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Abstract

Large Language Models (LLMs) have shown remarkable progress across do-
mains, yet their ability to perform inductive reasoning—inferring latent rules from
sparse examples—remains limited. It is often assumed that chain-of-thought (CoT)
prompting, as used in Large Reasoning Models (LRMs), enhances such reasoning.
We investigate this assumption with creating four controlled, diagnostic game-based
tasks—chess, Texas Hold’em, dice games, and blackjack—with hidden human-
defined rules. We find that CoT reasoning can degrade inductive performance, with
LRM:s often underperforming their non-reasoning counterparts.

To explain this, we present a theoretical framework that reveals how reasoning steps
can amplify error through three failure modes: incorrect sub-task decomposition,
incorrect sub-task solving, and incorrect final answer summarization. Based on
our theoretical and empirical analysis, we introduce structured interventions that
adapt CoT generation according to our identified failure types. These interventions
improve inductive accuracy without retraining. Our findings suggest that effective
(CoT) reasoning depends not only on taking more steps but also on ensuring those
steps are well-structured.

1 Introduction

Inductive reasoning—inferring latent rules from sparse examples—is a key capability underlying
generalization. While Large Language Models (LLMs) [[1, 2] have made significant advances, they
continue to struggle in tasks that require structured inference under uncertainty [3]. These models
often rely on surface-level pattern recognition and static prompt formats [4]], making them brittle
when confronted with novel or structurally complex problems [5].

To address this limitation, recent models incorporate explicit reasoning mechanisms—particularly
chain-of-thought (CoT) prompting [6]—to enable multi-step inference. These Large Reasoning
Models (LRMs) [7, 18] have shown improved performance in coding, logical inference, and scientific
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tasks [9,[10], and CoT has been widely adopted under the assumption that structured reasoning en-
hances inductive performance [[11,[12}[13]]. However, emerging evidence complicates this assumption:
Wau et al. [14] observe that longer reasoning traces can degrade accuracy, suggesting a non-monotonic
relationship between reasoning depth and performance.
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Figure 1: Examples illustrating inductive reasoning on gameplay transcripts. (a) Games begin with
both Normal and hidden Special Rules, requiring models to infer latent constraints from observed
plays. (b) LLMs can induce rules like card legality and win conditions without explicit guidance,
but LRMs such as GPT-03 may underperform due to misaligned or noisy reasoning. (c) Reasoning
improves when guided at the decomposition, solving, and summarization stages.

In this work, we investigate the inductive performance of LLMs and LRMs (Fig. [I). We introduce a
set of controlled diagnostic game-based tasks to isolate inductive reasoning behavior in LLMs. In
each task, models are presented with a short transcript of gameplay—without access to the underlying
rules—and must infer the latent constraints governing legal moves and outcomes. Surprisingly, we
find that LRMs often underperform non-reasoning LLMs in these settings, suggesting that CoT
reasoning may introduce noise rather than clarity. We also develop a theoretical framework that
explains this degradation.

Our work address the following questions: RQ1: How well do LLMs perform on inductive reasoning
tasks, and has this improved with recent models? (Section[3) RQ2: Why does reasoning sometimes
fail—or even hurt—inductive performance? (Section 4) RQ3: How can we guide reasoning to
enhance inductive accuracy without model retraining? (Section [5)

Along answer these RQs, we have made the following contributions.

* We construct four controlled diagnostic game-based tasks with hidden human-defined rules to
evaluate the inductive reasoning abilities of eight leading LLMs, including both non-reasoning
models and LRMs.

* We provide a theoretical and empirical analysis identifying three failure modes that explain degraded
reasoning: incorrect sub-task decomposition, incorrect sub-task solving, and incorrect final answer
summarization.

* We propose an error-guided intervention method that adapts CoT generation based on predicted
failure types, yielding consistent improvements in inductive accuracy without retraining.

2 Related Work

Chain-of-Thought Reasoning. Large language models can perform complex tasks more effectively
when guided through intermediate reasoning steps, a process known as chain-of-thought (CoT)
prompting [6]. Much recent work has aimed to strengthen CoT-based reasoning through better
decomposition, exploration, or decision-making strategies. Zhou et al. [11]] introduce least-to-most
prompting, which breaks problems into simpler subproblems and solves them sequentially to support
easy-to-hard generalization. Yao et al. [[12] propose Tree of Thoughts, enabling multi-path exploration
with backtracking and self-evaluation. Meng et al. [[13] introduce a Divide-and-Conquer strategy that
improves performance by segmenting input into reasoning chunks, and Zhang et al. [[15] evaluate when
such strategies yield consistent gains. While these methods aim to enhance reasoning capabilities,
they largely assume that reasoning depth is beneficial and do not investigate when CoT may fail.

Mechanisms Behind CoT Reasoning. Several studies seek to formalize the mechanisms underlying
CoT prompting. Feng et al. [16] use circuit complexity to show that constant-size models can



simulate deeper computation via CoT derivations. Li et al. [17] explain CoT’s benefits in decoder-
only Transformers via sequential computation theory, and Cui et al. [18]] show that Coherent CoT
improves error correction over stepwise prompting but increases sensitivity to intermediate-step
failures. Ton et al. [19] apply information theory to quantify stepwise information gain, and Li
et al. [20] analyze fast vs. slow thinking during post-training. Ye et al. [21]] investigate CoT in a
controlled math setting, while Wu et al. [14]] demonstrate that performance may peak and then decline
with longer reasoning traces, hinting at an optimal CoT length. However, while these works identify
performance degradation empirically, they stop short of explaining why it arises. Our work builds on
these insights by offering a formal theory of reasoning failure.

Inductive reasoning. Inductive reasoning [22]] is a core component of human intelligence, enabling
rule generalization from examples without prior knowledge. As LLMs reach human-level perfor-
mance, many benchmarks have been developed to assess this ability. Banatt et al. [23]] propose WILT,
a logic induction benchmark where models infer Boolean rules through trial-and-error queries. Li et
al. [24] design MIRAGE, a suite of synthetic analogy tasks that test pattern-based generalization.
Ma et al. [25] introduce KoR-Bench, which emphasizes rule application across logic puzzles, ciphers,
and counterfactual reasoning. Xiao et al. [260] present LogicVista, focusing on visual-spatial rule
inference via figure completion tasks. Xu et al. [27] develop LLM-Script, where models must induce
latent functional patterns from input—output examples. Yan et al. [28] introduce MIR-Bench, the
first benchmark for many-shot inductive reasoning, where models must induce latent functions from
diverse input—output exemplars presented in long-context settings.

Key Differences. Existing benchmarks are typically static, using simplified symbolic or visual
inputs to test whether models can apply hidden rules to new examples. In contrast, our game-based
setup asks models to infer the rule itself from minimal gameplay context, without a separate testing
phase. This more closely mirrors human induction, which relies on observing outcomes and forming
hypotheses rather than answering predefined queries.

3 Inductive Reasoning Evaluation via Gameplay Tasks

To investigate how well LLMs perform in inductive reasoning tasks (RQ1), we introduce four
different types of controlled diagnostic game-based tasks designed to challenge and measure their
inductive ability to infer hidden rules from gameplay transcripts. These games span a diverse range
of domains, including chess, Texas Hold’em, dice games, and blackjack. Each game consists of two
rule components: a normal rule component (abbreviated as “NR”) that mirrors standard gameplay
conventions, and a special rule component (abbreviated as “SR”) that introduces manually designed
hidden constraints. Together, these components form a composite logic that governs legality, winning
conditions, or valid moves. Crucially, these rules are not revealed to the models; instead, the models
are presented with a few legal gameplay examples and are required to induce the underlying rules
through observation.

3.1 Game Setup

Models. We evaluate eight language models, including four non-reasoning LLMs—GPT-
40 (gpt-40-2024-08-06) [1]], DeepSeek-V3 (deepseek-v3-2025-03-25) [29], Qwen2.5-Max
(qwen-max-2025-01-25) [30], and Grok-2 (grok-2-1212) [31]—as well as four LRMs: GPT-03
(03-2025-04-16), DeepSeek-R1 (deepseek-r1-32b) [7], QwQ (QwQ-32B) [32], and Grok-3-Mini
(grok-3-mini-beta) [33]. We run DeepSeek-R1 and QwQ locally to enable collection of interme-
diate reasoning traces for deeper analysis in RQ2, while the remaining models are accessed via their
respective APIs.

Implementation Details. To evaluate each model’s inductive performance across rule types, we
frame the task as a semantic alignment problem—determining whether the model’s induced rule
captures the same logic as the ground-truth. This formulation is supported by recent work showing
that large language models can reliably perform semantic evaluation and alignment tasks [34]]. We
therefore use GPT-40 (gpt-40-2024-08-06)[1] as a reference judge. For each case, GPT-4o0 is
queried three times to independently assess whether the induced rule is consistent with the ground-
truth, and a majority vote is used to finalize the decision. Rule-level accuracy is computed as the
proportion of cases judged as consistent. Representative examples are provided in Appendix [A.T] and
the prompt for GPT-4o is provided in Appendix



3.2 Rule Design

We evaluate inductive reasoning in LLMs using four game-based tasks: chess, Texas Hold’em, dice
games, and blackjack. Each task presents models with gameplay transcripts governed by two types of
rules: normal (NRs) and special (SRs). The model must infer these rules purely from observation.

Case Study: Chess. We use chess as a detailed example due to its well-defined rules and spatial
structure. In each game instance, we define eight types of pieces, each assigned one rule: either
from a pool of normal rules (NRs) or special rules (SRs). Normal rules are based on standard chess
movements, such as moving one square in any direction or diagonally across the board. Special rules
are designed to be legal but non-obvious, introducing hidden constraints that models must discover
from context. For example, a piece may be assigned a rule like “move in a straight line any number
of squares, then shift diagonally by one square.” This rule differs subtly from standard movement and
cannot be inferred from a single move.

Models are never given any rule descriptions—they are shown short gameplay transcripts (typically
10-12 moves) and asked to determine what rules govern the movements. We randomize the board size
(ranging from 8 to 15), shuffle rule assignments across games, and ensure each piece appears at least
three times per episode. We construct 225 distinct transcripts by enumerating all combinations of
four NRs and four SRs across the six available options. This design provides a broad set of inductive
scenarios with controlled structure and consistent constraints. Full rules and prompt formats are in

Appendix [B]and

Other Games. We include three additional games to cover a broader range of inductive reasoning
scenarios, each characterized by distinct rule structures and abstraction types. Full rule specifications
for all games are provided in Appendix B}

» Texas Hold’em: Tests symbolic ranking under hidden structure. While normal rules follow
standard poker hand rankings, SRs redefine hand strength using patterns like “five consecutive
prime numbers”.

* Dice Games: Adapted from Sic Bo to assess reasoning in noisy environments. NRs involve numeric
thresholds (e.g., small vs. large totals), while SRs introduce subtle structural overrides—e.g., “a
triple of prime numbers beats all other hands”.

* Blackjack: Focuses on threshold logic with rule exceptions. NRs include standard conditions
like “busts lose” and “21 wins,” while SRs add constraints such as “hands with three-card straight
flushes win automatically”.

3.3 Inductive Abilities Analysis

Fig. 2] shows rule-wise inductive accuracy across eight models in four games. Although designed to
enhance multi-step reasoning, models with reasoning capabilities consistently perform worse than
their non-reasoning counterparts on special rules—a pattern observed across all domains.

On normal rules, most models exceed 90% accuracy, indicating strong pattern recognition when
the rule is surface-aligned or structurally obvious. In contrast, performance on special rules drops
significantly. For example, in chess, non-reasoning models like GPT-40 and DeepSeek-V3 reach
55-65% on SR1, while their reasoning counterparts fall below 25%. Similar gaps appear in Texas
Hold’em, Dice, and Blackjack (Fig.[2). Additional comparison results can be found in Appendix [E]

These results show that reasoning models struggle more with exception-based or hidden rules.
This suggests that their multi-step traces may not help—and can introduce incorrect assumptions
or misleading intermediate steps. We examine this hypothesis in detail in RQ2 by analyzing the
reasoning outputs directly.

RQ1: How well do LLMs perform on inductive reasoning tasks, and has this improved
with recent models?

Answer: Non-reasoning LLMs consistently outperform reasoning-enabled models on induc-
tive tasks with hidden rules, showing that recent reasoning strategies degrade performance on
abstraction beyond surface patterns.
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Figure 2: Inductive accuracy on normal rules (NRs) and special rules (SRs) across four games.
Each bar shows rule-wise inductive performance for eight LLMs. While most models achieve high
accuracy on NRs, reasoning models (lighter bars) consistently underperform non-reasoning models
(darker bars) on SRs, indicating that current reasoning may hurt inductive abilities on hidden rules.

4 Root Causes of Reasoning Failures

To understand why reasoning sometimes fails to improve—and in some cases even harms—the
inductive performance of LRMs (RQ2), we conduct both theoretical and empirical analyses to
identify the root causes of these failures.

4.1 Theoretical Analysis of Reasoning Errors

To explain why reasoning can fail, we present a theoretical framework that models chain-of-thought
reasoning as a sequence of discrete operations: posing a sub-task, solving it, and summarizing the
final answer. Each step k € N is associated with a reasoning state:

x {NEEDQ, NEEDA, FINISH}, 1)

reasoning mode

xp = (myg, k) € R?

belief state

where my, denotes the model’s current belief about the correct answer y* € RY, and sy, tracks the
stage of reasoning. Detailed mode semantics are provided in Appendix [C}

Evidence model. The model does not observe the true target y* directly. Instead, at each reasoning
step k, it receives an indirect evidence vector gi based on its attempted sub-task resolution. We
assume the evidence signal follows:

gk = op(y* —me—1) +ex,  ern ~N(0,0%14) ()
with the following interpretation:

* Task alignment (). The scalar o, € [—1, 1] represents how well the current sub-task focuses on
the relevant latent structure. This captures an observed behavior in LLM reasoning: incorrect or
ambiguous intermediate questions can derail downstream answers by misdirecting attention [17,21]].
Negative alignment (ay, < 0) corresponds to misleading questions—such as proposing irrelevant
concepts—which have been shown to increase failure rates in multi-hop reasoning [35}36]. The
scalar form abstracts this variable attention quality while keeping the model analytically tractable.

* Answer noise (¢1). The residual £;, models stochastic variation in sub-task resolution, including
token sampling noise, hallucinations, and unstable decoding paths. Prior work has empirically
shown that even when CoT traces are well-posed, decoding introduces variability that degrades
reliability [37) 38]].

Belief update and error propagation. At each reasoning step, the model updates its internal belief
by integrating a new evidence signal:

Mg = Mg_1 + VrGk, 3)



where m;, € R? denotes the model’s current belief about the target solution y*, and 7 € (0,1) is a
step-size scalar that controls how much the new evidence shifts the belief. This form is justified by
two observations.

* Incremental refinement. Empirical analyses show that LLMs often revise answers through local
adjustments rather than full restatements [37]]. The additive form captures this bounded update
behavior, consistent with chain-of-thought reasoning where successive steps refine a hypothesis
instead of discarding prior context.

* Step-size heterogeneity. The weight v, reflects the model’s implicit confidence, leading to varying
step sizes [39| 140], as reasoning trajectories should not integrate all steps equally.

Subtracting y* from both sides, we define the belief error e}, := m; — y* and obtain the recursion:

er = (1 — ypak)er—1 — Y€k, 4

Emergence of reasoning errors. Eq. (@) helps us to decompose the error into three error components:

(1) Incorrect sub-task decomposition (Breakdown Error, o). Breakdown errors directly corre-
spond to poor question alignment (a; = 0) or negative alignment (o, < 0). In such scenarios, the
coefficient (1 — i) magnifies or maintains the previous error magnitude ||ex—_1||, thus preventing
error reduction or even causing divergence. (Detailed analysis can be found in Appendix[F])

(2) Incorrect sub-task solving (Solving Error, €;). Even under optimal question alignment (o ~ 1),
the inherent answer-generation noise ¢, introduces stochastic deviations at each reasoning step.
(Detailed analysis can be found in Appendix [F})

(3) Incorrect final answer summarization (Summary Error). The third class of reasoning error
arises from deciding when to stop the reasoning process and commit to a final answer. This halting
decision determines the total number of reasoning steps N, which directly affects the model’s
prediction y := my. We analyze the resulting prediction error by computing the expected squared
deviation from the true target y* € R?. Let ey := my — y* denote the final error. Then the expected
error is given by:

N N N
EN) =Ellen|* =bo [J(1 —=via)* +0>Y 7 [ (1 —v@)* +AW) Q)
i=1 i=1  j=it1
where by = ||mo — y*||? is the initial squared error, v; € (0, 1) is the integration weight at step i,

and @ := E[ay] is the expected question alignment. The product terms reflect accumulated error
contraction across steps, and A(N) > 0 accounts for additional variance due to misalignment
variability. A full derivation of Eq. (3)) is provided in Appendix [G}

Theorem 4.1 (Optimal Reasoning Length Exists). Let the expected mean-squared error after N
Answer defined in Eq[3] Then:

1. E(N) is strictly decreasing for N < N* and strictly increasing for N > N*, with

N* := min{N > 0: E(N+1) > E(N)};

2. the minimiser N* is unique. Consequently, E(N) is U-shaped when plotted against reason-
ing depth N.

Proofs can be found in Appendix [G.4} The structure of Eq[5|can be intuitively interpreted to reveal
a fundamental bias—variance trade-off. The first term shrinks as IV increases: repeated evidence
integration reduces the bias. However, both the second term (arising from answer-generation noise)
and the third term (from stochastic question quality) grow with N, reflecting variance accumulation.
This competition creates a non-monotonic curve in £(N): at small depths, additional reasoning
reduces error, but beyond a critical point, further reasoning begins to increase it. Reasoning that
terminates at any depth N # N* incurs additional error due to either under- or over-reasoning. We
refer to this deviation as the Summary Error—a global error that arises not from a single misstep, but
from a misjudged stopping point over an otherwise well-structured reasoning trajectory.



4.2 Theoretical Guidance for Intervention Design

In this section, we present additional theoretical results that clarify the structure of each component,
which serves the foundation of mitigation methods that discussed in Section[5] Full derivations are
provided in Appendix [G]

Controlling sub-task decomposition error («y). The alignment scalar o, determines how well the
posed sub-question targets the true residual error. Positive values (o, > 0) reduce bias; negative
values (o, < 0) increase it exponentially with reasoning depth. Lemma [G.7] establishes that any
improvement in alignment («y 7) strictly reduces error, while misaligned reasoning (a < 0)
guarantees divergence. This motivates interventions that eliminate unconstrained question posing,
that we will discuss in Section

Controlling sub-task solving error (¢;). The noise term £; models stochastic variation in answer
generation, which is scaled by the belief integration weight v, making ~y; a critical amplifier of
solving error. Lemma formalizes this relationship: while alignment (o) always improves
performance, there exists an optimal ;; that balances the benefit of information integration against
the risk of over-amplifying noise. This interaction motivates our intervention at the solving phase.
We will reduce effective variance o2 by anchoring the model’s outputs to structurally valid reasoning
traces in Section

Controlling summarization error (global stopping rule). Reasoning must terminate at some depth
N, at which point the model commits to its final prediction . Theorem [{.T|proves that expected
squared error £(N) is U-shaped in N, with a unique optimum N*. In addition, Lemmaprovides a
closed-form solution for N* in the constant-v case, offering theoretical guidance on setting reasoning
length. Accordingly, we constrain model outputs via a fixed token budget to discourage excessively
long traces and nudges reasoning toward near-optimal depths in Section 5]

4.3 Empirical Analysis of Reasoning Errors

We empirically validate the theoretical taxonomy introduced in Sectiond.1] which identifies three
primary sources of reasoning failure: (1) Incorrect Sub-task Decomposition (Breakdown Error)
arising from incorrect sub-task decomposition, (2) Incorrect Sub-task Solving (Solving Error)
caused by noise in sub-task resolution, and (3) Incorrect Final Answer Summarization (Summary
Error) resulting from premature or excessive reasoning steps. These failure modes are grounded
in the dynamics of the belief update equation (@), where errors propagate via suboptimal alignment
(a), additive noise (), and misjudged stopping time N.

Among these, Solving Error dominates across all models and tasks, accounting for over 80% of
failure cases. While theoretically modeled as additive noise, solving failures often exhibit structured
patterns in practice. Based on prior analyses of LLM reasoning drift Based on consistent error
patterns we observed in over 100 failed reasoning traces across multiple tasks and models, we classify
these errors into three observable subtypes: (1) Math Overuse, where models inappropriately apply
arithmetic operations to symbolic inputs (e.g., card suits or chess pieces); (2) Overgeneralization,
where rules are inferred from few examples without proper validation; and (3) Hallucinated Rules,
where fabricated constraints are introduced without support from input observations. Representative
examples for each are provided in Appendix [l

Breakdown Errors are less frequent but still consequential, especially in structurally complex games
like Texas Hold’em. These correspond to misaligned sub-task decomposition, where the model fixates
on irrelevant features or ignores core inductive structure. Summary Errors are the least frequent and
occur when models produce overly long or overly short reasoning chains, diverging from the optimal
depth N* identified in Theorem[4.1]

To ensure reliability, each failure trace was independently reviewed by two annotators using shared
labeling criteria (Detailed in Appendix [K)). While some interpretation was involved—as is typical
in reasoning error analysis—agreement was high, and disagreements were resolved collaboratively.
Rather than impose rigid boundaries, we aim to capture recurring, interpretable failure patterns ob-
served consistently across models and games. Table[I|summarizes the distribution, and Appendix [H] [T}
and [J] provides representative examples for each error type.

Three key observations emerge: First, Solving Errors dominate, accounting for over 80% of failures
in most settings. This aligns with our theoretical model, where errors introduced during sub-task



Table 1: Error rate analysis across different games and models

Error Rate (count / total)

G Model i
ames odels Breakdown Solving

- = Summary
Hallucinated Rule Overgeneralization ~Math Overuse

DeepSeek-R1 5.8% (64/1109) 17.2% (191/1109) 22.3% (247/1109) 47.4% (526/1109) 7.3% (81/1109)
Chess QwQ 4.3% (52/1217) 16.5% (201/1217) 26.1% (318/1217) 52.1% (634/1217) 1.0% (12/1217)
Grok3 4.1% (55/1333) 14.5% (193/1333) 24.5% (327/1333) 50.7% (676/1333) 6.2% (82/1333)

DeepSeek-R1 9.3% (14/151)  15.9% (24/151)  11.9% (18/151)  58.9% (89/151)  4.0% (6/151)

Texas Hold’em QwQ 14.0% (21/150)  15.3% (23/150)  22.0% (33/150)  42.7% (64/150)  6.0% (9/150)
Grok3 13.2% (19/144) 26.4% (38/144)  12.5% (18/144)  40.3% (58/144) 7.6% (11/144)

DeepSeek-R1  5.7% (3/53) 11.3% (6/53) 20.8% (11/53) 60.4% (32/53) 1.9% (1/53)

Dice games QwQ 10.3% (4/39) 12.8% (5/39) 23.1% (9/39) 48.7% (19/39) 5.1% (2/39)
Grok3 3.4% (2/59) 18.6% (11/59) 10.2% (6/59) 61.0% (36/59) 6.8% (4/59)

DeepSeek-R1  6.7% (4/60) 21.7% (13/60) 13.3% (8/60) 53.3% (32/60) 5.0% (3/60)

Blackjack QwQ 8.6% (6/70) 20.0% (14/70) 28.6% (20/70) 40.0% (28/70) 2.9% (2/70)
Grok3 8.2% (5/61) 18.0% (11/61) 19.7% (12/61) 47.5% (29/61) 6.6% (4/61)

resolution (g(,) propagate through the reasoning chain. Second, within Solving Errors, Math Overuse
consistently ranks highest. For example, it accounts for 60.4% of all failures in Dice Games
(DeepSeek-R1) and 53.3% in Blackjack. This suggests a recurring bias where models incorrectly
apply arithmetic operations to symbolic domains—e.g., treating card suits or piece positions as
numeric inputs. Notably, this pattern holds across structurally diverse tasks and models, indicating
a deeper inductive misalignment rather than task-specific noise. Third, Breakdown Errors peak
in Texas Hold’em (up to 14.0%), reflecting its higher structural complexity. In contrast, Summary
Errors remain rare across the board (<8%), implying that most failures arise during solving rather
than early decomposition or final summarization. Together, these results indicate that reasoning fails
not from lack of logical capacity, but because early inductive errors—especially Math Overuse—are
preserved and propagated across multi-step reasoning chains.

RQ2: Why does reasoning sometimes fail to improve inductive performance in large
language models?

Answer. Reasoning propagates error: when sub-task decomposition is misaligned, or solving
introduces noise, each reasoning step compounds the mistake. Such failures dominate in
practice, making deeper reasoning harmful unless each step is reliable.

S Improving CoT Reasoning

5.1 Intervention Design

Building on our theoretical framework, we design interventions that directly target each of the three
failure modes: incorrect sub-task decomposition, sub-task solving noise, and overextended reasoning.
The Appendix [[]shows the detailed prompts for each intervention.

Sub-task decomposition. To address Breakdown Error associated with misaligned sub-task for-
mulation (o, = 0), we replace free-form reasoning with structured decomposition templates. Each
template explicitly separates the reasoning into three phases: (i) identifying relevant entities in the
input (e.g., cards, pieces, or dice), (ii) inducing candidate rules based on observed patterns, and
(iii) verifying whether new cases satisfy those rules. This design constrains model output to stay
within task-relevant abstractions and improves alignment between sub-questions and the global task
objective. Prior work has shown that semantically aligned decompositions improve reliability in
multi-step reasoning [[11]].

Sub-task solving. Solving Error arises when models introduce stochastic variation (gx) even under
good decomposition. The most frequent subtype is Math Overuse, where models impose numeric
operations onto symbolic inputs. To mitigate this, we follow Kuo et al. [41] and guide solving
with worked examples that avoid numeric extrapolation. These examples anchor model behavior to
structurally relevant patterns, reducing variance and discouraging inappropriate generalization.



Answer summarization. Summary Error occurs when reasoning continues past the optimal step
count N*, causing error accumulation from unnecessary updates. We adopt recent ideas from efficient
reasoning [42, 43| and impose a strict token budget of 1000 tokens per instance. This constraint
limits excessive generation and encourages early commitment to accurate conclusions.

Combined intervention. Each intervention targets a distinct error component, but failure modes often
co-occur. We therefore evaluate the combined setting, which integrates decomposition templates,
solving-phase examples, and summarization constraints to stabilize the entire reasoning traces.

5.2 Results and Analysis

We evaluate the improving of performance guided by our intervention strategies across all four games,
measuring rule-level induction accuracy under each condition. The results can be found in Fig.
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Figure 3: Inductive rule accuracy across different intervention strategies and models for each game
domain. Each subfigure corresponds to one game; bars show average rule-wise accuracy under
different reasoning-stage interventions. Across all domains, combined intervention (rightmost
bars) achieves the highest performance, especially on special rules (SRs), indicating that structured
decomposition, guided solving, and summarization control jointly enhance inductive abilities.

We observe consistent improvements under the combined intervention setting, especially on SRs,
which involve higher inductive complexity. In most cases, combined intervention leads to clearly
higher SR accuracy than any individual strategy. For example, in Chess and Dice, SR1-SR3 accuracy
increases by 20—40% when guided chain-of-thought is applied, suggesting that multiple types of
reasoning failures often co-occur and need to be addressed together. Compared to non-reasoning
models, the combined intervention also achieves higher accuracy on both SRs and NRs across
most games, indicating that improvements come from better reasoning structure rather than longer
reasoning steps. Among individual strategies, sub-task decomposition is most helpful in structurally
rich games like Chess and Blackjack, while solving-stage guidance contributes more in symbol-heavy
domains such as Dice and Texas Hold’em. Summarization control provides moderate improvements
across all tasks by reducing over-generation in the final answer stage. Performance on NR rules
remains saturated under all settings, confirming that gains on SRs are not a result of trade-offs with
simpler rules. However, we also observe that combined intervention does not always outperform the
best individual strategy. In some cases, interactions between decomposition and solving stages may
limit overall effectiveness, highlighting the difficulty of coordinating multiple reasoning processes.
Detailed results for interventions are provided in Appendix and we further discuss how these
interventions may generalize to more common reasoning problems in Appendix [M.2]

RQ3: How can we improve the inductive performance of reasoning-enabled LLMs?
Answer. Inductive performance improves when reasoning is constrained. We achieve consis-
tent gains by (i) enforcing structured decomposition, (ii) guiding solving with non-numeric
examples, and (iii) limiting over-generation through token budgets. Combined, these interven-
tions reduce error amplification across all reasoning phases.




6 Conclusion

In this paper, we investigate the inductive abilities of large language models through four designed
games. Our analysis reveals that, contrary to expectations, reasoning—particularly in LRMs—does
not always help; when poorly structured, it can even harm performance by introducing irrelevant
or misleading chains of thought. We theoretically identify three core types of reasoning failure
and empirically verify them through human evaluation of model-generated traces. To address
these issues, we introduce targeted interventions at the decomposition, solving, and summarization
stages. Experimental results show that each intervention independently improves inductive accuracy,
confirming the importance of structured, well-controlled reasoning.
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The answer NA means that the paper does not include theoretical results.
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of the paper (regardless of whether the code and data are provided or not)?
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Justification: See the implementation details in Section [3]and Appendix.
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nature of the contribution. For example
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reproduce that algorithm.
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the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
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some path to reproducing or verifying the results.

. Open access to data and code
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See the Section[3l
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We repeated experiments and reported the average result.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
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report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
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* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See the Section[3]
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We make sure to remain anonymous.
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See the Section[3l

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
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Answer: [Yes]
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* The authors should state which version of the asset is used and, if possible, include a URL.

¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

» For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide our code and our dataset.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.
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14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the Neur[PS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The LLMs are the testing object of our paper.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Details for Judging
A.1 Examples of Judging
To illustrate the evaluation process, we provide examples of GPT-40 judging whether a model’s

induced rule aligns with the ground-truth. For each case, we show (1) the true rule, (2) the model-
induced rule, and (3) GPT-40’s binary judgment.

Table 2: Examples of GPT-40 judging model-induced rules. Each row shows the true rule, the model’s
induced rule, and GPT-40’s binary alignment judgment with explanation.

Model-Induced Rule

GPT-40 Judgment

Game Ground-Truth Rule

Chess SR6: Move in a straight line any
number of squares, followed by a
one-square diagonal shift.

Chess SR4: Jump to the symmetric po-

sition across the nearest blocking
piece.

Texas Hold’em SR3: Alternating odd—even values
are treated as a mirror hand, beat-

ing any straight.

SR4: Five consecutive even num-
bers in the same suit count as a
straight flush.

Texas Hold’em

Dice Game SRI1: If the sum is a prime number,
the roll beats all hands including

triples.

SR4: A pair plus a third die dif-
fering by exactly one (e.g., 4-4-5)
beats regular pairs.

SR2: A three-card straight flush is
treated as a blackjack.

Dice Game

Blackjack

Blackjack SR3: A pair of different suits

causes automatic loss.

The piece moves straight and then
one square diagonally.

The piece teleports to a random
mirrored position.

A hand with alternating red and
black suits is promoted to beat any
straight.

A hand with five even cards, re-
gardless of suit, is treated as a
flush.

If the sum is prime, the roll wins.

If a roll contains a pair and any
third die, it beats all totals.

If a hand has three consecutive
cards in the same suit, it is equiva-
lent to blackjack.

If a hand contains a pair, it loses
automatically.

Yes, the hypothesis matches the
ground-truth. The structure and in-
tent are preserved.

No, the hypothesis does not match.
The true rule requires a specific sym-
metry across blockers.

No, the hypothesis does not match.
The ground-truth is based on nu-
meric parity, not suit color.

No, the hypothesis does not match.
It ignores the suit constraint and
downgrades the hand.

Yes, the hypothesis matches the
ground-truth. The paraphrasing is
correct.

No, the hypothesis does not match.
It omits the “difference of one” con-
dition.

Yes, the hypothesis matches the
ground-truth. The core condition is
preserved.

No, the hypothesis does not match.
It generalizes beyond the suit con-
straint.

A.2 Human Evaluation for Judging

To address potential circularity in using GPT-40 as a judge, we conducted a human validation study
on 100 rule descriptions generated by GPT-03 across all four games. Three independent human
annotators, blind to both the model identity and GPT-40’s original decisions, assessed whether each
generated description was semantically aligned with the ground-truth rule. We then compared the
majority human judgment with GPT-40’s evaluations and computed Cohen’s & to quantify agreement.

Table 3: Human validation of GPT-40’s judgments on rule alignment.

Judgment Type Human Majority GPT-40 Overall Accuracy Cohen’s
Aligned Cases 60 60 1.00 1.00
Not Aligned Cases 40 40 1.00 1.00
Overall 100 100 1.00 1.00

GPT-40’s assessments matched the human in all 100 cases (60 aligned and 40 not aligned), yielding
an accuracy and « of 1.0. While this perfect agreement may partially reflect the limited sample size,
it provides evidence that GPT-40’s evaluations are well-aligned with human judgment in this context.

A.3 Prompts for Judging

To evaluate whether a model-inferred rule matches the ground-truth, we prompt GPT-40 with the
following template. The input includes the game context, the correct rule, the model hypothesis, and
a fixed binary instruction.
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GPT-40 Judgment Prompt

You are given a reasoning task involving [GAME TYPE].

Below is the ground-truth rule and a model’s hypothesis.

Decide whether the hypothesis matches the ground-truth rule in semantics.

Ground-truth rule: [INSERT TRUE RULE]

Model-induced rule: [INSERT MODEL RULE]

Answer with: “Yes, the induced rule matches the ground-truth.” or “No, the induced rule does
not match.” Briefly explain your reasoning in one sentence.

B Full Rule Specifications for Each Game

B.1 Chess

We define eight types of pieces. Each is assigned one rule from the following pools.

Normal Rules (NRs):

* NR1: Move one square in any direction.

NR2: Move in an L-shaped pattern: two squares in one direction and one square perpendicular.
NR3: Move any number of squares diagonally.

NR4: Move exactly two squares forward (in the direction of increasing row).

NRS: Move any number of squares straight (horizontally or vertically).

NR6: Move exactly two squares diagonally.

Special Rules (SRs):

* SR1: Move in a straight line any number of squares, then shift vertically by exactly two squares.

* SR2: Move diagonally any number of squares, then two squares in a perpendicular diagonal
direction.

* SR3: Move exactly three squares in one direction, then move one square downward.

* SR4: Jump to the symmetric position across the nearest blocking piece.

» SRS5: Swap with a target piece on an occupied square within distance < 3.

* SR6: Move in a straight line any number of squares, followed by a one-square diagonal shift.

Each game selects four NRs and four SRs, randomly assigning one rule to each piece. Rule
assignments are reshuffled every episode.

B.2 Texas Hold’em

Normal Rules (NRs):

NR1: A hand with one pair is treated as stronger than any high card.

NR2: A hand with three of a kind is treated as stronger than two pairs.

NR3: A straight (five cards in sequential rank, any suit) is treated as stronger than three of a kind.
NR4: A flush (five cards of the same suit, not in sequence) is treated as stronger than any straight.
NRS: Four of a kind (four cards of the same rank) is treated as stronger than any flush.

Special Rules (SRs):

* SR1: A hand containing five consecutive prime numbers (e.g., 2-3-5-7-J) is treated as stronger
than any three-of-a-kind.

* SR2: A hand with alternating card colors (e.g., red—black-red—black-red) is treated as a straight
regardless of numeric order.

* SR3: A hand with alternating odd and even values is treated as a “mirror hand” and beats any
straight.

* SR4: A hand containing five consecutive even numbers in the same suit is treated as a straight
flush.

* SRS5: A hand with four cards of one parity (odd/even) and one of the opposite parity is treated as a
“hybrid hand,” ranking just below four of a kind.
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Games sample two NRs and two SRs per episode, covering 100 combinations (C2 x C2), each with
twelve hands (four per rule).

B.3 Dice Games

Normal Rules (NRs):

e NR1: A total sum between 4 and 10 (inclusive) is a “small total.”
* NR2: A total sum between 11 and 17 (inclusive) is a “large total.”
* NR3: A roll containing any pair is treated as stronger than small or large totals.
* NR4: A triple (three identical dice) is treated as stronger than any pair or total.

Special Rules (SRs):

* SR1: If the total sum is a prime number, the roll beats any hand including triples.

* SR2: If all three dice are prime numbers (2, 3, 5), the roll beats all hands except SR1.

* SR3: If the dice alternate in parity (odd—even—odd or even—odd—even), the roll beats all hands
except SR1/SR2/triples.

* SR4: If the roll contains a pair and the third die differs from the pair by exactly one (e.g., 4—4-5),
the roll beats any regular pair or total.

36 rule combinations (C5 x C?), 12 observations per episode, 18 appearances per rule.

B.4 Blackjack

Normal Rules (NRs):

* NRI1: A hand totaling exactly 21 is a “blackjack” and wins.

* NR2: Any hand exceeding 21 is a bust. If both bust, the closer total to 21 wins.
* NR3: If neither busts nor hits 21, the hand with the higher total wins.

* NR4: An ace can be counted as either 1 or 11 to optimize the hand.

Special Rules (SRs):

* SR1: If the total sum is a prime number, the hand wins regardless of bust.

* SR2: A three-card straight flush is treated as a “blackjack” regardless of total.

* SR3: A hand with exactly one pair of different suits is a special loss.

* SR4: A hand with three non-consecutive values where the middle equals the average of the other
two (e.g., 3—6-9) is an automatic win.

Each hand contains five cards. Rule combinations: C% x C? = 36, 12 hands per episode, 18 per rule.

C Mode Semantics and Admissible Actions

At each step k, the model is in mode s, € {NEEDQ, NEEDA, FINISH} with transitions:

sy = NEEDQ = ai = Ask(qx), sk+1 = NEEDA
sy = NEEDA = q; € {Answer, Finish}, s, € {NEEDQ, FINISH}
sy = FINISH = halt; output § = my,

This structure enforces a cognitively meaningful control flow and localizes reasoning failure by step
type.

D Prompts for LLMs to Induce Rules

D.1 Prompts
The following prompt is used to instruct the model to induce latent rules from gameplay observations.

Each instance provides a full episode of actions and outcomes. The model must identify the underlying
rule that best explains the observed behavior.
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Prompts for LLMs

(Background Information)

You are an agent tasked with discovering how a certain game works. The rules of the game
are unknown to you in advance. However, you are given a full gameplay transcript from a
single episode, showing the actions taken and whether they resulted in success or failure. The
rule used in each episode is internally consistent, but may differ across episodes. Your goal is
to infer this rule by observing what patterns emerge in the examples. (Instruction) Carefully
analyze the episode shown below. Use only the observed behavior and outcomes to deduce
the underlying rule. Be precise and concise. Your response should summarize the rule as
clearly as possible, in natural language. Do not speculate beyond the given examples.

Do not list the examples again. Do not include uncertainty statements (“it might be...”,
“perhaps...””). Just state the rule that best explains the episode.

(...insert game transcripts here...)

(Output Format) Your response should follow this format:

Induced Rule: <your concise natural language description>

D.2 Transcripts of Each Game

To support rule induction, each model is provided with a structured transcript capturing the observable
behavior of a single game episode. These transcripts serve as the sole source of information available
to the model—they do not include rule annotations or symbolic summaries. Instead, models must
infer the governing logic by analyzing regularities in the recorded actions and outcomes.

Each game type has a customized transcript format reflecting its structural characteristics. For
example, chess episodes log initial piece placements, move sequences, and capture events; Texas
Hold’em transcripts include player hands, public cards, and final winners; dice games record raw
rolls and outcome labels; blackjack tracks hands, point totals, and bust states.

Table [ summarizes the key fields recorded for each domain, along with representative examples.
These transcripts constitute the model’s input during the rule induction task described in Section[D.1]

Table 4: Gameplay transcript fields and structured examples for each game domain.

Game Recorded Fields per Episode Example Entry

Board size (e.g., 8x8, 15x15) Board: 15x15

Initial piece placement (e.g., Red King @ m14) Red King @ m14, Black Queen @ k2
Round-wise moves: source — target Round 1: Red: ml4—o013; Black:
Events: captures, illegal moves k2—k0

Final outcome (optional) Red captures Black Bishop

Chess

Player hole cards (2 per player, with suits)
Community cards (flop, turn, river)
Winning player and hand rank

Hand type comparison

Player A: 24, 4&

Player B: 3, 34

Board: 4¢e, 59,64, 94 Qe
Winner: Player B (Pair of Threes)

Texas Hold’em

Roll result: list of 3 dice
Outcome: win/loss

Roll 1: [4, 4, 5] — Win
Roll 2: [2, 6, 6] — Win

Whether bust occurred
Outcome: win/loss/tie

Result: Win vs Dealer (Bust)

Dice Game ¢ Optional: derived features (e.g., parity, sum, triple) ¢ Roll 3: [1, 3, 6] — Lose
« Player hand (5 cards) ¢ Player: 54,3, Ad 24 0¥
.  Total score after ace adjustment » Total: 20 (A=11), No bust
Blackjack R

E Additional Inductive Accuracy

E.1 Additional Inductive Accuracy across Model Versions and Sizes

To complement the main paper’s results, we further investigate whether the performance gap
between reasoning and non-reasoning models may be confounded by differences in model ver-
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sions and sizes. To mitigate these factors, we include additional comparisons using the most
recent publicly available reasoning model, DeepSeek-R1-0528, and its closest non-reasoning
counterpart, DeepSeek-V3-0325. We also compare GPT-o01 (01-2024-12-17) against GPT-4o0
(gpt-40-2024-08-06), as these represent adjacent releases with minimal temporal and architectural
differences. For completeness, we also report the corresponding results from the main paper for
fair comparison. Experiments are conducted on the Chess game, and the results are summarized in
Table

Table 5: Inductive accuracy on Normal Rules (NRs) and Special Rules (SRs) across different model
versions and sizes on the Chess game.
Models SR1 SR2 SR3 SR4 SR5 SR6 NR1 NR2 NR3 NR4 NR5 NR6

DeepSeek-V3 (0325) 48.00% 48.00% 14.00% 46.00% 8.00% 19.33% 100.00%  90.00%  88.00%  86.00%  96.00%  95.33%
DeepSeek-R1 (0120)  34.00% 13.33% 533% 1533% 4.67%  9.33% 100.00%  93.33%  100.00%  94.00%  100.00%  86.00%
DeepSeek-R1 (0528)  38.00% 17.33% 8.00% 18.00% 8.00% 11.33% 100.00% 100.00%  96.00%  95.33% 100.00% 91.33%

GPT-4o0 56.67% 3533% 28.00% 68.00% 18.00% 42.00% 100.00% 100.00% 100.00% 94.00% 100.00% 100.00%
GPT-ol 19.33% 18.67% 8.00%  30.00% 13.33% 12.00% 100.00% 100.00%  98.00%  100.00% 100.00%  97.33%
GPT-03 21.33% 18.00% 4.67% 34.67% 13.33% 10.67% 100.00% 100.00%  97.33%  100.00% 100.00%  96.00%

We notice that, when controlling for model family and release proximity, reasoning-augmented
models continue to underperform their non-reasoning models on special rule (SR) generalization,
while both perform similarly on normal rules (NR). This aligns with our core claim that reasoning
can impair inductive generalization under hidden rule settings.

E.2 Comparison Against Other Reasoning Methods

To further test inductive accuracy under different reasoning settings, we conducted additional experi-
ments applying a Chain-of-Thought (CoT) style instruction to GPT-4o:

“Let’s think step by step. First, extract the rule from the transcript. Then explain
your reasoning.”

This instruction was applied to each rule inference task in the Chess game, and we compared model
performance with and without CoT prompting; the results are in Table [6]

Table 6: Inductive accuracy of GPT-40 on Normal Rules (NRs) and Special Rules (SRs) with and
without Chain-of-Thought (CoT) prompting on the Chess game.

Methods SR1 SR2 SR3 SR4 SRS SR6 NR1 NR2 NR3 NR4 NRS NR6
w/o CoT 56.67% 35.33% 28.00% 68.00% 18.00% 42.00% 100.00% 100.00% 100.00% 94.00% 100.00% 100.00%
w/ CoT 58.00% 34.00% 27.33% 68.00% 20.00% 42.00% 100.00% 100.00% 100.00% 97.33% 100.00% 100.00%

A (Change) +1.33% -133% -0.67% +0.00% +2.00% +0.00% +0.00%  +0.00%  +0.00% +3.33% +0.00%  +0.00%

Overall, CoT prompting did not lead to consistent improvements. On SR rules, performance was
largely unchanged or slightly decreased, suggesting that added reasoning may not help—and can
sometimes distract—from inferring hidden rules. On NR rules, performance was already saturated.

It is worth noting that CoT prompting here is fundamentally different from models like GPT-03,
which are explicitly trained or prompted to generate structured, multi-stage reasoning traces (e.g.,
decomposition — solving — summarization). Our findings indicate that simply injecting CoT into
non-reasoning models does not reproduce the same failure patterns, nor does it resolve them.

F Belief Update and Error Recursion

Intuitive Goal. Reasoning is modeled here as an iterative information—integration process: each
Ask action decides where to look next, and each ensuing Answer returns evidence that nudges the
current belief my_1 either closer to, or further from, the true solution y*. The agent does not observe
y* directly; instead it receives a vector signal that is correlated with the residual error (y* — mg_1)
but corrupted by two orthogonal noise sources:

1. Question-alignment noise (ay): cognitive or pragmatic imperfections in how the
sub-question is framed. A well-posed question (o =~ 1) elicits evidence that points
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almost exactly along the residual error, whereas a misguided question (ay ~ 0) yields a
useless tangent, and a catastrophically wrong question (o, < 0) returns evidence pointing
the opposite way.

2. Answer-generation noise (¢): stochasticity in the LLM’s sampling, retrieval errors, hallu-
cinations, token truncation, or memory decay.

Evidence Model. Conditioned on the history up to step k—1, the Answer action produces the
evidence vector

2
g = ar (Y —mp_1) +  er e ~ N(0,0%14), (6)
~—~ ~—
alignment answer noise

where ay, € [—1,1] is an i.i.d. scalar with E[a] = & € (0,1) and Var[ay,] = 72. Eq. (6) embodies
two critical properties:

1. Directionality. The deterministic component c (y* — m—_1) is collinear with the current
error vector. Its amplitude encodes how well the sub-question aligns with the unknown
residual structure.

2. Zero-mean perturbations. The random component ¢y, is isotropic and unbiased, reflecting
that answer noise does not systematically drift the belief in any preferred direction.

Belief-integration Weight v,. Upon receiving g, the agent chooses how aggressively to incorpo-
rate it. The step-integration weight ;. € (0, 1) captures resource-bounded cognitive fusion: large i
trusts the new evidence, small 7, hedges against possible error. (learning rate of the belief state)

Update Rule. The new belief is therefore

mE = Mp—1 + gk = Me—1 + Yeor(y* —mr_1) + k- (N
Subtracting y* yields the error recursion

ek =mp —y"
= (1 — k) ex—1 — Vi er, (®)

which is linear, time-homogeneous, and driven by independent Gaussian shocks—exactly the form
required for the closed-form analysis carried out in Appendix
Relation to Classical Reasoning Notions.

* The pair (ay, %) mirrors the cognitive psychology split between question relevance (task focus)
and processing depth (how strongly new evidence is admitted into working memory).

* Eq. (7) can be interpreted as a single—step Bayesian update with a fixed-precision prior versus
likelihood, or as a stochastic approximation a la Robbins—Monro.

* The recursion is the reasoning-theoretic analogue of a Kalman filter on a static target with
multiplicative observation noise.

G Closed-form Error Expression

G.1 Unrolling the Recursion

Iterating the error recursion:

P *
C ‘=M —Y

= (1 —ykag)€k—1 — VkEks ©)]
for N Answer steps yields
N N N
eN = (H(l—%ai))eo - Z(% 11 (1—%‘043‘))&‘-
i=1 =1 j=itl

Denote By := Hf\il(l — i), by = ||60||2-
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G.2 Taking Expectations

Because the noises ¢; are zero-mean, independent, and independent of {c; }, all cross terms vanish.
Using E[||e;]|?] = 02 we obtain
N N 9
E(N)= B by + 022%2( I1 (1—7jaj)) . (10)
i=1  j=itl

G.3 Averaging over Question Alignment

Taking expectation w.r.t. o; and writing By := Hi]\il(l —vQ),

N
E[E(N)] = BXbo + 0® > 7By + A(N) , (1n)
= 72-order positive term
N
where B; 1 n i= H (1 — ;&) and A(N) > 0 collects all contributions containing 72.
j=i+1

Interpretation.

* Bias contributor: B3; by decreases monotonically with V.

* Variance contributor: the summation term grows strictly with .

* Mis-question variance A(N): additional variance induced by imperfect question alignment, also
monotonically increasing in N.

G.4 Theorem: Inevitable U-shaped Error Curve

Theorem G.1 (U-shape of expected error). Let the expected mean-squared error after N Answer
moves be
N

N N 9
w([J0-7a) + > 2(T] a-wa) +am), a2

i=1 =1 Jj=i+1

where

bo>0, 0<a<l, 0<v<y<l, Y v=o0,

and where A(N) > 0 is a non-decreasing sequence (the extra variance induced by
question-alignment randomness 72). Then:
1. E(N) is strictly decreasing for N < N* and strictly increasing for N > N*, with
N* := min{N >0: E(N+1) > E(N)};

2. the minimiser N* is unique. Consequently, E(N) is U-shaped when plotted against reason-
ing depth N.

Proof. Write (12)) as

A(N) :=bo P(N)?,

V(N) := 0?0 72P(i+1, N)?,
where P(a,b) == [[°_, (1 — ~v;¢) and we abbreviate P(1, N) by P(N).

j=a

E(N) = A(N)+ V(N)+ A(N) with {

Step 1 (monotonicity of A and V). Because 0 < 1 — ;& < 1, the product P(N) decreases strictly
as N increases, hence A(N) is strictly decreasing. For V(N) observe

VIN+1) = V(N) = 02334 + 22 V2P(i+1, N)* (P(i+1, N+1)? = P(i+1,N)?) | >0,
i=1
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since every summand is positive. Hence V (V) is strictly increasing, and A (V) is non-decreasing by
assumption.

Step 2 (existence of a finite minimiser). Because ), v; = oo, P(N)— 0 and thus A(N) — 0.
Meanwhile V (V) diverges to +o00 and so does £(N). Therefore £(N) attains its minimum at some
finite N*.

Step 3 (uniqueness). Define the forward difference AE(N) := E(N+1) — E(N) = [A(N+1) —
A(N)| + [V(N+1) = V(N)] + [A(N+1) — A(N)]. The first bracket is negative, the latter two are

positive. Because A(NV) decays geometrically while V (V) grows unboundedly, there is exactly one
index where the sign of AE(N) flips from negative to positive; call it N*. Hence andfollow. O

Remark G.2 (Interpretation of the U-shape). The term A(N) captures residual bias: with every
additional Answer step the multiplicative factor (1 — ;&) shrinks, so A(N) falls exponentially. Con-
versely V(N) + A(N) aggregates variance: each step contributes fresh noise and never diminishes
previous noise, so that component rises monotonically. Their competition enforces an optimum where
further reasoning flips from net helpful to net harmful—producing the observed inverted-U curve for
accuracy as depth increases.

G.5 Lemma: Closed-form Optimum When v; = v

Lemma G.3 (Explicit N* for constant step weight). Assume the integration weights are constant,
v =~ € (0,1), and let p := 1 — ya& € (0,1). Further set 7> = 0 so that A(N) = 0. Then the
expected error (12)) reduces to

1— p2N
Geom(N) = bo p*N + ‘72,721727 NeN, (13)
P
and the unique minimiser Ng,,, is the smallest non-negative integer satisfying
1 bo (1 — p?
> ln( o ( P )) (14)
2[Inp| o2

Consequently &eom(N) is strictly decreasing for N < N, and strictly increasing for N > N,

Proof. Step 1 (geometric closed form). With v; = v, P(N) = pV. The variance series in (12)
becomes a finite geometric sum:

N

1—p?
VIN) =0 3 o = o™y 1,

yielding (T3).

Step 2 (continuous relaxation). Treat N as a real variable and define f(t) := bop®’ + o27%(1 —
p*) /(1 — p?) for t > 0. Differentiating,

0,2,.)/2

1—p2)

f'(t) =2(Inp) p** | =bo +

Since In p < 0, the sign of f’(¢) flips exactly where the bracket vanishes, i.e. at t* = m In(bo (1 —
)/(0292)).

Step 3 (integer minimiser). Because f(¢) is strictly convex in ¢ (second derivative positive), its
minimum over N is attained at the smallest integer not less than ¢*, which gives (I4). The claimed

monotonicity on either side of Ny, follows from the sign of f'(t). O

Remark G.4 (Deterministic bias—variance balance). Equation @Visolates the bias term byp*",
decaying exponentially with depth, and the variance term o~y2(1— p?N) /(1 — p?), growing monoton-
ically from 0 to the asymptote o~ /(1 — p?). The closed-form optimum (T4) makes the bias—variance
trade-off explicit: deeper reasoning is preferred when the initial misconception by is large or the
per-step noise 022 is small, and vice-versa. In all cases the curve remains U-shaped because the
two components have opposite monotonicity with respect to N.
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Lemma: Error behavior When «; = «

Lemma G.5 (U-shape with deterministic question alignment). Fix a constant alignment factor
a € (0,1) and set 72 = 0 so that A(N) = 0 in (12). Let

N N N
Ea(N) = bOH(l —ay)? + 022%2 H (1—av;)? N e N,
i=1

i=1 =i+l
where the integration weights satisfy 0 < v; <4 < land Y ;2 ~; = cc. Then:

1. There exists a finite N}, such that Eo (N+1) < Eo(N) for N < N} and E,(N+1) > E,(N)
for N > N

2. The minimiser N} is unique, hence E,(N) is U-shaped in N.

Proof. Define P,(a,b) : H;’.:a(l — ary;) and abbreviate P, (1, N) by P,(N). Decompose

Ea(N) = Ag(N) + Vo (N) with

N
Aa(N) =bo Po(N)?, Vo(N) =047 Pali+1,N)>.

i=1

(i) Monotonicity of A,. Because 0 < 1 — ay; < 1, the product P, () decreases strictly as N
grows; hence A, (N) is strictly decreasing.

(i) Monotonicity of V. For any N > 0,
N
Va(N+1) = Va(N) = 0*3% 41 + 0% 77 [Pali+1, N+1)* = Pa(i+1,N)?] >0,
i=1

because each bracket is positive. Thus V,, (V) is strictly increasing.

(iii) Existence and uniqueness of optimum. Since ) _, v; = oo, we have P, (N) — 0,50 A, (N) —
0; but V,,(N) — oo because each term is non-negative and at least one term grows unbounded.
Therefore the difference sequence D(N) := E,(N+1) — E,(N) starts negative (bias dominates)
and eventually becomes positive (variance dominates). Strict monotonicity of A, and V, implies
D(N) changes sign exactly once, establishingand O

Remark G.6 (Bias—variance interpretation with fixed o). With deterministic question quality «,
every Answer move multiplies the residual bias by 1 — avy;, shrinking it monotonically. Variance
still accumulates additively via the ~? term. Their opposing monotonicities enforce a single optimal
reasoning depth N, beyond which additional steps corrupt more than they correct, regenerating the
inverted-U pattern.

G.6 Lemma: Comparative Influence of Question Alignment (<) versus Integration Weight

()

Lemma G.7 (Marginal sensitivities for constant « and ). Assume the per-step parameters are
deterministic and time-invariant,

773576(071% OLiEOzG(O,l), 72:05
and define p :== 1 — ary € (0,1). For a fixed reasoning depth N > 1 the expected error is (cf. Lemma

2N

1—p
_ 3 2N 2,2
Eany(N) = bop™" + o7 T2

Then:

1. Alignment is always beneficial. The partial derivative of E ~(N) with respect to o is
strictly negative:

8%&W(N) < 0, Y (a,y) € (0,1)%, N > 1.
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2. Integration weight exhibits a trade-off. For fixed o the map v — &, (N) is U-shaped:
there exists a unique %, € (0,1) solving

9
Oy

such that &, ~(N) is strictly decreasing on (0, ) and strictly increasing on (yx;, 1).

Eaqy(N) = 0, 15)

Proof. (a) Monotonicity in a. Differentiate under the definition p = 1 — avy:
o8 _0EDp 0
da  Op dar 7 Op’

Because v > 0, we only need 9€/9p > 0. Direct calculation gives

2N—1
98 oN by N1 4 2Ng22L
dp 1— p?

so the overall derivative is strictly negative, proving|[I]

> 0,

(b) U-shape in 7. Fix a and again write p = 1 — ay. Differentiate with respect to ~:

o€
Oy

As 7] 0 the first (negative) term dominates, so O£ /0~ < 0; as 711 the positive term proportional
to o2 dominates, so the derivative is positive. Because the derivative is continuous on (0, 1) it
crosses zero exactly once, defining the unique root ¥, that satisfies (I3) and confers the claimed
monotonicity.

_p2N B NO&’}/,OQN_

1
1—p? 1—p? )

1
= —2Naby p*V 71 + 2027(

Uniqueness of 7% follows from strict convexity: 92€ /9% > 0 on (0, 1) (direct but tedious algebra),
ensuring the derivative changes sign only once. O

Remark G.8 (Practical reading). Result[I]says that better-focused questions (higher ) always help,
regardless of noise or depth. Result[2|shows that how aggressively one updates () must be tuned:
too timid (y < 5 ) leaves large residual bias, too bold (v > ~}) inflates variance. Crucially, o
influences only the location of the optimum via p, whereas -y controls both how fast bias falls and how
steeply variance grows. Thus, when per-step noise o2 is high, improving question alignment is the
more reliable path to lower error; when noise is low, fine-tuning -y around vy yields further gains.

G.7 Lemma: Qualitative Regimes of Question Alignment «
Lemma G.9 (Effect of « when «; = 7). Let the integration weight be a fixed vy € (0, 1) and assume
72 = 0. Define p(a) := 1 — avy and consider the expected error after N > 1 Answer moves

_ )2V o2~2 1- P(a)zN
Ea(N) = bop(a)™™ + o7y 1—pla)?

Then the qualitative behaviour splits into three disjoint regimes:

(16)

1. Positive alignment (0 < a <y~ !).
Here 0 < p(a) < 1 and 5
da

Increasing o always lowers the error.

E.(N) < 0, VN > 1.

2. Zero alignment (o = 0).
Then p = 1 and Ey(N) = by + No?~2. Bias never decays; variance grows linearly with
depth.

3. Negative alignment (—y~' < a < 0).
Now p(a) > 1 and E,(N) = b p*V + 0272p25:11, which increases strictly with N. More-

p
over 2&,(N) > 0; making o less negative reduces error.
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Proof. Differentiate (T6) wrt. v via p(cv):

oe, __oc,
dga ! dp
€., 2.2
A direct calculation gives —— = 2N p?NV 1 {bo - 27 }
dp 1—p?

Regime[l} 0 < p < 1. Because 1 — p? > 0 we have by — 0272 /(1 — p?) < 0, hence O, /9p < 0
and therefore 9&,, /0a < 0.

Regime 2} p = 1. Take the limit p 1 1 in (T6) to obtain the linear form stated.

Regime p>1.Now 1 — p? < 0soby—c%y?/(1 - p?) > 0, making IE,/dp > 0 and hence
O, /O > 0. Moreover &, (N) increases with N because both bias and variance terms grow when
p> 1 O

Remark G.10 (Which lever matters more?). An comparative discussion on alignment and integration
weight.

» Alignment (o) is unconditionally helpful whenever it is positive—each incremental improvement
shrinks error regardless of depth, noise, or weight. When alignment turns negative, performance
deteriorates catastrophically with depth.

* Integration weight (vy), by contrast, exhibits the bias—variance U-shape of Lemma|G.6] It must be
tuned around its optimal value vy};; deviations on either side hurt.

Therefore, ensuring non-negative alignment is the first priority—no choice of vy can compensate for
o < 0—while fine-tuning vy yields second-order gains once positive alignment has been secured.

H Examples of Breakdown Error

Breakdown Errors occur when the model fails to properly decompose the task, leading to misaligned
or irrelevant sub-questions.

Breakdown Error Example

Game: Chess

Ground Truth: Move in a straight line any number of squares, then shift vertically by exactly
two squares.

Model Reasoning:

Let me break this down. First, I’ll look at whether the piece lands on a square with a prime-
numbered file or rank. That seems relevant, since many special rules involve numerical
properties.

Next, I'll check if the move creates a diagonal alignment across pieces from both teams. If so,
that might indicate a coordination-based rule.

The movement goes from b2 to e4. That’s (+3 columns, +2 rows), which doesn’t match a
traditional L-shape or knight move, but perhaps it’s a coded prime-sum rule?

The file total is b (2) + e (5) =7, and 2 + 4 = 6. Hmm—maybe only prime-ranked destinations
are allowed?

Model Rule Answer: The piece can move to squares where the file and rank add up to a
prime number.

Error: The model’s decomposition introduces irrelevant sub-questions (prime sums, team
diagonals) that do not relate to the actual two-phase movement structure of SR1. Although
the reasoning is internally coherent, it is grounded in a misaligned task interpretation. This
constitutes a Breakdown Error: the model fails to recognize the structural form of the rule and
instead explores symbolic numerical patterns unrelated to the task.

I Examples of Solving Error Subtypes

We provide representative reasoning traces for the three empirical subtypes of Solving Errors identified
in our study. These traces illustrate how errors emerge during the solving stage, even when the
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decomposition is valid. Each example shows the model’s step-by-step reasoning and highlights where
inductive drift or inappropriate generalization occurs.

I.1 Hallucinated Rule

This subtype of Solving Error occurs when the model fabricates a rule that was never presented,
demonstrated, or implied in the input data. Unlike overgeneralization—which extrapolates too
broadly from limited evidence—hallucinated rules are entirely invented. These errors often emerge
when the model tries to impose structure where none exists, or fills uncertainty with overconfident
but unsupported patterns.

Hallucinated Rule Example

Game: Chess

Ground Truth: Move in a straight line any number of squares, followed by a one-square
diagonal shift.

Model Reasoning:

(...earlier reasoning omitted...)

I’m thinking through how the piece might combine horizontal and vertical moves, akin to
Brooklyn distance, to cover large distances effectively in a single turn.

It’s interesting to think if the piece might follow an angular path, allowing it to shift vertically,
horizontally, or diagonally in a single turn, adding a dynamic edge to the game.

(...continued reasoning...)

Model Rule Answer: The piece can move in a flexible angular trajectory that combines
horizontal, vertical, and diagonal steps, as long as the total displacement approximates a
straight path.

Error: The model hallucinates a continuous-space movement rule based on blended di-
rectional offsets. This rule does not exist in any defined NR or SR, and contradicts the
stepwise constraint in SR6. The model invents a pseudo-geometry (e.g., “angular displace-
ment”) to rationalize incidental move patterns, reflecting a hallucinated inductive structure
that misinterprets discrete board logic as continuous spatial flow.

1.2 Overgeneralization

This subtype of Solving Error occurs when the model prematurely commits to a rule based on a small
number of supporting examples. Rather than verifying consistency across diverse cases, it overextends
an observed pattern to structurally dissimilar inputs. In our settings, overgeneralization often arises
when models collapse multi-step actions into simplified summaries, or infer category-wide behavior
from isolated instances. These errors reflect a tendency to form rules that are overly broad, failing to
capture the precise structure or constraints intended by the task.

Overgeneralization Example

Game: Chess

Ground Truth: Move exactly three squares in one direction, then move one square downward.
Model Reasoning:

(...earlier reasoning omitted...)

Looking at this move from g4 to f7, the total shift is (-1 column, +3 rows). That’s a net
movement of three squares diagonally.

It looks similar to previous valid moves that landed three or four squares away from the
starting point. So I assume this pattern allows 3-step diagonal moves.

Alternatively, maybe it’s just a “distance-3” rule, where the end location must be offset by a
vector of total length 3 or 4, in any direction. That would explain why g4 — {7 is allowed.
I’ll go with that—this seems to fit with the movement pattern I've seen.

(...continued reasoning...)

Model Rule Answer: A piece can move 3 or 4 squares in any direction, including diagonals.
Error: The model collapses a composite 3+1 directional movement into a single displacement
vector, overgeneralizing to a rule based on total distance. It ignores the two-phase structure
and the downward constraint, falsely classifying structurally invalid moves as rule-consistent.
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1.3 Math Overuse

This error occurs when the model incorrectly applies arithmetic or numerical reasoning to tasks that
are fundamentally symbolic, structural, or categorical in nature.

Math Overuse Example

Game: Chess

Ground Truth: Move in a straight line any number of squares, then shift vertically by exactly
two squares.

Model Reasoning:

(...earlier reasoning omitted...)

OK, let me see. The piece’s moves are quite varied, with differences like (2,8) and (2,11).
This suggests they must stay within a maximum distance, maybe determined by the sum or
difference of steps.

I’m analyzing the Euclidean distance for a piece’s movement from b1 to i3, with column and
row differences, leading to a distance of approximately 7.28. This method allows for accurate
computation.

(...continued reasoning...)

Model Rule Answer: The piece can move to any square within a Euclidean distance of
approximately 8 from its starting position.

Error: The model misinterprets the piece’s movement by applying Euclidean distance as
a decision criterion, which is not relevant to the rule-based nature of chess. This reflects a
Math Overuse error: numerical metrics are substituted for structured reasoning over discrete
directions and board geometry.

J Examples of Summary Error

Summary Errors occur when the model’s reasoning process is internally consistent and correctly
processes the input, yet the final rule it outputs is incorrect. Unlike Solving or Breakdown Errors, the
failure here does not lie in intermediate logic or sub-task handling, but rather in the concluding infer-
ence step. These errors often manifest as misstatements, mislabelings, or minor structural inaccuracies
in the final rule summary—despite evidence that the correct pattern was already identified.

Summary Error Example

Game: Chess

Ground Truth: The piece follows SR6: "Move in a straight line any number of squares,
followed by a one-square diagonal shift."

Model Reasoning:

Thinking Sm12s

(...earlier reasoning omitted...)

Step 1: The move from c3 to f4 involves a three-square horizontal move (¢ — f), followed by
a one-square diagonal shift upward and right (from row 3 to 4 and f to g).

Step 2: This clearly breaks down into: — A straight-line segment: c¢3 — {3 (horizontal, 3
squares), — Followed by: f3 — g4 (one-square diagonal shift). The diagonal is exactly one
square and continues smoothly from the initial segment.

Step 3: The structure matches previous valid cases. The piece first makes a linear move, then
pivots diagonally once. There are no blockers. The transition is clean.

(...reasoning ends...)

Model Rule Answer: The piece moves in a straight line followed by a vertical shift of one
square.

Error: The model’s reasoning accurately captures the two-stage movement required by SR6,
identifying both the straight-line component and the one-square diagonal shift. However, it
misstates the final rule, replacing “diagonal shift” with “vertical shift” in its summary. This is
a Summary Error: the model reasons correctly but fails in final rule articulation.
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K Classification of Reasoning Failures

To assess the reliability of our manual classification of reasoning failure types, we conducted an
inter-annotator agreement study involving two independent annotators. Each annotator labeled 100
sampled outputs from reasoning models before any discussion or resolution of disagreements.

Table 7: Inter-annotator agreement between two annotators across three reasoning error types.

Failure Mode Agreement Count Total Cases Agreement Rate Cohen’s
Decomposition Error 36 40 0.900 0.84
Solving Error 38 42 0.905 0.87
Summarization Error 16 18 0.889 0.83
Overall 920 100 0.900 0.86

We computed Cohen’s x between the two annotators based on their independent annotations prior
to reconciliation. Agreement statistics for each error type are summarized in Table[7} The results
indicate consistently high inter-annotator agreement across all categories, with overall £ = 0.86,
suggesting strong reliability in the identification and classification of reasoning failure modes.

L Intervention Prompt Design

We provide full prompt templates used for each intervention strategy described in Section 5.1} These
prompts were designed to isolate or jointly address the three major reasoning failure modes.

L.1 Sub-task Decomposition Constraints

To mitigate Breakdown Errors caused by poorly aligned sub-question formulation, we provide
structured prompts that explicitly constrain how models decompose the task. The following template
guides the model through a three-phase reasoning procedure, with detailed sub-steps for entity
extraction, rule induction, and rule verification.

Prompts for Sub-task Decomposition

You are given a complex reasoning task. Follow the structured reasoning steps below. Each
step includes internal sub-steps to ensure clarity and alignment with the task goal.

Step 1: Identify and organize relevant entities.

Break the input into interpretable components. Answer the following sub-questions:

— What are the basic elements in the input (e.g., cards, pieces, dice)?

— What attributes are associated with each element (e.g., suit, number, position, color)?

— Are there groupings, repetitions, or orderings that might matter (e.g., same suit, consecutive
values)?

— Represent the input in a structured, canonical form for downstream rule inference.

Step 2: Induce candidate rule(s) from prior context.

Based on previous examples or observed patterns, hypothesize a rule that could explain the
current or past cases. Sub-steps:

— Look for shared properties among successful examples (e.g., all include a prime number
sequence).

— Consider combinations of attributes that might define a category (e.g., “all red cards”,
“adjacent positions”, “triplets”).

— Formulate one or more abstract rules using natural language or logical expressions.

— If multiple rules seem possible, rank or explain them by plausibility.

Step 3: Verify the inferred rule against the current input.

Apply your proposed rule(s) to this instance. Proceed with the following:

— Does the structured input satisfy the rule exactly?

— If partially satisfied, explain which components match or fail.

— If none match, state clearly why the rule does not apply.

— Conclude with a binary result (rule matched / not matched), and explain how the final
decision is reached.
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L.2 Sub-task Solving Constraints

To mitigate Solving Errors—particularly those caused by Math Overuse—we encourage models to
reason in a grounded, step-by-step manner. Instead of relying on arithmetic shortcuts, models are
guided to verbalize their observations, hypotheses, and decisions in a natural, reflective style. The
following prompt mimics internal reasoning without appealing to symbolic abstraction.

Prompts for Sub-task Solving

Getting a sense of the setup

I’m looking over the current configuration. There’s a set of game elements—cards, pieces,
or dice—arranged within a defined structure. I begin by scanning each entity and noting its
type, position, and any immediate groupings. I try to understand what roles these elements
might play, and whether any of them are marked, repeated, or stand out visually. Once I have
a general grasp, I start mapping the layout mentally so I can refer back to it during analysis.
Spotting initial patterns

As I move through the input, some patterns begin to emerge. I see repeated forms—Iike
similar numbers, mirrored types, or alternating colors. In some cases, specific alignments
appear intentional, like a row of matching elements or a cluster that resembles a known
configuration. I note these early signals and consider whether they resemble any previous
examples I’ve worked with. These patterns may not yet define a rule, but they give me a
starting point.

Tracking how things evolve

Now I focus on changes—movements, replacements, or newly introduced elements. I observe
which parts of the structure are dynamic and whether these shifts maintain or break previous
patterns. For example, if a card swaps position or a piece moves diagonally, I check if that
action matches others I've seen. I also look at directionality and symmetry: are changes
centered around a pivot? Are actions constrained to certain zones? All of this helps me refine
how the system behaves.

Interpreting the intent

I try to understand not just what changed, but why. The observed actions feel deliberate,
so I begin thinking about what constraints or goals might be shaping them. Perhaps certain
moves are legal only under hidden conditions, or some combinations gain value due to an
unknown rule. I think about whether the system rewards alignment, diversity, or some balance
in composition. This lets me go beyond just pattern matching—I’m starting to infer purpose.
Refining the hypothesis

Now I compare my current case with earlier examples. I’m looking for consistency: do similar
setups always lead to the same outcome? I check whether specific attributes—like color
sequences or paired entities—reappear under the same conditions. If they do, my hypothesis
strengthens. If not, I adjust. I also check for edge cases that might help distinguish between
competing rules. The more I refine, the clearer the rule’s shape becomes.

Committing to a conclusion

With all this in mind, I’'m ready to decide. The current setup aligns with the rule I've been
building. I see enough evidence—through repetition, structure, and behavior—to commit to
an answer. There’s no need for math here; it’s the alignment between elements and rules that
matters. I finalize my judgment and prepare to apply this same logic again if needed.

L.3 Summarization Constraints

We enforce a 1000-token generation limit using stop sequences and explicit model instructions. The
prompt also includes a final reminder:
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Prompts for Final Answer Summarization

You are given a reasoning task. Please approach it step by step, with each step clear and
concise. If the answer becomes evident before completing all steps, stop immediately and

provide the final answer. DO NOT continue reasoning once the question is resolved. Your
total output must stay within 1000 tokens. Excessive or unnecessary reasoning beyond this
limit will be considered invalid.

M Additional Interventions Results

M.1 Detailed Results for Interventions on Chess Game

While Section[5.2]and Fig. [3]illustrate the individual effects of each proposed intervention by showing
incremental accuracy gains over the baseline in a compact visual form, some details may be less
apparent in that summary. To provide a clearer view, we present below the detailed, table-form results
for the Chess game.

Table 8: Detailed inductive rule accuracy (%) across different intervention strategies and models for
the Chess game. Numbers in parentheses denote improvements over the non-intervention baseline.

Model / Intervention SRI SR2 SR3 SR SRS SRG NRI NR2 NR3 NR4 NRS NR6
GPT-03
Wio Interventions 21.33% 18.00% 167% 34 13.33% 10.67% 100.00% 100.00% 97.33% 100.00% 100.00% 96.00%

wi Decomposition  22.67% (+1.33%)  24.67% (+6.67%) 10.00% (+5.33%) 44.67% Mo 00%) 14.00% (+0.67%) 18.00% (+7.33%) 100.00% (+0.00%) 100.00% (+0.00%) 100.00% (+2.67%) 9533% (-4.67%) 100.00% (+0.00%) 96.00% (+0.00%)
wi Solving 48.00% (+26.67%) 42.00% (+24.00%) 46.67% (+42.00%) 60.67% (+26. 3% (+14.00%) 46.00% (+3: 100.00% (+0.00%) 100.00% (+0.00%) 100.00% (+2.67%) 96.67% (-3.33%) 100.00% (+0.00%) 100.00% (+4.00%)
w/ Summarization  40.00% (+18.67%) 26.00% (+8.00%) 26.00% (+21.33%) 40.00% (+5.
w/ Combined 52.00% (+30.67%) 52.67% (+34.67%) 54.00% (+49.33%) 64.00% (+29.

21.33% (+8.00%) 27.33% (+16.67%) 100.00% (+0.00%) 100.00% (+0.00%) 100.00% (+2.67%) 97.33% (-2.67%) 100.00% (+0.00%) 98.67% (+2.67%)

31.33% (+18.00%) 46.00% (+35.33%) 100.00% (+0.00%) 100.00% (+0.00%) 100.00% (+2.67%) 96.67% (-3.33%) 100.00% (+0.00%) 100.00% (+4.00%)
DeepSeck-R1

Wio Interventions 34.00% 1333% 533% 1533% 467% 933% 100.00% 9333% 100.00% 94.00% 100.00% 86.00%

w/ Decomposition  36.00% (+2.00%)  18.00% (+4.67%) 5.33% (+0.00%) 17.33% (+2.00%) 12.67% (+8.00%) 19.33% (+10.00%) 100.00% (+0.00%) 93.33% (+0.00%) 100.00% (+0.00%) 94.67% (+0.67%) 100.00% (+0.00%) 93.33% (+7.33%)

w/ Solving 55.33% (+21.33%) 43.33% (+30.00%) 28.00% (+22.67%) 32.67% (+17.33%) 23.33% (+18.67%) 35.33% (+26.00%) 100.00% (+0.00%) 9533% (+2.00%) 100.00% (+0.00%) 96.67% (+2.67%) 100.00% (+0.00%) 98.00% (+12.00%)

w/ Summarization  36.67% (+2.67%) 16.00% (+2.67%) 9.33% (+4.00%) 1533% (+0.00%) 8.00% (+3.33%) 14.00% (+4.67%) 100.00% (+0.00%) 94.00% (+0.67%) 100.00% (+0.00%) 94.67% (+0.67%) 100.00% (+0.00%) 94.67% (+8.67%)

w/ Combined 60.67% (+26.67%) 44.67% (+31.33%) 41.33% (+36.00%) 38.00% (+22.67%) 27.33% (+22.67%) 35.33% (+26.00%) 100.00% (+0.00%) 98.00% (+4.67%) 100.00% (+0.00%) 100.00% (+6.00%) 100.00% (+0.00%) 98.00% (+12.00%)
Grok-3
Wio Interventions 20.67% 167% 533% 19.33% 2.00% 9.33% 100.00% 96.00% 100.00% 98.00% 100.00%

wi Decomposition  24.00% (+3.33%)  7.33% (+2.67%)  8.00% (+2.67%) 22.67% (+3.33%) 5.33% (+1.33%)  14.00% (+4.67%) 100.00% (+0.00%) 96.00% (+0.00%) 100.00% (+0.00%) 93.33% (-4.67%) 100.00% (+0.00%) 100.00% (+0.00%)
wi Solving 51.33% (+30.67%) 15.33% (+10.67%) 19.33% (+14.00%) 36.67% (+17.33%) 27.33% (+23.33%) 36.67% (+27.33%) 100.00% (+0.00%) 98.67% (+2.67%) 100.00% (+0.00%) 98.00% (+0. rmrr ) 100.00% (+0.00%) 100.00% (+0.00%)
wi Summarization  34.00% (+13.33%) 10.00% (+5.33%) 4.67% (:0.67%)  16.00% (-3.33%) 20.00% (+16.00%) 24.67% (+15.33%) 100.00% (+0.00%) 96.00% (+0.00%) 100.00% (+0.00%) 94.67% (-3.33%) 100.00% (+0.00%) 100.00% (+0.00%)
w/ Combined 55.33% (+34.67%) 14.00% (+9.33%) 20.00% (+14.67%) 27.33% (+8.00%) 22.67% (+18.67%) 38.00% (+28.67%) 100.00% (+0.00%) 100.00% (+4.00%) 100.00% (+0.00%) 98.00% (+0. (mm 100.00% (+0.00%) 100.00% (+0.00%)
QwQ

wio Interventions 13.33% 733% 8.00% 20.00% 0.67% 2.00% 100.00% 100.00% 98.00% 100.00% 100.00% 94.67%

w/ Decomposition 933% (-4.00%)  5.33% (-200%)  15.33% (+7.33%) 2133% (+1.33%) 133% % (+7.33%) 100.00% (+0.00%) 100.00% (+0.00%) 98.00% (+0.00%) 100.00% (+0.00%) 100.00% (+0.00%) 96.00% (+1.33%)
wi Solving m o (+4.67%) 16679 ©) 27.33% (+19.33%) 34.67% (+14. 3%) 100.00% (+0.00%) 100.00% (+0.00%) 98.67% (+0.67%) 100.00% (+0.00%) 100.00% (+0.00%) 96.67% (+2.00%)
w/ Summarization 6 (+0.00%) 12.00% (+4.67%) 20.67% (+12.67%) 20.00% (+0. (+9.33%) 100.00% (+0.00%) 100.00% (+0.00%) 98.00% (+0.00%) 100.00% (+0.00%) 100.00% (+0.00%) 94.67% (+0.00%)
w/ Combined wx 00% (+4.67%)_19.33% (+12.00%) 27.33% (+19.33%) 2067% (+0.67%) 13.33% (+12.61%) ?0 67% (+28.67%) 100.00% (+0.00%) 100.00% (+0.00%) 100.00% (+2.00%) 100.00% (+0.00%) 100.00% (+0.00%) 96.67% (+2.00%)

The solving component accounts for the largest gains in SR generalization across all tested models,
while summarization and decomposition offer complementary improvements.

M.2 Intervention Results on Math Benchmark

Our findings for reasoning and proposed interventions can extend to more common reasoning
problems, such as mathematical problem solving. Prior work has noted that reasoning-augmented
models often generate inflated reasoning traces and redundant self-verifications, leading to inefficient
token usage [44] and increased error rates [45]. To test the applicability of our intervention, we
evaluated GPT-03 on 20 problems from the American Invitational Mathematics Examination (AIME)
2024. We compared its accuracy with and without our combined intervention.

Table 9: Accuracy comparison with and without intervention.

Dataset w/o Intervention w/ Intervention
AIME 24 45% 65%

As shown in the table [0] the combined intervention improved accuracy by 20%, suggesting its
potential to mitigate reasoning-related failures in mathematical tasks.

N Results and Dataset

The comprehensive results and code of our experiment are open-sourced on the web. For detailed in-
formation, please visit the following link: https://11lm-inductive-abilities.vercel.app/.
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