
V-PETL Bench: A Unified Visual Parameter-Efficient
Transfer Learning Benchmark

Yi Xin1∗, Siqi Luo2,1∗, Xuyang Liu3∗, Yuntao Du4∗, Haodi Zhou1, Xinyu Cheng1,
Christina Lee5,6, Junlong Du7, Haozhe Wang8, Mingcai Chen1, Ting Liu9, Guimin Hu10,

Zhongwei Wan11, Rongchao Zhang12, Aoxue Li13, Mingyang Yi14, Xiaohong Liu2†

1Nanjing University, 2Shanghai Jiao Tong University, 3Sichuan University, 4BIGAI, 5MIT, 6Cerebras,
7Tencent, 8Hong Kong University of Science and Technology, 9NUDT, 10University of Copenhagen,

11Ohio State University, 12Peking University, 13Huawei Noah’s Ark Lab, 14Renmin University of China

Project Page: https://v-petl-bench.github.io/

Abstract

Parameter-efficient transfer learning (PETL) methods show promise in adapting a
pre-trained model to various downstream tasks while training only a few parame-
ters. In the computer vision (CV) domain, numerous PETL algorithms have been
proposed, but their direct employment or comparison remains inconvenient. To
address this challenge, we construct a Unified Visual PETL Benchmark (V-PETL
Bench) for the CV domain by selecting 30 diverse, challenging, and compre-
hensive datasets from image recognition, video action recognition, and dense
prediction tasks. On these datasets, we systematically evaluate 25 dominant PETL
algorithms and open-source a modular and extensible codebase for fair evaluation
of these algorithms. V-PETL Bench runs on NVIDIA A800 GPUs and requires
approximately 310 GPU days. We release all the benchmark, making it more effi-
cient and friendly to researchers. Additionally, V-PETL Bench will be continuously
updated for new PETL algorithms and CV tasks.

1 Introduction

Large scale vision transformers (ViT) have achieved remarkable success in various computer vision
(CV) tasks such as image classification [1, 2, 3, 4], segmentation [5, 6, 7] and object detection [8, 9].
However, training these ViT models directly requires massive computational resources to achieve
superior performance, which is often unavailable to many academics and institutions. To alleviate
this dilemma, the “Pre-train & Finetuning” paradigm is proposed. Specifically, teams with sufficient
computational resources utilize enormous datasets [10, 11] to train superior ViT models and release
the pre-trained weights. Researchers with limited computational resources can then transfer the
knowledge from these pre-trained ViT models to downstream tasks through a fine-tuning stage.
However, the standard Full fine-tuning, though effective, still requires substantial computational and
memory resources. This becomes particularly costly for models with billions or even trillions of
parameters. Additionally, for each task, maintaining the task-specific weights of the model brings a
storage burden, as the number of tasks increases.

∗Equal contribution: xinyi@smail.nju.edu.cn, siqiluo647@sjtu.edu.cn.
†Corresponding author: xiaohongliu@sjtu.edu.cn.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://v-petl-bench.github.io/

Table 1: The comparison between V-PETL Bench and other related benchmarks.

Benchmark # PETL algorithms Tasks # Datasets Models Total GPU Hours

ZhiJian [15] 5 Image Classification 18 ViT -

V-PETL Bench 25
Image Recognition 24 ViT 7458 GPU Hours

(310 GPU Days)Video Action Recognition 3 ViT, Swin
Dense Prediction 3 Swin

To mitigate the above challenges, researchers have proposed parameter-efficient transfer learning
(PETL), which seeks to achieve a better trade-off between the number of trainable parameters and
performance on downstream tasks. While numerous PETL algorithms for the CV domain have
been proposed , their direct employment or comparison is not common. The reasons for this can be
summarized as follows. First, the hyperparameters of some algorithms (e,g., learning rate, weight
decay, etc.) are not open source [12, 13, 14, 15], causing subsequent researchers to spend a lot
of time searching for optimal parameters. Second, the performance of baselines is often seriously
underestimated in some works, making comparisons unfair. Third, existing benchmarks are mostly
constrained to plain image recognition tasks, as summarized in Table 1, preventing consistent and
diverse evaluation across tasks such as video action recognition and dense prediction.

To address the aforementioned issues and facilitate PETL research in the CV domain, we propose
V-PETL Bench: a Unified Visual Parameter-Efficient Transfer Learning Benchmark. V-
PETL Bench offers a diverse and challenging benchmark across 24 image recognition datasets, 3
video action recognition datasets, and 3 dense prediction datasets. Moreover, the V-PETL Bench
provides comprehensive evaluations of 25 PETL algorithms by searching for hyperparameters on
various pre-trained vision transformers. Since the PETL field lacks a unified evaluation metric that
comprehensively considers trainable parameters and performance, we propose the Performance-
Parameter Trade-off (PPT) metric to compare different algorithms using a single metric. Additionally,
V-PETL Bench offers t-SNE and attention map visualizations for better analysis of PETL algorithms.

V-PETL Bench is a very heavy-duty and resource-consuming work. For the entire V-PETL Bench,
we spend about 310 GPU days on NVIDIA A800 GPUs, as illustrated in Table 1. We open-source
the codebase to ensure a unified and consistent evaluation of PETL algorithms. By evaluating 25
standard PETL algorithms on 30 datasets, we obtain several interesting findings: (1) Existing PETL
algorithms can achieve performance competitive with Full fine-tuning in most downstream tasks
and perform significantly better than Full fine-tuning when the amount of data is insufficient, which
indicates that it could be an effective alternative to Full fine-tuning; (2) Existing PETL algorithms
demonstrate significant efficiency, where most algorithms only updated less than 1% of the number of
the pre-trained model. Additionally, they lead to improved computation and memory efficiency while
achieving better performance; (3) Directly applying PETL algorithms from the NLP domain to vision
tasks without any specific design results in performance degradation compared to well-designed
PETL algorithms tailored for the CV domain; (4) The data and task similarity between pre-training
and downstream tasks plays a key role, with higher similarity leading to better results. Furthermore,
no single PETL algorithm consistently outperforms all others across all tasks.

To sum up, we list our contributions as follows:

• We propose V-PETL Bench: a unified and challenging parameter-efficient transfer learning
benchmark for CV tasks for fair and consistent evaluations. To our knowledge, we are the
first to build PETL benchmark that cover image classification, video action recognition, and
dense prediction tasks.

• We implement 2 traditional and 25 PETL algorithms and open-source a modular codebase
along with configuration files, enabling easy reproduction of the reported results in the
V-PETL Bench. Our codebase is extensible and open for continued development.

• We propose the Performance-Parameter Trade-off (PPT) metric to compare PETL algorithms,
which comprehensively considers two factors: task performance and trainable parameters.
Additionally, we provide an in-depth analysis of these representative algorithms.

2

Table 2: Details of the datasets in the V-PETL Bench.

Application Dataset Description #Classes Train size Val size Test size

Image Recognition

Fine-Grained Visual Classification (FGVC) [17]

CUB-200-2011 [18] Fine-grained bird species recognition 200 5,394 600 5,794
NABirds [19] Fine-grained bird species recognition 555 21,536 2,393 24,633
Oxford Flowers [20] Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs [21] Fine-grained dog species recognition 120 10,800 1,200 8,580
Stanford Cars [22] Fine-grained car classification 196 7,329 815 8,041

Visual Task Adaptation Benchmark (VTAB) [23]

CIFAR-100 [24]

Natural-tasks that contain natural
images captured using standard
cameras.

100

800 200

10,000
Caltech101 [25] 102 6,084
DTD [26] 47 1,880
Flowers102 [20] 102 6,149
Pets [27] 37 3,669
SVHN [28] 10 26,032
Sun397 [29] 397 21,750

Patch Camelyon [30] Specialized-tasks that contain
images captured via specialized
equipment, such as medical and
satellite imagery.

2

800 200

32,768
EuroSAT [31] 10 5,400
Resisc45 [32] 45 6,300
Retinopathy [33] 5 42,670

Clevr/count [34]

Structured-tasks that require
geometric comprehension like object
counting.

8

800 200

15,000
Clevr/distance [34] 6 15,000
DMLab [35] 6 22,735
KITTI/distance [36] 4 711
dSprites/location [37] 16 73,728
dSprites/orientation [37] 16 73,728
SmallNORB/azimuth [38] 18 12,150
SmallNORB/elevation [38] 9 12,150

Video Recognition
Kinetics-400 [39]

Video action recognition
400 240,436 N/A 19,787

SSv2 [40] 174 168,913 24,777 27,157
HMDB51 [41] 51 3,500 1,500 1,849

Dense Prediction
MS COCO [42] Instance segmentation 80 118,000 N/A 5,000
ADE20K [43] Semantic segmentation 150 20,000 N/A 2,000
PASCAL VOC [44] Object Detection 21 16,000 N/A 5,000

2 Related Work

As shown in Table 1, the related benchmark is ZhiJian [15]. ZhiJian includes 5 PETL algorithms
but only supports image recognition tasks and the ViT model. Additionally, ZhiJian is incomplete
constructed and has not been updated for a long time. Therefore, it is of significance to build a
visual PETL community that can continuously update PETL algorithms to boost the development of
PETL. This need is also highlighted in the survey [16]. Furthermore, Zhijian did not open source
some specific details, such as parameter configurations, training logs, and model checkpoints, etc.
In contrast, V-PETL Bench will open-source all these details and regularly update with new PETL
algorithms and CV tasks, making it more efficient and friendly for researchers.

In the following sections, we will first introduce the downstream CV tasks and datasets, pre-trained
models, PETL algorithms, and benchmark results of V-PETL Bench. Then, we will present the
codebase structure of V-PETL Bench in Section 7.

3 Tasks and Datasets

The V-PETL Bench includes 30 datasets from image recognition, video action recognition, and dense
prediction tasks, as detailed in Table 2. Each dataset in the V-PETL Bench is under a permissive
license that allows usage for research purposes. These datasets are chosen based on the following
considerations: (1) The dataset represents a mainstream CV task and is broadly relevant to PETL;
(2) The dataset is diverse and covers multiple domains; (3) The training process is environmentally
sustainable and affordable for research labs in both industry and academia.

3.1 Image Recognition Task

Image recognition is the primary application for PETL. The V-PETL Bench supports 24 image
recognition datasets, as shown in Table 2, which can be categorized into two types as detailed below:

3

Table 3: Specifications of different pre-trained backbones are supported in the V-PETL Bench.

Pre-trained
Backbone

Pre-trained
Objective

Pre-trained
Dataset

params
(M)

Feature dim
d

Pre-trained
Model

ViT-B [1]
Supervised ImageNet-21k

85 M 768 checkpoint
ViT-L [1] 307 M 1024 checkpoint
ViT-H [1] 630 M 1280 checkpoint

Swin-B [2] Supervised ImageNet-22k 88 M 1024 checkpoint
Swin-L [2] 198 M 1536 checkpoint

ViT-B(VideoMAE) [47] Self-Supervised Kinetics-400 85 M 768 checkpoint
Video Swin-B [48] Supervised 88 M 1024 checkpoint

Fine-Grained Visual Classification (FGVC). FGVC comprises 5 fine-grained visual classification
datasets including CUB-200-2011 [18], NABirds [19], Oxford Flowers [20], Stanford Dogs [21] and
Stanford Cars [22]. If a dataset only has train and test sets publicly available, we randomly split
90% of the training set for training and 10% for validation. This validation set is then used to select
hyperparameters. More details of these datasets in the V-PETL Bench can be found in Appendix B.1.

Visual Task Adaptation Benchmark (VTAB). VTAB comprises 19 diverse visual classification
datasets, which are organized into three domains: 1) Natural - datasets that contain natural images
captured with standard cameras. The group includes Caltech101 [25], CIFAR100 [24], DTD [26],
Flowers102 [20], Pets [27], Sun397 [29], and SVHN [28]; 2) Specialized - datasets that contain
images captured via specialized equipment, such as medical, and satellite images. The group includes
Resisc45 [32], EuroSAT [31], Patch Camelyon [30] and Diabetic Retinopathy [33] ; 3) Structured -
datasets that require geometric comprehension such as object counting. The group includes Clevr [34],
dSprites [37], SmallNORB [38], DMLab [35] and KITTI [36]. Each dataset in VTAB contains 1000
training examples. Following [17], we use the provided 800-200 split of the train set to determine
hyperparameters. More information on these datasets is available in Appendix B.1.

3.2 Video Action Recognition Task

The detailed dataset statistics for the video action recognition datasets in the V-PETL Bench are
described in Table 2. We include the widely used Kinetics-400 [39], SSv2 [40], and HMDB51 [41]
datasets from the previous protocol [45, 46], which are still challenging for PETL. For the SSv2 and
HMDB51 datasets, we select the optimal parameters on the validation set and test the results on the
test set. More details about these datasets in the V-PETL Bench can be found in Appendix B.2.

3.3 Dense Prediction Task

The V-PETL Bench includes three dense prediction datasets as shown in Table 2. MS COCO [42] is
a representative instance segmentation dataset with 118k training images and 5k validation images.
ADE20K [43] is the most widely used semantic segmentation dataset, containing 20k training and
2k validation images. Pascal VOC [44] has 16k/5k training/validation images and is used for object
detection tasks. More details of these datasets in the V-PETL Bench can be found in Appendix B.3.

4 Pre-trained Models

In the V-PETL Bench, we experiment with the Vision Transformer (ViT) [1] and the Swin Transformer
(Swin [2]), as shown in Table 3. These architectures are commonly used in the visual PETL domain.
Following most research on visual PETL, we employ different levels of ViT for image recognition
tasks, all pre-trained on ImageNet-21k [11]. For video action recognition tasks, we utilize the
Video Swin Transformer and ViT (from VideoMAE) as the backbone. To examine the impact of
pre-training data and downstream task correlation on transfer, we use pre-trained weights on Kinetics-
400 [39] (a video dataset). For object detection, we use Swin-Large combined with RetinaNet [49]
for training. Additionally, we employ Swin-Large with UperNet [50] for semantic segmentation tasks
and Swin-Base with Cascade Mask RCNN [51] for instance segmentation tasks. For the convenience
of researchers, we provide download links for all pre-trained weights.

4

https://storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz
https://storage.googleapis.com/vit_models/imagenet21k/ViT-L_16.npz
https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz
https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth
https://drive.google.com/file/d/1tEhLyskjb755TJ65ptsrafUG2llSwQE1
https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window877_kinetics400_22k.pth

5 PETL Algorithms Implemented in the V-PETL Bench

We implement 2 traditional and 25 PETL algorithms in the codebase for V-PETL Bench, including
Full fine-tuning, Frozen, Adapter [12], AdaptFormer [45], SCT [52], BitFit [14], U-Tuning [53],
VPT-shallow [17], VPT-Deep [17], Prefix Tuning [54], SSF [55], LoRA [13], NOAH [56], FacT [57],
RepAdapter [58], Hydra [59], LST [60], DTL [61], HST [62], GPS [63], LAST [64], SNF [65],
BAPAT [54], LN TUNE [66], LoRand [67], E3VA [68], and Mona [69]. The algorithms are chosen
based on the following considerations: 1) According to the visual PETL survey [16], existing PETL
algorithms are categorized into 7 basic categories (details in Appendix C). For each category, we select
2 to 5 algorithms for implementation; 2) The algorithm is commonly used in the visual PETL domain
and has considerable influence; 3) The algorithm corresponds with the comprehensive timeline of
visual PETL development. More details of these algorithms can be found in Appendix D.

6 Benchmark Results

6.1 Evaluation Metrics

In the field of PETL, evaluation of algorithms typically focuses on two main aspects: the number of
trainable parameters and the performance on tasks. Algorithms that achieve better performance with
fewer trainable parameters generally attract more attention. However, there are currently no strict
metrics to measure the PETL algorithms. To address this, we propose the Performance-Parameter
Trade-off (PPT) metric. Specifically, the PPT metric for a PETL algorithm M takes into account its
performance Mt on a downstream task t, its trainable parameters PM , and a normalization constant
C. The formula for PPTM is expressed as follows:

PPTM = Mt × exp(−log10(
PM

C
+ 1)). (1)

The normalization constant C is set at 107 as the parameters for most PETL algorithms typically fall
within this range. For a detailed explanation of the design of the PPT metric, please see Appendix E.

6.2 Image Recognition Results

Benchmark Results on FGVC. The benchmark results for 13 PETL algorithms on FGVC [17]
are presented in Table 4. From these results, we observe the following insights: (1) Compared
to Full fine-tuning, PETL algorithms demonstrate competitive performance. Notably, about half
of these algorithms even outperform the Full fine-tuning paradigm. (2) Most PETL algorithms
surpass Full fine-tuning regarding PPT, highlighting their parameter efficiency. (3) Among the PETL
algorithms, GPS [63] and SNF [65] stand out in the PPT metric. GPS achieves high performance
through gradient-guided parameter selection during fine-tuning. SNF minimizes conditional mutual
information to adaptively adjust the network’s shortcut connections, effectively preserving important
feature information. (4) Some PETL algorithms, such as Adapter [69], LoRA [13], and BitFit [14],
originate from the natural language processing (NLP) domain. Directly applying them to vision tasks
without any specific design modifications results in performance degradation.

Benchmark Results on VTAB. Table 5 presents the benchmark results for 18 PETL algorithms
on VTAB [17]. Our analysis yields the following insights: (1) Almost all PETL algorithms out-
perform Full fine-tuning, demonstrating that fully fine-tuning the pre-trained ViT on limited data
risks overfitting and catastrophic forgetting. In contrast, fine-tuning only a few parameters helps
maintain the generalizability of the pre-trained models when adapting to downstream tasks. (2)
DTL achieves the best PPT by leveraging low-rank linear mappings and feature reuse to reduce
tunable parameters while enhancing performance. (3) Most PETL algorithms perform well on the
Natural and Specialized groups because their classification objectives align with the training goals
of the pre-trained dataset, ImageNet [70]. However, the Structured group tasks, such as object
counting and depth prediction, differ significantly from ImageNet’s training objectives, resulting in a
substantial domain gap. PETL algorithms with less extensive parameter tuning, such as BitFit [14]
and VPT-Shallow [17], fail to adequately bridge this gap, leading to sub-optimal performance.

5

Table 4: Benchmark results on FGVC. We evaluate 13 PETL algorithms on five datasets with ViT-
B/16 models pre-trained on ImageNet-21K. We highlight the best and the second results.

Method
Dataset CUB-200

-2011 NABirds Oxford
Flowers

Stanford
Dogs

Stanford
Cars Mean # Params.

(M) PPT

Traditional Finetuning

Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.54 85.8M -
Linear probing 85.3 75.9 97.9 86.2 51.3 79.32 0 M 0.79

PETL Algorithms

Adapter[12] 87.1 84.3 98.5 89.8 68.6 85.66 0.41M 0.84
AdaptFormer[45] 88.4 84.7 99.2 88.2 81.9 88.48 0.46M 0.87
Prefix Tuning [71] 87.5 82.0 98.0 74.2 90.2 86.38 0.36M 0.85

U-Tuning [53] 89.2 85.4 99.2 84.1 92.1 90.00 0.36M 0.89
BitFit [14] 87.7 85.2 99.2 86.5 81.5 88.02 0.10M 0.88

VPT-Shallow [17] 86.7 78.8 98.4 90.7 68.7 84.66 0.25M 0.84
VPT-Deep [17] 88.5 84.2 99.0 90.2 83.6 89.10 0.85M 0.86

SSF [55] 89.5 85.7 99.6 89.6 89.2 90.72 0.39M 0.89
LoRA [13] 85.6 79.8 98.9 87.6 72.0 84.78 0.77M 0.82
GPS [56] 89.9 86.7 99.7 92.2 90.4 91.78 0.66M 0.90
HST [62] 89.2 85.8 99.6 89.5 88.2 90.46 0.78M 0.88

LAST [64] 88.5 84.4 99.7 86.0 88.9 89.50 0.66M 0.87
SNF [65] 90.2 87.4 99.7 89.5 86.9 90.74 0.25M 0.90

Table 5: Benchmark results on VTAB. We evaluate 18 PETL algorithms on 19 datasets with ViT-B/16
models pre-trained on ImageNet-21K. We highlight the best and the second results.

Natural Specialized Structured

Method
Dataset C

IF
A

R
-1

00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

Pa
tc

h
C

am
el

yo
n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
/c

ou
nt

C
le

vr
/d

is
ta

nc
e

D
M

L
ab

K
IT

T
I/

di
st

an
ce

dS
pr

ite
s/

lo
c

dS
pr

ite
s/

or
i

Sm
al

lN
O

R
B

/a
zi

Sm
al

lN
O

R
B

/e
le

M
ea

n

#
Pa

ra
m

s.
(M

)

PP
T

Traditional Finetuning

Full fine-tuning [17] 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.57 85.8M -
Linear probing [17] 63.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 52.94 0M 0.53

PETL Algorithms

Adapter [12] 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 71.44 0.16M 0.71
VPT-Shallow [17] 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 64.85 0.08M 0.65

VPT-Deep [17] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 69.43 0.56M 0.68
BitFit [14] 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 62.05 0.10M 0.61
LoRA [13] 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 72.25 0.29M 0.71

AdaptFormer [45] 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 72.32 0.16M 0.72
SSF [55] 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 73.10 0.21M 0.72

NOAH [56] 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 73.25 0.43M 0.72
SCT[52] 75.3 91.6 72.2 99.2 91.1 91.2 55.0 85.0 96.1 86.3 76.2 81.5 65.1 51.7 80.2 75.4 46.2 33.2 45.7 73.59 0.11M 0.73
FacT [57] 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 73.23 0.07M 0.73

RepAdapter [58] 72.4 91.6 71.0 99.2 91.4 90.7 55.1 85.3 95.9 84.6 75.9 82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0 73.84 0.22M 0.72
Hydra [59] 72.7 91.3 72.0 99.2 91.4 90.7 55.5 85.8 96.0 86.1 75.9 83.2 68.2 50.9 82.3 80.3 50.8 34.5 43.1 74.21 0.28M 0.73
LST [60] 59.5 91.5 69.0 99.2 89.9 79.5 54.6 86.9 95.9 85.3 74.1 81.8 61.8 52.2 81.0 71.7 49.5 33.7 45.2 71.70 2.38M 0.65
DTL [61] 69.6 94.8 71.3 99.3 91.3 83.3 56.2 87.1 96.2 86.1 75.0 82.8 64.2 48.8 81.9 93.9 53.9 34.2 47.1 74.58 0.04M 0.75
HST [62] 76.7 94.1 74.8 99.6 91.1 91.2 52.3 87.1 96.3 88.6 76.5 85.4 63.7 52.9 81.7 87.2 56.8 35.8 52.1 75.99 0.78M 0.74
GPS [63] 81.1 94.2 75.8 99.4 91.7 91.6 52.4 87.9 96.2 86.5 76.5 79.9 62.6 55.0 82.4 84.0 55.4 29.7 46.1 75.18 0.22M 0.74

LAST [64] 66.7 93.4 76.1 99.6 89.8 86.1 54.3 86.2 96.3 86.8 75.4 81.9 65.9 49.4 82.6 87.9 46.7 32.3 51.5 74.15 0.66M 0.72
SNF [65] 84.0 94.0 72.7 99.3 91.3 90.3 54.9 87.2 97.3 85.5 74.5 82.3 63.8 49.8 82.5 75.8 49.2 31.4 42.1 74.10 0.25M 0.73

6.3 Video Action Recognition Results

Table 6 displays comparative results for 5 PETL algorithms using ViT-B from VideoMAE and Video
Swin Transformer on the SSv2 [40] and HMDB51 [41] datasets. The findings are as follows: (1) On
SSv2 [40], which has sufficient data, the ViT-B from VideoMAE outperforms others, illustrating the
robustness of features learned through self-supervised learning and the enhanced generalization of
the pre-trained model. Conversely, on HMDB51 [41], which has limited data and fewer categories,
the supervised pre-trained Video Swin Transformer shows superior performance, indicating better
adaptability and generalization in smaller datasets. (2) On SSv2 [40], only a few PETL algorithms
outperform Full fine-tuning, suggesting that with sufficient data, full fine-tuning is less likely to
overfit. Conversely, on HMDB51 [41], most PETL algorithms outperform full fine-tuning, indicating
that full fine-tuning may lead to overfitting when data is scarce, whereas PETL algorithms offer

6

Table 6: Benchmark results on SSv2 and HMDB51. We evaluate 5 PETL algorithms with ViT-B
from VideoMAE and Video Swin Transformer. The results are Top-1 accuracy.

Method Model Pre-training # Params.
SSv2 HMDB51

Top1 PPT Top1 PPT

Vision Transformer (from VideoMAE)

Full fine-tuning ViT-B Kinetics 400 85.97 M 53.97 % - 46.41 % -
Frozen ViT-B Kinetics 400 0 M 29.23 % 0.29 49.84 % 0.50

AdaptFormer [45] ViT-B Kinetics 400 1.19 M 59.02 % 0.56 55.69 % 0.53
BAPAT [54] ViT-B Kinetics 400 2.06 M 57.78 % 0.53 57.18 % 0.53

Video Swin Transformer

Full fine-tuning Video Swin-B Kinetics 400 87.64 M 50.99 % - 68.07 % -
Frozen Video Swin-B Kinetics 400 0 M 24.13 % 0.24 71.28 % 0.71

LoRA [13] Video Swin-B Kinetics 400 0.75 M 38.34 % 0.37 62.12 % 0.60
BitFit [14] Video Swin-B Kinetics 400 1.09 M 45.94 % 0.44 68.26 % 0.65

AdaptFormer [45] Video Swin-B Kinetics 400 1.56 M 40.80 % 0.38 68.66 % 0.64
Prefix-tuning [71] Video Swin-B Kinetics 400 6.37 M 39.46 % 0.32 56.13 % 0.45

BAPAT [54] Video Swin-B Kinetics 400 6.18 M 53.36 % 0.43 71.93 % 0.58

Table 7: Benchmark results on COCO. We evaluate 9 PETL algorithms with Swin-B models pre-
trained on ImageNet-22K.

Swin-B # Params. Memory
COCO

(Cascade Mask R-CNN)
APBox PPT APMask PPT

Traditional Finetuning

Full fine-tuning 86.75 M 17061 MB 51.9 % - 45.0 % -
Frozen 0.00 M 7137 MB 43.5 % 0.44 38.6 % 0.39

PETL Algorithms

Bitfit [14] 0.20 M 13657 MB 47.9 % 0.47 41.9 % 0.42
LN TUNE [66] 0.06 M 12831 MB 48.0 % 0.48 41.4 % 0.41
Partial-1 [72] 12.60 M 7301 MB 49.2 % 0.35 42.8 % 0.30
Adapter [12] 3.11 M 12557 MB 50.9 % 0.45 43.8 % 0.39
LoRA [13] 3.03 M 11975 MB 51.2 % 0.46 44.3 % 0.40

AdaptFormer [45] 3.11 M 13186 MB 51.4 % 0.46 44.5 % 0.40
LoRand [67] 1.20 M 13598 MB 51.0 % 0.49 43.9 % 0.42
E3VA [68] 1.20 M 7639 MB 50.5 % 0.48 43.8 % 0.42
Mona [69] 4.16 M 13996 MB 53.4 % 0.46 46.0 % 0.40

a more effective solution. (3) BAPAT [54] achieves outstanding performance by integrating the
strengths of Adapter [12], Prefix [71], and Prompt [17].

6.4 Dense Prediction Results

Benchmark Results on COCO. Table 7 presents the results on COCO [42] using 9 PETL algorithms
with pre-trained Swin-B. Our analysis reveals that: (1) Full fine-tuning generally outperforms most
PETL algorithms. This is because COCO [42] is a substantial dataset with sufficient data, reducing the
likelihood of overfitting when fully fine-tuning. However, most PETL algorithms show competitive
performance, demonstrating their parameter efficiency. (2) Mona [69] stands out as the only PETL
algorithm to surpass full fine-tuning, showcasing the effectiveness of its multi-cognitive visual filters.

Benchmark Results on PASCAL VOC and ADE20K. Table 8 presents the results on Pascal VOC
[44] and ADE20K [43] using 9 PETL algorithms. We can observe that: (1) On Pascal VOC, which
features fewer data and object categories, all PETL algorithms surpass Full fine-tuning. This is
because adjusting a small number of parameters in the pre-trained model helps prevent overfitting and
catastrophic forgetting, thereby preserving the model’s generalization ability. Conversely, on ADE20K
[43], which has more data and object categories, Full fine-tuning outperforms all PETL algorithms.
With more available data, fully fine-tuning the pre-trained model allows for better adaptation to the

7

Table 8: Benchmark results on PASCAL VOC and ADE20K. We evaluate 9 PETL algorithms with
Swin-L models pre-trained on ImageNet-22K.

Swin-L # Params. Memory
(VOC)

Pascal VOC
(RetinaNet)

ADE20K
(UPerNet)

APBox PPT mIoU PPT

Traditional Finetuning

Full fine-tuning 198.58 M 15679 MB 83.5 % - 52.10 % -
Frozen 0.00 M 3967 MB 83.6 % 0.84 46.84 % 0.47

PETL Algorithms

Bitfit [14] 0.30 M 10861 MB 85.7 % 0.85 48.37 % 0.48
LN TUNE [66] 0.09 M 10123 MB 85.8 % 0.86 47.98 % 0.48
Partial-1 [72] 28.34 M 3943 MB 85.4 % 0.48 47.44 % 0.27
Adapter [12] 4.66 M 10793 MB 87.1 % 0.74 50.78 % 0.43
LoRA [13] 4.57 M 10127 MB 87.5 % 0.74 50.34 % 0.43

AdaptFormer [45] 4.66 M 11036 MB 87.3 % 0.74 50.83 % 0.43
LoRand [67] 1.31 M 11572 MB 86.8 % 0.82 50.76 % 0.48
E3VA [68] 1.79 M 4819 MB 86.5 % 0.81 49.64 % 0.46
Mona [69] 5.08 M 11958 MB 87.3 % 0.73 51.36 % 0.43

downstream task. Nevertheless, PETL algorithms still achieve competitive outcomes, demonstrating
their parameter efficiency. (2) LN TUNE [66] achieves the highest performance on both Pascal VOC
and ADE20K, indicating that fine-tuning only the LayerNorm parameters is effective and efficient.

6.5 Discussion

Figure 1: The GPU memory on COCO and PASCAL VOC.

Computational Cost. Some PETL
works [60, 68] also explore Memory-
Efficient methods, which is closely
related to gradient backpropagation.
As shown in Figure 1, all PETL algo-
rithms save varying amounts of mem-
ory compared to Full fine-tuning,
with Frozen and E3VA performing
particularly well. The Frozen method
achieves this because its backbone
parameters are frozen and do not par-
ticipate in gradient backpropagation.
E3VA designs a parallel branch for the backbone, causing the gradient backpropagation to bypass the
backbone. In the future, we believe there will be more work on parameter and memory efficiency.

Feature Distribution. V-PETL Bench offers t-SNE visualizations that intuitively display the feature
distribution for the downstream task. These visualizations enable us to evaluate the effectiveness
of the PETL algorithms. Figure 2 shows t-SNE visualizations for two specific tasks, SVHN and
Clevr/count, as examples. The visualizations demonstrate that the feature distribution of the data is
closely linked to performance, with higher performance showing more distinct decision boundaries.

Full Finetuning
Acc. = 87.4

Frozen
Acc. = 36.6

BitFit
Acc. = 59.9

VPT-Shallow
Acc. = 74.5

LoRA
Acc. = 85.3

AdaptFormer
Acc. = 86.6

SCT
Acc. = 91.2

SVHN

Clevr
(count)

Acc. = 56.3 Acc. = 34.3 Acc. = 61.5 Acc. = 50.5 Acc. = 82.9 Acc. = 81.9 Acc. = 81.5

Figure 2: Visualization of feature distribution on SVHN and Clevr/count.

8

V-PETL Bench

Extension Attention Map Visualization Feature Distribution Visualization Ablation Experiments
and more …

Configs Train Evaluation ScriptsAPI

Core

Dataset
• 24 image recognition

• 3 video recognition

• 3 dense prediction

Data Loader
• Data Augmentation

• Data Split

• Data Loader

Model
• Vision Transformer

• SwinTransformer

• Video SwinTransformer

Training Hook
• Timer

• Logging

• Checkpoint

Algorithm

Algorithm Base
• Config File

• Dataset

• Data Loader

• Model

• …...

Utility
• CE Loss

• Label Smoothing CE Loss

• Distributed Utils

• Training Hook

• …...

PETL Algorithms

• Adapter
• SCT
• BitFit
• LN-TUNE
• VPT
• LoRA
• LAST

• AdaptFormer
• Fact
• ResAdapter
• Prefix-Tuning
• SSF
• NOAH
• SNF

• U-Tuning
• Hydra
• LST
• DTL
• HST
• GPS
• ……

Figure 3: The structure of the V-PETL Bench codebase consists of four layers.

7 Codebase Structure of V-PETL Bench

In this section, we provide an overview of the codebase structure of V-PETL Bench, which which is
organized into four abstract layers, as shown in Figure 3.

Core Layer. In the core layer, we implement the essential functions commonly used for training
PETL algorithms. Additionally, this layer includes the code for datasets, data loaders, and pre-trained
models that are utilized in the V-PETL Bench.

Algorithm Layer. In the algorithm layer, we first implement the base class for PETL algorithms,
which includes initializing the datasets, data loaders, and models from the core layer. Moreover, we
implement the loss functions and algorithm-specific configurations used in PETL algorithms. Based
on these implementations, we currently support 25 PETL algorithms in the V-PETL Bench. More
algorithms are expected to be added through the continued extension of V-PETL Bench.

Extension Layer. The extension layer is dedicated to advancing the core PETL algorithms for visual
analysis. In this layer, we primarily implement attention map and feature distribution visualization,
enabling researchers to directly observe and compare the performance of different PETL algorithms.

API Layer. We encapsulate the core functions and algorithms within the API layer, creating a
user-friendly interface for individuals from diverse backgrounds who are interested in applying
PETL algorithms to new applications. Additionally, we provide configuration files for all supported
algorithms, complete with detailed parameter settings, enabling the reproduction of results.

8 Conclusion

In this paper, we introduce V-PETL Bench, the first comprehensive benchmark for visual parameter-
efficient transfer learning domain. The V-PETL Bench includes 30 CV datasets and implements
25 dominant PETL algorithms. We also propose the PPT metric to compare different algorithms
based on both the number of parameters and the performance. Additionally, we conduct several
insightful analyses of the results. We regard V-PETL Bench as a long-term evolving project and are
dedicated to its continuous development. Our roadmap for the future includes expanding its scope to
the multimodal model and the generative model.

9

Acknowledgement. The work was supported in part by the National Natural Science Foundation
of China under Grant 62301310, and in part by Sichuan Science and Technology Program under
Grant2024NSFSC1426.

References
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. Proceedings of
the International Conference on Learning Representations (ICLR), 2021.

[2] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV).

[3] Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and Shuicheng Yan. Volo: Vision outlooker for
visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2022.

[4] Yi Xin, Junlong Du, Qiang Wang, Ke Yan, and Shouhong Ding. Mmap: Multi-modal alignment
prompt for cross-domain multi-task learning. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2024.

[5] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo.
Segformer: Simple and efficient design for semantic segmentation with transformers. Advances
in Neural Information Processing Systems (NeurIPS), 2021.

[6] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer
for semantic segmentation. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2021.

[7] Yi Xin, Junlong Du, Qiang Wang, Zhiwen Lin, and Ke Yan. Vmt-adapter: Parameter-efficient
transfer learning for multi-task dense scene understanding. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI), 2024.

[8] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020.

[9] Y Li, S Xie, X Chen, P Dollar, K He, and R Girshick. Benchmarking detection transfer learning
with vision transformers. arxiv 2021. arXiv preprint arXiv:2111.11429.

[10] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2017.

[11] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining
for the masses. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), 2021.

[12] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In Proceedings of the International Conference on Machine Learning (ICML), 2019.

[13] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. Proceedings
of the International Conference on Learning Representations (ICLR), 2022.

10

[14] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. Proceedings of the Annual Meeting
of the Association for Computational Linguistics (ACL), 2022.

[15] Yi-Kai Zhang, Lu Ren, Chao Yi, Qi-Wei Wang, De-Chuan Zhan, and Han-Jia Ye. Zhijian: A
unifying and rapidly deployable toolbox for pre-trained model reuse. https://github.com/
zhangyikaii/LAMDA-ZhiJian, 2023.

[16] Yi Xin, Siqi Luo, Haodi Zhou, Junlong Du, Xiaohong Liu, Yue Fan, Qing Li, and Yuntao
Du. Parameter-efficient fine-tuning for pre-trained vision models: A survey. arXiv preprint
arXiv:2402.02242, 2024.

[17] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. In Proceedings of the European Conference on
Computer Vision (ECCV), 2022.

[18] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[19] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with
citizen scientists: The fine print in fine-grained dataset collection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[20] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In 2008 Sixth Indian conference on computer vision, graphics & image
processing, 2008.

[21] E Dataset. Novel datasets for fine-grained image categorization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 2011.

[22] Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, and Li Fei-Fei. Fine-
grained car detection for visual census estimation. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2017.

[23] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report, 2009.

[25] Li Fei-Fei, Robert Fergus, and Pietro Perona. One-shot learning of object categories. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2006.

[26] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

[27] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[28] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In Advances in Neural
Information Processing Systems Workshops (NeurIPS Workshops), 2011.

11

https://github.com/zhangyikaii/LAMDA-ZhiJian
https://github.com/zhangyikaii/LAMDA-ZhiJian

[29] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010.

[30] Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
equivariant cnns for digital pathology. In International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI), 2018.

[31] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 2019.

[32] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification:
Benchmark and state of the art. Proceedings of the IEEE, 2017.

[33] Ben Graham. Kaggle diabetic retinopathy detection competition report. University of Warwick,
2015.

[34] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[35] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv
preprint arXiv:1612.03801, 2016.

[36] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 2013.

[37] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentangle-
ment testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

[38] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition
with invariance to pose and lighting. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2004.

[39] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human
action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[40] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne
Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The" something something" video database for learning and evaluating visual common
sense. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.

[41] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre.
Hmdb: a large video database for human motion recognition. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2011.

[42] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proceedings
of the European Conference on Computer Vision (ECCV).

[43] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

12

[44] Mark Everingham, SM Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes challenge: A retrospective. International
Journal of Computer Vision (IJCV).

[45] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[46] Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. St-adapter: Parameter-
efficient image-to-video transfer learning. Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[47] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are
data-efficient learners for self-supervised video pre-training. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[48] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video
swin transformer. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[49] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017.

[50] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing
for scene understanding. In Proceedings of the European Conference on Computer Vision
(ECCV), 2018.

[51] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection and instance
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019.

[52] Henry Hengyuan Zhao, Pichao Wang, Yuyang Zhao, Hao Luo, Fan Wang, and Mike Zheng Shou.
Sct: A simple baseline for parameter-efficient fine-tuning via salient channels. International
Journal of Computer Vision (IJCV), 2023.

[53] Zeyinzi Jiang, Chaojie Mao, Ziyuan Huang, Yiliang Lv, Deli Zhao, and Jingren Zhou. Re-
thinking efficient tuning methods from a unified perspective. arXiv preprint arXiv:2303.00690,
2023.

[54] Bruce XB Yu, Jianlong Chang, Lingbo Liu, Qi Tian, and Chang Wen Chen. Towards a unified
view on visual parameter-efficient transfer learning. arXiv preprint arXiv:2210.00788, 2022.

[55] Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features:
A new baseline for efficient model tuning. Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[56] Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. arXiv preprint
arXiv:2206.04673, 2022.

[57] Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision
transformer. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2023.

[58] Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guannan Jiang, Zhiyu Wang, and
Rongrong Ji. Towards efficient visual adaption via structural re-parameterization. arXiv preprint
arXiv:2302.08106, 2023.

[59] Sanghyeon Kim, Hyunmo Yang, Younghyun Kim, Youngjoon Hong, and Eunbyung Park.
Hydra: Multi-head low-rank adaptation for parameter efficient fine-tuning. arXiv preprint
arXiv:2309.06922, 2023.

13

[60] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Information Processing Systems (NeurIPS),
2022.

[61] Minghao Fu, Ke Zhu, and Jianxin Wu. Dtl: Disentangled transfer learning for visual recognition.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2024.

[62] Weifeng Lin, Ziheng Wu, Jiayu Chen, Wentao Yang, Mingxin Huang, Jun Huang, and Lianwen
Jin. Hierarchical side-tuning for vision transformers. arXiv preprint arXiv:2310.05393, 2023.

[63] Zhi Zhang, Qizhe Zhang, Zijun Gao, Renrui Zhang, Ekaterina Shutova, Shiji Zhou, and
Shanghang Zhang. Gradient-based parameter selection for efficient fine-tuning. arXiv preprint
arXiv:2312.10136, 2023.

[64] Ningyuan Tang, Minghao Fu, Ke Zhu, and Jianxin Wu. Low-rank attention side-tuning for
parameter-efficient fine-tuning. arXiv preprint arXiv:2402.04009, 2024.

[65] Yaoming Wang, Bowen Shi, Xiaopeng Zhang, Jin Li, Yuchen Liu, Wenrui Dai, Chenglin Li,
Hongkai Xiong, and Qi Tian. Adapting shortcut with normalizing flow: An efficient tuning
framework for visual recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

[66] Samyadeep Basu, Shell Hu, Daniela Massiceti, and Soheil Feizi. Strong baselines for parameter-
efficient few-shot fine-tuning. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2024.

[67] Dongshuo Yin, Yiran Yang, Zhechao Wang, Hongfeng Yu, Kaiwen Wei, and Xian Sun. 1% vs
100%: Parameter-efficient low rank adapter for dense predictions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[68] Dongshuo Yin, Xueting Han, Bin Li, Hao Feng, and Jing Bai. Parameter-efficient is not
sufficient: Exploring parameter, memory, and time efficient adapter tuning for dense predictions.
arXiv preprint arXiv:2306.09729, 2023.

[69] Dongshuo Yin, Leiyi Hu Bin Li, and Youqun Zhang. Adapter is all you need for tuning visual
tasks. arXiv preprint arXiv:2311.15010, 2023.

[70] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

[71] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL),
2021.

[72] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? Advances in Neural Information Processing Systems (NeurIPS), 2014.

14

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 3.

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

A Parameter-Efficient Transfer Learning Definition

Definition 1 (Parameter-efficient Transfer Learning). Given a pre-trained model M parametrized
by θ, and a specific downstream task D = {(xi, yi)}|D|

i=1, where (xi, yi) represents each ground-truth
input-output pair related to task D, parameter-efficient transfer learning seeks to adapt θ to task D,
where task-specific parameters increment ∆θ is introduced with |∆θ| ≪ |θ|. The optimal parameters
are found by optimizing the losses L on task D:

min
∆θ

E(xi,yi)∈DL(Mθ+∆θ(ŷi|xi), yi). (2)

B Details of Datasets in V-PETL Bench

B.1 Image Recognition Tasks

In this section, we introduce all the image recognition datasets in the V-PETL Bench. For each
dataset, we select relevant examples, as illustrated in Figure 6. To download the datasets, please refer
to project page https://v-petl-bench.github.io/.

CUB-200-2011 This task represents the most widely-used benchmark for fine-grained visual
categorization. It includes 11,788 images across 200 subcategories of birds, with 5,994 images
designated for training and 5,794 for testing.

NABirds This task comprises a collection of 48,000 annotated photographs representing 400
species of birds commonly observed in North America. Each species is documented with over 100
photographs, which include separate annotations for males, females, and juveniles.

Oxford Flowers The task involves an image classification dataset comprising 102 flower categories,
featuring flowers commonly found in the United Kingdom. Each category contains between 40 and
258 images.

Stanford Dogs The task includes 20,580 images spanning 120 classes of dogs from around the
world, divided into 12,000 images for training and 8,580 for testing.

Stanford Cars The task features 196 classes of cars, totaling 16,185 images captured from the rear.
The categories are organized by Make, Model, and Year. Each image has a resolution of 360×240
pixels.

Caltech101 The task involves classifying images of objects across 101 categories, plus an additional
background clutter class. The objects include a diverse range such as animals, airplanes, chairs, and
scissors. Image sizes vary, typically ranging from 200 to 300 pixels per edge.

CIFAR-100 The task involves classifying natural images into 100 classes, with each class containing
500 training images. Examples of these classes include apples, bottles, dinosaurs, and bicycles. All
images are 32x32 pixels in size.

DTD The task involves classifying images of textural patterns across 47 classes, each containing
120 training images. The textures include varied patterns such as banded, bubbly, meshed, lined, and
porous. Image sizes range from 300x300 to 640x640 pixels.

Flowers102 The task involves classifying images of flowers found in the UK into 102 categories,
with each category containing between 40 and 248 training images. Examples of these flowers include
Azalea, Californian Poppy, Sunflower, and Petunia. All images have a minimum dimension of 500
pixels.

16

https://v-petl-bench.github.io/

Pets The task involves classifying images of cat and dog breeds into 37 classes, with approximately
200 images per class. Examples include Persian cats, Chihuahua dogs, English Setters, and Bengal
cats. The dimensions of the images are typically 200 pixels or larger.

Sun397 The Sun397 task is a scenery benchmark that includes 397 classes, each with at least 100
images. The classes are organized hierarchically and feature a variety of scenes such as cathedrals,
staircases, shelters, rivers, and archipelagos. All images are in color and measure at least 200x200
pixels.

SVHN This task involves classifying images from Google’s Street View of house numbers into 10
classes, each containing over 1,000 training images. Each image is 32x32 pixels in size.

EuroSAT The task involves classifying Sentinel-2 satellite images into 10 different land use
categories, such as Residential, Industrial, River, and Highway. Each image has a spatial resolution
of 10 meters per pixel and measures 64x64 pixels.

Resisc45 The Remote Sensing Image Scene Classification (RESISC) dataset is designed for scene
classification tasks using remote sensing images. It comprises 45 classes, each with 700 images,
featuring diverse scenes such as tennis courts, ships, islands, lakes, parking lots, sparse residential
areas, and stadiums. Each image is in RGB format with dimensions of 256x256 pixels.

Patch Camelyon The Patch Camelyon dataset includes 327,680 images from histopathologic scans
of lymph node sections. The classification task involves predicting the presence of metastatic tissue
within these images, dividing them into two classes. Each image has dimensions of 96x96 pixels.

Retinopathy The Diabetic Retinopathy dataset consists of image-label pairs with high-resolution
retina images, and labels that indicate the presence of Diabetic Retinopahy (DR) in a 0-4 scale (No
DR, Mild, Moderate, Severe, or Proliferative DR).

Clevr/count CLEVR is a visual question and answer dataset designed to evaluate algorithmic
visual reasoning. We use just the images from this dataset, and create a synthetic task by setting the
label equal to the number of objects in the images.

Clevr/distance Another synthetic task we create from CLEVR consists of predicting the depth of
the closest object in the image from the camera. The depths are bucketed into size bins.

dSprites/location The dSprites dataset was originally designed to asses disentanglement properties
of unsupervised learning algorithms. In particular, each image is a 2D shape where six factors are
controlled: color, shape, scale, rotation, and (x,y) center coordinates. Images have 64x64 black-and-
white pixels. This task consists in predicting the x (horizontal) coordinate of the object. The locations
are bucketed into 16 bins.

dSprites/orientation We create another task from dSprites consists in predicting the orientation of
each object, bucketed into 16 bins.

SmallNORB/azimuth The Small NORB dataset features images of 3D toys from 50 classes,
including animals, human figures, airplanes, trucks, and cars, each captured in a resolution of
640x480 pixels. In this specific task, we assign labels based on the azimuth—the angle of horizontal
deviation—using intervals of 20 degrees, resulting in 18 distinct classes.

SmallNORB/elevation Another synthetic task from the Small NORB dataset involves predicting
the elevation depicted in the images. This task is divided into 9 classes, each corresponding to a
different elevation ranging from 30 to 70 degrees, with intervals of 5 degrees between each class.

17

DMLab The DMLab (DeepMind Lab) is a set of control environments focused on 3D navigation
and puzzle-solving tasks. The Dmlab dataset contains frames observed by the agent acting in the
DeepMind Lab environment, which are annotated by the distance between the agent and various
objects present in the environment. The goal is to evaluate the ability of a visual model to reason
about distances from the visual input in 3D environments. The Dmlab dataset consists of 360x480
color images in 6 classes.The classes are {close, far, very far} × {positive reward, negative reward}
respectively.

KITTI-Dist The KITTI task involves predicting the binned depth to vehicles, such as cars, vans, or
trucks, in images. The prediction is categorized into four distinct bins or classes.

B.2 Video Action Recognition Tasks

SSv2 The SSv2 dataset currently contains 168,913 videos, which are categorized under 174 different
labels. These videos vary in length from 2 to 6 seconds. The labels are textual descriptions created
from templates like “Dropping [something] into [something],” where the “[something]” acts as
placeholders for various objects.

HMDB51 The HMDB51 dataset comprises a diverse array of realistic videos sourced from movies
and web videos. It contains 6,766 video clips, spread across 51 action categories such as "jump,"
"kiss," and "laugh." Each category includes at least 101 clips, providing a broad spectrum of human
actions.

B.3 Dense Prediction Tasks

MS COCO The MS COCO dataset is a widely used benchmark for instance segmentation, featuring
80 object categories. Each image in MS COCO is accompanied by high-quality annotations. For
instance segmentation, these annotations consist of pixel-wise masks for each object instance, enabling
precise identification and localization of objects within the images.

ADE20K The ADE20K semantic segmentation dataset includes over 20,000 scene-centric images,
each exhaustively annotated with pixel-level labels for objects and object parts. It encompasses a
total of 150 semantic categories, which range from expansive elements like sky, road, and grass, to
discrete objects such as person, car, and bed.

PASCAL VOC The PASCAL VOC dataset features 20 object categories, encompassing vehicles,
household items, animals, and more. Each image in this dataset is equipped with bounding box
annotations and object class annotations, making it a widely used benchmark for object detection.

C Taxonomy of PETL Algorithms

In visual PETL survey [16], existing PETL methods can be divided into 7 basic categories, including:

Adapter Tuning methods inject small-scale neural modules (adapters) to the Transformer layers
and only tune these adapters for model adaptation, as showin in Figure 4b. Specifically, one adapter
module contains a down-projection and an up-projection. Additionally, there is a nonlinear layer
between the two layers for non-linear projection.

Prompt Tuning methods wrap the original input with additional visual prompts. These prompts
consist of trainable parameters or perturbations, as shown in Figure 4c. Given an input x0 ∈ Rd and
prompts P = [P1], [P2], ...[Pl] ∈ Rl×d, the final input can be expressed as follows:

x0 = concat(P, x0) = [P, x0] ∈ R(l+N)×d. (3)

Side Tuning employs a smaller and separate network that operates in parallel with the Transformer,
as shown in Figure 4d. While ensuring parameter-efficient, this separation completely obviates the

18

ReLU

!"#$%

!&'

Adapter
VPT

learnable tokens

……

Decoder

(b) Adapter Tuning (c) Prompt Tuning (d) Side Tuning

(f) Reparameter Tuning(e) Prefix Tuning

*

(= *(0, ./)

1 = 0
Pretrained

Weights

2ℓ45

∆!

Q K V

Q K V78 79

Attention

Down

Tanh

Up

78 79

×;

Embeded PatchesVPT

MHA

LayerNorm

MLP

Adapter

Decoder

LayerNorm

!< !8 !9

Q K V78 79

Attention

LoR
A

LoR
A

Side N
etw

ork

(a) Unified View of PEFT Methods

2ℓ45

Figure 4: The detailed architecture of various PEFT methods. [16]

need for costly backpropagation through a large backbone network, resulting in significant GPU
memory savings.

Prefix Tuning introduces learnable prefix matrices to the Multi-Head Attention (MHA) module of
the Transformer layers, as shown in Figure 4e. It involves prepending two randomly initialized prefix
matrices Pk, Pv ∈ Rl×d to the keys and values in the MHA, leading the attention calculation to:

Attention(Q,K, V) = softmax(
Q[Pk,K]T√

d
)[Pv, V]. (4)

Specification Tuning is an efficient approach that directly modifies a specific subset of parameters in
Transformers, such as bias and LayerNorm, which are crucial for downstream tasks. This method
concentrate on important parameters while discarding those deemed less relevant. The concept, while
straightforward, has proven to be surprisingly effective.

Reparameter Tuning methods introduce new learnable parameters during the training stage, while
these parameters can be integrated into the original Transformer layers through reparameterization
during the inference phase, as shown in Figure 4f.

Unified-based Tuning methods offer a unified framework to integrate various fine-tuning methods
into a single, harmonized architecture. This approach streamlines the process and enhances the
overall efficiency and effectiveness of the fine-tuning.

D Details of Implemented PETL Algorithms in V-PETL Bench

For each category of PETL algorithms outlined in Section C, we select multiple algorithms for
implementation within the V-PETL Bench. These are briefly introduced in Section 5 of the paper,
with a detailed introduction provided below:

D.1 Adapter Tuning

(1) Adapter [12] incorporates a bottleneck module (Adapter) into each Transformer layer, positioned
after both the Multi-Head Attention (MHA) and the Feed-Forward Networks (FFN). (2) Adapt-
Former [45] embeds the adapter module parallel to the FFN in each encoder of a Vision Transformer.

19

(3) SNF [65] integrates and fine-tunes Normalizing Flows modules within the residual connections
of each encoder block in the pre-trained ViT. (4) Hydra [59] includes both a parallel and a sequential
adapter in the final linear layer of the FFN in each encoder block. (5) LoRand [67] introduces
low-rank adapters into each SwinBlock of the Swin Transformer, positioned after the MHA and FFN
for enhanced dense predictions. (6) Mona [69] integrates a multi-cognitive convolutional filter group
(Depthwise Convolution) along with an aggregation filter (1× 1 Convolution) following the down
projection of the standard adapter.

D.2 Prompt Tuning and Prefix Tuning

(1) VPT [17] enhances vision transformers by appending learnable visual prompts to the input
sequences (VPT-Shallow) or to the input of each transformer encoder layer (VPT-Deep). (2) Prefix
Tuning [71] incorporates trainable prefix tokens into each layer of the Transformer model, allowing
for task-specific adaptation of the pre-trained model without altering the original parameters.

D.3 Side Tuning

(1) LST [60] employs a small ladder-side network that operates outside the pre-trained network,
receiving intermediate activations via shortcut connections. (2) DTL [61] integrates a Compact Side
Network (CSN) alongside each encoder block within the ViT, extracting task-specific information
progressively throughout the forward pass and reintegrating it into the pre-trained ViT. (3) HST
[62] constructs a lightweight Hierarchical Side Network (HSN) separate from the pre-trained ViT to
generate multi-scale features from intermediate activations. (4) LAST [64] adds a lightweight side
network consisting of low-rank self-attention (LSA) modules after each Transformer block in the
pre-trained ViT. (5) E3VA [68] introduces a highway system parallel to the SwinBlock in the Swin
Transformer, featuring trainable low-rank adapters (E3VA) that isolate the pre-trained model from
gradient backpropagation.

D.4 Specification Tuning

(1) BitFit [14] exclusively fine-tunes the bias terms of the pre-trained model while keeping the
rest of the parameters unchanged. (2) GPS [63] fine-tunes a small, crucial subset of parameters
(sub-network) from the original pre-trained model using a gradient-based approach. (3) SCT [52]
incorporates Salient Channel Tuning Modules (SCTM) after the MHA or FFN to target and fine-tune a
select group of channels (salient channels). (4) LN TUNE [66] specifically fine-tunes the LayerNorm
parameters, leaving other components untouched. (5) Partial-1 [72] focuses on fine-tuning only the
last encoder layer of the pre-trained ViT.

D.5 Reparameter Tuning

(1) LoRA integrates a tunable pair of low-rank decomposed weight matrices into each encoder layer
of the pretrained ViT. (2) FacT incorporates tunable factorized weight matrices into each layer of
the pretrained ViT. (3) RepAdapter introduces a reparameterizable linear adapter before the MHA
and FFN of each encoder block of the pre-trained ViT. (4) SSF adds a tunable scaling and shifting
module (SSF-ADA) behind the MHA and FFN of the pre-trained ViT.

D.6 Unified-based Tuning

(1) NOAH [56] integrates a tunable Neural Operator Adaptation Head (NOAH) module, which
includes a lightweight MLP and a gating mechanism, into the MHA and FFN of each encoder block
in the pre-trained ViT. (2) U-Tuning [53] incorporates a unified tuner (U-Tuner) consisting of Prefix,
Adapter, and Prompt elements into the MHA and FFN of each encoder block in the pre-trained ViT.
(3) BAPAT [54] introduces the Parallel Attention (PATT), which adds trainable query, key, and value
matrices to the MHA, and incorporates bottleneck layers into the FFN of each Transformer block in
the pre-trained ViT.

20

E Performance-Parameter Trade-off Metric

For the evaluation of PETL algorithms, to compare different methods with a single number that
considers both task performance and parameter-efficiency, we define the Performance-Parameter
Trade-off (PPT) metric:

PPT = performance× exp(−log10(
#parameters

C
+ 1)). (5)

The performance quantifies prediction accuracy, ranging from 0 to 1. The term # parameters refers to
the count of updated parameters during the model adaptation phase. C is a normalization constant set
at 107, aligns with the typical parameter sizes of existing PETL algorithms, ensuring that the ratio
#parameters

C falls within the [0, 1) range. To prevent log values from reaching negative infinity, we
introduce an additive constant of 1. As PETL evolves, considerations such as GPU memory might be
incorporated, potentially leading to further refinements of the PPT metric.

E.1 Attention Map

Attention map visualization is a crucial tool for analyzing PETL algorithms. In the V-PETL Bench,
we have included an attention map visualization module. We randomly select several examples of
attention map visualizations, as illustrated in Figure 5. We can find that the SCT method focuses
more intently on the cat, while Full Finetuning directs more concentrated attention towards the flower.
In the V-PETL Bench, we offer a convenient interface that allows researchers to easily utilize the
attention map visualization tool.

Image Full Fine-Tuning SCTAdaptFormerBitFitFrozen VPT-shallowLoRA

Figure 5: Visualization of attention maps.

F Broader Impacts

Efficient usability. The V-PETL Bench provides a user-friendly calling interface and comprehensive
documentation, enabling researchers from various fields to quickly get started with efficient usability.
Additionally, V-PETL Bench provides checkpoints for all tasks, allowing researchers to directly load
and utilize these models without the need for retraining.

Environmental-friendly consumption. The V-PETL Bench has standardized common computer
vision tasks and offers evaluation results for various PETL algorithms. It eliminates the need for
additional training unless absolutely necessary, which positively impacts carbon emissions reduction
and environmental protection.

Ethical Considerations. The PETL algorithms capitalize on the representation and generaliza-
tion abilities acquired from large-scale pre-trained datasets and models. However, it’s crucial to
acknowledge the potential risks if these pre-training datasets contain bias or illegal information.

21

G Future Work

In this work, our primary focus is on traditional computer vision (CV) tasks. However, there are
additional CV tasks that should not be overlooked by the PETL community. Currently, the V-PETL
Bench does not encompass tasks such as text-to-image generation, point cloud analysis, or robotic
manipulation. Moreover, it supports only a limited selection of pre-trained models. Expanding our
repository to include self-supervised and multimodal pre-trained models is essential. We plan to
continue updating the benchmark to include these enhancements in the future.

22

EuroSATPatch Camelyon Resisc45

Retinopathy

V
T

A
B

-S
p

ec
ia

li
ze

d

kitti

SmallNORB/azimuth SmallNORB/elevation

Clevr/countClevr/dist

dSprites/location

dSprites/orientation

DMLab

V
T

A
B

-S
tr

u
ct

u
re

d

Caltech101 CIFAR-100 DTD

Flowers102 Pets Sun397

SVHNV
T

A
B

-N
at

u
ra

l

StanfordDogs CUB

Cars Flowers102

F
G

V
C

NABirds

Figure 6: Dataset examples for all classification tasks evaluated.

23

	Introduction
	Related Work
	Tasks and Datasets
	Image Recognition Task
	Video Action Recognition Task
	Dense Prediction Task

	Pre-trained Models
	PETL Algorithms Implemented in the V-PETL Bench
	Benchmark Results
	Evaluation Metrics
	Image Recognition Results
	Video Action Recognition Results
	Dense Prediction Results
	Discussion

	Codebase Structure of V-PETL Bench
	Conclusion
	Parameter-Efficient Transfer Learning Definition
	Details of Datasets in V-PETL Bench
	Image Recognition Tasks
	Video Action Recognition Tasks
	Dense Prediction Tasks

	Taxonomy of PETL Algorithms
	Details of Implemented PETL Algorithms in V-PETL Bench
	Adapter Tuning
	Prompt Tuning and Prefix Tuning
	Side Tuning
	Specification Tuning
	Reparameter Tuning
	Unified-based Tuning

	Performance-Parameter Trade-off Metric
	Attention Map

	Broader Impacts
	Future Work

