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Abstract

We propose an importance sampling method for tractable and efficient estimation
of counterfactual expressions in general settings, named Exogenous Matching. By
minimizing a common upper bound of counterfactual estimators, we transform the
variance minimization problem into a conditional distribution learning problem,
enabling its integration with existing conditional distribution modeling approaches.
We validate the theoretical results through experiments under various types and
settings of Structural Causal Models (SCMs) and demonstrate the outperformance
on counterfactual estimation tasks compared to other existing importance sampling
methods. We also explore the impact of injecting structural prior knowledge
(counterfactual Markov boundaries) on the results. Finally, we apply this method
to identifiable proxy SCMs and demonstrate the unbiasedness of the estimates,
empirically illustrating the applicability of the method to practical scenarios.1
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Figure 1: A brief illustration of SCM, PCH and
counterfactual concepts.

Counterfactual reasoning, considered one of the
advanced cognitive abilities of humans, aims
to address questions about hypothetical worlds
that have not been observed. Answering these
questions, typically in the form of "what-if" or
"why," is crucial for attribution and explanation,
thus counterfactual reasoning is widely applied
in generating explanations [48, 47, 94, 63], mak-
ing decisions [71, 37, 95, 58], and evaluating
fairness [56, 113, 105, 78, 117]. A class of gen-
erative models called Structural Causal Models
(SCMs) provides a semantic characterization of
counterfactuals, consisting of a set of endoge-
nous mechanisms and an exogenous distribu-
tion, from which a collection of distributions
described by specific formal languages is in-
duced. These languages are organized into a progressively refined hierarchical structure, and each
is associated with human activities: language L1 is about seeing (observational), L2 is about doing
(interventional), and L3 is about imagining (counterfactual). This hierarchy is referred to as the
causal ladder [77] or the Pearl Causal Hierarchy (PCH) [5]. Fig. 1 provides a brief illustration of the
relevant concepts. As the highest level of the PCH, counterfactuals entail the most subtle information
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in the hierarchy, making the evaluation of counterfactual languages an appealing objective that has
received widespread attention in recent years.

Counterfactual reasoning consists of two subtasks: counterfactual identification and counterfactual
estimation. For an expression Q in L3, identification is to determine the uniqueness of the answer to
Q [86, 17] or its bounds [114, 25, 66] under some assumptions, while estimation is to compute the
specific value of Q. A series of literature [86, 17] transforms Q into a combination of expressions in
L1 and L2 through identification. However, estimating the transformed expression may be intractable.
Another series of literature focuses on identifying and estimating Q in specific settings, such as back
door [82, 38, 115, 102], front door [43, 109, 98], instrumental variables [14, 100, 35], representation
decoupling [15, 97, 61], categorical exogenous [22], exponential family [85], domain counterfactuals
[116]. There are also some literature applicable to relaxed cases, such as [28, 44, 45, 46, 57], but still
less developed.

In recent years, a class of methods has emerged that simulate the structure of the original SCM
using neural network architectures and learn causal mechanisms based on observed or intervened
distributions, which we refer to as neural proxy SCMs. These methods include the use of VAEs
[110, 55, 54, 92, 23], GANs [52, 108], normalizing flows [74, 50, 4, 69, 42], DDPMs [84, 12]. Here,
we focus only on models that provide identifiability results. Using bijections, [69, 42] demonstrates
the identifiability of learned causal mechanisms. However, constrained by bijections, they only
provide tractable counterfactual estimation methods for fully observed endogenous variables. The
closest method to performing tractable counterfactual estimation in general cases is NCM [107, 108],
which employs an optimization algorithm to concurrently achieve tractable counterfactual estimation
and identification (or partial identifiability [93]). However, the counterfactual estimation depends on
rejection sampling, thereby lacking scalability.

It is commonly recognized that performing tractable counterfactual estimation in general cases
is challenging, even when the SCM is fully specified. From the perspective of definition [5],
one needs to integrate over the entire exogenous space, which involves determining whether the
constraints of different hypothetical worlds are simultaneously satisfied. From the perspective of
complexity, although [34] has demonstrated that counterfactual reasoning is tractable if observational
and interventional reasoning are tractable, it relies on algorithms with exponential complexity.
Furthermore, according to [112], performing marginal inference on SCMs, including parameterized
SCMs such as NCM, has been shown to be NP-hard.

This paper presents a tractable and efficient counterfactual estimation method in general settings
based on importance sampling. Here, by "general settings", we mean that the exogenous variables of
the SCM can be discrete or continuous, the expressions to be estimated can involve an arbitrary finite
number of hypothetical worlds, and the observations and interventions can also be arbitrary.

Specifically, the contributions of this paper are as follows:

1. We propose a tractable and efficient importance sampling method for counterfactual estimation in
general settings, which is based on optimizing an upper bound on the variance of the estimators,
and is formulated as a conditional distribution learning problem.

2. We explore the injection of structural prior knowledge (counterfactual Markov boundaries) into
neural networks used for parameter optimization.

3. The experiments conducted on different SCM settings demonstrate that the proposed method
outperforms existing importance sampling methods. Ablation studies empirically highlight the
effectiveness of injecting structural prior knowledge. The experiments on counterfactual estimation
tasks conducted on two identifiable proxy SCMs illustrate the feasibility of applying the method
in conjunction with proxy SCMs to real-world problems.

2 Preliminaries

In this section, we provide the necessary background and definitions for our work, which are consistent
with [5, 8, 114]. To maintain consistency in notation, we use the uppercase letter X to denote random
variables and the lowercase letter x to denote their values. Bold uppercase letter X represents a set
of variables and x the corresponding set of values. The domain of the variable X is denoted as ΩX ,
and ΩX for X = {X1, . . . , Xn} represents the product of domains×n

i=1
ΩXi . We use PX to denote

a distribution over a set of random variables X, and P (X ∈ X ) (abbreviated as P (X )) to denote
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probability when X take values X ⊆ ΩX. The lowercase p(x) represents the probability density
function of PX if ΩX is continuous.

Structural causal models An SCM is a 4-tuple M = ⟨U,V,F , PU⟩, where U is a set of
exogenous variables; V is a set of endogenous variables; F , which describes the causal mechanisms
of M, is a collection of functions {fV1

, fV2
, . . . , fVn

} such that each endogenous variable Vi is
determined by a function fVi

. Each fVi
∈ F is a mapping from (the domains of) UVi

∪PaVi
to Vi,

where UVi
⊆ U and PaVi

⊆ V \ Vi. The entire set F forms a mapping from U to V, while the
uncertainty comes from a probability distribution PU over exogenous variables U.

An SCM yields a causal graph G, where each Vi ∈ V is a vertex, and the edges come in two types:
there is a directed edge (Vi → Vj) between each pair Vi and Vj ∈ PaVi

; and there is a bidirected
edge (Vi ↔ Vj) between each pair Vi and Vj if UVi

∪UVj
̸= ∅. This resulting graph is also known as

a directed mixed graph (DMG). Here, we assume that the SCM is recursive, which means that there
exists an order in F such that for any pair fi, fj ∈ F , if fi < fj , then Vj /∈ PaVi

. In particular, this
implies that given values for exogenous variables (also known as a unit or an individual) u ∈ ΩU, all
values of endogenous variables in V are also fixed (i.e., there exists a unique solution for endogenous
variables w.r.t. u), and the resulting causal graph G is an acyclic directed mixed graph (ADMG). We
denote Y(u) as the solution for Y ⊆ V given u.

In the paradigm of SCM, an (perfect) intervention is described as replacing the mechanisms of some
variables X with constants x. The model after this intervention is termed a submodel, defined as

Mx = ⟨U,V,Fx, PU⟩, where Fx = {fi : Vi /∈ X} ∪ {X← x}. (1)

In submodelMx, the solution of Y ⊆ U given u, denoted as YMx(u), is termed as the potential
response, and is typically abbreviated as Yx(u).

Counterfactual events and probabilities The random variable Y ∈ V corresponding to the
submodelMx is denoted as Yx, termed a counterfactual variable, with its domain denoted as ΩYx .
A set of counterfactual variables from the same submodel Mx is denoted as Yx, and the set of
counterfactual variables from k different submodelsMx1 , . . . ,Mxk

is denoted as Y∗ =
⋃k

i=1 Yi[xi],

with the corresponding domain ΩY∗ =×k

i=1
ΩYi[x]

. Let σ-algebra ΣY∗ ⊆ 2ΩY∗ , where 2ΩY∗ is
the power set of ΩY∗ . The counterfactual probability space is then a triplet ⟨ΩY∗ ,ΣY∗ , PY∗⟩, where
PY∗ is a probability measure PY∗ : ΣY∗ → [0, 1], and for any measurable set Y∗ ∈ ΣY∗ , its value
equals the Lebesgue integral,

PY∗(Y∗) =
∫
ΩU

1ΩU(Y∗)(u) dPU, (2)

where 1Ω(u) is an indicator function, equal to 1 if u ∈ Ω and 0 otherwise. The set ΩU(Y∗) =

{u | Y∗(u) ∈ Y∗}, where Y∗(u) denotes the potential responses
⋃k

i=1 Yi[xi](u) of counterfactual
variables in Y∗ w.r.t. u. We refer to the random event Y∗ ∈ Y∗ as a counterfactual event, and its
probability P (Y∗) = PY∗(Y∗) is termed the counterfactual probability.

Counterfactual probability is the cornerstone of the language L3 in PCH. Specifically, all expressions
in L3 consist of inequalities between polynomials (and their Boolean combinations) over terms of the
form P (Y∗). Here, we assume that the L3 expressions to be estimated can be represented by a finite
number of P (Y∗) terms (including those approximated by Monte Carlo methods). Therefore, the
estimation of P (Y∗) will become a focal point of the subsequent discussion.

Normalizing flows The normalizing flow Tθ : Rd → Rd is a transformation parameterized by θ
that maps observable samples x with d features to latent samples z distributed according to a simple
distribution PZ with probability density function p(z). The mapping Tθ is a diffeomorphism, which
allows us to compute the density p(x) through the change-of-variables formula:

log p(x) = log p(Tθ(x)) + log |det(∇xTθ(x))| . (3)

When the Jacobian determinant of Tθ(x) is tractable to compute, we can use samples from the
observable distribution and maximum likelihood estimation to train the flow Tθ. Additionally, we can
easily generate i.i.d. samples conforming to the learned observable distribution by first sampling z(i)

from the base distribution PZ, and then evaluating the inverse transformation T −1
θ (z(i)).
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3 Exogenous Matching

In this section, we present only the final theoretical conclusions. Detailed derivations of all theories
and equations can be found in App. A.

Assumptions In addition to assuming that the SCMM = ⟨U,V,F , PU⟩ is recursive, the proposed
method also assumes: i) for any X ⊆ V,x ∈ ΩX,u ∈ ΩU, Fx(u) is computable; ii) PU is
sampleable and computable. These assumptions imply the feasibility of counterfactual generation,
meaning we can draw arbitrary counterfactual samples, with Fx and PU both treated as black boxes.
For example, in the context of neural proxy SCMs, PU, as the latent distribution of the generative
model, is typically modeled as a simple distribution, while Fx is a neural network.

Importance sampling for Monte Carlo integration A widely used method for estimating the
Lebesgue integral is Monte Carlo integration. However, the indicator function 1ΩU(Y∗)(u) in Eq. 2
limits the efficiency. We consider 1ΩU(Y∗)(u) = 1 as a rare event. Since importance sampling
is commonly used to handle Monte Carlo estimations involving rare events, we adopt the method
of importance sampling on a parameterized proposal distribution QU for tractable Monte Carlo
integration, and the estimator can be derived as:

P (Y∗) = Eu∼QU
[σY∗(u)] ≈

1

n

n∑
i=1

σY∗(u
(i)), let σY∗(u) =

p(u)

q(u)
1ΩU(Y∗)(u), (4)

where for each sample u(i) ∼ QU, it is required that if p(u(i)) > 0, then q(u(i)) > 0. The density
ratio p(u)/q(u) is also termed as the importance weight and is usually assumed to be bounded. In
this section, we assume that our derivations are based on an exogenous distribution defined over a
continuous space. Naturally, similar conclusions hold for discrete exogenous distributions.

3.1 An Optimizable Variance Upper Bound

In importance sampling, a proposal distribution with low variance regarding σY∗ is crucial, as it
implies that fewer samples are required to achieve the same effect, leading to higher sampling
efficiency. Previous works have attempted to constrain variance, such as providing upper bounds
[18, 49], introducing multiple proposals [16, 27], and learning from sampled data [72, 83, 11, 65].
Given that the samples are i.i.d., with the same sample size n, a lower variance of σY∗ implies a lower
estimator variance:

Vu∼QU
[σY∗(u)] = n · V

[
1

n

n∑
i=1

σY∗(u
(i))

]
= Eu∼PU

[σY∗(u)]− P 2(Y∗), (5)

It is evident that this formulation can be directly optimized, and there are several methods employing
similar approaches (e.g., transforming it into cross-entropy or χ2 divergence), as shown in [32, 68].
This process is called proposal learning, which ultimately yields a proposal distribution Qu that is
suitable for the estimator.

The learned QU is typically "one-off", rendering it unsuitable for other estimators. This necessitates
multiple rounds of proposal learning to estimate an L3 expression that involves various counterfactual
events, which remains inefficient. To address this issue, we propose replacing the proposal distribution
QU with a conditional proposal distribution QU|Y∗ . Intuitively, the proposal distribution QU|y∗

corresponding to y∗ ∈ ΩY∗ should be concentrated on the support ΩU(δ(y∗)), thus allowing for
reuse across different estimators.

Building on this idea, we extend the methods from [32, 68], as illustrated in App. B.1. Additionally,
we find that when certain conditions are met in Y∗, for any y∗ ∈ Y∗, the proposal distribution QU|y∗
shares a common variance upper bound:
Theorem 1 (Variance Upper Bound). Let σY∗(u) = (p(u)/q(u |y∗))1ΩU(Y∗)(u), where q(u |y∗)
denote the density of the proposal distribution QU|y∗ , and let Y∗(u) be the potential response w.r.t.
u. If for any y∗ ∈ Y∗, there exists κ ≥ 1 such that 1/κ ≤ p(u)/q(u |y∗) ≤ κ holds almost surely
on the support ΩU(Y∗), then for any QU|y∗ where y∗ ∈ Y∗:

Vu∼QU|y∗
[σY∗(u)] ≤ −Eu∼PU

[log q(u |Y∗(u))] + c, (6)
where the constant c is solely dependent on κ and PU.
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It is noted that the expected term in Eq. 6 bears resemblance to cross-entropy, albeit not strictly.
Intuitively, the original indicator function is now implied as potential responses within the condition,
and optimizing this expected term can encourage the density of each proposal distribution at specific
locations to match that of the exogenous distribution as closely as possible. Therefore, this approach
is named Exogenous Matching (EXOM).

The boundedness condition on the importance weights in Thm. 1 is likely to be violated for Y∗ with
an infinite support set. We further discuss this issue in App. A.2, where we: i) provide two relaxed
versions of Thm. 1 based on concentration inequalities; ii) demonstrate how to construct a guard
proposal distribution that necessarily satisfies the boundedness condition.

3.2 Learning and Inference

Generalize Thm. 1 Since any L3 expression Q is composed of terms P (Y∗), and assuming that
it is expressible by a finite set of P (Y∗), we can consider all Y∗ involved in Q as outcomes of a
stochastic process. To allow different forms of Y∗, we extend Thm. 1 to general cases, making
it potentially applicable to the estimation of any counterfactual probability term P (Y∗) in an L3

expression Q, with only one proposal learning process is required.
Definition 1 (Stochastic Counterfactual Process). The collection of counterfactual variable sets
Y∗ = {Y(s)

∗ | s ∈ S} is referred to as a stochastic counterfactual process w.r.t. the state space S . A
state s ∈ S is a set composed of triplets ⟨Y,X,x⟩, where X,Y ⊆ V represent the intervened and
observed variables, respectively, and x denotes the intervened values. Each state s corresponds to a
set of counterfactual variables Y(s)

∗ =
⋃

⟨Y,X,x⟩∈s Yx.

Corollary 1 (Expected Variance Upper Bound). Let QS denote an arbitrary distribution defined over
the state space S of a stochastic counterfactual process, and let P (s)

Y∗
denote an arbitrary distribution

defined over the σ-algebra Σ
(s)
Y∗

corresponding to a set of counterfactual variables Y(s)
∗ given a state

s ∈ S . PY∗ is the joint distribution induced by P
(s)
Y∗

and QS . If the conditions in Thm. 1 are met for

any Y(s)
∗ and any s ∈ S, then for any QU|y∗ where y∗ ∈ Y(s)

∗ and any s ∈ S:

EY(s)
∗ ∼PY∗

[
Vu∼QU|y∗

[σY∗(u)]
]
≤ −Es∼QS

[
Eu∼PU

[
log q(u |Y(s)

∗ (u))
]]

+ c, (7)

where the constant c is the same as in Thm. 1.

Sampling and optimization Disregarding the constant terms of the expected variance upper bound
(Eq. 7) in Cor. 1, we obtain the optimization objective as follows:

argmin
q
−Es∼QS

[
Eu∼PU

[
log q(u |Y(s)

∗ (u))
]]

. (8)

Based on our assumptions, PU and Y
(s)
∗ (u) are known, while the prior distribution of states QS

needs to be specifically designed for the particular expression in L3. The problem is now reformulated
as a conditional distribution learning problem, and we can model this conditional distribution using
neural networks. The complete learning algorithm is presented in Fig. 5 in App. A.3.

Inference Given the conditional proposal QU|Y∗ , we can take the expectation of the importance
sampling results over Y∗ to intuitively further enhance robustness. This leads to another unbiased
estimator in the form of multiple importance sampling [16, 27]:

P (Y∗) = Ey∗∼QY∗

[
Eu∼QU|y∗

[
σY∗[y∗](u)

]]
≈ 1

n

n∑
i=1

σY∗[y
(i)
∗ ]

(u(i)), (9)

where σY∗[y∗](u) = (p(u)/q(u |y∗))1ΩU(Y∗)(u), and y
(i)
∗ ∼ QY∗ , u(i) ∼ Q

U|y(i)
∗

. The distribu-
tion QY∗ could be any distribution with support covering Y∗.

Conditioning We attempt to find a function that maps y∗ to the vectorized parameters θy∗ required
for the proposal distribution QU|y∗ . The information provided by y∗ (i.e., the counterfactual event
Y∗ ∈ {y∗}) can be interpreted as a set of 4-tuples, where each 4-tuple ⟨Y,y,X,x⟩ expresses
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y∗
Eq. 10
===⇒


c⟨Y1,y1,X1,x1⟩
c⟨Y2,y2,X2,x2⟩

...
c⟨Yk,yk,Xk,xk⟩



m =
{

m1 m2 · · · mk

}

⇒ Thm. 3

h g θy∗ =⇒ QU|y∗

Forward
Mask
Compute
Encoding

Figure 2: Overview of the conditioning and masking process. y∗ serves as the input to the entire
process, m represents the inferred mask, and the vectorized parameters θy∗ of the proposal distribution
QU|y∗ are the output. Different colors represent information from different submodels. Both h and g
represent neural networks.

counterfactual information within the same submodelMx, including the observed variables Y and
their values y, and the intervened variables X and their values x. We represent it as a vector:

c⟨Y,y,X,x⟩ = π(y ∪ x;Y ∪X)⊕ ω(Y)⊕ ω(X), (10)

where ⊕ denotes vector concatenation. The functions π and ω map inputs to vectors, with each
component of the vector corresponding to an exogenous variable Xi ∈ V, defined as follows:

πi(x;X) =

{
xi, if Xi ∈ X

0, otherwise
and ωi(X) =

{
1, if Xi ∈ X

0, otherwise
. (11)

To encode the entire set {⟨Y1,y1,X1,x1⟩, ⟨Y2,y2,X2,x2⟩, . . . }, we introduce two functions, h
and g. Here, h serves as an encoder, mapping the vector of a single 4-tuple c⟨Y,y,X,x⟩ to a latent
encoding, while g acts as an aggregator, capturing the permutation invariance of the set. The
vectorized parameters θy∗ are inferred through the interplay of these two functions:

θy∗ = g
({

h(c⟨Yi,yi,Xi,xi⟩)
∣∣Yi[xi] ∈ Y∗

})
. (12)

We choose to model h using a multilayer perceptron (MLP), and model g as a function that ensures
permutation invariance for encoding aggregation, such as summation or weighted summation, where
we opt for attention [96] to enhance expressiveness.

3.3 Injecting Markov Boundaries

This section will explore how to inject available structural prior knowledge (specifically, counterfac-
tual Markov boundaries) into neural networks used for conditional encoding, intuitively improving
the quality and efficiency of learning.

Counterfactual Markov boundary Markov boundaries [75] have been used in feature selection
[111, 64, 104] and causal discovery [3, 87, 103], since they reveal the local causal structure of
variables, where all elements are strongly correlated with the variable [2]. Just as in feature selection,
intuitively we can enhance the performance of distribution learning by masking redundant information.
For modeling distributions defined over exogenous variables and conditioned on counterfactual
variables, the structural prior information used here is named counterfactual Markov boundaries:
Definition 2 (Counterfactual Markov Boundary). For an exogenous variable Uj ∈ U and a set of
counterfactual variables Y, along with their joint distribution P . If Uj is independent of Y \X given
X under P , i.e. Uj ⊥⊥P (Y \X) | X, then X is termed a Markov blanket of Uj on Y. The collection
of all Markov blankets of Uj on Y is denoted as Bj(Y). If X ∈ Bj(Y) is a Markov blanket of
Uj on Y, and there exists no X′ ⊊ X such that X′ ∈ Bj(Y), then X is termed a (counterfactual)
Markov boundary of Uj on Y, denoted as Bj(Y).

Methods for learning Markov boundaries based on independence in data distribution (e.g. [3,
87, 103]) cannot be directly applied to learn counterfactual Markov boundaries unless exogenous
variables are observable. Moreover, these methods may have low efficiency due to their reliance on
independence tests. To obtain the counterfactual Markov boundary, in this work, we assume that
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another representation of SCM graphs called augmented graphs is known. Compared to causal graphs,
augmented graphs incorporate exogenous variables U into the nodes, then remove bidirectional edges
and add unidirectional edges (Uj → Vi) for all Vi ∈ U and Uj ∈ UVi .

When the SCM is recursive, the augmented graph of any submodel is necessarily acyclic due to
the closure of recursiveness under (perfect) intervention [8], which implies that d-separation [75]
always holds. We additionally assume faithfulness [2], which means that only the variables that
are d-separated in the graph are independent in the distribution, allowing us to directly compute
counterfactual Markov boundary for any exogenous variable by graph algorithm.

Under the above assumptions, the following theorem indicates that the counterfactual Markov
boundary of Uj is independent across different submodels. This not only reduces the search space
of the Markov boundary, but also aligns with Eq. 12, where we encode counterfactual information
according to each submodel.

Theorem 2 (Counterfactual Markov Boundary Independence). If Y∗ =
⋃k

i=1 Yi[xi] and each Yi[xi]

corresponds to a different submodelMxi , then for each Uj ∈ U, there exists a Markov boundary
Bj(Y∗) =

⋃k
i=1 Bj(Yi[xi]) on Y∗, where Bj(Yi[xi]) is a Markov boundary onMxi

.

Another theorem demonstrates how to obtain counterfactual Markov boundaries via d-separation, and
indirectly proves their uniqueness:
Theorem 3 (Counterfactual Markov Boundary on Graph). For an exogenous variable Uj ∈ U and a
counterfactual variable set Yx from the submodelMx, the counterfactual variable Yx ∈ Bj(Yx) if
and only if Yx ⊥̸⊥Ga

x
Uj | Yx \ {Yx}, i.e., when given Yx \ {Yx}, Yx and Uj are not d-separated on

Gax, where Gax is the augmented graph induced from the submodelMx.

The graph algorithm to determine counterfactual Markov boundaries Bj(Y∗) for Uj ∈ U is derived
simply by combining Thms. 2 and 3 with the d-separation criterion as a subroutine, which can be
found in Fig. 7 in App. A.4.

Masking We then inject the counterfactual Markov boundary into the neural network used for
conditioning by vectorizing it as a weight mask, as briefly illustrated in Fig. 2 depicting the entire
conditioning and masking process. Specifically, let θy∗,j be any parameter corresponding to exoge-
nous variable Uj ∈ U in QU|y∗ . According to the description in Thm. 2, the Markov boundary
on Y∗ =

⋃k
i=1 Yi[xi] can be precisely decomposed into the union of the Markov boundaries on

each Yi[xi]. This corresponds exactly to encoding the information for counterfactual events on each
submodelMxi

as depicted in Eq. 10. Therefore, we can modify Eq. 12 as follows:

θy∗,j = g
({

hj(c⟨Yi,yi,Xi,xi⟩,mij)
∣∣Yi[xi] ∈ Y∗

})
. (13)

In particular, mij = ω(Bi(Yj)), and Bi(Yj) are obtained through algorithm derived by Thm. 3.
The correspondence between the parameters θy∗,j and Uj exists in the specific design of the model,
such as the mean and covariance of each component in GMMs or the element-wise transformations
in normalizing flows. As used in [31, 81, 13], h is an MLP that allows weight masking, such that
for all j, the i-th component of∇xhj(x,mij) ̸= 0 if and only if mij = 1. This ensures that θy∗,j is
only related to the Markov boundary of Uj on y∗.

4 Related Works

Importance sampling with normalizing flows In recent years, the combination of normalizing
flows and importance sampling has been widely employed in tasks related to Monte Carlo integration.
For instance, a plethora of literature [70, 99, 101, 53, 60, 10, 51, 67] utilizes this combination to
efficiently compute the partition function of energy. Some studies [68, 30, 36] also employ this
method to solve integration problems of complex functions in high-dimensional spaces. When the
integrand involves rejection sampling [6, 89], particle events [29, 9, 88], or failure events [33, 20],
this method can improve the efficiency of sampling rare events. This combination is also applied for
posterior inference [19, 1, 79, 21] as an alternative to integrating over the intractable distribution.

Identifiable neural proxy SCMs Our approach is applicable to pre-trained neural proxy SCMs,
where causal mechanisms are modeled as neural networks. Increasing attention has been paid to the
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identifiability of these models. BGM [69] combines bijections to demonstrate the identifiability of
causal mechanisms in several special cases. CausalNF [42] builds upon the conclusions of [106]
to prove the identifiability of its causal mechanisms up to invertible functions. NCM [108] extends
the findings of their previous work [107] and proposes a sound and complete algorithm to identify
counterfactual queries.

Arbitrary conditioning In dealing with exponentially many conditional distributions, our work
establishes a connection with another unsupervised learning task, known as arbitrary conditioning.
The task of this paper can be viewed as extending arbitrary conditioning from a single observational
distribution to multiple counterfactual distributions. Relevant works include VAE-AC [40] based
on VAE, NC [7] based on GAN, ACE [90] based on energy models, and ACFlow [59] based on
normalizing flows. The most similar to our work is [91], which matches on the posterior distribution
of VAE, akin to our matching on the exogenous distribution.

5 Experiments

Experiment settings and metrics We first define the prior distribution QS over the state space
of a stochastic counterfactual process Y∗ and train according to Eq. 8. Subsequently, based on
QS , we construct a distribution PY∗ concerning counterfactual events for the evaluation of the
estimator (Eq. 4). Inspired by the metrics for rare event sampling effectiveness, we utilize Effective
Sample Proportion (ESP) and Failure Rate (FR) with threshold m to measure the performance of the
importance sampling, defined as:

ESP = EY∗∼PY∗
[η(Y∗)] and FR = EY∗∼PY∗

[{
1, η(Y∗) ≤ m

0, otherwise

]
, (14)

where η(Y∗) =
(∑n

i=1 1ΩU(Y∗)(u
(i))
)
/n is the proportion of effective samples (nonzero indicator)

to estimate the probability P (Y∗), which indirectly reflects the sampling efficiency of a single
estimate; this is equivalent to the success rate in rare event sampling. Therefore, ESP reflects
the overall efficiency of the sampling method in supporting Thm. 1, while FR reflects its overall
effectiveness in the state space to support Cor. 1 and Eq. 8. For further discussion on metrics, see
App. C.1.

Specifically, the following two types of stochastic counterfactual processes are involved in subsequent
experiments: i) YB

∗ with state space SB = {s | |s| = k} (that is, with k submodels) and prior
distribution QB

S , where the indicators for intervention and observation follow Bernoulli distributions,
and their values follow endogenous distributions; ii) YQ

∗ , where Q ∈ {ATE,ETT,NDE,CtfDE},
the design of state space SQ and prior distribution QQ are detailed in App. C.2.

During evaluation, the distribution of counterfactual events PY∗ is contingent upon the type of
counterfactual variables: for discrete, we focus on counterfactual event Y∗ ∈ {y∗}; for continuous,
we focus on counterfactual event Y∗ ∈ δl(y∗), where δl(y∗) is a cube with side length l = 0.02
centered at y∗. The latter can be further used to estimate the counterfactual density in continuous
space, as discussed in App. D.2.

One Run Initial State Final State
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1.0
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Figure 3: LL (negative Eq. 8) and ESP, FR
on SIMPSON-NLIN. As LL increases, ESP in-
creases while FR decreases, until convergence.

Our experiments involve the following fully spec-
ified SCMs, which fall into three categories: i)
Markovian diffeomorphic [42], where there is
no hidden confounder and causal mechanisms
are diffeomorphic, including SIMPSON-NLIN,
TRIANGLE-NLIN and LARGEBD-NLIN; ii)
Semi-Markovian continuous [107], where hidden
confounders may exist and endogenous variables
are continuous, including M and NAPKIN; iii) Re-
gional canonical [108], where hidden confounders
may exist and endogenous variables are discrete
and finite, including FAIRNESS and FAIRNESS-
XW. The consistent performance observed in ex-
periments across these different types of SCMs will serve as a reference for evaluating the robustness
of the proposed method.
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Table 1: Comparison of RS, CEIS, NIS, and EXOM (ours) across 3 different SCMs, with |s| = 1, 3, 5.
Among the three SCMs, SIMPSON-NLIN is Markovian diffeomorphic, NAPKIN is Semi-Markovian
continuous, and FAIRNESS-XW is Regional canonical. The results are averaged over 5 runs. Higher
ESP and lower FR indicate better performance.

SIMPSON-NLIN NAPKIN FAIRNESS-XW

|s| Model ESP ↑ FR ↓ ESP ↑ FR ↓ ESP ↑ FR ↓

1

RS 0.008 0.971 0.006 0.967 0.156 0.065
CEIS 0.037 0.809 0.017 0.911 0.255 0.532
NIS 0.008 0.961 0.007 0.965 0.193 0.527

EXOM[GMM] 0.117 0.245 0.039 0.476 0.358 0.009
EXOM[MAF] 0.581 0.005 0.306 0.066 0.339 0.007

3

RS 0.000 1.000 0.000 1.000 0.038 0.281
CEIS 0.000 1.000 0.000 1.000 0.122 0.704
NIS 0.000 1.000 0.000 1.000 0.116 0.686

EXOM[GMM] 0.024 0.500 0.011 0.613 0.247 0.056
EXOM[MAF] 0.606 0.075 0.397 0.183 0.261 0.043

5

RS 0.000 1.000 0.000 1.000 0.030 0.368
CEIS 0.000 1.000 0.000 1.000 0.106 0.727
NIS 0.000 1.000 0.000 1.000 0.094 0.724

EXOM[GMM] 0.020 0.497 0.009 0.644 0.231 0.084
EXOM[MAF] 0.698 0.031 0.482 0.094 0.237 0.070
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Figure 4: Ablation study for Markov boundaries on 4 different settings of SCMs: (a) SIMPSON-
NLIN, (b) LARGEBD-NLIN, (c) M, (d) NAPKIN. A higher ESP signifies greater sampling efficiency.
In most cases, EXOM with Markov boundaries masked (orange bar) exhibits superior performance
compared to when the Markov boundaries are not masked (blue bar).

Convergence We integrated Exogenous Matching with various density estimation models (GMM,
MAF [73], NICE [24], SOSPF [41]) to conduct experiments on the stochastic counterfactual process
YB

∗ (with |s| = 3) over different SCM settings. We present the results of ESP and FR during
the training process. As shown in Fig. 3 (with all results detailed in App. C.5), both the ESP and
FR metrics change as expected until convergence, along with the decrease in training loss Eq. 8
(equivalent to the increase in LL in Fig. 3). This validates the effectiveness of Thm. 1 and Cor. 1, and
empirically suggests that the conditions we assumed are generally not violated under our settings.

Comparison We compare our proposed method with three different but related sampling methods:
i) Rejection Sampling (RS); ii) Cross-Entropy based Importance Sampling (CEIS, [32]); iii) Neural
Importance Sampling (NIS, [68]). To apply the latter two methods under the same experimental
setup, we extended them as detailed in App. B.1. As shown in Tab. 1, our method outperforms
other approaches in both continuous and discrete cases. Specifically, since MAF exhibits stronger
representational capabilities than GMM, it is expected that EXOM using MAF as the conditional
distribution model generally outperforms EXOM using GMM.
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Table 2: Estimation of counterfactual densities on CausalNF and counterfactual effects on NCM.
Here, "O" represents the original SCM, and "P" represents the proxy SCM. For SIMPSON-NLIN,
the proxy SCM is CausalNF, and the metric used is FR ("-" indicates FR equals 1); whereas for
FAIRNESS, the proxy SCM is NCM, and the metric used is the average bias w.r.t. the ground truth.
The subscript denotes the 95% CI error bound over 5 trials. For more details, see App. C.9

SIMPSON-NLIN FAIRNESS

Method SCM |s| = 1 |s| = 3 |s| = 5 ATE ETT NDE CtfDE

RS O 0.890.014 - - 0.010.013 0.010.018 0.010.015 0.010.020
P 0.900.012 - - 0.010.013 0.010.021 0.010.014 0.010.023

EXOM[MAF] O 0.000.005 0.020.015 0.010.021 0.040.095 0.060.168 0.040.131 0.070.236
P 0.010.005 0.400.012 0.610.016 0.010.013 0.010.024 0.010.013 0.010.044

EXOM[NICE] O 0.000.006 0.020.016 0.010.046 0.010.018 0.010.030 0.010.020 0.010.039
P 0.010.005 0.400.013 0.610.018 0.010.017 0.010.021 0.010.012 0.010.022

Ablation To investigate the impact of injecting Markov boundaries, we present the improvement of
ESP after injecting Markov boundaries during the training process compared to the default scenario.
We conducted ablation experiments on 4 continuous SCMs and various density estimators. As shown
in Fig. 4, the use of Markov boundaries as masks significantly improves the performance of EXOM
under various settings. We also observed that when masks are used, the width of the hidden layers of
neural networks in conditioning affects practical performance, which will be discussed in App. C.8.

Counterfactual Estimation on Proxy SCMs We combine identifiable proxy SCMs with EXOM
for counterfactual estimation. We employ CausalNF [42] for SIMPSON-NLIN (based on the stochas-
tic process YB

∗ ) and NCM [108] for FAIRNESS (based on the stochastic process YQ
∗ ). For the

combination of CausalNF and SIMPSON-NLIN, we estimate the counterfactual probability on cubes
δl(y∗) with side length l = 0.02 centered around 1024 randomly sampled y∗ from PY∗ (this can be
used further to estimate counterfactual density), measure the sampling FR, and employ a dimension-
regularized 95% CI error bound. For the combination of NCM and FAIRNESS, we estimate 4
different counterfactual queries, measure the average bias of the query results relative to the ground
truth, and use a 95% CI error bound to demonstrate the unbiasedness of the estimates.

The results in Tab. 2 empirically demonstrate the effectiveness of EXOM in counterfactual density
and effect estimation tasks compared to RS. Specifically, when estimating the cube δl(y∗) (equivalent
to counterfactual density), RS almost fails in high-dimensional settings, while EXOM exhibits good
sampling efficiency and lower error compared to RS. When estimating counterfactual queries, the bias
and error of EXOM are similar to those of RS (partly due to the lower sampling difficulty in discrete
cases). Further experimental details and analysis of the conclusions can be found in App. C.9.

6 Conclusion

We propose Exogenous Matching for tractable estimation of expressions in L3 in general settings.
Specifically, leveraging importance sampling, we find a variance upper bound for estimators poten-
tially applicable to any relevant counterfactual probability (Cor. 1), and then introduce an optimization
objective (Eq. 8) amenable to sampling, transforming the problem into a conditional distribution
learning problem. Theoretical and empirical results demonstrate that this approach can be combined
with identifiable proxy SCMs to address practical problems. We also explore injecting Markov
boundaries as prior knowledge and empirically validate effectiveness in several scenarios.

Limitations i) The proposed method does not directly estimate counterfactuals through the available
distribution but requires a partially specified SCM. This work explores its effectiveness in combination
with identifiable proxy SCMs, which are still an active area of research; ii) It is important to emphasize
that the "general case" mentioned in this paper does not cover all scenarios. For instance, our
estimand, an L3 expression Q, requires the assumptions of finite submodels and approximability by
a finite number of counterfactual probabilities; iii) Furthermore, the specific structures and tricks
demonstrated in this paper (such as the injection of Markov boundaries) may not be applicable to
SCMs with general parameter settings, which warrants further investigation.
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A Proofs

A.1 Counterfactuals

In this section, we demonstrate the validity of counterfactual probability-related concepts, providing
intuitions based on derivations in discrete spaces, and proving lemmas to streamline subsequent
derivations. Firstly, we establish the validity of counterfactual probabilities as defined in Eq. 2.
Proposition 1. The probability measure defined by Eq. 2 (on recursive SCMs) adheres to the
Kolmogorov axioms.

Proof. (i) For any Y∗ ∈ ΣY∗ , 0 ≤ PY∗(Y∗) ≤ 1. Since 0 ≤ 1ΩU(Y∗)(u) ≤ 1, the proof follows
from the Monotonicity of Lebesgue integration:

0 =

∫
ΩU

0 dPU ≤
∫
ΩU

1ΩU(Y∗)(u) dPU ≤
∫
ΩU

1 dPU = 1, (15)

where PY∗(Y∗) =
∫
ΩU

1ΩU(Y∗)(u) dPU, thus 0 ≤ PY∗(Y∗) ≤ 1.

(ii) PY∗(ΩY∗) = 1. Since SCM is recursive, given any u ∈ ΩU, the values of exogenous variables
are determined, and hence all values in Y∗ are determined, that is, the potential responses Y∗(u).
Since Y∗(u) ∈ ΩY∗ , according to the definition of 1ΩU(ΩY∗ )

(u), 1ΩU(ΩY∗ )
(u) = 1, thus:

PY∗(ΩY∗) =

∫
ΩU

1ΩU(ΩY∗ )
(u) dPU =

∫
ΩU

1 dPU = 1. (16)

(iii) PY∗(
⋃

i≥1 Y
(i)
∗ ) =

∑
i≥1 PY∗(Y(i)

∗ ), where {Y(1)
∗ ,Y(2)

∗ , . . . } is a countable (possibly countably

infinite) set of pairwise disjoint counterfactual events. For u ∈ ΩU, if Y∗(u) ∈ Y(i)
∗ , since for any

j ̸= i, Y(i)
∗ ∩ Y(j)

∗ = ∅, it follows that Y∗(u) /∈ Y(j)
∗ , thus 1

ΩU(Y(i)
∗ )

(u) = 1
ΩU(

⋃
i≥1 Y(i)

∗ )
(u) = 1

and
∑

j ̸=i 1ΩU(Y(i)
∗ )

(u) = 0, hence.

PY∗(
⋃
i≥1

Y(i)
∗ ) =

∫
ΩU

1
ΩU(

⋃
i≥1 Y(i)

∗ )
(u) dPU Definition (17)

=

∫
ΩU

1
ΩU(Y(i)

∗ )
(u) +

∑
j ̸=i

1
ΩU(Y(j)

∗ )
(u)

 dPU (18)

=

∫
ΩU

1
ΩU(Y(i)

∗ )
(u) dPU +

∫
ΩU

∑
j ̸=i

1
ΩU(Y(j)

∗ )
(u) dPU Linearity (19)

=

∫
ΩU

1
ΩU(Y(i)

∗ )
(u) dPU + 0 Zero measure (20)

=

∫
ΩU

1
ΩU(Y(i)

∗ )
(u) dPU +

∑
j ̸=i

∫
ΩU

1
ΩU(Y(j)

∗ )
(u) dPU (21)

=
∑
i≥1

∫
ΩU

1
ΩU(Y(i)

∗ )
(u) dPU (22)

=
∑
i≥1

PY∗(Y(i)
∗ ) (23)

If for all i, Y∗(u) /∈ Y(i)
∗ , then

∑
i≥1 1ΩU(Y(i)

∗ )
(u) = 1

ΩU(
⋃

i≥1 Y(i)
∗ )

(u) = 0. Therefore, both sides

of the equation are zero, so it holds. Hence, we have proved PY∗(
⋃

i≥1 Y
(i)
∗ ) =

∑
i≥1 PY∗(Y(i)

∗ ).

Given that axioms (i), (ii) and (iii) hold, which are the Kolmogorov axioms, it follows that Eq. 2
satisfies the definition of a probability measure.

From a measure-theoretic perspective, the indicator function in Eq. 2 can be transformed into the
Dirac measure, and vice versa:
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Lemma 1. For any Y∗ ∈ ΣY∗ and any u ∈ ΩU,

1ΩU(Y∗)(u) = δY∗(u)(Y∗) =
∫
Y∗

dδY∗(u). (24)

Proof. Given Y∗ ∈ ΣY∗ and u ∈ ΩU, we can consider Y∗ as u being constant, thus

1ΩU(Y∗)(u) = 1{u|Y∗(u)∈Y∗}(u) Definition of ΩU(Y∗) (25)

= 1Y∗(Y∗(u)) Let y∗ = Y∗(u) (26)
= δY∗(u)(Y∗) Definition of δY∗(u) (27)

=

∫
ΩY∗

1Y∗(y∗) dδY∗(u) Integral w.r.t. Dirac measure (28)

=

∫
Y∗

dδY∗(u), (29)

where the integral
∫
Y∗

dδY∗(u) remains a function of u.

Then, substituting Lem. 1 into Eq. 2, we have:

P (Y∗) =
∫
ΩU

1ΩU(Y∗)(u) dPU (2)

=

∫
ΩU

∫
Y∗

dδY∗(u) dPU Lem. 1 (30)

=

∫
ΩU

∫
Y∗

dPY∗,U, (31)

where PY∗,U satisfying dPY∗,U = dδY∗(u) dPU is called the joint distribution of counterfactual
variables and exogenous variables, which we abbreviate as the joint distribution.

In words, the joint distribution is determined by the exogenous distribution and the Dirac distribution,
while the counterfactual probability is the integral over the endogenous space after marginalizing out
the exogenous variables from the joint distribution.

A.2 Importance Sampling

Importance sampling estimator for counterfactual estimation Eq. 4 only illustrates the case
where exogenous variables are continuous. Here, we will provide a complete derivation. For discrete
cases, the Lebesgue integral can be expressed as a summation, thus,

P (Y∗) =
∫
ΩU

1ΩU(Y∗)(u) dPU (32)

=
∑

u∈ΩU

P (u)1ΩU(Y∗)(u) (33)

=
∑

u∈ΩU

Q(u)
P (u)

Q(u)
1ΩU(Y∗)(u) (34)

= Eu∼QU

[
P (u)

Q(u)
1ΩU(Y∗)(u)

]
. (35)

For continuous cases, the Radon–Nikodym theorem is required. Suppose that the probability density
functions of PU and QU exist, denoted by p(u) and q(u), respectively. According to the definition
of probability density functions, p(u) = dPU/ du and q(u) = dQU/du. Then

P (Y∗) =
∫
ΩU

1ΩU(Y∗)(u) dPU (36)

=

∫
ΩU

1ΩU(Y∗)(u)
dPU/ du

dQU/ du
dQU (37)
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=

∫
ΩU

p(u)

q(u)
1ΩU(Y∗)(u) dQU (38)

= Eu∼QU

[
p(u)

q(u)
1ΩU(Y∗)(u)

]
. (39)

We assume that the integrand is Lebesgue integrable. It can be observed that the difference between
the discrete and continuous cases lies only in the importance weights. Therefore, in subsequent deriva-
tions, we will proceed in the continuous case, with the discrete case requiring only the substitution of
the importance weights.

The expectation term can be estimated using Monte Carlo methods, resulting in the basic form of the
importance sampling estimator:

P (Y∗) = Eu∼QU
[σY∗(u)] ≈

1

n

n∑
i=1

σY∗(u
(i)), (4)

where σY∗(u) = (p(u)/q(u))1ΩU(Y∗)(u), and each sample u(i) ∼ PU.

Variance of the importance sampling estimator The variance of the estimator in Eq. 4 is:

V

[
1

n

n∑
i=1

σY∗(u
(i))

]
=

1

n2

n∑
i=1

Vu(i)∼QU

[
σY∗(u

(i))
]

Linearity (40)

=
n

n2
Vu(i)∼QU

[σY∗(u)] i.i.d (41)

=
1

n
Vu∼QU

[σY∗(u)] . (5, the first equation)

Vu∼QU
[σY∗(u)] can be further expanded as:

Vu∼QU
[σY∗(u)] = Vu∼QU

[
p(u)

q(u)
1ΩU(Y∗)(u)

]
(42)

= Eu∼QU

[(
p(u)

q(u)
1ΩU(Y∗)(u)

)2
]
− Eu∼QU

[
p(u)

q(u)
1ΩU(Y∗)(u)

]
(43)

= Eu∼QU

[
p2(u)

q2(u)
1ΩU(Y∗)(u)

]
− P 2(Y∗) (44)

=

∫
ΩU

(
p(u)

q(u)

)(
dPU

dQU

)
1ΩU(Y∗)(u) dQU − P 2(Y∗) (45)

=

∫
ΩU

p(u)

q(u)
1ΩU(Y∗)(u) dPU − P 2(Y∗) (46)

= Eu∼PU

[
p(u)

q(u)
1ΩU(Y∗)(u)

]
− P 2(Y∗) (47)

= Eu∼PU
[σY∗(u)]− P 2(Y∗). (5, the second equation)

The proposal distribution QU only affects the term Eu∼PU
[σY∗(u)] in the variance Eq. 5. The only

difference between it and the estimator P (Y∗) = Eu∼QU
[σY∗(u)] is that Eu∼PU

[σY∗(u)] is the
expectation over the exogenous distribution PU.

Optimization of Eq. 5 and the limitations Reducing variance implies improving estimation
efficiency; in other words, it means achieving the same level of estimation accuracy with fewer
samples. One direct method to optimize variance is by sampling from the exogenous distribution
PU using Monte Carlo methods to estimate the term Eu∼PU

[σY∗(u)] in the variance Eq. 5, and then
minimizing the estimated value of this term using stochastic optimization techniques. Alternatively,
as suggested by [32, 68], this term can be transformed into an optimization problem involving
the cross-entropy or χ2 divergence between the proposal distribution and the integrand, and then
optimizing the values of these mismatches estimated by sampling under the proposal distribution QU

can also indirectly optimize variance. This optimization process is referred to as proposal learning.
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However, a learned individual proposal distribution is typically only applicable to a single estimator,
meaning it can only estimate the probability for a single counterfactual event Y∗, as the indicator
function 1ΩU(Y∗)(u) in σY∗(u) operates solely for Y∗. But L3 expressions can typically contain
multiple counterfactual probability terms, and this limitation implies that, in the worst case, we need
to perform a separate optimization for each counterfactual probability, still affecting the efficiency of
the counterfactual estimation task.

To address this issue, our solution is to replace the sampling proposal distribution QU with a
conditional proposal distribution QU|Y∗ , adding an extra degree of freedom conditioned on Y∗.
Our overall idea is to let these different proposal distributions participate in the same optimization
(i.e., sharing the same optimization objective) so that a single optimization yields different proposal
distributions applicable to different counterfactual events.

Additionally, to limit the scope of responsibility of each proposal distribution QU|y∗ — that is, to
prevent too many proposal distributions from targeting the same counterfactual event Y∗ and conse-
quently neglecting some counterfactual events — we further impose a one-to-one correspondence
between conditions and responsibilities for inference. Intuitively, this would make the proposal
distribution QU|y∗ corresponding to y∗ ∈ ΩY∗ focus on the support ΩU(δ(y∗)). Given that for
any counterfactual event there is an approximation Y∗ ≈

⋃∞
y∗∈Y∗

δ(y∗), we can use the proposal
distributions QU|y∗ corresponding to these y∗ ∈ Y∗ to serve the estimation of P (Y∗).

Variance upper bound When certain conditions are met in Y∗, for any y∗ ∈ Y∗, the proposal distri-
bution QU|y∗ shares a common upper bound on variance, which is exactly the common optimization
objective we seek:
Theorem 1 (Variance Upper Bound). Let σY∗(u) = (p(u)/q(u |y∗))1ΩU(Y∗)(u), where q(u |y∗)
denote the density of the proposal distribution QU|y∗ , and let Y∗(u) be the potential response w.r.t.
u. If for any y∗ ∈ Y∗, there exists κ ≥ 1 such that 1/κ ≤ p(u)/q(u |y∗) ≤ κ holds almost surely
on the support ΩU(Y∗), then for any QU|y∗ where y∗ ∈ Y∗:

Vu∼QU|y∗
[σY∗(u)] ≤ −Eu∼PU

[log q(u |Y∗(u))] + c, (6)

where the constant c is solely dependent on κ and PU.

Proof. For a Y∗ ∈ ΣY∗ that satisfies bounded importance weights (i.e., there exists κ ≥ 1 such that
1/κ ≤ p(u)/q(u |y∗) ≤ κ holds almost surely on the support ΩU(Y∗)), the following inequality
holds for any y∗,y

′
∗ ∈ Y∗ holds almost surely:

q(u |y∗)

q(u |y′
∗)

=
q(u |y∗)

p(u)
· p(u)

q(u |y′
∗)
≥ 1

κ2
. (48)

In the following derivations, cases where Eq. 48 does not hold will be implicitly omitted. This is
because, according to the assumption of bounded importance weights, the exogenous distribution’s
probability measure corresponding to the cases where Eq. 48 does not hold is zero (in other words,
the probability that the inequality Eq. 48 holds is 1). Therefore, omitting the cases where it does not
hold does not affect the expectation w.r.t. the exogenous distribution.

For ease of implementation and computation, we focus on log-weights by constructing ξY∗(u) to
bridge the inequality conclusions over Eu∼PU

[ξy∗(u)] and the inequality relationship with the
variance, where ξY∗(u) = log (p(u)/q(u |y∗))1ΩU(Y∗)(u).

Eu∼PU
[ξY∗(u)] (49)

=Eu∼PU

[
log

(
p(u)

q(u |y∗)

)
1ΩU(Y∗)(u)

]
(50)

=Eu∼PU

[
log

(
κ2 · 1

κ2
· p(u)

q(u |y∗)

)
1ΩU(Y∗)(u)

]
κ existence (51)

≤Eu∼PU

[
log

(
κ2

(
p(u)

q(u |Y∗(u)
· q(u |y∗)

p(u)

)
· p(u)

q(u |y∗)

)
1ΩU(Y∗)(u)

]
Eq. 48 (52)

=Eu∼PU

[
log

(
κ2 · p(u)

q(u |Y∗(u)

)
1ΩU(Y∗)(u)

]
(53)

22



≤Eu∼PU

[
log

(
κ2 · p(u)

q(u |Y∗(u)

)]
Monotonicity (54)

= − Eu∼PU
[log q(u |Y∗(u)] + Eu∼PU

[log p(u)] + 2 log κ. Linearity (55)

Next, we look for a lower bound for Eu∼PU
[ξY∗(u)]. Firstly, according to the bounded density

ratio condition, for any u ∈ ΩU(Y∗) with p(u) > 0 and y∗ ∈ Y∗, κ−1 ≤ p(u)/q(u | y∗) ≤ κ
holds. Therefore, based on the concavity of the logarithmic function, the following inequality holds
(assuming κ > 1, as the conclusion is trivially true when κ = 1):

log

(
p(u)

q(u |y∗)

)
≥ 2κ log κ

κ2 − 1

(
p(u)

q(u |y∗)
− κ2 + 1

2κ

)
. (56)

Due to the boundedness of Eu∼PU
[ξY∗(u)] in the logarithmic space (with ≤ log κ and ≥ − log κ),

by employing the monotonicity and linearity of the Lebesgue integral, we obtain:

Eu∼PU
[ξY∗(u)] (57)

≥ 2κ log κ

κ2 − 1
· Eu∼PU

[(
p(u)

q(u |y∗)
− κ2 + 1

2κ

)
1ΩU(Y∗)(u)

]
(58)

=
2κ log κ

κ2 − 1

(
Eu∼PU

[
p(u)

q(u |y∗)
1ΩU(Y∗)(u)

]
− κ2 + 1

2κ
· Eu∼PU

[
1ΩU(Y∗)(u)

])
(59)

≥ 2κ log κ

κ2 − 1
· Eu∼PU

[σY∗(u)]−
(κ2 + 1) log κ

κ2 − 1
. (60)

Substitute the above inequalities into Eq. 5:

Vu∼QU|y∗
[σY∗(u)] (61)

=Eu∼PU
[σY∗(u)]− P 2(Y∗) Eq. 5 (62)

≤Eu∼PU
[σY∗(u)] Non-negativity (63)

≤ κ2 − 1

2κ log κ
Eu∼PU

[ξY∗(u)] +
κ2 + 1

2κ
Eq. 60 (64)

≤ − κ2 − 1

2κ log κ
Eu∼PU

[log q(u |Y∗(u))]

+
κ2 − 1

2κ log κ
Eu∼PU

[log p(u)] +
3κ2 − 1

2κ

Eq. 55 (65)

= − κ2 − 1

2κ log κ
Eu∼PU

[log q(u |Y∗(u))] + c Extracting constant terms (66)

≤ − Eu∼PU
[log q(u |Y∗(u))] + c.

κ2 − 1

2κ log κ
> 1 for κ > 1 (6)

The constant c is solely dependent on κ and PU, whereas Eu∼PU
[log p(u)] equals the negative

entropy of PU.

Relaxation to concentration inequalities via empirical distribution The bounded importance
weights assumption (i.e., there exists κ ≥ 1 such that 1/κ ≤ p(u)/q(u | y∗) ≤ κ holds almost
surely on the support ΩU(Y∗)) may be too strong for general cases, especially when the exogenous
distribution has an infinite support set and ΩU(Y∗) is also improper. For instance, even for two
Gaussian distributions, their density ratio cannot be guaranteed to be bounded ([18], E.g. 4.1).

One remedy to mitigate this strong assumption is to weaken the statement of the theorem from
"almost surely" to "with probability at least 1 − δ." In this way, if δ is small, the conclusion can
still hold with high confidence. To reach such a conclusion, we typically need to use concentration
inequalities and introduce other weaker assumptions. One of such weaker assumptions we introduce
is that for any y∗ ∈ ΩY∗ , the expected value of the square of the importance weights under PU is
finite, that is, Eu∼PU

[
p2(u)/q2(u |y∗)

]
< +∞. Another assumption is about the boundedness of

the importance weights in the empirical distribution P̂U; this is a discrete relaxation of the original
boundedness assumption of importance weights in the exogenous distribution, which makes Thm. 1
trivially hold on the empirical distribution.
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Corollary 2 (Thm. 1 with Cantelli’s Upper Bound). Assume that for any y∗ ∈ Y∗, the expectation
Eu∼PU

[
p2(u)/q2(u |y∗)

]
< +∞. Let ν = supy∗∈Y∗

Eu∼PU

[
p2(u)/q2(u |y∗)

]
. Denote by P̂U

the empirical distribution formed by n i.i.d. samples u(i) ∼ PU, i = 1, . . . , n drawn from PU, and
assume there exists a constant κ ≥ 1 such that 1/κ ≤ p(u(i))/q(u(i) |y∗) ≤ κ for all i = 1, . . . , n.
Then, with probability at least 1− δ, the following inequality holds:

Vu∼QU|y∗
[σY∗(u)] ≤ −Eu∼P̂U

[log q(u |Y∗(u))] +

√
(
1

δ
− 1)

ν

n
+ c, (67)

where the constant c is the same as in Thm. 1.

Proof. First, consider the empirical distribution P̂U formed by n i.i.d. samples u(i) ∼ PU. Given
the existence of the bound κ for these samples, meaning that the importance weights exist on the
support of P̂U, it is evident that Thm. 1 holds for P̂ :

V̂u∼QU|y∗
[σY∗(u)] ≤ −Eu∼P̂U

[log q(u | Y∗(u))] + c, (68)

where V̂ denotes the empirical variance, which is calculated as:

V̂u∼QU|y∗
[σY∗(u)] = Eu∼P̂U

[σY∗(u)]− P 2(Y∗) Eq. 5 (69)

=
1

n

n∑
i=1

σY∗(u
(i))− P 2(Y∗), (70)

where we treat P (Y∗) as a constant.

Next, we need to establish the inequality relationship between the empirical variance and the true
variance. According to Cantelli’s inequality, we have:

P (X − E [X] ≤ −λ) ≤ V [X]

V [X] + λ2
. (71)

Reversing the inequality direction, substituting the random variable X with Ê [X] = 1
n

∑n
i=1 Xi

(where each Xi is i.i.d.), and letting λ =
√(

1
δ − 1

) V[X]
n , we obtain:

P

(
E [X] < Ê [X] +

√(
1

δ
− 1

)
V [X]

n

)
> 1− δ. (72)

Let Xi = σY∗(u
(i)), and subtract P (Y∗) from both sides, then we have:

P

(
Vu∼QU|y∗

[σY∗(u)] < V̂u∼QU|y∗
[σY∗(u)] +

√(
1

δ
− 1

)
Vu∼PU

[σY∗(u)]

n

)
> 1− δ. (73)

where

Vu∼PU
[σY∗(u)] = Eu∼PU

[
σ2
Y∗

(u)
]
− E2

u∼PU
[σY∗(u)] (74)

≤ Eu∼PU

[
σ2
Y∗

(u)
]

(75)

≤ sup
y∗∈Y∗

Eu∼PU

[
p2(u)

q2(u | y∗)

]
(76)

= ν. (77)

Substituting Eq. 68 into this equation, we obtain the result:

P

(
Vu∼QU|y∗

[σY∗(u)] ≤ −Eu∼P̂U
[log q(u | Y∗(u))] +

√(
1

δ
− 1

)
ν

n
+ c

)
≥ 1− δ, (78)

where the constant c is the same as in Thm. 1.

The following obtains a tighter bound after introducing the constraint of sub-Gaussian conditions
(specifically, assuming that the two-sided Bernstein’s condition is satisfied):
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Corollary 3 (Thm. 1 with Bernstein’s Upper Bound). Assume that for any y∗ ∈ Y∗, the expectation
Eu∼PU

[
p2(u)/q2(u |y∗)

]
< +∞. Let ν = supy∗∈Y∗

Eu∼PU

[
p2(u)/q2(u |y∗)

]
. Additionally,

assume that the variable σY∗(u) satisfies Bernstein’s condition, meaning that there exists a parameter
b > 0 such that for any λ ∈ (−1/b, 1/b), the following inequality holds:

Eu∼PU
[exp (λ(σY∗(u)− Eu∼PU

[σY∗(u)])] ≤ exp

(
(Vu∼PU

[σY∗(u)])λ
2/2

1− b|λ|

)
. (79)

Denote by P̂U the empirical distribution formed by n i.i.d. samples u(i) ∼ PU, i = 1, . . . , n drawn
from PU, and assume there exists a constant κ ≥ 1 such that 1/κ ≤ p(u(i))/q(u(i) |y∗) ≤ κ for all
i = 1, . . . , n. Then, with probability at least 1− δ, the following inequality holds:

Vu∼QU|y∗
[σY∗(u)] ≤ −Eu∼P̂U

[log q(u |Y∗(u))] +
b

n
log

(
1

δ

)
+

√
2 log

(
1

δ

)
ν

n
+ c, (80)

where the constant c is the same as in Thm. 1.

Proof. When Bernstein’s condition is satisfied, the following inequality holds:

P

(∣∣∣Ê [X]− E [X]
∣∣∣ < b

n
log

(
1

δ

)
+

√
2 log

(
1

δ

)
E [V ]

n

)
≥ 1− δ. (81)

The remaining derivation is similar to that in Cor. 2.

It is trivially provable that
√

1
δ − 1≫

√
2 log

(
1
δ

)
when δ approaches zero. This implies that, for

the same δ close to zero, the remainder term in Cor. 3 is typically smaller than that in Cor. 2, meaning
that the former provides a much tighter upper bound with a high probability.

A guard proposal distribution to ensuring boundedness For a proposal distribution QU|y∗ ,
define the bounded part as Ω

[κ]
U = {u | 1/κ ≤ p(u)/q(u | y∗) ≤ κ}. If the probabilities of the

unbounded part under the exogenous distribution and the proposal distribution, PU

(
ΩU \ Ω[κ]

U

)
=

Eu∼PU

[
1
ΩU\Ω[κ]

U

]
and QU|y∗

(
ΩU \ Ω[κ]

U

)
= Eu∼QU|y∗

[
1
ΩU\Ω[κ]

U

]
, are known, we can splice the

exogenous distribution over the unbounded part to form a new proposal distribution that ensures the
bounded importance weight condition:

Proposition 2 (Importance Weight Bound Guard). For a proposal distribution QU|y∗ , construct a
new proposal distribution as follows:

q[κ](u |y∗) =


1−PU

(
ΩU\Ω[κ]

U

)
1−QU|y∗

(
ΩU\Ω[κ]

U

)q(u |y∗), if u ∈ Ω
[κ]
U

p(u), otherwise

, (82)

which we refer to as the guard of the proposal distribution QU|y∗ . Then, for any u ∈ ΩU, there exists
a constant

κ′ = max

 1− PU

(
ΩU \ Ω[κ]

U

)
1−QU|y∗

(
ΩU \ Ω[κ]

U

) , 1−QU|y∗

(
ΩU \ Ω[κ]

U

)
1− PU

(
ΩU \ Ω[κ]

U

)
 · κ, (83)

such that 1/κ′ ≤ q[κ](u |y∗)/p(u) ≤ κ′.
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Proof. First, we prove that the constructed proposal distribution is a valid distribution, mainly by
showing that it satisfies the normalization condition:∫

ΩU

q[κ](u |y∗) du (84)

=

∫
Ω

[κ]
U

1− PU

(
ΩU \ Ω[κ]

U

)
1−QU|y∗

(
ΩU \ Ω[κ]

U

)q(u |y∗) du+

∫
ΩU\Ω[κ]

U

p(u) du (85)

=
1− PU

(
ΩU \ Ω[κ]

U

)
1−QU|y∗

(
ΩU \ Ω[κ]

U

) (1−QU|y∗

(
ΩU \ Ω[κ]

U

))
+ PU

(
ΩU \ Ω[κ]

U

)
(86)

=1. (87)

Next, we prove the boundedness: when u ∈ Ω
[κ]
U , according to the definition of Ω[κ]

U , we have
1/κ ≤ p(u)/q(u | y∗) ≤ κ. Since κ′ ≥ κ, it follows that 1/κ′ ≤ p(u)/q[κ](u | y∗) ≤ κ′. When
u /∈ Ω

[κ]
U , it trivially holds that p(u)/q[κ](u |y∗) = 1.

In the subsequent experiments, we assume that the probability of the unbounded part could be
non-zero but approximates zero. Formally, PU

(
Ω

[κ]
U

)
≈ 1 and QU|y∗

(
Ω

[κ]
U

)
≈ 1.This implies that

the error terms in Cor. 2 and Cor. 3 would be small enough, or that when using the guard proposal
distribution Prop. 2, we could obtain a relatively unbiased estimate without the need for re-weighting
(where

(
1− PU

(
ΩU \ Ω[κ]

U

))
/
(
1−QU|y∗

(
ΩU \ Ω[κ]

U

))
≈ 1).

The generalization of Thm. 1 Cor. 1 is generalized from Thm. 1 in a straightforward manner
through monotonicity. In particular, the relaxation and guarantees discussed earlier also apply to
Cor. 1 when the scope of assumptions extends from a single counterfactual variable Y∗ to multiple
counterfactual variables of different forms, Y(s)

∗ , s ∈ S.
Corollary 1 (Expected Variance Upper Bound). Let QS denote an arbitrary distribution defined over
the state space S of a stochastic counterfactual process, and let P (s)

Y∗
denote an arbitrary distribution

defined over the σ-algebra Σ
(s)
Y∗

corresponding to a set of counterfactual variables Y(s)
∗ given a state

s ∈ S . PY∗ is the joint distribution induced by P
(s)
Y∗

and QS . If the conditions in Thm. 1 are met for

any Y(s)
∗ and any s ∈ S, then for any QU|y∗ where y∗ ∈ Y(s)

∗ and any s ∈ S:

EY(s)
∗ ∼PY∗

[
Vu∼QU|y∗

[σY∗(u)]
]
≤ −Es∼QS

[
Eu∼PU

[
log q(u |Y(s)

∗ (u))
]]

+ c, (7)

where the constant c is the same as in Thm. 1.

Proof. For any state s ∈ S , and any Y(s)
∗ ∈ Σ

(s)
Y∗

, according to Thm. 1, if Y(s)
∗ satisfies the bounded

density ratio condition, we have:

Vu∼QU|y∗
[σY∗(u |y∗)] ≤ −Eu∼PU

[log q(u |Y∗(u))] + c. (6)

According to the monotonicity of expectation, we take the expectation w.r.t. P (s)
Y∗

on both sides, then:

EY(s)
∗ ∼P

(s)
Y∗

[
Vu∼QU|y∗

[
σY∗(u |y(s)

∗ )
]]

(88)

≤EY(s)
∗ ∼P

(s)
Y∗

[−Eu∼PU
[log q(u |Y∗(u))] + c] (89)

= − EY(s)
∗ ∼P

(s)
Y∗

[Eu∼PU
[log q(u |Y∗(u))]] + EY(s)

∗ ∼P
(s)
Y∗

[c] (90)

= − Eu∼PU

[
log q(u |Y(s)

∗ (u))
]
+ c, (91)

where Eu∼PU

[
log q(u |Y(s)

∗ (u))
]

is independent of Y(s)
∗ , and the constant c is irrelevant to Y(s)

∗ .
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We then take the expectation w.r.t. PU on both sides of the inequality, producing:

EY∗∼PY∗

[
Vu∼QU|y∗

[σY∗(u |y∗)]
]

(92)

=Es∼QS

[
EY(s)

∗ ∼P
(s)
Y∗

[V [σY∗(u |y∗)]]
]

(93)

≤Es∼QS

[
−Eu∼PU

[
log q(u |Y(s)

∗ (u))
]
+ c
]

(94)

= − Es∼QS

[
Eu∼PU

[
log q(u |Y(s)

∗ (u))
]]

+ Es∼QS [c] (95)

= − Es∼QS

[
Eu∼PU

[
log q(u |Y(s)

∗ (u))
]]

+ c, (7)

where c is a constant independent of any state s ∈ S.

A.3 Learning and Inference

Algorithm 1 Exogenous Matching Learning

Input: Exogenous distribution PU, prior dis-
tribution for states QS , conditional distribu-
tion model QU|Y∗ with parameters θy∗ , mini-
batch size n and learning rate η.

1: while Eq. 8 not converged do
2: for i← 1 and i ≤ n do
3: s ∼ QS ,u ∼ PU

4: θy∗ ← θy∗ − η · ∇θy∗
log q(u |Y(s)

∗ (u))
5: end for
6: end while

Figure 5: The learning algorithm for Exogenous
Matching.

Learning Cor. 1 provides an upper bound that
directly gives an optimization objective:

argminq −Es∼QS

[
Eu∼PU

[
log q(u |Y(s)

∗ (u))
]]

. (8)

This is equivalent to learning the conditional
distribution QU|Y∗ using maximum likelihood.
To obtain an estimate of this log-likelihood, we
can directly use Monte Carlo methods, which
simply involve two sampling processes and one
computation: i) sampling state s from the prior
state distribution QS ; ii) sampling u from the ex-
ogenous distribution PU; iii) computing the log
density (or probability for discrete exogenous
variables) log q(u |Y(s)

∗ (u)).

Assuming that we can compute the gradient of q(u | y∗) w.r.t. the parameters θy∗ of QU|y∗ , as
modeled in the paper, then combining with the minibatch gradient descent algorithm, we can write
the complete algorithm for the training process as in Fig. 5.

Algorithm 2 Multiple Proposals Inference

Input: Prior distribution QY∗ , conditional pro-
posal distribution QU|Y∗ , sample size n.

1: S ← ∅
2: for i← 1 and i ≤ n do
3: y

(i)
∗ ∼ QY∗ ,u

(i) ∼ Q
U|y(i)

∗

4: σ(i) ←
(
p(u(i))/q(u(i) |y∗)

)
1ΩU(Y∗)(u

(i))

5: S ← S ∪ {σ(i)}
6: end for
7: Output: P̂ (Y∗)←

(∑n
i=1 σ

(i)
)
/n

Figure 6: The inference algorithm for multiple
importance sampling.

Inference If for any y∗ ∈ Y∗, the support of
the proposal distribution QU|y∗ covers the sup-
port of PU, then it constitutes a valid proposal,
and an unbiased estimate can be obtained using
Eq. 4. More can be achieved through multiple
importance sampling, as any estimate obtained
from the proposal QU|y∗ is unbiased for such
y∗ ∈ Y∗. Consequently, the expectation over
these estimates remains unbiased, i.e.,

P (Y∗) = Eu∼QU|y∗

[
σY∗[y∗](u)

]
(96)

= Ey∗∼QY∗

[
Eu∼QU|y∗

[
σY∗[y∗](u)

]]
, (9)

which corresponds to the estimator used in Eq. 9
and provides more robust results when an ap-
propriate prior QY∗ is chosen. Our inference
algorithm involves two sampling processes and one computation: i) sampling y∗ from the prior
distribution QY∗ ; ii) sampling u from the proposal distribution QU|y∗ ; iii) computing the importance
weights and checking if Y∗(u) ∈ Y∗ to obtain σY∗[y∗](u). This process is detailed in Fig. 6. In our
experiments, because the tasks are density estimation (for continuous) and point probability queries
(for discrete), we actually still use a single proposal distribution at y∗, which is a special case where
QY∗ is a Dirac distribution.
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A.4 Markov Boundary

In order to express counterfactuals that span multiple submodels using a single model, the twin SCM
concept is often used to articulate counterfactuals for a particular setting within a unified framework.
Definition 3 (Twin SCM). For an SCM M = ⟨U,V,F , PU⟩ and a set of its submodels
{M1[x1],M2[x2], . . . ,Mk[xk]}, we refer toM∗ = ⟨U,V∗,F∗, PU⟩ as a Twin Structural Causal
Model (Twin SCM), where V∗ =

⋃k
i=1 Vi[xi] and F∗ =

⋃k
i=1 Fi[xi]. Vi[xi] represents the endoge-

nous variables in the i-th submodel, and Fi[xi] denotes the corresponding causal mechanisms.

In general, the twin SCM amalgamates multiple distinct submodels into one SCM, thereby rendering
conclusions drawn on a single SCM applicable to the twin SCM. It is trivial to demonstrate that if
the original SCM is recursive, then the twin SCM remains recursive. Consequently, the causal graph
derived from the twin SCM is also an ADMG, and the augmented graph is a DAG.

Our proof is based on d-separation [75, 76], which is a criterion for quickly determining conditional
independence on a Directed Acyclic Graph (DAG). Suppose a distribution is denoted by P and its
corresponding DAG is G. We say that a path p is blocked by a set of nodes Z if and only if: i)
p contains a chain A → B → C or a fork A ← B → C and the intermediate node B is in Z;
ii) p contains a collider A → B ← C, and neither the intermediate node B nor its descendants
are in Z. If all paths between two sets of nodes X and Y are blocked, then X and Y are said to
be d-separated given Z, denoted as X ⊥⊥G Y | Z, implying X ⊥⊥P Y | Z, i.e., X and Y are
conditionally independent given Z. In this work, we assume faithfulness, which means that if the
conditions for conditional independence are met, then d-separation holds. Combining acyclicity
allows for mutual inference between the d-separation and independence.

First, let us restate the definition of the Markov boundary.
Definition 2 (Counterfactual Markov Boundary). For an exogenous variable Uj ∈ U and a set of
counterfactual variables Y, along with their joint distribution P . If Uj is independent of Y \X given
X under P , i.e. Uj ⊥⊥P (Y \X) | X, then X is termed a Markov blanket of Uj on Y. The collection
of all Markov blankets of Uj on Y is denoted as Bj(Y). If X ∈ Bj(Y) is a Markov blanket of
Uj on Y, and there exists no X′ ⊊ X such that X′ ∈ Bj(Y), then X is termed a (counterfactual)
Markov boundary of Uj on Y, denoted as Bj(Y).

This definition relies on conditional independence. With the aid of the augmented graph Ga and the
d-separation based on the twin SCM, it is possible to derive Thm. 2 and Thm. 3 from the properties
on the graph.

Theorem 2 (Counterfactual Markov Boundary Independence). If Y∗ =
⋃k

i=1 Yi[xi] and each Yi[xi]

corresponds to a different submodelMxi , then for each Uj ∈ U, there exists a Markov boundary
Bj(Y∗) =

⋃k
i=1 Bj(Yi[xi]) on Y∗, where Bj(Yi[xi]) is a Markov boundary onMxi

.

Proof. We aim to demonstrate that
⋃k

i=1 Bj(Yi[xi]) forms a Markov boundary for Y∗, where
Bj(Yi[xi]) denotes the Markov boundary over Yi[xi].

(i)
⋃k

i=1 Bj(Yi[xi]) is a Markov blanket of Uj : For any submodelMj , according to the faithfulness
assumption, since Bj(Yi[xi]) is a Markov blanket over Yi[xi], it blocks all paths between Uj and
Yi[xi] \ Bj(Yi[xi]) in the augmented graph of the twin SCM. We proceed to prove that, given
Bj(Yi[xi]), it does not alter the blocked paths of Bj(Yi[xi]). For a blocked path p ∈ P , unblocking
can occur only at the intermediate node and its descendants in the colliders. However, the nodes
in Bj(Yi[xi]) are not in Yi[xi], thus demonstrating that its blocking status remains unchanged.
Therefore,

⋃k
i=1 Bj(Yi[xi]) is a Markov blanket of Uj .

(ii) Any proper subset of
⋃k

i=1 Bj(Yi[xi]) is not a Markov blanket of Uj : Suppose that a proper
subset D ⊂ ⋃k

i=1 Bj(Yi[xi]) is a Markov blanket. Let Dj = D ∩ Yi[xi] be a subset in some
submodel of this Markov blanket. Obviously, since any proper subset of Bj(Yi[xi]) is not a Markov
blanket in Yi[xi], Dj is not a Markov blanket on Yi[xi]. This implies that there exists a subset Sj

of Yi[xi] which is not independent of Uj given Dj . We now show that Sj remains dependent on Uj

given D. By the faithfulness assumption, as Sj is not independent of Uj given Dj , there still exists an
unblocked path from Sj to Uj in the augmented graph of the twin SCM. Continuing with the condition
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Algorithm 3 Finding Counterfactual Markov Boundary

Input: An exogenous variable Uj ∈ U, a set of counterfactual variables Y∗, an augmented
graph Ga of SCMM = {V,U,F , PU}.

1: Bj(Y∗)← ∅
2: for Yi[xi] ⊆ Y∗ do
3: Bj(Yi[xi])← ∅
4: for Y ∈ Yi[xi] do
5: if ¬ D-SEPERATION({Yxi

}, {Uj},Yi[xi] \ {Yxi
},Gaxi

) then
6: Bj(Yi[xi])← Bj(Yi[xi]) ∪ {Y } ▷ Thm. 3
7: end if
8: end for
9: Bj(Y∗)← Bj(Y∗) ∪Bj(Yi[xi]) ▷ Thm. 2

10: end for
Output: counterfactual Markov boundary Bj(Y∗).

Figure 7: Inferring counterfactual Markov boundaries through d-separation, Thms. 2 and 3, with
faithfulness is assumed. D-SEPARATION(X,Y,Z,G) returns true if and only if X⊥⊥G Y | Z.

on D \Dj , we discuss all the paths P from Sj to Uj . For an intermediate node of a collider on a
path p ∈ P , since it is unblocked, its descendants must be conditioned, thus continuing to condition
on D \Dj does not affect the colliders. For a non-collider on a path p ∈ P , for p to be blocked,
there must exist an intermediate node of a non-collider in D \Dj , however, (D \Dj) ∩Yi[xi] = ∅,
so this condition cannot be met. Hence, continuing to condition on D \ Dj does not affect any
unblocked paths. According to d-separation, given D, Sj and Uj remain dependent. Therefore, D
is not a Markov blanket, which contradicts the assumption. This means that no proper subset of⋃k

i=1 Bj(Yi[xi]) is a Markov blanket of Uj .

Theorem 3 (Counterfactual Markov Boundary on Graph). For an exogenous variable Uj ∈ U and a
counterfactual variable set Yx from the submodelMx, the counterfactual variable Yx ∈ Bj(Yx) if
and only if Yx ⊥̸⊥Ga

x
Uj | Yx \ {Yx}, i.e., when given Yx \ {Yx}, Yx and Uj are not d-separated on

Gax, where Gax is the augmented graph induced from the submodelMx.

Proof. (i) Yx ∈ Bj(Yx) implies Yx ⊥̸⊥Ga
x
Uj | Yx \ {Yx}: Assuming Yx ⊥⊥Ga

x
Uj | Yx \ {Yx},

according to the faithfulness assumption, all paths between Uj and Yx are blocked given Yx \ {Yx}.
If a path consists solely of colliders, then, since the intermediate node are given, the path remains
unblocked, contradicting the assumption. This implies that on every path, there exists at least one
non-collider intermediate node, denoted this set by R. Since each path has at least one non-collider
intermediate node, given R, all paths between Yx and Uj are blocked. Let Rb = R ∩Bj(Yx) and
Rc = R \Rb. For Rc, the Markov boundary property holds, blocking all paths between Uj and
Yx given Bj(Yx). Thus, for every path between Yx and Uj , it either passes through nodes in Rb

and is blocked given Bj(Yx) \ Yx, or it passes through nodes in Rc. We need to prove that the
paths that pass through Rc are also blocked given Bj(Yx) \ Yx. Taking any R ∈ Rc, for any path
p between R and Uj , if p does not pass through Yx, then p is blocked given Bj(Yx) \ Yx, which
means that any path from Y∗ passing through R and then through p to reach Uj is also blocked by
Bj(Yx) \ Yx. If p passes through Yx, it must pass through another R′ ∈ R and eventually reach U ′

through a path that does not include Yx, which is also blocked by Bj(Yx) \ Yx. Therefore, any path
involving Yx is blocked by Bj(Yx) \ Yx, which means that any path from Uj to Yx is also blocked.
For colliders on ancestors of Yx, not conditioning on Yx adds blocking to the paths, not removing any
existing blocks; for Yx being a non-collider, any path involving Yx is blocked by Bj(Yx) \ Yx, thus
remaining blocked even if Yx is not conditioned on. Therefore, Yx does not influence the blocking
status of any relevant paths. Consequently, given Bj(Yx) \Yx, all the paths between any other nodes
in Yx (including Yx) and Uj are blocked. This implies that Bj(Yx) \ Yx is also a Markov blanket.
However, it is a proper subset of Bj(Yx), which contradicts Bj(Yx) being a Markov boundary.
Therefore, Yx ∈ Bj(Yx) implies Yx ⊥̸⊥Ga

x
Uj | Yx \ {Yx}.
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(ii) Yx ⊥̸⊥Ga
x

Uj | Yx \ {Yx} implies Yx ∈ Bj(Yx): It can be proven that the contrapositive
holds. If Yx is not in the Markov boundary, then it is independent of Uj given the Markov boundary
Yx ∈ Bj(Yx). Clearly, this conclusion follows directly from the definition of the Markov blanket.
Therefore, Yx ⊥̸⊥Ga

x
Uj | Yx \ {Yx} holds trivially.

Our final algorithm for efficiently computing Markov boundaries is obtained directly from d-
separation, Thms. 2 and 3 as shown in Fig. 7. However, a limitation of these theorems is the
reliance on the faithfulness assumption, which may not always hold, even in the case of a fully
specified SCM, where numerical violations can potentially occur.

B Related Works

B.1 Importance Sampling

To estimate Eq. 2, a straightforward approach is to start from the definition and employ rejection
sampling, as implemented in [108]:

P (Y∗) = Eu∼Pu

[
1ΩU(Y∗)(u)

]
. (97)

This method operates effectively within a countable, finite exogenous space. However, as discussed
in the main text, it exhibits low efficiency in general settings due to the infrequency with which
the indicator function in the counterfactual probability expression is effective (i.e., non-zero). One
solution to this problem is importance sampling, where selection of the proposal distribution is a
critical issue. In this section, we discuss related works in detail.

Cross-entropy based importance sampling It is straightforward to prove that when the density of
the proposal distribution q(u) ∝ p(u)|f(u)| (where, in the context of counterfactual estimation, f(u)
is 1ΩU(Y∗)(u)), the corresponding importance sampling estimator possesses the minimum variance.
This proposal distribution is known as the optimal proposal distribution, denoted as Q∗

U. The idea
behind a class of methods is to minimize the cross-entropy (or equivalently, the KL divergence)
between the conditional proposal distribution QU and the optimal proposal distribution Q∗

U. The
expression for this in the context of counterfactual estimation is:

H(q∗, q) = −Eu∼Q∗
U
[log q(u)] ∝ −Eu∼PU

[
1ΩU(Y∗)(u) log q(u)

]
. (98)

In the task of sampling rare events, due to the difficulty of directly sampling from Pu to obtain
effective samples for which f(u) is valid, it is common to estimate the cross-entropy by sampling
from a proposal distribution Qu. This method, known as importance sampling, is considered adaptive
because it continuously adapts based on the samples already drawn from the proposal distribution.
For instance, [32] modeled QU as a Gaussian Mixture Model (GMM) and optimized an equivalent
form of cross-entropy to improve sampling efficiency. When applied to counterfactual estimation, the
corresponding optimization objective is:

argmin
q
−Eu∼QU

[
p(u)1ΩU(Y∗)(u)

q(u)
log q(u)

]
. (99)

Neural importance sampling In addition to GMM, normalizing flows provide a more expressive
capability as density estimators. Therefore, as enumerated in the main text, numerous recent methods
have leveraged normalizing flows as proposal distributions for importance sampling. Many of these
methods still rely on optimizing cross-entropy (and KL divergence), as introduced earlier. Another
optimization method discussed in [68] is based on the χ2 divergence between the optimal proposal
distribution Q∗

U and the proposal distribution QU:

Dχ2(q∗, q) =

∫
Ωu

(q∗(u)− q(u))2

q(u)
du (100)

=

∫
Ωu

(q∗)2(u)

q(u)
du−

(
2

∫
Ωu

q∗(u)du−
∫
Ωu

q(u)du

)
(101)

=

∫
Ωu

(q∗)2(u)

q(u)
du− 1 (102)
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∝
∫
Ωu

p2(u)1ΩU(Y∗)(u)

q(u)
du− 1 (103)

= Eu∼PU

[
p(u)

q(u)
1ΩU(Y∗)(u)

]
− 1. (104)

It can be seen that the only difference between Eq. 104 and Eq. 5 lies in a constant term. Thus,
directly optimizing this equation is equivalent to optimizing the variance itself. Naturally, considering
the difficulty of sampling from PU as discussed in the paper, an adaptive approach is employed. This
involves sampling from the proposal distribution QU, with the corresponding optimization objective
being:

argmin
q

Eu∼QU

[
p2(u)

q2(u)
1ΩU(Y∗)(u)

]
. (105)

In [68], the proposal distribution QU is modeled as NICE [24].

Extension and limitation The above method, without extensions, is only applicable to estimate a
single counterfactual probability P (Y∗). We extend these methods similarly to our proposed approach
by introducing a conditional proposal distribution QU|Y∗ , and employing the same estimator as in
Eq. 9 during inference as baselines. During the variance optimization phase, by introducing prior
distributions QS and PU and letting y∗ = Y

(s)
∗ (u′) be sampled from stochastic counterfactual

processes (u′ ∼ PU and s ∼ QS), we reformulate the optimization expressions for cross-entropy
based importance sampling (CEIS) as:

argmin
q
−Ey∗

[
Eu∼QU|y∗

[
p(u)1ΩU(δ(y∗))(u)

q(u |y∗)
log q(u |y∗)

]]
, (106)

and neural importance sampling (NIS) as:

argmin
q

Ey∗

[
Eu∼QU|y∗

[
p2(u)

q2(u |y∗)
1ΩU(δ(y∗))(u)

]]
. (107)

where δ(y∗) denotes a small region around y∗. The above optimization objective tasks QU|y∗ with
sampling from ΩU(δ(y∗)), where any Y∗ can be decomposed into a set of y(j)

∗ ∈ Y∗, such that
Y∗ =

⋃∞
j=1 δ(y

(j)
∗ ), and ΩU(Y∗) =

⋃∞
j=1 ΩU(δ(y

(j)
∗ )).

An unavoidable drawback of the extended method is the presence of indicator functions in the
optimization term. If the initial proposal distribution Qu is similar to Pu in performance, the entire
optimization process requires a prolonged warm-up period before effective samples start to emerge
from the proposal distribution Qu. For example, if the entire space is the unit plane [0, 1]2 and
ΩU(δ(y∗)) is a small region {(x, y) | x ≤ 0.001, y ≤ 0.001}, then if the chosen initial proposal
distribution is uniform, it has only a probability 10−6 of sampling an effective sample, resulting in a
low efficiency for optimizing the loss functions.

In contrast, the optimization term in Exogenous Matching according to Thm. 1 does not include
the indicator function, ensuring that every sample is effective during the optimization process, thus
significantly enhancing learning efficiency.

B.2 Proxy SCMs

In this section, we provide a detailed description of the construction of the proxy SCMs used in the
experiments and their identifiability.

Nerual Causal Model The Neural Causal Model (NCM, [107, 108]) is a recently proposed general
approach to mimicking the original SCMs to construct proxy SCMs. For identifiability, its primary
assumption is the causal graph of the original SCM. By replacing the causal mechanisms in the
original SCM with neural networks that have a strong expressive power, it can effectively proxy the
original SCM.

Specifically, an NCM is a 4-tuple ⟨U,V, F̂ , P̂U⟩, which is almost identical to the SCM definition,
except that each fVi

∈ F̂ is a neural network with sufficient expressive power, and P̂U is any
well-defined distribution over U.
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Their method for inducing submodels is the same as for a regular SCM, i.e., replacing causal
mechanisms under perfect interventions, which they term neural mutilation. For counterfactual
estimation, they use the rejection sampling introduced earlier because the endogenous variables in
their experimental scenarios are discrete and finite, making rejection sampling efficient enough to
sample effective samples.

Regarding identifiability, this work assumes causal graphs and has been shown to operate effectively
when endogenous variables are discrete and finite. Specifically, they construct a class of models called
G-constrained NCMs, which have the same causal graph G as the original SCM. Then, they prove that
any NCM in the G-constrained NCM family has dual identifiability with the causal graph G, i.e., the
NCMs in the G-constrained NCM family (given some observational or interventional distributions)
output the same result when answering aQ ∈ L3, if and only if the graph algorithms for counterfactual
identification output identifiable results given inputQ and observational or interventional distributions.

Furthermore, based on this duality, they develop a sound and complete identification algorithm, and
since this identification algorithm is based on the learning process of NCMs, it only requires gradient
optimization. Certainly, although this work guarantees theoretical results for identifiability in discrete
and finite settings [108] as well as partial identifiability in Lipschitz continuous settings [93], further
improvements are necessary to apply its estimation methods in broader scenarios.

Causal Normalizing Flow Causal Normalizing Flow (CausalNF, [42]) is a recently summarized
method to construct proxies of SCMs based on flow models. For identifiability, it assumes the causal
graph or causal ordering of the true SCM, and the true SCM is Markovian and diffeomorphic.

Specifically, a CausalNF is a 4-tuple ⟨U,V, T −1, P̂U⟩, where T = {fVi(ui;paVi
) | Vi ∈ V} is a

sequence-preserving Autoregressive Normalizing Flow (ANF), and P̂U is the base distribution of this
flow model.

Their approach to derive submodels differs from conventional SCMs because the modeled CausalNFs
have multiple architectures, and substituting causal mechanisms is only applicable in the recursive
case. Their solution is to alter exogenous distributions and leverage the Markov assumption to ensure
that the density of the intervened exogenous distribution is:

p̂u[x](u) =

( ∏
Vi∈X

δ({vi = fVi
(ui;paVi

)})
)
·
∏

Vj ̸∈X

p(uj). (108)

δ denotes the Dirac distribution, where a density only exists when the condition inside its parentheses
is satisfied. In practice, the distribution of the intervention is determined by the following steps:
i) Sample u from P̂U; ii) Compute v1 = T −1(u); iii) Replace v1, resulting in v2 = {vi | vi ∈
v1, vi ̸∈ x} ∪ x; iv) Compute u2 = T (v2); v) Replace u2, yielding u3 = {ui | ui ∈ u2, vi ̸∈
x} ∪ {ui | ui ∈ u1, vi ̸∈ x}; vi) Compute vx = T −1(u3). Here, step (v) corresponds to replacing
relevant parts of the density of the intervened exogenous distribution with the Dirac distribution,
as shown in Eq. 108. The last four steps among these six steps are employed for counterfactual
reasoning, but this form of counterfactual reasoning is not for generalized cases. Specifically, the
counterfactual query corresponding to these four steps is P (Vx |V1). Although the submodel cannot
be directly obtained, the vx obtained from the above steps is indeed the potential response Vx(u), so
our method is still applicable to this model.

As for identifiability, this work requires numerous assumptions, including Markovianity, diffeomor-
phism, causal order, and uses results from [106] to assist in proving the identifiability of the learned
model up to invertible transformations.

B.3 Arbitrary Conditioning

There is a challenge of modeling an exponentially large number of conditional distributions with
a single model. Several existing works have focused on this problem, which is termed arbitrary
conditioning. Arbitrary conditioning is an unsupervised learning task that, given a dataset over V,
aims to answer any query of the form P (X |Y = y), where Y ⊆ V and y ∈ ΩY are arbitrary.

The initial step to address the problem of arbitrary conditioning is to encode the condition y into a
fixed-length vector. Subsequently, this vector is learned through various modeling methods, and the
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training process incorporates various random masks to simulate different forms of Y. Specifically,
related works introduce a binary mask b to indicate whether a variable has been observed. In this
context, the conditional probability can be expressed as P (V1−b |vb,b). Consequently, the learning
objective can equivalently be viewed as maximizing the following log-likelihood term:

argmax
q

Eb∼PB
[Ev∼PV

[log q(v1−b |vb,b)]] , (109)

where Pb represents the prior distribution of the random mask, while PV denotes the observational
distribution. The model q corresponds to the probabilistic model employed for this task. Specific
methods employed in related works are enumerated in the main text, involving a variety of generative
models that are suited to different task scenarios. For instance, some methods permit direct training
with partially observed data, some can only output samples without density estimation, and others are
incapable of performing efficient marginal probability computation.

The similarity between this work and these methods lies in the encoding scheme and the training
objectives. For example, the conditional encoding method in this paper also employs binary masks,
introducing both the observation mask ω(X) and the intervention mask ω(Y). Furthermore, the
training objective, as defined in Eq. 8, closely resembles Eq. 109.

The distinction between our work and these methods lies in the available data and the target tasks.
The problem of arbitrary conditioning is based on learning from the observed distribution and is
typically applied to imputation tasks. In contrast, our conditional distribution modeling can be seen
as an extension of arbitrary conditioning, generalizing the observed distribution to counterfactual
distributions. This allows the conditions to originate from multiple hypothetical worlds and is applied
in counterfactual reasoning.

The work most similar to ours in terms of overall structure and optimization objectives is Posterior
Matching [91]. It addresses the problem of arbitrary conditioning by matching the encoder of a given
VAE. The optimization formulation is as follows:

argmin
q

Eb∼PB

[
Ev∼PV

[
Eu∼PU|v [log q(u |vb,b)]

]]
, (110)

where PU|v represents the posterior distribution in a VAE, also referred to as the encoder. By
comparing the optimization objective of our method, Eq. 8, with Eq. 110, we observe a notable
similarity between the two. We can establish a one-to-one correspondence between the terms in the
optimization formulations: the mask b can be analogized to the state s in the stochastic counterfactual
process; the decoder of the VAE (mapping from latent variables to observable variables) corresponds
to the SCM’s potential responses (mapping from exogenous to endogenous variables); the encoder
of the VAE (mapping from observable variables to latent variables) corresponds to the abduction
process in the SCM (mapping from endogenous to exogenous variables). Consequently, the posterior
distribution aligns with the abduction process in the SCM, represented by the product of the indicator
function and the exogenous distribution.

An intuitive explanation is that posterior matching attempts to align the conditional distribution
with the posterior distribution, whereas our work can be interpreted as attempting to align the
conditional distribution with the optimal proposal distribution. The interpretation of the optimal
proposal distribution is detailed in App. B.1, where in the counterfactual estimation task, the optimal
proposal distribution is proportional to the product of the indicator function and the exogenous
distribution.

B.4 Injecting Prior Knowledge

This work involves injecting prior structure into the learning process. Specifically, such methods of
injecting prior structure are achieved by directly influencing the internal connectivity of the model.

Related work includes MADE [31], Zuko [81], and StrNN [13]. MADE interprets from the perspec-
tive of conditional probability, altering the connectivity between inputs and outputs in autoregressive
models by masking, thereby enabling the model to output specific conditional distributions p(xi | y)
only when there exists connectivity from inputs in y to output xi; however, this method only re-
spects autoregressive properties. The method in Zuko is primarily used for implementing masked
autoregressive normalizing flows, but is not limited to autoregressive dependencies. Based on the
interpretation of Jacobian matrices, it alters the connectivity between inputs and outputs in MLPs
through masking, ensuring that the Jacobian matrix of MLP outputs is non-zero only when the
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mask is one, thus representing the dependency between input and output variables. However, the
masking algorithm in Zuko only approximately preserves the maximum number of connections
under dependency constraints in variable order. StrNN extensively investigates the issue of variable
dependency and connectivity, formalizing it as an integer programming problem, and providing exact
and greedy algorithms that outperform the previous two methods in terms of performance.

The tasks typically addressed by the above methods include representing autoregression (autoregres-
sive models), constraining the dependency of Bayesian networks (Bayesian network inference), and
constraining the dependency of causal graphs (causal inference). Different from these tasks, this
paper applies them to representing the dependency of Markov boundary (Markov boundary feature
selection). The masking algorithm adopted in this paper is Zuko, as it can be directly combined with
the normalizing flows it implements and used directly in subsequent experiments.

C Experiments

C.1 Metrics

We formally introduce all the metrics used in the subsequent experiments, which aim to reflect the
quality of counterfactual estimation:

Effective Sample Proportion (ESP) As mentioned earlier, effective samples here refer to samples
that make the indicator function equal to one (i.e., the constraints of potential responses are satisfied).
For a specific Y∗, we define

η(Y∗) =
1

n

(
n∑

i=1

1ΩU(Y∗)(u
(i))

)
, (111)

which reflects the proportion of effective samples sampled in a counterfactual estimation for Y∗. In
rare event sampling, this metric essentially represents the success rate, indicating the proportion of
samples in which the rare event occurs. ESP is about the expectation of this function over a prior
distribution PY∗ (related to the stochastic counterfactual process):

ESP = EY∗∼PY∗
[η(Y∗)] . (112)

Specifically, ESP reflects the sampling efficiency when the importance weights are ignored. It focuses
on the probability that the sampled u falls within the support ΩU(Y∗), for all Y∗.

Failure Rate (FR) This work claims that the proposed method holds the potential for counterfactual
estimation in any form following a single training session. To verify the reliability of this claim, we
introduce the FR metric, which reflects the efficacy of the proposal distribution post a single training
across the entire state space of the relevant stochastic counterfactual processes, defined as follows:

FR = EY∗∼PY∗

[{
1, η(Y∗) ≤ m

0, otherwise

]
, (113)

where 0 < m ≤ 1 is a constant representing the acceptance threshold. An η(Y∗) below this threshold
is considered a failure. The closer the FR is to zero, the more it indicates that for the vast majority
of Y∗, there are sufficiently many samples of u falling within the support ΩU(Y∗), making the
counterfactual estimation considered tractable.

C.2 Design of Stochastic Counterfactual Processes

This paper introduces a stochastic counterfactual process (Def. 1), allowing the proposal distribution
after a single training to potentially estimate counterfactual probabilities in multiple or even infinite
forms in a tractable manner. This facilitates efficient estimation of a L3 expression in real-world
scenarios (assuming that the L3 expression can be approximated by a finite set of counterfactual
probabilities). Therefore, if the proposal distribution after a single training can tractably estimate
these counterfactual probabilities, it implies that estimation of the L3 expression only requires one
training. Specifically, employing stochastic counterfactual processes, this paper conducts stochastic
optimization on various forms of counterfactuals and demonstrates its feasibility (Cor. 1). In this
section, we elaborate on its specific design in experiments.
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Table 3: The state space of YQ
∗ (i.e., all involved counterfactual variables), as well as the expression

of Q. Q ∈ {ATE,ETT,NDE,CtfDE}.
Q Counterfactual Variables (Y∗) Expression

ATE YX=1 P (YX=1 = 1)− P (YX=0 = 1)
YX=0

ETT
{YX=1, X}

P (YX=1=1,X=1)−P (YX=0=1,X=1)
P (X=1){YX=0, X}

X

NDE {YX=1,W=w,WX=0}, w ∈ ΩW ∑
w P (YX=1,W=w = 1,WX=0 = w) − P (YX=0 = 1)

YX=0

CtfDE
{YX=1,W=w,WX=0}, w ∈ ΩW ∑

w P (YX=1,W=w = 1,WX=0 = w) − P (YX=0 = 1)

P (X = 1)
YX=0

X

Construction of YB
∗ IfQ ∈ L3 is an arbitrary P (Y∗) such that Y∗ ⊆ ΩY∗ is ensured, and precisely

involves k distinct submodels, then we can design YB
∗ to answer any such Q. Specifically, the state

space of YB
∗ is S = {s | |s| = k}.

Here, we design the prior distribution QB
s to cover S:

b
(i)
1j ∼ Bernoulli(ρ1), 0 < ρ1 < 1, (114)

b
(i)
1 = {b(i)

1j | Vj ∈ V}, (115)

X(i) = {Vj | b(i)1j = 1}, (116)

x(i) ∼ PX(i) , p(x(i)) > 0, (117)

b
(i)
2j ∼ Bernoulli(ρ2), 0 < ρ2 < 1, (118)

b
(i)
2 = {b(i)

2j | Vj ∈ V \X(i)}, (119)

Y(i) = {Vj | b(i)2j = 1}, (120)

Y∗ = {Y(i)

x(i) | i ≤ k}, (121)

where Bernoulli(ρ1) is a Bernoulli distribution with parameter ρ1, meaning it has a probability of ρ1
to yield 1; PX is the endogenous distribution corresponding to X and for any x ∈ ΩX, p(x) > 0.

This distribution, due to the constrained Bernoulli distribution parameters (0 < ρ1, ρ2 < 1), implies
that any X,Y ⊆ V may potentially be sampled; and for intervention values, assuming positivity
(p(x(i)) > 0), any possible intervention value can be sampled. Therefore, for any of these submodels,
any counterfactual variable is covered, and hence any variable set is also covered.

In subsequent experiments, we set ρ1 = 0.2 and ρ2 = 0.75, which are utilized during both the
training and testing phases. The rationale behind employing YB

∗ for experiments lies in the large size
of S , which provides more credible evidence to verify whether the conclusion of Cor. 1 satisfies the
claim and whether the designs bridge the gap between theory and practice.

Construction of YQ
∗ To apply our method to real-world tasks, we construct stochastic counterfac-

tual processes YQ
∗ for several common causal query tasks, where Q ∈ {ATE,ETT,NDE,CtfDE}.

As shown in Tab. 3, the state spaces for these queries are finite or easily sampled, allowing the design
of the prior distribution QQ

S to be a simple uniform distribution over these available states. We assume
that the endogenous variable space is discrete and finite, which means that we only need to estimate
the counterfactual probability for each of them. By computing according to their expressions, we can
obtain the estimate for Q.
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C.3 Fully-specified SCMs

In this section, we briefly introduce all fully specified SCMs used in our experiments.

Markovian diffeomorphic SCMs These SCMs are sourced from [42] and are primarily used
in the experiments for CausalNF, including: CHAIN-LIN-3, CHAIN-NLIN-3, CHAIN-LIN-4,
CHAIN-LIN-5, COLLIDER-LIN, FORK-LIN, FORK-NLIN, LARGEBD-NLIN, SIMPSON-NLIN,
SIMPSON-SYMPROD, TRIANGLE-LIN, and TRIANGLE-NLIN. Markovianity denotes the ab-
sence of hidden confounders in these SCMs, meaning that each exogenous variable is involved in the
causal mechanisms of only one endogenous variable. The diffeomorphism is a parametric assumption,
positing that the transformations between exogenous and endogenous variables satisfy the properties
of a diffeomorphism. For detailed construction of these SCMs, see the Appendix of [42].

Semi-Markovian continuous SCMs These SCMs are described in [107]. We have reformulated
their functional forms to adapt them to continuous scenarios. Specifically, this involves replacing
their causal mechanisms with combinations of linear and nonlinear functions, all of which originate
from the Markovian diffeomorphic SCMs already present above. These SCMs include: BACK-
DOOR, FRONT-DOOR, M, and NAPKIN. Here, Semi-Markovianity indicates that there may be
latent confounders within these SCMs, yet they still satisfy recursiveness. Continuity refers to the
assumptions regarding their parameters.

Regional canonical SCMs These SCMs are originated from [108], where all endogenous vari-
ables are discrete and finite (binary), with complexity arises from the causal mechanisms being a
type of stochastic mapping. These SCMs include: FAIRNESS, FAIRNESS-XW, FAIRNESS-XY,
FAIRNESS-YW, where subscripts indicate the presence of hidden confounders between variables.
Please refer to the Appendix of [108] for the specific constructions of these SCMs.

C.4 Reproducibility

In this section, we present details pertinent to reproducibility, encompassing the complete architecture
of the models utilized, the computational resources employed, and the execution and random seeds of
the reported experiments.

Architecture details The entire model architecture involves three components: the sampler, the
conditioning model, and the density estimation model.

The sampler is used to sample s from the prior distribution QS of the stochastic counterfactual
process and u from the exogenous distribution PU, then compute the potential outcome Y

(s)
∗ (u).

In our experiments, we selected a batch size of 256 and generated a training set of size 16,384
through the sampler. The validation set is also generated using this sampler. Specifically, we utilize
the same sampler to construct PY∗ , from which random y∗ is sampled. For discrete distributions,
counterfactual events are assigned as Y∗ ∈ {y∗}, and for continuous distributions, counterfactual
events are assigned as Y∗ ∈ δl(y∗), where δl(y∗) is a cube centered at y∗ with side length l.

A brief overview of the conditioning model is shown in Fig. 2, where both g and h are neural networks.
When masking with Markov boundaries, h is a neural network that allows dynamic influence on
internal connectivity, as depicted in App. B.4. On the other hand, g is a permutation-invariant neural
network used to aggregate hidden encodings from multiple different submodels. We conduct ablation
studies related to the construction of these two neural networks in App. C.8.

For the density estimation model, we chose normalizing flows and GMM. Specific models for
normalizing flows include MAF [73], NSF [26], NCSF [80], NICE [24], NAF [39], and SOSPF
[41]. The implementations of these models are based on the Zuko library [81], with some internal
implementation details modified to fit our work. Regarding the hyperparameters of these models, the
number of components in GMM is fixed at 10, the number of transformations for all flow models is
set to 5, and all the neural networks involved contain 2 hidden layers with 64 neurons each (in some
experiments, 256 neurons were used, which will be specifically indicated and discussed in subsequent
sections).
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Hardware Each experiment was conducted on GPUs, and the primary computational overhead
arising from the sampling process. All models, including the pre-trained SCM agents, were trained
and tested on an NVIDIA RTX 4090 and Intel(R) Xeon(R) Gold 6430 platform. The training time for
EXOM is primarily influenced by the number of variables in the SCM, the number of submodels, and
the chosen density estimation model. For example, in the case of SIMPSON-NLIN with |s| = 5, one
epoch (16,384 samples, batch size of 256) including the time for the sampler to prepare data takes
approximately 8 seconds. In all EXOM experimental setups, we fixed the training to 200 epochs. All
experiments, including the unreported ones, consumed approximately 1000 GPU hours in total.

Execution To reflect the error, each type of experiment was conducted five times with different
random seeds, and the range of errors exhibited is reflected in the experimental results. During
training, EXOM does not require sampling and is trained for a fixed 200 epochs. The sampling size
for CEIS is set to 105 and trained for 200 epochs, whereas NIS has a sampling size of 104 and is
trained for 50 epochs (we found that its training speed is excessively slow due to the time-consuming
nature of sampling from the flow model). During validation and testing, the validation set queries
1024 counterfactual probabilities from the sampler, with sampling sizes for EXOM, CEIS, and NIS
set to 103, and RS set to 106. For all EXOM, CEIS, and NIS training, we used AdamW [62] with
an initial learning rate of 0.001 as the optimizer and ReduceOnPlateau with a patience of 5 and a
factor of 0.5 as the learning rate scheduler. To improve training robustness, the conditional inputs y∗
and both the input and the output exogenous samples u were standardized. During inference, the
probability densities and importance weights were processed in logarithmic form, with the terms
where the indicator function is zero replaced by − inf , and the log-sum-exp technique was used to
estimate the probabilities.

C.5 Convergence

Here, we present additional results on convergence experiments. Our experiments span across
combinations of 4 different types of SCMs (SIMPSON-NLIN, LARGEBD-NLIN, FAIRNESS-XW,
NAPKIN) and 4 different density estimation models (GMM, MAF, NICE, SOSPF). All models were
trained and validated based on the stochastic counterfactual process YB

∗ , which provides a sufficiently
large state space to increase difficulty, where |s| = 3.

As shown in Fig. 8, for all combinations, as LL (log-likelihood, which is the negative form of the
training objective Eq. 8, minimizing Eq. 8 is equivalent to maximizing LL) increases, ESP improves.
In particular, there is a clear inflection point in the experiments with three continuous SCMs, after
which the ESP rapidly improves until it stops increasing because of the convergence of LL. This
series of experiments indicates that we can indeed optimize the upper bound (indirectly equivalent to
LL) to optimize the variance (as discussed in App. C.1, ESP and variance are strongly related). Thus,
empirically, these experiments support the correctness of Thm. 1, and also empirically indicate that
our design potentially satisfies the bounded importance weight condition discussed in App. A.2.

Fig. 9 reflects the relationship between LL and FR. It is observed that for all combinations, as LL
increases, FR decreases (with one exception in the SOSPF and LARGEBD-NLIN combination) until
it stops increasing due to LL convergence. This phenomenon empirically supports the conclusion in
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Figure 8: The relationship between ESP and LL on 4 SCMs with distinct types and 4 different density
estimation models. Within these combinations, ESP always increases with the improvement of LL.
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Figure 9: The relationship between FR and LL on 4 SCMs with distinct types and 4 different density
estimation models. Within these combinations, FR always decreases with the improvement of LL.

Cor. 1, and manifests the claim of simultaneously optimizing the variance of counterfactual estimators
across the entire state space.

C.6 Comparison

We provide more comprehensive and detailed information regarding the comparison experiment in
the main text. These comparisons are conducted on three different types of SCMs (SIMPSON-NLIN,
NAPKIN, FAIRNESS-XW). EXOM employs two density estimation models (MAF, GMM), while
NIS utilizes NICE, and CEIS uses GMM. All models are trained and validated based on a stochastic
counterfactual process YB

∗ , where |s| = 1, 3, 5.

As illustrated in Tab. 1, overall, our proposed method, EXOM, outperforms other importance sampling
methods, while CEIS and NIS show comparable performance in the aforementioned experiments.
The advantage of EXOM is particularly pronounced when dealing with multiple distinct submodels,
significantly surpassing the other methods. All three importance sampling methods outperform RS,
demonstrating that variance optimization indeed enhances estimation efficiency.

C.7 Combinaitons of SCMs and Density Estimation Models

In this section, we detail the performance of EXOM when using various density estimation models
(GMM, MAF, NSF, NCSF, NICE, NAF and SOSPF) in different SCMs enumerated in App. C.3.
These experiments are based on YB

∗ , with |s| = 3.

In Figs. 10a and 11a, deeper colors indicate a higher number of effective samples, which implies
greater sampling efficiency. For density estimation models, it is evident that MAF and NSF generally
perform well, while other density estimation models are suitable for specific scenarios. Regarding
SCM, we observe that FORK-LIN and TRIANGLE-NLIN perform worse than other SCMs, whereas
some SCMs such as CHAIN-LIN-5, LARGEBD-NLIN, and NAPKIN show compatibility only with
certain density estimation models. The performance improved significantly after increasing the
hidden layer width from 64 to 256.

In Figs. 10b and 11b, lighter colors indicate fewer failure cases, meaning that the method works
effectively within the state space YQ

∗ . It can be noted that for any of the aforementioned SCMs,
there is always a density estimation model that matches and keeps the FR at a low level. Further-
more, compared with Figs. 10a and 11a, there is a strong negative correlation between FR and
ESP, consistent with the theoretical results. In regions where FR is particularly high, in addition
to the poor performance of GMM due to its limited expressive capacity, there are some notable
aspects. For example, FORK-NLIN and TRIANGLE-NLIN are the most challenging settings to learn.
Furthermore, as the diameter of the SCM increases, the performance of EXOM gradually decreases,
which is reflected in the performance under the CHAIN-LIN-N series settings. Finally, comparing
Figs. 10b and 11b, some models with high parameter number requirements (such as NSF, NCSF,
NAP, SOSPF) show significant improvements when the width of the hidden layers is increased.
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Figure 10: Performance on 20 SCMs and 7 density estimation models using EXOM. The experiment
is based on the stochastic counterfactual process YB

∗ where |s| = 3. The width of the hidden layer is
set to 64.
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Figure 11: (Fig. 10 continued). Performance on 20 SCMs and 7 density estimation models using
EXOM. The experiment is based on the stochastic counterfactual process YB

∗ where |s| = 3. The
width of the hidden layer is set to 256.

The impact of hidden layer width on performance Experiments show that increasing the width of
hidden layers significantly enhances performance. This improvement is not only due to the increased
expressive power of the neural network itself but also because the experiments mentioned above
utilize the Markov boundary masking trick. According to the description in App. B.4, we directly
inject the Markov boundary masking into the weight matrix, masking certain weights (i.e., specific
neurons are always inactive for specific tasks). This implies that when the graph structure of SCM is
sparse, the Markov boundary is typically smaller, which leads to a substantial increase in the number
of masked weights, thereby significantly reducing the neural network’s expressive power. Therefore,
increasing the width of hidden layers helps mitigate the degradation in expressive power caused by
injecting the Markov boundary.

In practice, the recommended width is closely related to the number of parameters required by the
conditional distribution models. For instance, models such as MAF, NICE, and GMM require fewer
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parameters, so setting the hidden layer width to 64 is sufficient. In contrast, models like NSF, NCSF,
NAF, and SOSPF, which require a larger number of parameters, will need a wider hidden layer —
256 is recommended — since, with a smaller Markov boundary, each parameter connection’s hidden
neurons are insufficient. Optimal width configuration should be fine-tuned according to the settings.

C.8 Ablation

Our ablation experiments were conducted on the architecture of the two neural networks g and h in
the conditioning model.

Markov boundary masking Let us first introduce how the mechanism of Markov boundaries oper-
ates on specific density estimation models. Firstly, we calculate the Markov boundary corresponding
to each Ui according to Theorem 3, and generate masks mi using the method described later. The
subsequent processing is then model-specific.

1. For GMM, h primarily outputs each component’s mean, diagonal matrix, and anti-diagonal matrix.
Here, we apply the mask mi only to the mean corresponding to the i-th exogenous variable in
each component, ensuring that if the counterfactual variable is not on the Markov boundary, the
inference of the mean is independent of it.

2. For Autoregressive models (including MAF, NSF, NCSF, UNF, and SOSPF), each layer trans-
formation follows an autoregressive sequence, where all previous layers’ hidden encodings may
influence the subsequent layer. Consequently, each Ui’s hidden encoding appears in each layer.
Therefore, we only need to directly apply the mask to the inference of hidden encodings, ensuring
that the inferred next layer hidden encodings are only relevant to the counterfactual variables when
they are in the Markov boundary.

3. For Coupling models (including NICE), each layer transformation involves only a subset of
hidden encodings from the previous layer; hence, each layer’s output only corresponds to some
Ui. Thus, we create masks only for the Ui that serve as the output for each layer transformation,
ensuring that the inferred hidden encodings are only relevant to the counterfactual variables in the
Markov boundary.

Of course, the above initial design will raise some issues in practice:

1. There are some inevitable discrepancies between theory and practice, which we have summa-
rized in App. D.3.

2. Another issue worth discussing is how to handle the counterfactual Markov boundaries in
submodels. In perfect interventions, all connections between intervened variables and their parent
variables are cut (All Cut), which is also a way to represent causal graphs in submodels. However,
theoretically, directly cutting connections would result in intervened variables never participating
in the conditional reasoning of their parent exogenous variables. Hence, we have also devised
two relaxed and compromised methods: one is to retain all connections (No Cut), pretending
that the submodel has not been intervened upon, thus not reflecting the intervention through the
mask of the Markov boundary but instead relying on the intervention information included in the
conditional encoding; the second is to only retain connections with parent exogenous variables
(Endo. Cut), while relationships between endogenous variables are still cut.

3. As discussed in App. C.7, the introduction of the Markov boundary theoretically increases the
model’s focus on specific variables. However, this comes at the cost of expressiveness, especially
in models with a larger number of parameters. Therefore, in the ablation experiments, we use
a hidden layer width of 256 for NICE and SOSPF, while for GMM and MAF, the hidden layer
width is set to 64. This does not affect the fairness of the ablation, as the goal is to compare the
performance difference with and without the Markov boundary. Under the same hidden layer
width, the presence of a Markov boundary actually means fewer neurons are involved in reasoning.

Fig. 12 and Fig. 13 respectively illustrate the effects of Markov boundary masks on ESP and FR
under different SCMs and density estimation models, where error bars and outliers are computed
based on the quartile algorithm. The first phenomenon that can be observed is that introducing
Markov boundary masks in Markovian SCMs (SIMPSON-NLIN, LARGEBD-NLIN, TRIANGLE-
NLIN) results in significant performance improvement compared to not introducing them. There
is one exception, namely LARGEBD-NLIN and SIMPSON-NLIN, which will be discussed in
App. D.3. When applied to semi-Markovian SCMs (M, NAPKIN), the scenario changes, with the
improvements becoming less pronounced and the effects post-application not being very stable.
Across all intervention designs (All Cut, No Cut, Endo. Cut), these methods perform similarly
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Figure 12: Ablation study for Markov boundaries on 4 different settings of SCMs: (a) SIMPSON-
NLIN, (b) LARGEBD-NLIN, (c) M, (d) NAPKIN. Higher ESP indicates higher sampling efficiency.
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Figure 13: Ablation study for Markov boundaries on 4 different settings of SCMs: (a) SIMPSON-
NLIN, (b) LARGEBD-NLIN, (c) M, (d) NAPKIN. Lower FR indicates broader coverage.

without a clear outperforming approach. However, we find that when the All Cut method performs
weaker than that without Markov boundary masks, the latter two serve as compromises and indeed
provide better results than All Cut. Given these observations, Endo. Cut was chosen in our previous
experiments.

Aggregation function The next problem to address is the choice of g. We have posited the use of
permutation-invariant functions in this paper because of the permutation invariance of sets. Empirical
evidence in our experiments supports this assertion.

We compare 4 different choices of g: i) Concatenation: directly concatenate different encodings
into a fixed-length vector, with zero-padding in empty positions. This is not a permutation-invariant
function and is therefore included as a limiting case for comparison. ii) Summation: the simplest
permutation-invariant method, which directly sums all encodings. iii) Weighted Summation: an
extension of Summation that provides additional expressive power. Specifically, encodings are
first mapped through a network w to obtain element-wise weights (via softmax), which are then
multiplied by the encodings themselves to yield the result. iv) Attention: offering stronger expressive

41



Concatenation
Summation

Weighted Summation
Attention

|s| = 3 |s| = 5

0.00

0.01

0.02

0.03

|s| = 3 |s| = 5
0.0

0.2

0.4

0.6

|s| = 3 |s| = 5
0.0

0.2

0.4

0.6

0.8

|s| = 3 |s| = 5

0.2

0.4

0.6

0.8

|s| = 3 |s| = 5

0.00

0.05

0.10

0.15

0.20

0.25

|s| = 3 |s| = 5

0.0

0.2

0.4

0.6

0.8

|s| = 3 |s| = 5

0.0

0.2

0.4

0.6

0.8

|s| = 3 |s| = 5

0.0

0.5

1.0

1.5

2.0

×10−5

|s| = 3 |s| = 5

0.000

0.001

0.002

0.003

0.004

0.005

|s| = 3 |s| = 5

0.00

0.05

0.10

0.15

|s| = 3 |s| = 5

0.000

0.025

0.050

0.075

0.100

0.125

|s| = 3 |s| = 5

0.00

0.05

0.10

0.15

0.00

0.01

0.02

0.03

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.000

0.005

0.010

0.015

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

ESP GMM MAF NICE SOSPF GMM MAF NICE SOSPF

a. SIMPSON-NLIN b. LARGEBD-NLIN

c. TRIANGLE-NLIN

d. M e. NAPKIN

Figure 14: Ablation study for Markov boundaries on 4 different settings of SCMs: (a) SIMPSON-
NLIN, (b) LARGEBD-NLIN, (c) M, (d) NAPKIN. Higher ESP indicates higher sampling efficiency.
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Figure 15: Ablation study for Markov boundaries on 4 different settings of SCMs: (a) SIMPSON-
NLIN, (b) LARGEBD-NLIN, (c) M, (d) NAPKIN. Lower FR indicates broader coverage.

power, Attention differs from Weighted Summation in that it uses encodings before input h rather
than after output h, and a new network a maps them to attention weights. Attention encoding is
calculated through queries and keys softmax(h(x)a⊤(g(x))), where we set the values in the attention
mechanism to be constantly 1.

We no longer explore aggregation methods with stronger expressive power, as we found in our
experiments that they are likely to converge prematurely to local optima. This causes the variance in
the state space to increase as the optimization process progresses, which in turn prevents Eq. 8 from
being uniformly applied across the entire state space.

Fig. 14 and Fig. 15 respectively illustrate the impact of g selection on ESP and FR under different SCM
and density estimation models. Overall, permutation-invariant methods (Summation, Weighted Sum-
mation, Attention) consistently outperform permutation-variant methods (Concatenation), aligning
with theoretical expectations and intuition. Among all methods, Attention consistently outperforms
others, thus serving as the choice for all preceding experiments.
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Table 4: Counterfactual density kernel (δ(y∗)) estimation using different sampling methods on
CausalNF, extended for Tab. 2. Here, "O" represents the original SCM, and "P" represents the proxy
SCM. Regularization are applied to the dimensions. The main metric used is FR ("-" indicates FR
equals 1), with subscripts representing the regularized error bound.

SIMPSON-NLIN TRIANGLE-NLIN LARGEBD-LIN

Method SCM |s| = 1 |s| = 3 |s| = 5 |s| = 1 |s| = 3 |s| = 1

RS O 0.890.014 - - 0.840.015 1.000.000 0.990.019
P 0.900.012 - - 0.850.013 - -

EXOM[MAF] O 0.000.005 0.020.015 0.010.021 0.110.007 0.120.013 0.000.007
P 0.010.005 0.400.012 0.610.016 0.110.008 0.500.014 0.040.007

EXOM[NICE] O 0.000.006 0.020.016 0.010.046 0.080.005 0.170.016 0.010.007
P 0.010.005 0.400.013 0.610.018 0.150.007 0.550.018 0.080.007

C.9 Counterfactual Estimation on Proxy SCMs

We combine identifiable proxy SCM with Exogenous Matching for counterfactual estimation. Specif-
ically, we employ two distinct proxy SCM methods tailored for these scenarios to conduct counter-
factual estimation on two types of SCMs.

Counterfactual estimation with CausalNF We conduct experiments on 3 different Markovian
diffeomorphic SCMs. According to the previous arguments, CausalNF belongs to MIM(PV,O), indi-
cating that they are L3-identifiable. In our experiments, we mainly measure the error in counterfactual
probability queries P (δl(y∗)), comparing the SCM represented by CausalNF to the original SCM in
1024 different queries. These results are reflected in Tab. 4, with averages presented. For the original
SCM, we train EXOM five times and calculate the error bound for the same query. For CausalNF, we
first train 5 proxy SCMs using observational data, then train EXOM 5 times for each model, calculate
the error bound for the same queries, and finally take the average error bound across proxy SCMs.

Since in the continuous case it is challenging for RS to sample instances that satisfy the counterfactual
event δ(y∗), obtaining ground truth in experiments becomes difficult. Therefore, we primarily use FR
as the main evaluation metric, while the error bound is employed to reflect the bias. When measuring
error bounds, it is imperative to regularize the dimensionality of the counterfactual variables. Failure
to do so may result in significant discrepancies in the final outcomes (estimates in high-dimensional
scenarios tend to be considerably lower than those in low-dimensional ones, leading to a severe
underestimation of errors in high-dimensional cases). Therefore, we calculate the error bounds as
follows:

ϵ(P̂ ) = 2 · EY∗

[
std({P̂

1
|Y∗|
i (Y∗) | i ∈ 1 . . . t})

]
, (122)

where P̂
1

|Y∗|
i (Y∗) represents the estimate of P (Y∗) in the i-th experiment, regularized by the exponent

1
|Y∗| , which denotes the expectation in a single dimension assuming independence across dimensions.
The term std refers to the standard deviation. t = 5 is the number of trials.

The results in Tab. 4 indicate that EXOM exhibits a relatively small error, comparable to that of
RS. Furthermore, when EXOM is applied to the proxy SCM, it yields an even smaller error (in part
because all failure cases are excluded from consideration).

Counterfactual estimation with NCM We conducted experiments on 4 Regional canonical SCMs.
According to their proof, NCM exhibits duality with respect to the identifiability of the counterfactual
query Q and the graphical causal identifiability. In our experiments, we focus primarily on the
unbiasedness of EXOM combined with NCM. The results are shown in Tabs 5 and 6.

As RS is straightforward to sample in the discrete case, the ground truth can be computed. We used
RS with 106 samples as ground truth (in the experiment, we compared against RS with 103 samples)
and then computed the average bias. Additionally, since these queries only involve a single dimension
(regarding solely to Y ), there is no need for dimensional regularization of the error bound.

In estimating these causal queries, EXOM yielded relatively small errors and showed even smaller
errors when applied to proxy SCMs. This indicates that integration of EXOM with proxy SCMs
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Table 5: Counterfactual effect estimation using different sampling methods on NCM, extended for
Tab. 2. Here, "O" represents the original SCM, and "P" represents the proxy SCM. The main metric
used is the average bias w.r.t. the ground truth, with the subscript denotes the 95% CI error bound
over 5 trials

FAIRNESS FAIRNESS-XW

Method SCM ATE ETT NDE CtfDE ATE ETT NDE CtfDE

RS O 0.010.013 0.010.018 0.010.015 0.010.020 0.010.013 0.010.027 0.010.013 0.010.023
P 0.010.013 0.010.021 0.010.014 0.010.023 0.010.012 0.020.031 0.010.013 0.020.031

EXOM[MAF] O 0.040.095 0.060.168 0.040.131 0.060.161 0.050.140 0.070.213 0.050.149 0.070.244
P 0.010.013 0.010.024 0.010.013 0.010.044 0.000.011 0.020.028 0.000.011 0.010.031

EXOM[NICE] O 0.010.018 0.010.030 0.010.020 0.010.039 0.010.060 0.020.036 0.020.056 0.040.069
P 0.010.017 0.010.021 0.010.012 0.010.022 0.010.012 0.020.029 0.010.014 0.010.031

Table 6: (Tab. 5 continued). Counterfactual effect estimation using different sampling methods on
NCM, extended for Tab. 2. Here, "O" represents the original SCM, and "P" represents the proxy
SCM. The main metric used is the average bias w.r.t. the ground truth, with the subscript denotes the
95% CI error bound over 5 trials

FAIRNESS-XY FAIRNESS-YW

Method SCM ATE ETT NDE CtfDE ATE ETT NDE CtfDE

RS O 0.010.015 0.010.022 0.010.015 0.010.023 0.000.012 0.010.025 0.010.015 0.010.027
P 0.010.012 0.010.021 0.010.014 0.010.019 0.010.022 0.020.035 0.010.017 0.010.029

EXOM[MAF] O 0.050.189 0.090.257 0.040.100 0.130.338 0.040.106 0.100.363 0.050.181 0.130.396
P 0.000.009 0.010.020 0.000.013 0.010.029 0.010.026 0.010.028 0.010.024 0.010.031

EXOM[NICE] O 0.010.019 0.030.111 0.050.066 0.050.144 0.030.129 0.050.124 0.060.150 0.110.344
P 0.010.013 0.010.022 0.000.011 0.010.054 0.010.022 0.010.033 0.010.018 0.010.031

is practical to address real-world problems. In particular, the errors in ETT and CtfDE within the
original SCM were substantially higher than those in RS, primarily because their expressions include
the denominator P (X), and inaccuracies in P (X) markedly influence their results. This matter will
be summarized in App. D.3.

D Discussions

D.1 Broader Impacts

Our work aims to enhance the efficiency of counterfactual reasoning and make it applicable to
theoretically broader contexts. On the positive side, current counterfactual reasoning has a positive
impact on society in terms of counterfactual fairness and counterfactual decision making. However,
on the flip side, if assumptions and premises are not applicable to real-world situations, counterfactual
reasoning can still lead to potential biases, inequalities, and misuse. Therefore, careful consideration
of the correctness of the assumptions and the appropriateness of usage scenarios is required before
applying counterfactual reasoning.

D.2 Counterfactual Density

For continuous distributions, it is the density function rather than the probability measure that garners
widespread attention and study within the relevant field. According to the definition of probability
density, we can find its connection with the Lebesgue differentiation theorem, which directly provides
a method for density estimation:
Theorem 4 (Counterfactual Density Estimation). Assuming the counterfactual variables Y∗ are
absolutely continuous on ⟨ΩY∗ ,ΣY∗ , PY∗⟩, with a probability density existing at y∗ ∈ ΩY∗ . Let
δ(y∗) be a function that maps y∗ to a cube (or ball) centered at y∗, and δ(y∗) → y∗ denotes the
cube’s side length (or the ball’s diameter) tending to 0, then the following equation holds:

p(y∗) = lim
δ(y∗)→y∗

P (Y∗ ∈ δ(y∗))

|δ(y∗)|
≈ P (Y∗ ∈ δ(y∗))

|δ(y∗)|
(123)

where |δ(y∗)| is the volume (i.e., the Lebesgue measure) of δ(y∗).
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Proof. Directly inferred from the definition of the probability density function (Radon-Nikodym
derivative) and the Lebesgue differentiation theorem.

This method is analogous to kernel density estimation (with the Parzen window as a cube). However,
the precision of the estimates provided by this method is highly dependent on |δ(y∗)|, further
highlighting the difficulty of satisfying the indicator function in the counterfactual probability measure.
We indirectly investigated the performance of EXOM on this issue in our related experiments on
continuous counterfactual estimation, where we chose Y∗ ∈ δl(y∗) as the counterfactual event for
the estimation. The results of the related experiments confirmed the potential of EXOM in addressing
this problem.

Of course, kernel-based density estimation has many limitations. We hope that Thm. 4 will serve as
a lemma for future work, leading to the derivation of more suitable density estimation methods for
continuous counterfactual distributions.

D.3 Limitations

1. Dependency on counterfactual generation. In practical tasks, we typically only have access to
observational or experimental data. In some settings, we also assume the acquisition of causal
graphs or causal orderings through causal discovery and prior knowledge. However, the proposed
method is not directly applicable to such real-world settings, as indicated by the assumption
in Sec. 3, which requires the ability for counterfactual generation. In practical scenarios, one
approach is to pre-train a neural proxy SCM to perform the counterfactual generation task.

2. Boundedness condition on importance weights. In the context of learning and optimization, we
introduce additional designs: the bounded importance weight condition. We assumed conditional
distribution model to satisfy the boundedness of importance weight as much as possible. However,
in practical applications, this depends on the specific forms of the exogenous distribution and the
conditional distribution model, necessitating case-by-case analysis.

3. Faithfulness. For injection of the Markov boundary, we also introduce the faithfulness assumption,
which assists us in proving theorems and providing fast algorithms. However, this assumption
might be violated, leading to more variables being included in the actual Markov blanket than
our calculations predict. Additionally, modifications to autoregressive and coupling models do
not fully align with the ideal effect. In fact, due to potential interactions within the hidden
encodings of autoregressive and coupling models, even if each layer adheres to the Markov
boundary dependencies, the aggregation of multiple layers may violate these dependencies.

4. Recursiveness. Another potential assumption in this work is the recursive SCM, which might
be violated in more general settings, such as systems with cycles. All the theoretical foundations
of this work are based on recursive SCMs, thus requiring these theories to be extended to more
general cases.

5. Variance of L3 expressions. In estimating counterfactual expressions Q ∈ L3, although the final
result is unbiased, computing each term P (Y∗) individually introduces significant variance, as
demonstrated in the experiments on counterfactual query estimation with real SCMs (see Tabs 5
and 6). Therefore, future work should focus on reducing the estimation variance of specific
queries.

6. Potential sensitivity to the specific forms of SCM in practice. With respect to the parameter
form of the SCM, although we impose no theoretical constraints on the form of SCM, experiments
indicate that in some settings the form of SCM still significantly influences outcomes. For example,
combinatorial experiments and ablation studies reveal unexpected scenarios, particularly with the
combinations of long-chain SCMs (CHAIN-LIN-4, CHAIN-LIN-5, LARGEBD-NLIN). As the
causal chain lengthens, the performance of these density estimation models gradually weakens,
suggesting that long causal chains complicate counterfactual inference. This phenomenon indicates
that the form of SCM in practice affects the specific effectiveness of our methods, highlighting
the necessity of selecting appropriate density estimation models and making corresponding
adjustments.
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Justification: All claims made in the abstract and introduction are reflected in the methodol-
ogy (Sec. 3) and experiments (Sec. 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We briefly outline the limitations in Sec. 6 and provide a detailed discussion
on the limitations in App. D.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We present all the assumptions in Sec. 3 and complete the proofs in App. A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of the specific model architectures used in
our experiments in App. C.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have included the complete code in the attachment, encompassing both
training and validation processes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental details in App. C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the experimental figures and tables, we present error bars, with 95% CI and
quartile outliers.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In App. C.4, we describe the computation time and computational resources.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and have confirmed that we are
not in violation of it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the Broader Impacts in App. D.1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The data and model presented in this paper do not pose risks of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We introduce the sources of code and data in App. C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines: This paper does not release new assets.

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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