional encoding of the camera’s translation ti in Ti, using Fourier cosine
and sine series. The query in this model is represented as

{
PE(rjuv)⊕ PE(tj)

}
, and the network is

designed to output depth estimation ˆ
Dj

uv for each query pixel (u, v) of query camera j.

A.2 Equivariance Definition

Concretely, assuming the global reference frame undergoes a transform T−1 ∈ SE(3) to T ′
G =

T−1TG, the set of input and query poses would become {TTi} and {TT ′
j} with respect to T ′

G

(note that the corresponding input images {Ii}Ni=1 remain unchanged). Mathematically, we use
ΛT (({Ti}, {Ii})) = ({TTi}, {Ii}) and ΛT ({T ′

j}) = {TTj} to denote the SE(3) actions on the
input and query cameras. An equivariant network satifies

Φ(ΛT ({Ti}, {Ii}),ΛT ({T ′
j})) ≡ Φ(({Ti}, {Ii}), {T ′

j}).

Readers may recognize the above equation as describing the invariance of the network Φ to the
transformation of both input and query. In fact, it is also equivalent to the statement that the network
Φ is equivariant when viewed that it learns an implicit field. To demonstrate this equivalence, let
F (·) = Φ(({Ti}, {Ii}), ·), and define the SE(3) operator Λ′ on F : Λ′

TF ({Tj}) = F (Λ−1
T ({Tj})).

We then derive

Φ(ΛT ({Ti}, {Ii})) = Λ′
TF = Λ′

TΦ({Ti}, {Ii}),

i.e., that the network Φ is equivariant. A similar statement can be found in [6].

With input level inductive bias and representing T = (R, t), the equivariant model Φ should satisfy

Φ({f i
uv ⊕ PE(Rriuv, Rti + t)}, {PE(Rrjuv, Rtj + t)})

= Φ({f i
uv ⊕ PE(riuv, ti)}, {PE(rjuv, tj)}).

A.3 Fundamental Layers

A.3.1 Equivariant Linear Layer

With the transformation acting on the features, we can define the equivariant linear layer L:

L(R ·H(k)) = R · L(H(k)) = R ·H(k+1),
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Figure 8: Comparison between Equivariant and Non-Equivariant Linear Layers: The figure above
depicts the equivariant linear layer, wherein each type of feature is linearly combined using a specific
matrix Wl, treating the vector or tensor as a cohesive geometric entity. Conversely, the figure below
illustrates the traditional linear approach, where all channels within an intrinsic feature, as well as
different types of features, are linearly intermixed, since it vectorizes and concatenates all features
and applies a unified weight matrix

where the superscript denotes the index of layer H(k) =
⊕

l∈L Hk
l = (H

(k)
0 , H

(k)
1 , · · · , H(k)

lmax
) and

the same for H(k+1). To achieve equivariance, we use the same linear layer L as stated in [48, 52, 33]:

L((H(k)
0 , H

(k)
1 , · · · , H(k)

lmax
))

= (H
(k)
0 W0, H

(k)
1 W1, H

(k)
lmax

Wlmax).

The weights Wl have the format (C(k)
l , C

(k+1)
l ), where C

(k)
l is the number of channels in H

(k)
l ,

representing the corresponding input channels, and C
(k+1)
l is the number of channels in H

(k+1)
l ,

representing the corresponding output channels. The difference of equivariant linear layers and
conventional linear layers are depicted in Figure 8.

A.3.2 Equivariant LayerNormalization

We use the commonly used equivariant layer normalization in equivariant works that apply the layer
normalization to the norm of the features, and then multiply those with unit tensor features. The
normalization layer LN is defined as
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Figure 9: Comparison Between Equivariant and Non-Equivariant Layer Normalization: The figure
above illustrates the equivariant nonlinear layer, where layer normalization is applied to the norm of
each feature type, followed by multiplication with a unit for each feature. The figure below depicts
the traditional nonlinear layer, employing element-wise layer normalization across features, thereby
disrupting equivariance by treating each feature type as a concatenation of individual channels rather
than a unified geometric entity.

LN ((H
(k)
0 , H

(k)
1 , · · · , H(k)

lmax
))

= (ln(H
(k)
0 ), ln(∥H(k)

1 ∥) · H
(k)
1

∥H(k)
1 ∥

,

· · · , ln(∥H(k)
1 ∥) ·

H
(k)
lmax

∥H(k)
lmax

∥
),

where ln is the conventional layer normalization. The difference of equivariant layernormalization
and conventional layernormalization are depicted in Figure 9.

A.4 Spherical Harmonics

The spherical harmonics constitute a complete set of orthogonal functions, making them an orthonor-
mal basis. Any spherical function f ∈ L2(S2) can be expressed as a linear combination of these
spherical harmonics. In simpler terms, they serve as the Fourier basis for functions defined on a
sphere.

Similar to the varying frequencies of sines and cosines in Fourier series, spherical harmonics are
characterized by different degrees (orders), denoted as l ∈ N. Each degree of spherical harmonics
corresponds to a specific pattern or shape on the surface of a sphere. Higher orders (degrees) indicate
higher frequencies, resulting in more intricate and complex patterns on the sphere’s surface. To
apply spherical harmonics in three-dimensional space ( R3), we incorporate a radial component rl
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into the original spherical harmonics of the corresponding degree (order)-l. This method scales the
spherical harmonics for three-dimensional applications, extending their utility beyond the sphere S2.
This adaptation scales the spherical harmonics for applications beyond the two-dimensional sphere
surface, effectively extending their utility to three-dimensional analyses and applications. Despite this
adaptation, these functions retain their fundamental characteristics and are still referred to as spherical
harmonics. In this work, we utilize spherical harmonics, incorporating 3D Cartesian coordinates, as
positional embeddings in transformer models.

The fascinating properties of spherical harmonics make them crucial in SO(3) group representations,
allowing us to harness their power to achieve equivariance in transformers. A order-l spherical
harmonics, denoted as Y l : R3 → R2l+1, is a vector function with 2l + 1 dimension, following the
transformation rule:

Y l(Rr) = Dl(R)Y l(r),

Y l(r) = ∥r∥lY l(r̂),

where R is an arbitrary rotation, r̂ = r
∥r∥ , and Dl : SO(3) → R(2l+1)×(2l+1), is called the Wigner-D

matrix, serving as the irreducible representation of SO(3) corresponding to the order l. The Wigner-D
matrix are orthogonal matrix, i.e., Dl(R)Dl(R)T = I . To mitigate the impact of the large scaling
factor ∥r∥l, we explored alternative approaches: one involved substituting the scaling factor ∥r∥l
with Gaussian radial basis functions, expressed as e−(∥r∥−l)2 . Another approach entailed employing
Fourier sine and cosine series to represent ∥r∥, creating an invariant embedding. This embedding
was then combined with the positional encoding of the unit vector r̂ using the spherical harmonics
for sphere. However, these alternatives did not demonstrate any significant benefits over the use of
spherical harmonics adapted for three-dimensional space (R3), leading us to continue with our initial
methodology.

A.4.1 The use of Spherical Harmonics in Equivariant Transformer

We acknowledge that most equivariant transformer works Fuchs et al. [22], Liao and Smidt [33], Liao
et al. [34] also uses spherical harmonics in the transformer layers. However, the use of the spherical
harmonics is to derive the equivariant kernel basis based on the relitive position for specific geometirc
entities. For example, Fuchs et al. [22] first proposes the SE(3) equivariant transformer for point
clouds, where spherical harmonics is served as the equivariant kernel as in steerable 3D convolutions.
Equiformer[33, 34] is a graph-based architecture that leverages spherical harmonics for the edges,
using a depth-wise tensor product to embed it into the node. For this graph embedding (atom +
edge-degree) and graph attention, the use of spherical harmonics could be interpreted more as an
equivariant kernel basis. The difference here is that Equiformer uses spherical harmonics to integrate
edge information into the equivariant kernel, while ours uses spherical harmonics directly in each
token.

B Equivariance of Conventional Positional Encoding

The conventional positional encoding leveraging Fourier sine and cosine functions is translational
equivariant. When the input is translated by a translation t, the output will be transformed in a specific
way, multiplied by the representation of t, i.e., PE(x + t) = eiωteiωx for specific frequency ω in
complex format or

PE(x+ t) =

[
cos(ωt) −sin(ωt)
sin(ωt) cos(ωt)

] [
cos(ωx) −sin(ωx)
sin(ωx) cos(ωx)

]
= ρω(t)PE(x)

in matrix format.

C Equivariant Hidden Feature Format

The equivariant latent code is structured as H =
⊕

l∈L Hl = (H0, H1, · · · , Hl), with each Hl

having dimensions (2l + 1, Cl). The action of a rotation R on this latent code is depicted in Figure
10.
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Figure 10: Latent code transformation.

D Visualization of the Equivariant Latent

With the spherical harmonics, we can introduce the Fourier Transform for the sphere. The Fourier
coefficient F l of a function on the sphere, f : S2 → R, corresponding to the order l is obtained by

F l =

∫
S2
f(x)Y l(x)dx,

and the inverse Fourier Transform without normalization follows the equation:

f(x) =
∑
l

(F l)TY l(x)dx,

When we rotate the function f with any rotation R ∈ SO(3), i.e., we get a new function f ′ =
f(R−1x). The Fourier coefficients corresponding to the order l are:

F ′l =

∫
S2
f(R−1x)Y l(x)dx =

∫
S2
f(y)Y l(Ry)dy =

∫
S2
f(y)Dl(R)Y l(y)dy = Dl(R)F l,

This indicates that when a spherical function is rotated by any rotation R, its Fourier coefficients
will be multiplied by the corresponding Wigner-D matrix. Inversely, we have that when all Fourier
coefficients F l are multiplied by Wigner-D matrices Dl(R), the obtained spherical function is rotated
by R.

With such preliminary, we can treat our latent code
⊕

l∈L Hl as the Fourier coefficients, where type-l
features are the l-th order coefficients, enabling us to derive the spherical function. As a result, when
our features are transformed — with each type being multiplied by its respective Wigner-D matrix —
the spherical function undergoes a corresponding rotation.

E Equivariant Nonlinear Layer

In our proposed nonlinear layer, we first generate intermediate hidden features
⊕

l∈L H ′k
l =

(H
′(k)
1 , · · · , H ′(k)

lmax
) of the same size as the input via an equivariant linear layer. Subsequent to

this, we employ the specified nonlinearity:

A((H
(k)
0 , H

(k)
1 , · · · , H(k)

lmax
))

= (a(H
(k)
0 ), (a(⟨H(k)

1 , H
′(k)
1 ⟩)− ⟨H(k)

1 , H
′(k)
1 ⟩) · H

′(k)
1

norm(H
′(k)
1 )

+H
(k)
1 ,

· · · , (a(⟨H(k)
lmax

, H
′(k)
lmax

⟩)− ⟨H(k)
lmax

, H
′(k)
lmax

⟩) ·
H

′(k)
lmax

norm(H
′(k)
lmax

)
+H

(k)
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)
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Figure 11: Comparison of Equivariant and Non-Equivariant Nonlinear Layers: The figure above
illustrates the equivariant nonlinear layer, similar to those in vector neuron models. This layer estab-
lishes equivariant directions using an equivariant linear layer, applies nonlinearity to the projection
of the original feature in these directions, and then adds this to the orthogonal component relative
to the direction in the input. On the other hand, the figure below shows the conventional nonlinear
layer, which applies element-wise nonlinearity to the vectorized feature, thus failing to preserve
equivariance.

Here, ⟨·, ·⟩ denotes the per-channel inner product, meaning the size of ⟨H(k)
l , H

′(k)
l ⟩ is in the format

(1, C
(k)
l ). The function a represents a conventional activation operation, such as ReLU , Sigmoid,

or LeakyReLU . The symbol · indicates broadcast multiplication. This approach bears resemblance
to gated normalization [52]. However, in our model, the scalar for the “gate" is derived from the inner
product of two outputs of the equivariant linear layer, rather than being a scalar present in the hidden
features themselves. The difference of equivariant nonlinear layers and conventional nonlinear layers
are depicted in Figure 11.

F Multi-head Attention Inner Product

Given the input of the attention module formulated as
⊕

l∈L Hl, we generate query Q, key K, and
value V by equivariant linear layers. As Q, K, and V are equivariant features, they are expressed
as Qi =

⊕
l∈L(Ql)i, Kj =

⊕
l∈L(Kl)j , and Vj =

⊕
l∈L(Vl)j , where i and j are the indices of the

latents. The inner product is calculated between the equivariant key K and the equivariant query
Q, and here we describe how we use it in multi-head attention. With Nh multi-heads, we split the
features K, Q, and V into Nh heads along the channel dimension. Taking Q as an instance for clarity,
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and denoting Cl as the number of channels for type-l feature (Ql)i in Qi, Qi gets divided into various
heads (Qi)

h with h as the head index. (Qi)
h maintains the equivariant feature format, represented as

(Qi)
h =

⊕
l∈L(Ql)

h
i , with the channel count for type-l feature (Ql)

h
i being Cl

Nh
. This division also

applies to K and V . The inner product of (Qi)
h and (Kj)

h is defined as

⟨(Qi)
h, (Kj)

h⟩ =
∑
l∈L

Cl
Nh∑
c

(((Ql)
h
i )c)

T ((Kl)
h
j )c. (1)

With the defined inner product, we have the output:

(Oi)
h =

∑
j

exp(⟨(Qi)
h, (Kj)

h⟩)∑
j exp(⟨(Qi)h, (Kj)h⟩)

(Vj)
h (2)

The final output of the attention mechanism, composed in the channel dimension, can be denoted as⊕
l∈L Ol. For proof of equivariance, refer to Sec. G.

G Proof of Equivariance for Multi-Head Attention

The inner product is formulated as follows:

⟨(Qi)
h, (Kj)

h⟩ =
∑
l∈L

Cl
Nh∑
c=1

(((Ql)
h
i )c)

T ((Kl)
h
j )c.

Owing to the equivariance of the Linear Layer, when the input undergoes a rotation R, the components
Q,K, V are correspondingly transformed, denoted as R ·Q, R ·K, and R ·V . Under these conditions,
the corresponding inner product becomes:

⟨(R ·Qi)
h, (R ·Kj)

h⟩ =
∑
l∈L

Cl
Nh∑
c

((Dl(R)(Ql)
h
i )c)

T (Dl(R)(Kl)
h
j )c

=
∑
l∈L

Cl
Nh∑
c

(((Ql)
h
i )c)

TDl(R)TDl(R)((Kl)
h
j )c

=
∑
l∈L

Cl
Nh∑
c

(((Ql)
h
i )c)

T (Kl)
h
j )c

= ⟨(Qi)
h, (Kj)

h⟩,

which proves the invariance of the defined inner product. Thereby, the output becomes:

∑
j

exp(⟨(Qi)
h, (Kj)

h⟩)∑
j exp(⟨(Qi)h, (Kj)h⟩)

(R · V h
j )

=
∑
j

exp(⟨(Qi)
h, (Kj)

h⟩)∑
j exp(⟨(Qi)h, (Kj)h⟩)

⊕
l∈L

Dl(R)(Vl)
h
j

=
⊕
l∈L

Dl(R)(
∑
j

exp(⟨(Qi)
h, (Kj)

h⟩)∑
j exp(⟨(Qi)h, (Kj)h⟩)

(Vl)
h
j )

=
⊕
l∈L

Dl(R)(Ol)
h
j

= R ·Oh
j ,

which proves that the whole attention mechanism is equivariant.
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H Alternative Equivariant Attention

When it comes to attention mechanisms involving latents with different types of equivariant features,
a direct method is to use tensor product to entangle these different types, which is complicated and
computationally expensive. However, there is an alternative approach that treats the different types of
features as Fourier coefficients to obtain spherical features. By applying the conventional transformer
to these spherical features, followed by the Fourier Transform, we can retrieve different types of
equivariant features. This method offers a more efficient way to entangle and handle various types of
features within the attention mechanism. For latent features

⊕
l∈L Hl, we apply the Inverse Fourier

Transform so that:
Sl(x) = Y l(x)THl,

which implies that Sl has size (NR, Cl, NS), where NR is the number of latents and NS is the
number of samplings for the sphere. From the preliminary in appendix D, we know that when the
input features are rotated by R, the output becomes Sl(R

−1x), which means these spheres are rotated
as well. By concatenating the {Sl} on the channel dimension, we get the features after an inverse
Fourier Transform with size (NR,

∑
l Cl, NS), i.e., we have NR spheres with

∑
l Cl channels and

NS number of sampling. We can directly apply the self-attention mechanism to these spheres without
breaking equivariance, resulting in spherical features F with dimensions (NR,

∑
l Cl, NS) after the

self-attention. Finally, we apply the Fourier Transform as follows:

Hl =
∑
i

Sl(xi)Y
l(xi),

where Sl(xi) = F [:, Indl, i], with Indl representing the index of channels for spheres that correspond
to type-l features Hl and i denoting the index of the sample on the sphere. By composing different
types of features, we obtain outputs in the format

⊕
l∈L Hl. It is evident that the composition

of inverse Fourier Transform, transformer on the sphere and the Fourier Transform is equivariant,
as confirmed by the preliminary properties of the Fourier Transform in appendix D. In practice,
the computational load is increased due to the number of samples and the complexity of spherical
convolution. To address this, we can utilize icosahedron sampling and apply equivariant correlation
on the icosahedron for the linear layer in attention. Additionally, we can use standard nonlinear layers
and typical layer normalization in the self-attention mechanism.

I Averaged Global Geometric Embedding

The formula for the averaged global geometric embedding is as follows:

(
1

N

∑
i

Y 1(R1
i )⊕ Y 1(R2

i )⊕ Y 1(R3
i ),

1

N

∑
i

Y 2(R1
i )⊕ Y 2(R2

i )⊕ Y 2(R3
i ), · · · ,

1

N

∑
i

Y lmax(R1
i )⊕ Y lmax(R2

i )⊕ Y lmax(R3
i )),

where the superscript denotes the index of the column in the matrix.

J Proof of Invariant Latent and Query

Given that the predicted frame R is equivariant and the latent code
⊕

l∈L(RK)l, is also equivariant,
when the input undergoes a transformation by a rotation (R0, t0) ∈ SE(3), the frame is modified to
R0R, and the latent code transforms to R0 · RK =

⊕
l∈L Dl(R0)(RK)l. Applying the inverse of

the equivariant frame to the latent code yields:⊕
l∈L

Dl(R0R)TDl(R0)(RK)l =
⊕
l∈L

Dl(R)TDl(R0)
TDl(R0)(RK)l =

⊕
l∈L

Dl(R)T (RK)l,

demonstrating that the transformed latent code is invariant. Furthermore, when the input is subjected to
a transformation by a rotation (R0, t0) ∈ SE(3), the decoded camera j’s pose shifts to (R0Rj , R0tj+
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Figure 12: Equivariant Decoder.

t0). After subtracting the center, the pose becomes (R0Rj , R0(tj − t̄)). Applying the inverse of the
equivariant frame to the query camera pose, we arrive at:

((R0R)T (R0Rj), (R0R)T (R0(tj − t̄))) = (RTRj , R
T (tj − t̄)),

which confirms that the transformed query camera pose remains invariant.

K Alternative Equivariant Decoder

The pipeline of the equivariant decoder is show in Figure 12. The cross-attention mechanism with
equivariance processes two inputs: firstly, the resulting hidden features from self-attention, denoted
as

⊕
l∈L(RK)l with L = {0, 1, · · · , lmax}, and secondly, the positional encoding of query rays and

cameras, represented as (PE(rjuv, tj − t̄)) with spherical harmonics. In this context, rjuv signifies
the (u, v)-th ray in the j-th query camera, tj refers to the translation of the j-th query camera, and
t̄ is the pre-calculated center of the encoded cameras. The positional encoding is structured as⊕

l∈L PEl with L = {1, · · · , lmax}. Note that this encoding does not include the 0-type (invariant)
image features, in contrast to the encoded input. Hence, when generating the Q,K, V features in the
attention module, Q features do not include 0-th type features. To achieve invariant attention weights,
K features should also exclude 0-th type features, which is accomplished by setting W0 = 0 in the
equivariant linear layer. The multi-head attention mechanism adheres to the equations in Sec. F:

⟨(Qi)
h, (Kj)

h⟩ =
∑
l∈L

Cl
Nh∑
c

(((Ql)
h
i )c)

T ((Kl)
h
j )c,

(Oi)
h =

∑
j

exp(⟨(Qi)
h, (Kj)

h⟩)∑
j exp(⟨(Qi)h, (Kj)h⟩)

(Vj)
h,

where L = {1, 2, · · · , lmax}, and (Vj)
h conforms to the

⊕
l∈{0,1,··· ,lmax}(Vl)

h
j format. The output

O is derived as
⊕

l∈{0,1,··· ,lmax} Ol.

Since the final prediction value is unchanged when the reference frame is transformed, it is character-
ized as an invariant type-0 (scalar) feature. To extract the invariant features for prediction, we utilize
an “invariant layer", as depicted in Figure 13. In this process, we initially generate two intermediate
features, H ′ and H ′′, of the same size. Subsequently, for each type-l, we perform an inner product
operation between H ′

l and H ′′
l , which results in invariant features Il, each with a channel count of Cl.

By concatenating these invariant features {Il}, we formulate final invariant features O′
0 = I with a

combined channel count of
∑

l Cl, which is then utilized for the final prediction.
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Figure 13: Invariant Layer

Task Input Transformation Pos. Encoding Feature Embedding Query Prediction

Novel View Synthesis Image + Camera SE(3) SPH Image embedding camera pose RGB
Neural Volume Rendering Image + Camera SE(3) SPH Image embedding point+ray dir σ, RGB
Pose Estimation Image + Camera SE(3) SPH Image embedding image (Inv) R, t
Implicit Field for PC Point SE(3) SPH Point embedding/- point Field value
2D Dense Prediction Image + Pixel SE(2) Trig SO(2)-equi feature pixel Field value
Table 4: Different tasks and their corresponding geometric information in Equivariant Perceiver IO

L Network Architecture and Implementation Details

Regarding architecture, we use a ResNet18 as the visual backbone, resulting in 960-dimensional
features. The order of spherical harmonics is [1,2,4,8], resulting in (3+5+9+17)*2 = 68-dimensional
features. For encoding, visual and geometric features are concatenated to produce 960 + 68 =
1028-dimensional embeddings. For decoding, we use the same Fourier encoding as the standard
Perceiver IO, resulting in 186-dimensional embeddings. Our original latent representation R is of
dimensionality 1024 x 512. We set the number of channels for each type of the equivariant hidden
feature as [512, 64,32, 8]. In the Perceiver IO implementation, we have 1 block of cross-attention
with 1 head, 8 self-attention layers with 8 heads, and 1 cross-attention with 1 head for a decoder.

Our DeFiNe baseline has 73M parameters, and our EPIO implementation has 147M parameters.
This increase is due to: additional parameters for the global geometric latent code as shown in Figure
5; inference for frame prediction as shown in Figure 2; and additional parameters for type-2, type-3,
and type-4 features, where we set the channel numbers as 64, 32, and 8 respectively. Regarding
runtime, we observed an increase of roughly 2x in training iteration times and 1.5x in per-pixel
queries during inference. However, we would like to note that our approach converges in roughly
15%. Training and evaluation was conducted using distributed training (DDP) on 8 A100 GPUs, with
80 GB each.

Regarding experiments, we used Pytorch to implement our Equivariant Perceiver IO and will open-
source our code and pre-trained weights upon acceptance. We used a batch size of 192, the AdamW
optimizer with β = 0.9, and β2 = 0.999, weight decay of 10−4, and an initial learning rate lr at
2× 10−4. . For ScanNet, the training duration was 200 epochs, with the learning rate being reduced
by half every 80 epochs; For DeMon datasets, the training duration was 200 epochs, with the learning
rate being reduced by half every 80 epochs. We used the same losses as DeFiNe, i.e., the L1-log loss,
with a weight of 1.0 for real views and 0.2 for virtual views. Following standard practice, we used
images of size 128x192 for ScanNet, and images of size 240x320 for DeMoN, using two images as
input, with corresponding intrinsics and extrinsics, and ground-truth depth maps as supervision (see
Section 3.1). This is the standard training and evaluation protocol and was used by our baselines as
well, ensuring a fair comparison.

M Extended Discussion for General Tasks of Equivariant Periceiver IO

Our model, designed as a general architecture, is adaptable to various tasks. This paper focuses on
demonstrating the advantages of integrating equivariance into Perceiver IO for scene representation,
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Figure 14: Qualitative Results

primarily evaluated through depth estimation, a core problem in vision. While implementing our
model for other tasks is beyond this paper’s scope, we provide a brief overview of its potential
extensions to different applications, as shown in table 4.

N More Qualitative Results for Depth Estimation

Please see Figure 14 for more qualitative results.

O More Experiments

O.1 Comparison with Current Prevalent Depth Estimation Model

We have evaluated DepthAnything on the same ScanNet stereo benchmark we report results as shown
in Table5. we can confidently say that our method outperforms DepthAnything on this benchmark.
However, we would like to emphasize that these are not meaningful comparisons. DepthAnything
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Models Abs.Rel.↓ RMSE↓ δ < 1.25 ↑
Depth anything 0.099 0.226 0.903

Ours 0.076 0.217 0.934
Table 5: Comparison of our model and Depth Anything

2 views 3 views 4 views

DeFiNe 0.324 0.315 0.307
Ours 0.215 0.209 0.198

Table 6: Novel View Depth Estimation across a varying number of views.

is a monocular depth estimation network that outputs affine-invariant predictions, while ours is a
multi-view depth estimation network that outputs metric predictions. Hence, to achieve the reported
DepthAnything numbers, we had to artificially shift and scale predictions using ground-truth depth
maps (the same thing is done in their paper). We also could not use the second image as input to
DepthAnything, since it is a monocular network, while our method can leverage multiple images
as input by design (and even benefits from that during training via the virtual camera augmentation
procedure).

O.2 Varying views

We performed additional small-scale experiments to study the impact of the number of available
views. In this setting, we have 500 views of one scene, and we randomly choose N encoding views
and 1 different decoding camera viewpoint for novel depth estimation.

For DeFiNe, we train with jittering augmentation on the reference frames and test with augmentation
as well. For our model, we train without jittering augmentation and also test with augmentation. We
explored 2, 3, and 4 views, and the Abs. Rel. depth estimation results are reported in Tab. 6

As we can see, our method consistently surpasses DeFiNe across a varying number of views, even
without employing augmentation during training, with the performance gap remaining similar across
different view counts.

P Impact Statements

This work aims to advance 3D effective learning, with an application in 3D reconstruction. While the
direct outcome of our research may not have immediate societal implications, the broader application
of 3D reconstruction technologies could have some impact. A primary concern is the potential
for privacy violations, particularly in scenarios where 3D reconstruction is used to create detailed
representations of real-world environments or individuals without their consent. Such applications
could lead to unauthorized surveillance or data collection, posing ethical and privacy challenges that
need to be addressed as this technology advances and becomes more accessible.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We don’t include propositions or theorems in the paper, but we provide the
proofs in the appendix for the statement in the paper for soundness. We provide proof of
multi-head attention, invariant latent and query in Appendix. G and Appendix. J.
Guidelines:

• The answer NA means that the paper does our architecture is not limited to specific
geometric entities. Safin et al.not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide network architecture and implementation details in Appendix L.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release the code soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the training and test details in Section. 4.1 and Appendix. L.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: It was not possible to train independent models enough times to produce
enough samples for a statistical analysis. We provide ablations showing the improvements
generated by our contributions (all starting from the same random seed), and comparisons
to state-of-the-art baselines (which also do not report error bars).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the detials of compute resources in the Appendix. L.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix. P.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original papers that produce the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines: The paper does not release new assets.

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines: The paper does not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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