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Abstract001

In Natural Language Processing (NLP), Argu-002
ment Mining (AM) focuses on identifying and003
extracting the underlying argumentative struc-004
ture of a text. An AM pipeline takes a text as005
input and outputs its argumentative structure by006
successively classifying the arguments within007
the text (ACC task), identifying the argumen-008
tative relations between the arguments (ARI009
task), and classifying these identified relations010
(ARC task). Modern LLM-based approaches to011
AM reformulate the pipeline sub-tasks individ-012
ually, converting them from text classification013
to text generation through innovative prompt-014
ing techniques. In this work, we propose a015
novel LLM-based approach that addresses the016
successive sub-tasks of the AM pipeline as a017
unified text generation task, instead of treat-018
ing them independently. We introduce an effi-019
cient 2-step prompting strategy that instructs020
the LLM to solve the ACC task and the joint021
ARI+ARC task in a single inference pass. Our022
unified AM pipeline approach achieves compet-023
itive or state-of-the-art performance on AAEC,024
AbsRCT, and CDCP benchmark datasets, out-025
performing or matching the best existing meth-026
ods in which LLMs are fine-tuned separately027
for each sub-task. Overall, our work establishes028
‘AM pipeline as text generation’ as a rigorous029
and efficient AM paradigm and builds strong030
baseline results for future research.031

1 Introduction032

In Natural Language Processing (NLP), Argument033

Mining (AM) focuses on extracting the underlying034

argumentative structure of a text, enabling down-035

stream reasoning systems, such as legal decision036

support tools or policy analysis engines, to interpret037

and act on the extracted arguments. AM has found038

widespread applications in diverse fields such as039

legal reasoning, social media discourse and scien-040

tific reasoning (Palau and Moens, 2009; Cabrio and041

Villata, 2018).042

The core elements of a discursive text are argu- 043

ment components and the relations between them. 044

Argument components are self-contained asser- 045

tions that an author makes to substantiate his/her 046

opinion on a contentious topic. Argument relations 047

link pairs of argument components within a text, 048

forming discursive connections that express either 049

support or opposition. A complete argument min- 050

ing pipeline consists of four inter-connected sub- 051

tasks: identifying argument components in the text 052

(ACI) followed by classification of identified argu- 053

ment components according to their argumentative 054

role (ACC). The third task involves classifying all 055

possible pairs of argument components in text as 056

either related or unrelated (ARI). Finally, each pair 057

of related arguments is classified according to their 058

discursive relation, support or attack (ARC) (Stab 059

and Gurevych, 2017). The AM pipeline outputs 060

a fully parsed argumentative structure, capturing 061

discursive intent and reasoning patterns to reveal 062

how ideas are developed and justified in the text. 063

LLMs have become ubiquitous in modern NLP, 064

replacing traditional task-specific systems with 065

general-purpose, pre-trained architectures that ex- 066

hibit strong zero-shot, few-shot, and transfer learn- 067

ing capabilities (Zhao et al., 2023; Wei et al., 2022; 068

Minaee et al., 2025). Built on transformer-based 069

architectures, LLMs are characterized by their deep 070

and wide neural network structures, consisting of 071

hundreds of layers and billions to trillions of param- 072

eters. The core innovation underlying LLMs is the 073

self-attention mechanism, which enables the model 074

to capture long-range dependencies in text by dy- 075

namically weighting the relevance of each token 076

in a sequence with respect to all others (Vaswani 077

et al., 2017). LLMs are pre-trained on massive 078

corpora of text data using unsupervised learning 079

objectives that allow the models to acquire rich 080

syntactic, semantic, and world knowledge repre- 081

sentations (Radford and Narasimhan, 2018; De- 082

vlin et al., 2019). The subsequent fine-tuning or 083
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adaptation phase allows these models to special-084

ize in domain-specific downstream tasks, such as085

machine translation, summarization, question an-086

swering, and sentiment analysis.087

In this paper, we model the AM pipeline as a088

simple, compact, and unified text generation task089

using fine-tuned LLMs. Our main contributions090

are as follows:091

• We address three sub-tasks of the AM pipeline092

(ACC, ARI and ARC) in a unified manner093

by modeling them as a single text generation094

task, instead of treating them independently.095

We introduce an efficient 2-step prompting096

strategy that instructs the LLM to solve the097

ACC task and the joint ARI+ARC task in a098

single inference pass. The model generates a099

compact and human-readable representation100

of the complete argumentative structure.101

• We implement the AM pipeline on three102

benchmark datasets: the Argument Annotated103

Essays Corpus (AAEC), Randomized Con-104

trolled Trials (AbsRCT), and Consumer Debt105

Collection Practices (CDCP). For the AAEC106

dataset, we apply the pipeline at both the es-107

say and paragraph levels, enabling the LLM108

to capture inter- and intra-textual structural109

dynamics. These datasets span diverse source110

domains, capturing variations in text structure111

and linguistic characteristics.112

• To assess the generalizability and robustness113

of our approach, we experiment with vari-114

ous cutting-edge LLMs, including LLaMA115

(3, 3.1, 3.2), Qwen (2, 2.5), Phi, Falcon and116

Mistral. Notably, our unified AM pipeline ap-117

proach achieves competitive or state-of-the-art118

performance on AAEC, AbsRCT, and CDCP119

datasets, outperforming or matching the best120

existing methods in which LLMs are fine-121

tuned separately for each AM sub-task.122

To the best of our knowledge, our work is the123

first to implement the complete AM pipeline as an124

all-in-one text generation task. To ensure repro-125

ducibility, our code, prompt templates and other126

material will be made available in the final version.127

2 Related Works128

The use of LLMs for modeling Argument Mining129

sub-tasks as text generation has garnered increasing130

attention in recent research (Pojoni et al., 2023;131

Al Zubaer et al., 2023). The common methodology 132

involves reformulating individual AM sub-tasks 133

from text classification tasks into text generation 134

tasks through prompt engineering techniques. For 135

example, in the ACC task, the LLM is provided 136

with the identified argument components (ACs) 137

as part of its prompt and is instructed to generate 138

the corresponding type labels (e.g., ‘MajorClaim’, 139

‘Claim’, or ‘Premise’). 140

Liu et al. (2023) frame argument mining as a 141

generative machine reading comprehension task. 142

They experiment with the AAEC dataset, modeling 143

each task separately, and with the AbstRCT dataset, 144

where they merge the ARI and ARC tasks into 145

a single relation identification and classification 146

task (ARIC). Their prompt template consists of a 147

context and an input query concatenated together. 148

The context element includes the complete text, 149

with ‘AC’ and ‘non_AC’ tags used to delineate 150

argument components from non-argumentative text. 151

The input query consists of a single argument for 152

the ACC task and pairs of arguments for the ARIC 153

task. The generated output sequence consists of a 154

class label and a path representation. The authors 155

use BART-Base (Lewis et al., 2020) for the AAEC 156

dataset and BioBART-Base (Yuan et al., 2022) for 157

the AbstRCT dataset. 158

Fine-tuning LLMs involves enhancing their pre- 159

trained knowledge with domain-specific supervised 160

learning. To that end, Cabessa et al. (2025) fine- 161

tune popular LLMs for argument mining as a text 162

generation task. In addition to the AAEC and 163

AbstRCT datasets, they also experiment with the 164

CDCP dataset. For the ACC task, their prompt 165

template consists of the complete text with argu- 166

ment components delineated using <AC> and </AC> 167

tags, and the generated output is a list of predicted 168

component types. For the ARI task, they gener- 169

ate a list of related argument pairs using the same 170

prompt template. For the ARC task, given a list 171

of related argument pairs, the LLM generates a 172

list of predicted relation types. For the joint ARIC 173

task, given the text with delineated argument com- 174

ponents, the LLM is prompted to generate a list of 175

triplets, where each triplet consists of a predicted 176

related argument pair and its predicted relation type. 177

For the AAEC dataset, the authors model the AM 178

sub-tasks at both the essay and paragraph levels. 179

Gemechu et al. (2024) undertake an extensive 180

study of the ARIC (ARI + ARC) task using three 181

strategies: sequence classification, token classifi- 182

cation and sequence alignment. Specifically, the 183
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authors use ROBERTA-large, DialogGPT (Zhang184

et al., 2020) and T5 models to address the joint185

ARIC task for a set of benchmark datasets. They186

experiment with three predominant model archi-187

tectures: encoder-only, decoder-only and encoder-188

decoder. For rigorous evaluation, they undertake189

both in-dataset and cross-dataset task evaluation.190

Their results represent state-of-the-art for the ARIC191

joint task.192

We position our work within the AM-as-text-193

generation paradigm. We improve upon existing194

approaches by modeling the entire AM pipeline as195

a unified text generation task. Our approach is more196

realistic and aligns more closely with real-world ap-197

plications, as it mirrors the way argumentative dis-198

course naturally unfolds in text – inter-connected199

and context-dependent – rather than through iso-200

lated sub-tasks. This unified generative framework201

allows the model to simultaneously capture argu-202

mentative structure, content, and relationships in a203

context-aware manner.204

3 Materials and Methods205

3.1 Datasets206

We conduct our experiments on three benchmark207

datasets for Argument Mining (AM). The statistics208

of these datasets are provided in Appendix A.209

(1) The AAEC dataset comprises 402 structured210

essays on a variety of topics (Stab and Gurevych,211

2017). Argument components (ACs) in this dataset212

are annotated as one of three types: ‘MajorClaim’,213

‘Claim’, or ‘Premise’. Argumentative relations214

(ARs) between these components are labeled as215

either ‘Support’ or ‘Attack’. Notably, premises216

may only be related to claims or other premises217

within the same paragraph, whereas claims are re-218

lated to major claims across different paragraphs.219

(2) The AbstRCT dataset consists of 650 ab-220

stracts from randomized controlled trials (RCTs)221

selected from PubMed (Mayer, 2020). ACs are222

annotated using the same three labels as in AAEC223

dataset: ‘MajorClaim’, ‘Claim’ and ‘Premise’,224

although in practice, major claims and claims are225

generally grouped into a single class. The ARs are226

also annotated as either ‘Support’ or ‘Attack’.227

(3) The CDCP dataset consists of 730 user228

comments on Consumer Debt Collection Prac-229

tices (CDCP) rule by the Consumer Financial Pro-230

tection Bureau (CFPB) (Park and Cardie, 2018).231

Here, ACs are annotated as one of five types,232

‘Fact’, ‘Policy’, ‘Reference’, ‘Testimony’,233

or ‘Value’. ARs between components are labeled 234

as either ‘Evidence’ or ‘Reason’. 235

3.2 AM Pipeline 236

The AM pipeline consists of three text classifica- 237

tion tasks: Argument Component Classification 238

(ACC), Argument Relation Identification (ARI), 239

and Argument Relation Classification (ARC). 240

ACC: This task involves classifying each argu- 241

ment component (AC) in a text into one of sev- 242

eral component types, such as ‘MajorClaim’(M), 243

‘Claim’(C), and ‘Premise’(P). 244

ARI: This task involves identifying argument re- 245

lations (ARs) between pairs of ACs in a text. 246

Specifically, this entails classifying each distinct 247

pair (i,j) of ACs as either ‘Related’(R) or 248

‘Non-related’(NR). 249

ARC: This task involves classifying each related 250

pair (i,j) of ACs into a specific relation type, such 251

as ‘Support’(S) or ‘Attack’(A). 252

ARIC (ARI + ARC): In literature, ARI and ARC 253

tasks have also been addressed jointly. In this 254

joint task setting, each pair (i,j) of distinct 255

ACs is classified as either ‘Non-related’(NR), 256

‘Support’(S) or ‘Attack’(A). 257

To implement the AM pipeline as a unified text 258

generation task, the LLM is instructed to solve 259

the ACC, ARI, and ARC sub-tasks within a single 260

prompt. To that end, a natural 3-step prompting 261

strategy guides the model to (i) identify the argu- 262

ment component types, (ii) determine the pairs of 263

related components, and (iii) classify the relation 264

type for each related pair. The methodology and 265

results of this strategy are detailed in Appendix D. 266

We propose an alternative, significantly more 267

efficient 2-step prompting strategy, in which the 268

LLM solves the ACC and ARIC (ARI + ARC) 269

sub-tasks within a single prompt. Specifically, for 270

each input text sample, the LLM generates two 271

JSON objects as output: (i) a list of AC types, 272

and (ii) a list of AR triplets of the form (i, j, 273

‘X’), indicating that ACi and ACj are related by 274

the relation type ‘X’ (e.g., support or attack). An 275

example of a generated output for this unified AM 276

pipeline task is provided below: 277

{"argument_types": 278

['M', 'C', 'P', 'P', 'P', 'P', 'C']} 279

280

{"argument_relations": 281

[(7,1,'S'), (2,7,'S'), (3,7,'S'), 282

(5,7,'S'), (4,7,'S'), (6,1,'A')]} 283
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In the AAEC dataset, premises can only relate284

to claims or other premises within the same para-285

graph, while claims connect to the major claim(s)286

across paragraphs at the essay level. To account for287

this dynamic, we design an additional prompting288

strategy in which the LLM is instructed to produce289

paragraph-level lists of AR triplets, along with an290

ordered list of stances indicating whether the iden-291

tified claims support or attack the identified major292

claims in the text. For this prompting strategy, the293

output is of the following format:294

{"argument_types":295

['M', 'C', 'P', 'P', 'C', 'M']}296

297

{"claim_stances": ['S', 'A']}298

299

{"relation_types":300

{'Paragraph 1': [],301

'Paragraph 2': [(3,2,'S'), (4,2,'S'),302

(4,5,'A')],303

'Paragraph 3': []}}304

Based on these generated lists, the set of AR305

triplets is computed as follows: 1) we take the306

predicted paragraph-level triplets, i.e., (3,2,‘S’),307

(4,2,‘S’), (4,5,‘A’) in this example; 2) we308

add the stance relations ([‘S’,‘A’]) between the309

claims (2 and 5) and all major claims (1 and 6), re-310

sulting in (2,1,‘S’), (2,6,‘S’), (5,1,‘A’),311

(5,6,‘S’) in this example. The classification met-312

rics for ACC, ARI, ARC, and ARIC tasks are then313

computed as described in Section 3.4.314

3.3 Model Fine-Tuning315

To address the full AM pipeline on the AAEC,316

AbstRCT, and CDCP datasets, we fine-tune the317

following 4-bit quantized LLMs:318

• Meta-Llama-3-70B-Instruct319

• Meta-Llama-3-8B-Instruct320

• Meta-Llama-3.1-8B-Instruct321

• Qwen2.5-7B-Instruct322

• Qwen2.5-14B-Instruct323

• Mistral-Nemo-Instruct324

• Phi-4-mini-instruct325

• Falcon3-10B-Instruct326

These models reflect a diversity of size and architec-327

tural families, allowing us to assess the robustness328

of our approach.329

Our prompt template is presented in Figure 1 330

and in Appendix C. The prompts are composed 331

of three elements: an instruction, an input, and an 332

output. The instruction informs the model about 333

the structure of its input text, defines the tasks to 334

be performed (ACC and ARI + ARC), and speci- 335

fies the expected format of the output in structured 336

JSON. We also include a demonstration output as 337

part of the instruction. The input consists of the 338

text along with its corresponding ordered list of 339

ACs. Finally, the output contains the output for the 340

train sample, which consists of lists of AC types 341

and AR triplets (see Section 3.2). During inference, 342

the LLM is prompted to generate this output for a 343

test sample based on the corresponding instruction 344

and input elements. 345

### You are an expert in Argument Mining 
tasked with analyzing argumentative structures in 
essays. 

INPUT:
You will receive:
- An essay title.
- The complete essay text.
- An enumerated list of identified arguments 
extracted from the essay.

TASK 1: Argument Classification
... <task description> ...

TASK 2: Argument Relations Identification and 
Classification
... <task description> ...

EXAMPLE:

### Output:
{"argument_types": ['M', 'M', 'C', 'P', 'P', 
'P', 'C', 'P', 'P', 'P', 'C']}
{"argument_relations": [(4, 3, 'S'), (5, 3, 
'A'), (6, 3, 'S'), (10, 11, 'S'), (9, 11, 
'A'), (8, 7, 'S')]}

### Essay title: ...<title>...

### Essay text:
...<essay text>...

### List of arguments in the essay: 
1.  ...<AC1>...
2.  ...<AC2>...
    ...
11. ...<AC11>...

### Output:
{"argument_types": ['M', 'C', 'P', 'P', 'P', 
'P', 'C', 'P', 'P', 'C', 'M']}
{"relation_types": [(3, 2, 'S'), (4, 2, 'S'), 
(5, 2, 'S'), (6, 7, 'S'), (8, 10, 'S'), (9, 
10, 'S'), (2, 1, 'S'), (2, 11, 'S'), (7, 1, 
'A'), (7, 11, 'A'), (10, 1, 'S'), (10, 11, 
'S')]}

Figure 1: Prompt template. The instruction, input and output
elements are represented in different colors.
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3.4 Post-Processing346

For all datasets, the output lists generated by LLMs347

are post-processed to compute the classification348

scores for the ACC, ARI, ARC, and ARIC tasks.349

The post-processing primarily involves harmoniz-350

ing the ground truths and predicted argument com-351

ponents (ACs) and relation types to ensure the ac-352

curate computation of classification metrics.353

ACC Metric: For each test sample, the LLM gen-354

erates a list of predicted argument types, denoted355

as preds, which is then compared to the list of356

ground argument types, denoted as grounds. If357

preds contains more elements than grounds, the358

extra elements in preds are removed. Conversely,359

if preds contains fewer elements than grounds,360

additional incorrect elements are added to match361

the length of grounds. Once the lengths of preds362

and grounds are aligned across all texts, the classi-363

fication metric for ACC task is computed (F1 score364

for each class and overall macro-F1 score).365

ARI Metric: For each test sample, the LLM gen-366

erates a list of predicted triplets, where each triplet367

consists of a pair of related ACs along with its368

relation type. To compute the ARI metric, we369

first enumerate all possible pairs (i,j) of distinct370

ACs in the text. We then create two lists, grounds371

and preds, by labeling each pair of ACs as ei-372

ther related (‘R’) or non-related (‘NR’) based on373

ground truth annotations and LLM predictions, re-374

spectively. After aggregating over all texts, the375

classification metric over the ‘R’ and ‘NR’ classes376

can be computed.377

ARC Metric: To compute ARC metric, we start378

with the list of ground triplets, grounds, and build379

the list of predicted triplets, preds, as follows:380

for each ground triplet (i,j,‘X’), if a predicted381

triplet (i,j,‘Y’) (based on the same pair (i,j))382

exists, it is appended to preds. Otherwise, a triplet383

with incorrect type, (i,j,‘not X’), is appended384

to preds, where ‘not X’ denotes the opposite class385

of X (i.e., ‘not X’ = ‘S’ iff ‘X’ = ‘A’). Finally,386

the labels of grounds and preds are aligned, and387

the classification metric over ‘S’ and ‘A’ classes388

is computed.389

ARIC Metric: The ARI and ARC tasks are per-390

formed jointly. To evaluate the metric for this joint391

task, we proceed as follows. First, we enumer-392

ate all possible pairs (i,j) of distinct ACs in the393

text. Then, we create two lists, grounds and preds,394

by labeling each pair of ACs as either non-related395

(‘NR’), support (‘S’), or attack (‘A’) based on396

ground truth annotations and LLM predictions, re- 397

spectively. Finally, we compute the classification 398

metric for the ‘NR’, ‘S’, and ‘A’ classes. 399

Note that our unified text generation framework 400

increases the complexity of the ARC task. While 401

the original formulation assumes related AC pairs 402

are given as input and focuses solely on relation 403

type prediction, our approach requires the model to 404

simultaneously generate both the related pairs and 405

their corresponding relation types. Consequently, 406

any related pair of ACs missed by the model re- 407

sults in an incorrect relation prediction, leading to 408

a significant reduction in ARC scores compared to 409

those in the literature. 410

4 Results 411

We compare our unified AM pipeline approach to 412

the strongest existing methods where each sub-task 413

is addressed separately. Implementation details are 414

given in Appendix B. 415

2-step vs 3-step prompting strategy: We com- 416

pared the results of the 3-step and 2-step strategies 417

to evaluate their relative effectiveness (Tables 1 and 418

2). The two strategies yield identical performance 419

on the ACC task (91.2), indicating that the classi- 420

fication of argument components is robust to the 421

prompting strategy. However, the 2-step strategy 422

significantly outperforms the 3-step one on the ARI 423

and ARIC tasks, achieving 85.7 and 72.6 respec- 424

tively, compared to 79.4 and 67.8 for the 3-step 425

variant. This demonstrates a clear advantage in 426

relation prediction when ARI and ARC are jointly 427

modeled. On ARC, the 3-step strategy outperforms 428

the 2-step one (59.5 vs. 51.7), but these predictions 429

are associated with incorrectly predicted pairs of 430

related arguments, as confirmed by the lower ARI 431

score. Overall, these results validate the effective- 432

ness of the 2-step prompting strategy adopted in 433

our approach. 434

AAEC dataset: The results for AAEC dataset 435

at the essay and paragraph levels are presented in 436

Tables 2 and 3, respectively. As mentioned in Sec- 437

tion 3.4, the poor performance on the ARC task are 438

explained by the fact that, in our joint task frame- 439

work, the LLM must simultaneously predict both 440

the pairs of ACs that are related and their corre- 441

sponding relation types. In contrast, the original 442

ARC task formulation assumes the related AC pairs 443

to be provided as input and requires the model to 444

predict only the relation types. 445
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ACC ARI ARC ARIC
Model C M P F1 NR R F1 A S F1 NR A S F1
LLaMA-3-8B 80.1 95.4 93.4 89.6 98.2 56.7 77.5 20.6 94.4 57.5 98.2 29.7 55.9 61.3
LLaMA-3.1-8B 81.6 95.5 93.9 90.3 98.2 56.6 77.4 24.3 94.6 59.5 98.2 34.6 55.2 62.7
LLaMA-3.2-3B 75.7 92.8 92.1 86.8 97.9 48.4 73.1 14.1 94.4 54.3 97.9 23.5 47.3 56.2
Qwen2.5-7B 75.7 92.2 92.6 86.8 98.0 51.4 74.7 17.6 94.5 56.1 98.0 18.9 50.5 55.8
Qwen2.5-14B 81.8 95.0 94.0 90.3 98.3 59.7 79.0 22.4 95.0 58.7 98.3 31.7 59.6 63.2
Mistral-Nemo-2407 84.2 94.4 95.0 91.2 98.4 60.4 79.4 23.3 94.8 59.0 98.4 45.2 59.8 67.8

Table 1: Results of the AAEC dataset at essay level using the 3-step prompting strategy.

At the essay level, our unified pipeline achieves446

state-of-the-art (SOTA) performance on ACC and447

ARI tasks and competitive results on the ARIC448

task using the LLaMA-3-70B and LLaMA-3.1-449

8B models (see Table 2). The LLaMA-3-70B450

model achieves strong SOTA performance and the451

LLaMA-8B models consistently outperform non-452

LLaMA models with similar size. These results453

show that, for the AAEC dataset, joint task learning454

outperforms separate task learning, suggesting that455

LLMs can leverage information from one task to456

enhance performance on another.457

At the paragraph level, the LLaMA models also458

achieve SOTA and competitive performance on459

the ACC, ARI and ARIC tasks, respectively, al-460

though the scores are lower than those at the essay461

level (see Table 3). In this case, the LLaMA-3-70B462

model does not achieve top performance across all463

tasks, and the dominance of the LLaMA models is464

less pronounced overall. These results are surpris-465

ing, as the AC and AR types are strongly influenced466

by their relative positions within paragraphs (Stab467

and Gurevych, 2017). This suggests that providing468

hand-crafted, linguistically-informed regularities469

may not necessarily aid LLMs and could, in fact,470

impede their effectiveness.471

AbstRCT dataset: The results for the three test472

sets (neo, gla, and mix) of the AbsRCT dataset are473

reported in Table 4. For this dataset, ARI and ARC474

are typically addressed jointly (ARIC task), which475

explains the absence of results for these tasks in the476

literature. Here again, the poor results on the ARC477

task are due to its formulation in our framework.478

In this case, the LLaMA-3-70B model does not479

consistently outperform others across all tasks. For480

the neo and mix test sets, our approach achieves481

the second-best and competitive results on the ACC482

and ARIC tasks, respectively, while for the gla test483

set, our approach underperforms relative to the last484

reported results. The Mistral-Nemo-2407 model485

performs relatively well across different test sets486

and tasks, suggesting that this model may be more487

appropriate for this dataset. 488

CDCP dataset: The results for the CDCP dataset 489

are presented in Table 5. As with the previous 490

datasets, the results on the ARC task are limited 491

due to the task formulation in our framework. On 492

this dataset, we achieve the second-best almost- 493

SOTA and SOTA results on the ACC and ARI tasks, 494

respectively. On the whole, the unified pipeline 495

approach achieves strong results on this dataset as 496

well. 497

Discussion: Our LLM-based unified AM 498

pipeline, formulated as a single text generation 499

task, consistently delivers competitive or state- 500

of-the-art performance across the core AM tasks 501

(ACC, ARI and ARIC) and a variety of benchmark 502

datasets representing diverse argumentative 503

sources. For the AAEC dataset, our unified 504

pipeline approach outperforms separate task 505

fine-tuning methods. This improvement can be 506

attributed to several factors. First, knowledge 507

sharing across tasks plays a crucial role, as insights 508

gained from one task provide valuable context that 509

enhances performance on the others. Additionally, 510

the interdependence of the ACC, ARI, and ARC 511

tasks allows the model to leverage task-specific 512

information and shared representations, enhancing 513

overall performance. This joint setup also 514

improves contextualization, enabling the model to 515

better capture global argumentative structures. 516

Certain models prove more effective than oth- 517

ers depending on the dataset type. This perfor- 518

mance variability is not always driven by model 519

size; rather, it suggests that the knowledge acquired 520

during pre-training may transfer to downstream 521

tasks with varying efficiency, depending on dataset 522

characteristics. 523

Overall, the unified AM pipeline offers the prac- 524

tical advantage of relying on a single model and 525

requiring only one inference pass to simultane- 526

ously perform all three AM sub-tasks. A structured 527

graphical representation of the argumentative con- 528

tent can then be readily extracted from the LLM’s 529
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ACC ARI ARC ARIC
Model C M P F1 NR R F1 A S F1 NR A S F1
Liu et al. (2023) - - - 89.2 - - 82.7 - - 81.0 - - - -
Bao et al. (2021) - - - 88.4 - - 82.5 - - 81.0 - - - -
Cabessa et al. (2025) - - - 89.5 - - 83.5 - - 95.9 - - - -
Gemechu et al. (2024) - - - - - - - - - - - - - 78.0
LLaMA-3-70B 84.9 97.1 94.8 92.3 98.2 76.1 87.2 25.1 82.6 53.8 98.2 52.4 73.5 74.7
LLaMA-3-8B 82.1 96.4 93.8 90.7 97.9 72.0 84.9 21.0 79.7 50.3 97.9 49.8 69.3 72.3
LLaMA-3.1-8B 82.4 97.0 94.0 91.2 98.0 73.4 85.7 23.0 80.4 51.7 98.0 48.9 70.8 72.6
Qwen2.5-7B 73.6 90.8 91.5 85.3 97.5 65.5 81.5 14.8 73.6 44.2 97.5 37.8 62.2 65.8
Qwen2.5-14B 80.5 97.1 93.2 90.2 97.8 71.0 84.4 18.0 79.1 48.5 97.8 42.3 68.6 69.6
Mistral-Nemo-2407 80.3 94.5 93.8 89.5 97.9 71.6 84.7 18.8 78.5 48.6 97.9 42.5 68.5 69.6
Falcon3-10B 76.9 94.7 92.3 88.0 97.5 66.3 81.9 15.4 74.2 44.8 97.5 37.6 62.7 65.9

Table 2: Results for the AAEC dataset at the essay level. The first three rows present the current SOTA results. All models are
4-bit Instruct variants. F1 denotes the macro-averaged F1 score. Best results are boldfaced and second-best results are underlined.

ACC ARI ARC ARIC
Model C M P F1 NR R F1 A S F1 NR A S F1
Liu et al. (2023) - - - 89.2 - - 82.7 - - 81.0 - - - -
Bao et al. (2021) - - - 88.4 - - 82.5 - - 81.0 - - - -
Cabessa et al. (2025) - - - 89.5 - - 83.5 - - 95.9 - - - -
Gemechu et al. (2024) - - - - - - - - - - - - - 78.0
LLaMA-3-70B 84.5 94.9 95.1 91.5 98.8 72.3 85.6 15.3 82.7 49.0 98.8 50.6 72.3 73.9
LLaMA-3-8B 82.4 93.8 94.4 90.2 98.6 66.8 82.7 12.1 78.8 45.5 98.6 47.5 66.8 71.0
LLaMA-3.1-8B 83.7 97.4 94.2 91.8 98.7 69.5 84.1 10.9 80.3 45.6 98.7 36.4 69.5 68.2
Qwen2.5-7B 75.1 92.8 91.6 86.5 98.3 58.5 78.4 - - - - - - -
Qwen2.5-14B 83.7 96.1 94.3 91.4 98.6 67.4 83.0 13.5 79.3 46.4 98.6 47.2 67.4 71.1
Mistral-Nemo-2407 80.3 96.4 93.3 90.0 98.6 66.1 82.3 13.0 78.2 45.6 98.6 47.7 65.8 70.7
Falcon3-10B 76.0 93.5 92.0 87.2 98.4 60.9 79.6 9.0 74.5 41.8 98.4 39.0 61.0 66.1
Phi-4-mini 76.0 93.5 91.9 87.1 98.2 57.0 77.6 7.1 72.6 39.9 98.3 31.0 58.8 62.7

Table 3: Results for the AAEC dataset at the paragraph level. The first three rows present the current SOTA results for
comparison. All models are 4-bit Instruct variants. F1 denotes the macro-averaged F1 score.

output, as illustrated in Figure 2.530

{"argument_types": 
['M', 'C', 'P', 'P', 'P', 'P', 'C', 'P', 'P', 'C', 'M']}

{"relation_types": 
[(3,  2, 'S'), (4,  2, 'S'), (5,  2, 'S'), (6,   7, 'S'),
 (8, 10, 'S'), (9, 10, 'S'), (2,  1, 'S'), (2,  11, 'S'), 
 (7,  1, 'A'), (7, 11, 'A'), (10, 1, 'S'), (10, 11, 'S')]}

Major Claim 
(AC 1)

Major Claim 
(AC 11)

Claim 
(AC 2)

Claim 
(AC 7)

Claim 
(AC 10)

Premise 
(AC 3)

Premise 
(AC 4)

Premise 
(AC 5)

Premise 
(AC 6)

Premise 
(AC 8)

Premise 
(AC 9)

Figure 2: An LLM output and the corresponding graphical
representation of the argumentative structure.

5 Conclusion531

In this work, we propose a novel approach that532

models the AM pipeline as a unified text genera-533

tion task using LLMs. Our 2-step prompting strat-534

egy enables open-source and open-weight LLMs to535

jointly perform argument component classification,536

relation identification, and relation type classifi-537

cation efficiently, through a single inference pass. 538

Our approach employs a single model for all AM 539

sub-tasks, thus avoiding separate modeling stages, 540

reducing error propagation, and promoting more 541

context-aware and coherent parsing of argumenta- 542

tive structures. Through extensive experiments on 543

three benchmark datasets – AAEC, AbstRCT, and 544

CDCP – and with popular LLMs such as LLaMA-3, 545

LLaMA-3.1, Qwen-2.5, Mistral-Nemo, Phi-4, and 546

Falcon-3, we achieve competitive or state-of-the-art 547

performance compared to the best existing methods 548

in which LLMs are fine-tuned separately for each 549

sub-task. Overall, our work lays the foundation 550

for adopting unified, generative approaches to ar- 551

gument mining, offering a more compact, practical 552

and realistic alternative to traditional AM pipeline 553

architectures. 554

For future work, we are particularly interested in 555

understanding how an LLM internally handles the 556

unified task of juxtaposing three distinct yet interre- 557

lated sub-tasks. Ko et al. (2024) explore how LLMs 558

leverage knowledge through a graph-based hierar- 559

chical deconstruction framework, which we believe 560

is well-suited for the AM pipeline generation task. 561

Additionally, advances in LLM reasoning, such as 562

7



ACC ARI ARC ARIC
Model C P F1 NR R F1 A S F1 NR A S F1

Liu et al. (2023) - - 92.8 - - - - - - - - - 75.0
Si et al. (2023) - - 91.9 - - - - - - - - - 71.2
Cabessa et al. (2025) - - 94.2 - - - - - - - - - 77.1
Gemechu et al. (2024) - - - - - - - - - - - - 84.0
LLaMA-3-70B 90.9 95.0 93.0 96.8 70.7 83.8 36.3 79.8 58.0 96.8 63.8 68.4 76.3
LLaMA-3-8B 91.2 95.3 93.3 96.6 69.7 83.1 34.3 80.0 57.2 96.6 59.1 67.6 74.4
LLaMA-3.1-8B 91.2 95.1 93.2 96.7 70.0 83.4 33.5 79.1 56.3 96.7 61.3 68.4 75.5
Qwen2.5-7B 89.8 94.5 92.1 95.6 61.8 78.7 25.5 76.4 50.9 95.6 45.6 61.6 67.6
Qwen2.5-14B 91.2 95.1 93.2 96.8 71.0 83.9 32.8 81.5 57.1 96.8 53.1 71.3 73.7
Mistral-Nemo-2407 91.8 95.5 93.6 96.8 71.0 83.9 35.4 80.3 57.8 96.8 61.9 69.0 75.9
Falcon3-10B 91.6 95.4 93.5 96.1 64.4 80.2 21.9 75.7 48.8 96.1 40.4 64.9 67.1
Phi-4-mini 91.2 95.1 93.2 95.2 57.9 76.5 15.1 71.7 43.4 95.2 30.2 57.8 61.1

Liu et al. (2023) - - 92.6 - - - - - - - - - 74.3
Si et al. (2023) - - 92.4 - - - - - - - - - 73.3
Cabessa et al. (2025) - - 93.7 - - - - - - - - - 74.9

LLaMA-3-70B 88.4 94.6 91.5 96.2 71.0 83.6 22.0 83.7 52.9 96.2 49.1 71.7 72.3
LLaMA-3-8B 88.9 94.8 91.9 96.0 69.4 82.7 19.7 82.4 51.0 96.0 46.4 69.8 70.7
LLaMA-3.1-8B 89.7 95.2 92.4 95.9 68.5 82.2 15.4 81.8 48.6 95.9 35.1 70.1 67.0
Qwen2.5-7B 87.5 94.4 90.9 95.3 64.6 80.0 15.8 80.3 48.1 95.3 40.7 65.3 67.1
Qwen2.5-14B 88.5 94.7 91.6 95.8 67.8 81.8 16.5 81.5 49.0 95.8 42.3 68.8 69.0
Mistral-Nemo-2407 88.4 94.7 91.6 96.2 71.2 83.7 21.1 84.1 52.6 96.2 49.1 71.4 72.2
Falcon3-10B 87.7 94.5 91.1 95.3 64.0 79.6 8.8 79.3 44.0 95.3 24.5 65.8 61.9
Phi-4-mini 83.6 92.9 88.2 94.0 55.3 74.7 4.9 72.6 38.8 94.0 13.6 56.8 54.8

Liu et al. (2023) - - 94.0 - - - - - - - - - 73.9
Si et al. (2023) - - 92.2 - - - - - - - - - 72.7
Cabessa et al. (2025) - - 95.9 - - - - - - - - - 75.7

LLaMA-3-70B 92.2 95.7 94.0 96.0 67.1 81.6 25.0 83.3 54.1 96.0 52.6 67.2 71.9
LLaMA-3-8B 93.1 96.3 94.7 96.0 67.3 81.6 22.8 83.8 53.3 96.0 45.6 68.0 69.9
LLaMA-3.1-8B 93.0 96.1 94.5 95.9 66.5 81.2 25.4 82.3 53.9 95.9 62.7 65.6 74.8
Qwen2.5-7B 92.4 95.9 94.2 95.5 63.5 79.5 12.3 81.6 46.9 95.5 31.1 64.2 63.6
Qwen2.5-14B 91.6 95.5 93.6 95.7 64.5 80.1 12.4 81.8 47.1 95.7 29.8 65.7 63.7
Mistral-Nemo-2407 93.0 96.1 94.6 96.5 70.5 83.5 22.2 84.7 53.5 96.5 51.1 70.9 72.8
Falcon3-10B 91.2 95.3 93.2 95.8 64.9 80.3 12.0 81.0 46.5 95.8 30.4 65.8 64.0
Phi-4-mini 90.3 94.9 92.6 94.5 56.1 75.3 11.2 75.3 43.3 94.5 31.4 56.2 60.7

Table 4: Results for AbsRCT dataset (neo, gla, and mix test sets). The first three rows present the current SOTA results.

ACC ARI ARC ARIC
Model F P R T V F1 NR R F1 E R F1 NR E R F1
Bao et al. (2021) - - - - - 82.5 - - 67.8 - - - - - - -
Cabessa et al. (2025) - - - - - 87.3 - - 72.3 - - 80.4 - - - -
Gemechu et al. (2024) - - - - - - - - - - - - - - - 72.0
LLaMA-3-70B 68.5 89.5 100.0 91.3 86.6 87.2 98.6 52.8 75.7 3.5 65.4 34.5 98.6 20.7 53.3 57.5
LLaMA-3-8B 61.9 91.9 66.7 88.1 85.9 78.9 98.1 45.3 71.7 0.0 62.4 31.2 98.1 0.0 45.4 47.8
LLaMA-3.1-8B 63.2 92.6 100.0 86.0 85.1 85.4 98.2 43.6 70.9 3.1 58.3 30.7 98.2 20.0 44.4 54.2
Qwen2.5-7B 58.2 83.7 66.7 86.1 83.3 75.6 98.0 41.3 69.7 1.0 57.4 29.2 98.0 6.7 40.8 48.5
Qwen2.5-14B 62.3 91.6 100.0 89.4 85.4 85.7 98.2 44.7 71.4 7.0 58.5 32.7 98.2 36.8 43.8 59.6
Mistral-Nemo-2407 67.6 92.1 66.7 88.0 87.4 80.4 98.3 45.6 71.9 0.0 60.3 30.2 98.3 0.0 45.7 48.0
Falcon3-10B 60.9 87.7 100.0 88.3 84.0 84.2 98.0 39.0 68.5 0.0 54.7 27.4 98.0 0.0 38.9 45.6
Phi-4-mini 60.9 85.1 100.0 84.8 82.3 82.6 97.3 25.9 61.6 0.0 42.7 21.4 97.3 0.0 25.5 41.0

Table 5: Results for CDCP dataset.

DeepSeek and GPT reasoning models, align natu-563

rally with this framework. We plan to explore this564

promising direction in future research.565

We also plan to evaluate the current fine-tuning566

methodology against zero-shot and few-shot set-567

tings, particularly focusing on in-context learning568

strategies, where LLMs are provided with fully569

solved AM pipeline examples as demonstrations.570

Finally, we envision the integration of chain-of-571

thought (CoT) reasoning mechanisms into end-to-572

end AM systems. By explicitly modeling interme- 573

diate reasoning steps, CoT methods can enhance 574

interpretability and improve performance on com- 575

plex argumentative structures. The incorporation 576

of reasoning-optimized, state-of-the-art LLMs with 577

CoT methods represents a natural evolution in AM 578

pipeline design. These models, when guided by 579

CoT prompts, may offer improved capability in 580

tasks like component classification, relation predic- 581

tion, and overall argument structure generation. 582
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Limitations583

Our study has the following limitations, which584

should be taken into account when interpreting the585

results.586

First, although we expect the comparative results587

between the 3-step and 2-step prompting strategies588

to generalize across datasets, a comprehensive em-589

pirical validation remains to be conducted. In ad-590

dition, for the AAEC dataset, the LLaMA-3-70B591

model has yet to be evaluated under the 3-step592

prompting strategy. Secondly, our experiments593

are conducted on three benchmark datasets, but594

the generalizability of the results to other domains,595

text genres, or languages remains to be validated.596

Specifically, following Gemechu et al. (2024), it597

would be valuable to evaluate our unified AM598

pipeline within both in-dataset and cross-dataset599

settings. Furthermore, (Cabessa et al., 2024) es-600

tablish that LLM fine-tuning approach outperforms601

the less resource-intensive zero-shot and in-context602

learning strategies for separate AM sub-tasks. We603

intuit that this performance delta will be lower in604

the unified AM pipeline setting on account of en-605

hanced knowledge sharing and improved contextu-606

alization. This, however, remains to be empirically607

validated.608

Finally, as our method relies on LLMs in a black-609

box setting, we have limited insight into the un-610

derlying reasoning process or failure cases of the611

models. Interpretability and explainability remains612

an open challenge in LLM-based argument mining.613
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A Datasets750

Corpus Statistics Component Statistics
Tokens 147,271 major claims 751
Sentence 7,116 claims 1,506
Paragraphs 1,833 premises 3,832
Essays 402 Total 6,089

Table 6: Statistics for AAEC dataset (available here).

Split Abstracts Components
Neo-train 350 2,291
Neo-test 100 691
Gla-test 100 615
Mix-test 100 609

Table 7: Statistics of AbstRCT dataset (available here).

Components Relations
policy 815 reason 1174
value 2182 evidence 46
fact 785
testimony 1117
reference 32
Total 4931 1220

Table 8: Statistics for CDCP dataset (available here).

B Implementation Details751

All experiments were carried out using the LLaMA-752

Factory Python library (Zheng et al., 2024), with753

the QLoRa fine-tuning approach (Dettmers et al.,754

2023). All models employed are 4-bit quantized755

checkpoints freely available from Unsloth on Hug-756

ging Face. Hyperparameter details are provided in757

Appendix B.758

In our experiments, we mainly used the de-759

fault hyperparameter configuration of the LLaMA-760

Factory detailed in Table 9 below.761

Parameter Value
num_train_epochs 5 / 10 / 15
per_device_train_batch_size 2 / 4
gradient_accumulation_steps 4
learning_rate 5e-5
lr_scheduler_type ‘cosine’ / ‘linear’
warmup_ratio 0.1
max_grad_norm 1.0
finetuning_type "lora"
lora_target "all"
quantization_bit 4
loraplus_lr_ratio 16.0 / 32.0
fp16 True

Table 9: Hyperparameters of the models.

C Prompts 762

Prompt 1. Example of prompt for the AAEC dataset at the 763
essay level. 764

### You are an expert in Argument Mining tasked with analyzing 765
argumentative structures in essays. 766

767
INPUT: 768
You will receive: 769
- An essay title. 770
- The complete essay text. 771
- An enumerated list of identified arguments extracted from 772
the essay. 773

774
TASK 1: Argument Classification 775
- Classify each argument in the essay into one of the 776
following categories: "MajorClaim"(M), "Claim"(C) or "Premise 777
"(P). 778
- MajorClaim (M): The main stance or position that the author 779
wants to prove in the essay. Usually appears in the 780
introduction and/or conclusion. 781
- Claim (C): A statement that directly supports or attacks the 782
major claim. Claims are controversial assertions that require 783
further evidence. 784

- Premise (P): A reason or evidence that directly supports or 785
attacks a claim or another premise. 786
- You must return a list of argument types in following JSON 787
format: {"argument_types": [argument_types (str), 788
argument_types (str), ..., argument_types (str)]} 789

790
TASK 2: Argument Relations Identification and Classification 791
- Identify relationships between arguments by determining 792
which arguments support or attack other arguments. 793
- For each related argument pair, classify the relationship as 794
either: "Support"(S) or "Attack"(A). 795

- IMPORTANT: Only arguments that appear in the same line in 796
the essay can be related. 797
- You must return a list of triplets in the following JSON 798
format: {"argument_relations": [(target_index (int), 799
source_index (int), relation_type (str)), (target_index (int), 800
source_index (int), relation_type (str)), ...]} 801

- Note: Indices are 1-based, referring to the position in the 802
provided arguments list. 803

804
Example: 805

806
### Output: 807
{"argument_types": ['M', 'M', 'C', 'P', 'P', 'P', 'C', 'P', 'P 808
', 'P', 'C']} 809
{"argument_relations": [(4, 3, 'S'), (5, 3, 'A'), (6, 3, 'S'), 810
(10, 11, 'S'), (9, 11, 'A'), (8, 7, 'S')]} 811

812
### Essay title: Should students be taught to compete or to 813
cooperate? 814

815
### Essay text: 816
It is always said that competition can effectively promote the 817
development of economy. In order to survive in the 818

competition, companies continue to improve their products and 819
service, and as a result, the whole society prospers. However, 820
when we discuss the issue of competition or cooperation, what 821
we are concerned about is not the whole society, but the 822

development of an individual's whole life. From this point of 823
view, I firmly believe that we should attach more importance 824
to cooperation during primary education. 825
First of all, through cooperation, children can learn about 826
interpersonal skills which are significant in the future life 827
of all students. What we acquired from team work is not only 828
how to achieve the same goal with others but more importantly, 829
how to get along with others. During the process of 830

cooperation, children can learn about how to listen to 831
opinions of others, how to communicate with others, how to 832
think comprehensively, and even how to compromise with other 833
team members when conflicts occurred. All of these skills help 834
them to get on well with other people and will benefit them 835

for the whole life. 836
On the other hand, the significance of competition is that how 837
to become more excellence to gain the victory. Hence it is 838

always said that competition makes the society more effective. 839
However, when we consider about the question that how to win 840

the game, we always find that we need the cooperation. The 841
greater our goal is, the more competition we need. Take 842
Olympic games which is a form of competition for instance, it 843
is hard to imagine how an athlete could win the game without 844
the training of his or her coach, and the help of other 845
professional staffs such as the people who take care of his 846
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diet, and those who are in charge of the medical care. The847
winner is the athlete but the success belongs to the whole848
team. Therefore without the cooperation, there would be no849
victory of competition.850
Consequently, no matter from the view of individual851
development or the relationship between competition and852
cooperation we can receive the same conclusion that a more853
cooperative attitudes towards life is more profitable in one's854
success.855

856
### List of arguments in the essay:857
1. we should attach more importance to cooperation during858
primary education859
2. through cooperation, children can learn about interpersonal860
skills which are significant in the future life of all861

students862
3. What we acquired from team work is not only how to achieve863
the same goal with others but more importantly, how to get864
along with others865
4. During the process of cooperation, children can learn about866
how to listen to opinions of others, how to communicate with867

others, how to think comprehensively, and even how to868
compromise with other team members when conflicts occurred869
5. All of these skills help them to get on well with other870
people and will benefit them for the whole life871
6. the significance of competition is that how to become more872
excellence to gain the victory873
7. competition makes the society more effective874
8. when we consider about the question that how to win the875
game, we always find that we need the cooperation876
9. Take Olympic games which is a form of competition for877
instance, it is hard to imagine how an athlete could win the878
game without the training of his or her coach, and the help of879
other professional staffs such as the people who take care of880
his diet, and those who are in charge of the medical care881

10. without the cooperation, there would be no victory of882
competition883
11. a more cooperative attitudes towards life is more884
profitable in one's success885

886
887

### Output:888
{"argument_types": ['M', 'C', 'P', 'P', 'P', 'P', 'C', 'P', 'P889
', 'C', 'M']}890
{"relation_types": [(3, 2, 'S'), (4, 2, 'S'), (5, 2, 'S'), (6,891
7, 'S'), (8, 10, 'S'), (9, 10, 'S'), (2, 1, 'S'), (2, 11, 'S892
'), (7, 1, 'A'), (7, 11, 'A'), (10, 1, 'S'), (10, 11, 'S')]}893

D 3-Step Prompting894

In the 3-step prompting strategy, the LLM is in-895

structed to solve the successive ACC, ARI, and896

ARC tasks in a single prompt by generating three897

corresponding outputs: (i) a list of AC types, (ii)898

a list of pairs of related ACs, and (iii) a list of AR899

types. For this prompting strategy, the output is of900

the following format:901

{"argument_types": ['M', 'M', 'C', 'P',902

'P', 'P', 'C', 'P', 'P', 'P', 'C']}903

904

{"related_arguments": [(4, 3), (5, 3), (6,905

3), (10, 11), (9, 11), (8, 7)]}906

907

{"relation_types": ['S', 'S', 'S', 'S',908

'S', 'A']}909

The prompt template used in this strategy is illus-910

trated in Figure 3. The evaluation metrics for the911

ACC, ARI, ARC, and ARIC tasks are computed as912

follows.913

ACC / ARC Metric: For each test sample, the914

### You are an expert in Argument Mining 
tasked with analyzing argumentative structures in 
essays. 

INPUT:
You will receive:
- An essay title.
- The complete essay text.
- An enumerated list of identified arguments 
extracted from the essay.

TASK 1: Argument Classification
... <task description> ...

TASK 2: Argument Relations
... <task description> ...

TASK 3: Relation Classification
... <task description> ...

EXAMPLE:

### Output:
{"argument_types": ['M', 'M', 'C', 'P', 'P', 
'P', 'C', 'P', 'P', 'P', 'C']}
{"related_arguments": [(4, 3), (5, 3), (6, 
3), (10, 11), (9, 11), (8, 7)]}
{"relation_types": ['S', 'S', 'S', 'S', 'S', 
'S']}

### Essay title: ...<title>...

### Essay text:
...<essay text>...

### List of arguments in the essay: 
1.  ...<AC1>...
2.  ...<AC2>...
    ...
11. ...<AC11>...

### Output:
{"argument_types": ['M', 'C', 'P', 'P', 'P', 
'P', 'C', 'P', 'P', 'C', 'M']}
{"relation_arguments: [(3, 2), (4, 2), (5, 
2), (6, 7), (8, 10), (9, 10), (2, 1), (2, 
11), (7, 1), (7, 11), (10, 1), (10, 11)]}
{"relation_types: ['S', 'S', 'S', 'S', 'S', 
'S', 'S', 'S', 'A', 'A', 'S', 'S']}

Figure 3: Prompt template for the 3-step strategy. The instruc-
tion, input and output elements are represented in different
colors.

LLM generates a list of predicted AC (resp. AR) 915

types denoted as preds, which is then compared to 916

the list of ground AC (resp. AR) types, denoted 917

as grounds. If preds contains more elements 918

than grounds, the extra elements in preds are re- 919

moved. Conversely, if preds contains fewer ele- 920

ments than grounds, additional incorrect elements 921

are added to match the length of grounds. Once the 922

lengths of preds and grounds are aligned across 923

all texts, the classification metric for ACC task 924

is computed (F1 score for each class and overall 925

macro-F1 score). 926

ARI Metric: For each test sample, the LLM gen- 927

erates a list of predicted pairs of related ACs. To 928
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compute the ARI metric, we first enumerate all929

possible pairs (i,j) of distinct ACs in the text.930

We then create two lists, grounds and preds, by931

labeling each pair of ACs as either related (‘R’)932

or non-related (‘NR’) based on ground truth anno-933

tations and LLM predictions, respectively. After934

aggregating over all texts, the classification metric935

over the ‘R’ and ‘NR’ classes can be computed.936

ARIC Metric: To evaluate this joint task, we937

merge the list of AC pairs (from the ARI task)938

and the list of AR types (from the ARC task) into a939

list of triplets of the form (i,j,‘X’), where ‘X’ =940

‘S’ or ‘X’ = ‘A’. The merging process is designed941

to be robust to cases where the lengths of the two942

lists do not match, by introducing wrong AR types943

when needed. Next, we enumerate all possible944

pairs (i,j) of distinct ACs in the text, and cre-945

ate two lists, grounds and preds, by labeling each946

pair of ACs as either non-related (‘NR’), support947

(‘S’), or attack (‘A’) based on ground truth anno-948

tations and LLM predictions, respectively. Finally,949

we compute the classification metric for ‘NR’, ‘S’,950

and ‘A’ classes.951
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