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Abstract

Next-generation wireless networks will rely on mmWave/sub-THz spectrum and
extremely large antenna arrays (ELAAs). This will push their operation into the
near-field where far-field beam management degrades and beam training becomes
more costly and must be done more frequently. Because ELAA training and data
transmission consume energy and training trades off with service time, we pose
a cross-layer control problem that couples PHY-layer beam management with
MAC-layer service under delay-sensitive traffic. The controller decides when to
retrain and how aggressively to train (pilot count and sparsity) while allocating
transmit power, explicitly balancing pilot overhead, data-phase rate, and energy
to reduce the queueing delay of MAC-layer frames/packets to be transmitted. We
model the problem as a partially observable Markov decision process and solve it
with deep reinforcement learning. In simulations with a realistic near-field channel
and varying mobility and traffic load, the learned policy outperforms strong 5G-
NR–style baselines at a comparable energy: it achieves 85.5% higher throughput
than DFT sweeping and reduces the overflow rate by 78%. These results indicate
a practical path to overhead-aware, traffic-adaptive near-field beam management
with implications for emerging low-latency high-rate next-generation applications
such as digital twin, spatial computing, and immersive communication.

1 Introduction

Millimeter-wave (mmWave) and sub-THz bands offer abundant spectrum for high-speed links, while
extremely large antenna arrays (ELAAs) are employed to overcome the associated high path loss
(1; 2; 3; 4). However, the use of ELAAs means that some uses, traditionally assumed to operate
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in the far-field regime, now fall within the near-field region (5; 6; 7; 8). Conventional far-field
design models electromagnetic waves as planar (9). Under this assumption, array responses vary
primarily by angle-dependent phase shifts, enabling the channel to be compactly represented using
a discrete Fourier transform (DFT) basis, with sparsity roughly corresponding to the number of
dominant paths (10). In the near field, wavefronts are spherical, and the steering vector becomes
a function of both angle and range. As a result, the channel’s DFT-domain representation is no
longer sparse in a way that simply reflects the number of paths; instead, its sparsity varies with user
geometry and mobility (11; 12). This undermines the use of far-field codebooks and increases the
risk of misalignment. Near-field codebooks have been explored (13), yet larger dictionaries and
codeword correlation increase training time and energy overhead that directly competes with data
transmission. A pragmatic alternative is to combine 5G-new radio (NR)-style sweeping (14) with
near-field codebooks to avoid explicit sparsity selection (15); still, the sweeping/reporting overhead
can exceed that of standard NR due to the expanded search space.

Critically, beam training is deeply intertwined with MAC-layer service scheduling (16). Each pilot
transmission consumes airtime and energy that could otherwise be used to serve queued traffic. Under
bursty arrivals, finite buffers, and mobility-induced dynamics, a PHY-only design that optimizes
instantaneous link metrics can still hurt end-to-end latency. This motivates a cross-layer treatment
that co-optimizes training timing and intensity with power allocation and queue-aware scheduling
(17; 18).

Prior work has partially addressed this coupling in directional and mmWave systems.
Shokri-Ghadikolaei et al. formalize the alignment–throughput trade-off and propose joint
beamwidth/scheduling strategies (19), while subsequent work coordinates beam schedules with
mobility and sleep/wake cycles to target energy, delay, or throughput (20; 21; 22). Lei et al. show
that adaptive retraining and power control can significantly improve delay/energy compared with
fixed policies (16). However, these studies primarily assume far-field propagation and do not tackle
near-field-specific issues: angle–range coupling, expanded codebooks, and variable sparsity that
governs training intensity.

This paper formulates near-field beam management as a cross-layer control problem for delay-
sensitive traffic with minimal energy consumption. We propose a queue-aware policy that jointly
decides when to retrain and how aggressively to train (pilot budget and sparsity level), together with
data-phase power allocation. Our implementation incorporates compressive-sensing-based training
and a deep reinforcement learning (DRL)-based controller that observes queue states and recent
training history to balance pilot overhead, service rate, and energy. In simulations with near-field
channels over a range of mobility and load models, the learned policy reduces queueing delay and
overflow at a comparable energy to strong baselines. The proposed approach narrows the gap to full-
channel state information (CSI) performance while offering an overhead-aware and traffic-adaptive
solution. Our advances can have implications for emerging low-latency high-rate next-generation
applications such as digital twin, spatial computing, and immersive communication that increasingly
integrate mmWave capabilities (23; 24; 25; 26; 27).

2 System Model

In this section, we discuss the channel model, beam training method and data queuing model, which
are essential for understanding our cross-layer decision model presented in Section 3.

2.1 Channel Model

We consider a narrow band multiple-input single-output (MISO) mmWave communication system
as shown in Fig. 1, where the gNB is equipped with a uniform planar array (UPA). The UPA is
placed on the x − z plane and the center of the UPA is at 0 = (0, 0, 0). The number of antenna
elements of the UPA is M = Mz ×Mx, where Mz and Mx are the number of elements in the z
and x directions, respectively. For a UPA, the near-field region lies between the Fresnel distance

RFre = 1
2

√
D3

λ and the Rayleigh distance RRay = 2D2

λ , where λ is the wavelength at the central

frequency, D =
√
(Mxd)2 + (Mzd)2 is the aperture of the UPA (28), and d = λ

2 is the spacing
of the antenna elements. The far field lies past RRay. In this paper, we focus on cross-layer beam
management and data transmission of users in the near field region between RFre and RRay .

2



Figure 1: Near-field communication system with UPA.

We consider a multi-path ray-tracing channel model as shown in Fig. 1. Suppose that the user is
positioned at p, and the distance from the center of the antenna to the user is r0 = ∥p∥. Then the
distance rm,n

0 between the (m,n)-th antenna element with coordinate em,n and the user is

rm,n
0 =

∥∥p− em,n

∥∥ =
√
r20 + δ2nd

2 + δ2md
2 − 2r0δn cos θ0 sinϕ0 d− 2r0δm cosϕ0 d , (1)

where

δn = n− Mx + 1

2
, δm = m− Mz + 1

2
, em,n =

δnd0
δmd

 , m = 1, . . . ,Mz, n = 1, . . . ,Mx.

We use the exact per-element phase but approximate the amplitude by the center distance to get a
point to point (P2P) line-of sight (LoS) channel model from the (m,n)-th antenna element to the
user:

g(0)m,n ≈
4π

λr0
exp

(
− j 2π

λ
rm,n
0

)
.

Suppose sℓ is the coordinate of the ℓ-th scatterer and the distance from this scatter to the (m,n)-th
antenna element is rm,n

ℓ , then a similar calculation can be done as in Eq. (1).

Define

rℓ,0 = ∥sℓ∥ (array-center-to-scatterer distance) and rℓ,1 = ∥p− sℓ∥ (scatterer-to-user distance).

Then for the non-line-of-sight (NLoS) path, the rℓ,1 path will introduce extra path loss and phase
delay compared to the LoS path:

g(ℓ)m,n ≈
4π

λrℓ,0 rℓ,1
exp

(
− j 2π

λ
(rm,n

ℓ + rℓ,1)
)
.

Collecting paths and optionally absorbing the approximate amplitude into path coefficients yields the
convenient representation h =

∑L−1
ℓ=0 βℓ g̃

(ℓ),where g̃(ℓ)m,n = exp
(
− j 2πλ rm,n

ℓ

)
, and the scalar

path gain βℓ is chosen as β0 = 4π
λr0

, βℓ =
4π

λrℓ,0 rℓ,1
exp

(
− j 2πλ rℓ,1

)
(ℓ ≥ 1).

2.2 Beam Training based on Compressive Sensing

We introduce compressive-sensing-based beam training and the time division for beam training and
data transmission in one frame in this section. Suppose the channel can be sparsely represented by a
DFT basis. Then, for a DFT codebook matrix F, we have

h = Fα, (2)

where the implementation of the DFT matrix can be found in Section A. In our implementation, we
take the DFT grid sizes equal to the UPA dimensions (i.e., F ∈ CM×M ) and the sensing matrix Φ is
realized as a Gaussian mixing applied on the DFT codebook matrix. Concretely, let

Φ = FGH ∈ CM×m, where G ∈ Cm×M and Gij ∼ CN (0, 1/m).

3



For a pilot vector x ∈ Cm the scalar observation is written as (using Eq. (2))

y = hHΦx+ w = (Fα)HΦx+ w = αHAx+ w,

where w ∼ CN (0, σ) is additive gaussian noise with power σ2. Specializing to canonical per-pilot
transmissions x = ei yields yi = αHAei+wi = αHai+wi with ai the i-th column of A. Stacking
the m measurements as a row vector gives the compact row-form y = αHA+w, y ∈ C1×m.

We use a revised Target-sparsity Subspace Pursuit (TSP) for compressive sensing (29) which takes
y, A and sparsity level k as input and outputs the recovered coefficients α̂. The detailed algorithm
can be found in Section C. According to compressive sensing theory, a sufficient condition for exact
recovery is that the number of pilot measurements m scales with the sparsity level k (30). Because
the sparsity of a near-field channel in a DFT dictionary is not fixed and can vary over time and
geometry, we let a DRL controller adaptively choose both the sensing dimension (pilot budget m)
and the working sparsity level k online, rather than fixing them a priori.

From the recovered coefficients α̂ we form the channel estimate ĥ = F α̂ ∈ CM , and use the
normalized estimate as a Maximum Ratio Transmission (MRT) precoder v̂ = ĥ

∥ĥ∥2
. The data-phase

receive model is thus

y = hH v̂ x+ w. (3)

2.3 Data Queuing Model

Figure 2: Demonstration of behavior in each time slot.

In this section, we specify the queuing dynamics in each time slot. Suppose the slot duration is Ts.
Owing to user mobility, the channel varies across consecutive slots. In each time slot, beam training is
performed first (if needed) and then data is transmitted based on the estimated channel. The time that
beam training consumes is proportional to the number of pilot measurements in our frame structure,
which is illustrated in Fig. 2. Denote by mt the number of pilot measurements used in slot t and by
τov the per-pilot overhead (seconds per pilot). The training duration in slot t is therefore

Ttrain,t = mt τov. (4)

The remaining time in the slot is available for data transmission:

Tdata,t = Ts − Ttrain,t. (5)

According to Eq. (3), let SNRt = pt|hHv|2/σ2 denote the instantaneous received signal-to-noise
ratio (SNR), where pt is the power for data transmission at the gNB. Then, Rt = log2(1 + SNRt)
denotes the achievable rate in the data phase. With system bandwidth W (Hz) the number of bits that
can be delivered in the data phase of slot t is

ψt = Tdata,tWRt. (6)

Let qt be the queue length (bits) at the beginning of slot t. Let ℓt be the new arrivals (bits) that arrive
within slot t, which follows a Poisson Distribution. The buffer has finite capacity Qmax; any excess
arrivals that would push the buffer beyond Qmax are dropped. The queue update is thus written as:

qt+1 = min
{
Qmax, max{qt − ψt, 0}+ ℓt

}
, (7)

and the overflows (dropped bits) in slot t can be expressed as

dt = max
{
qt − ψt + ℓt −Qmax

}
. (8)
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3 Problem Formulation

In this section, we introduce the proposed cross-layer decision model.

We model the decision problem as a partially observable Markov decision process (POMDP) (31)
and solve it with Proximal Policy Optimization (PPO) (32) as given in Section D. To jointly decide
the beam training and data transmission procedure, the model needs to output the following actions
at =

(
bt, mt, Kt, pt

)
, where bt ∈ {0, 1} indicates whether CS training is performed in slot t,

mt is the pilot budget (used only if bt = 1), Kt is the TSP target sparsity, and pt is the data-phase
transmit power.

Since we jointly consider the PHY and MAC design, the agent cannot observe the true instantaneous
channel state before making a decision. This is in contrast to prior work in which the channel state is
assumed to be known (33; 34). In this paper, the agent observes a compact tuple that summarizes
queueing and recent history. Denote the agent’s observation at the start of slot t by st =

(
qt, τt, It

)
,

where qt is the queue length and τt is the age (slots since last training). To avoid a degenerate policy
that never learns, we enforce bt = 1 at t = 0 or whenever τt > τtrain. A reward-design alternative
could eliminate this heuristic, but we leave that as future work. It is a short history window of recent
Tage measurement and training tuples:

It =
(
(bt−Tage

,mt−Tage
,Kt−Tage

, R′
t−Tage

), · · · , (bt−1,mt−1,Kt−1, R
′
t−1)

)
, (9)

where R′ = log2(1 + |hHv|2/σ2) is the original rate without influence of the transmission power.
We obtain transition samples by observing the observation st, executing the action at chosen by
PPO in the simulator (or system) and observing the resulting next observation st+1 and reward rt.
Concretely, starting from st and applying at we first compute the training and data transmission
durations via Eq. (4) and Eq. (5), respectively. If bt = 1 the environment returns measurements yt

and the TSP recovery α̂t, from which the channel estimate ĥt and the beamformer are constructed.
The data-phase SNR and delivered service are then computed via Eq. (6), and the next queue state is
determined via Eq. (7).

We design the immediate reward to reflect energy, delay, and overflow costs. The beam training
process uses maximum power (normalized to 1) for beam sweeping. Define the per-slot energy as

Et = Etrain(mt) + pt Tdata,t and Etrain(mt) = mtτov, (10)

where mt is the pilot budget, τov is the time consumption of one single beam for beam sweeping,
pt ∈ [0, 1] is the normalized transmit power, and Tdata,t is given by Eq. (5). The per-slot reward is
then

rt = −(Et + λQ qt+1 + λdrop dt), (11)
with λQ > 0 weighting the delay penalty via the next-queue length qt+1 from Eq. (7), and λdrop ≥ 0
weighting the overflow penalty through the dropped bits dt in Eq. (8). Thus, Eq. (11) is equivalently
a cost ct = Et + λQqt+1 + λdropdt with rt = −ct, where the energy term captures training and
data-phase expenditure and the queueing terms capture latency and reliability consequences of the
current decision (bt,mt,Kt, pt).

4 Experiments

In this session, we provide the simulation results and discussion. To evaluate the proposed model,
we built a custom Gymnasium (35) environment based on the system model presented in Section 2.
Our learning agent is based on StableBaseline3 PPO (36). We discretize continuous components
(e.g., pt) and use a shared MLP trunk with separate policy/value heads. The central frequency is
fc = 30 GHz and antenna size is Mx = 128,Mz = 8. The detailed parameter selection, component
discretization, and experiment setting can be found in Section B. Let an episode contain Ttol slots.
We report the following metrics, and first form episode-level quantities, then report across-episode
mean ± standard deviation.

Achievable rate. The per-episode mean rate is R̃ = (1/Ttol)
∑Ttol

t=1 ψt/Ts (bps).

Beamforming-gain ratio. Per-slot ρt = |vH
t ht|2/∥ht∥2 ∈ [0, 1], with time average ρ =

(1/Ttol)
∑Ttol

t=1 ρt.
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Overflow rate. With the queue update in Eq. (7), and per-slot overflow dt defined in Eq. (8), we
report the bits-based overflow fraction over Ttol slots as Ov(%) = 100×

(∑Ttol

t=1 dt
)
/
(∑Ttol

t=1 ℓt
)
,

where ℓt is the number of arrived bits in slot t.

Energy consumption. The mean energy is E = (1/Ttol)
∑Ttol

t=1 Et.

Train time fraction. Using the per-slot training duration Ttrain,t from Eq. (4) and the slot length Ts
from Eq. (5), we report TTF(%) = 100× (1/Ttol)

∑Ttol

t=1

(
Ttrain,t/Ts

)
,

4.1 Comparison with Baselines

We compare our method against three baselines.

5G NR (DFT codebook). Following 5G NR beam management, we perform beam sweeping over a
DFT codebook and select the beam with the highest instantaneous SNR for data transmission. Beam
training is executed periodically every τtrain slots. The data transmission power is fixed at the same
maximum power Pmax used by our method.

Near-field–improved 5G NR. This baseline uses the same training schedule and power setting as
above but replaces the DFT codebook with the near-field codebook from (37), which extends (13) to
UPA.

Full CSI (oracle upper bound). We assume perfect channel knowledge and use the matched
filter/maximum-ratio beam v⋆

t = ht/∥ht∥. No beam training is needed (zero time/energy overhead)
and data power is set to Pmax. This serves as an upper bound on performance.

Table 1: Baseline comparison.

Method ¯̃R (Mbps) ρ̄ Ov (%) Ē TTF (%)

DFT 26.9± 4.1 0.317± 0.104 6.7± 4.7 0.001± 0.000 5.0± 0.0
Near-field 31.0± 6.3 0.410± 0.101 9.3± 8.9 0.001± 0.000 9.3± 0.0
Full CSI 57.1± 7.3 1.000± 0.000 0.4± 2.2 0.001± 0.000 0.0± 0.0
Proposed 49.9± 34.0 0.853± 0.052 1.5± 6.1 0.001± 0.000 3.2± 0.0

Relative to the two 5G-NR style baselines, the proposed method increases throughput to 49.9 Mbps,
which corresponds to a +85.5% improvement over DFT sweeping at 26.9 Mbps and +61.0% over
the near-field codebook at 31.0 Mbps. The beamforming-gain ratio is ρ = 0.853, which is 2.69× the
DFT value 0.317 and 2.08× the near-field value 0.410. Queueing performance improves accordingly:
the overflow rate is reduced to 1.5%, i.e., a decrease of 5.2 percentage points relative to DFT (6.7%)
and 7.8 percentage points relative to near-field (9.3%). Training overhead is also lower at 3.2%,
compared with 5.0% for DFT and 9.3% for near-field. A gap to the full-CSI upper bound remains:
the proposed rate achieves 49.9/57.1 ≈ 87.4% of the oracle throughput. Energy consumption is
identical across methods in this setup because all policies transmit at maximum power (as in the
5G-NR baselines). Exploring the energy–delay trade-off by adjusting the cost weights in Eq. (11) is
left for future work.

4.2 Ablation Experiments

We conduct two ablations to quantify the contribution of temporal history in the observation and
periodic beam training. In No history, we remove the history by setting Tage = 0. In No train, we
eliminate periodic training and train only at t = 0 (i.e., no τtrain). The full model (w/o ablation) uses
both components.

Table 2: Ablation comparison.

Method ¯̃R (Mbps) ρ̄ Ov (%) Ē TTF (%)

No history 36.8± 5.3 0.566± 0.065 5.3± 5.4 0.001± 0.000 3.6± 0.0
No train 35.2± 23.8 0.374± 0.083 6.4± 12.4 0.001± 0.000 0.0± 0.0
w/o ablation 49.9± 34.0 0.853± 0.052 1.5± 6.1 0.001± 0.000 3.2± 0.0

Energy consumption is identical across methods in this setup. The full model (w/o ablation) achieves
49.9 Mbps with ρ = 0.853 and an overflow rate of 1.5% at 3.2% training time. Removing history
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reduces the rate to 36.8 Mbps, a 26.3% drop relative to the full model, and lowers beamforming-gain
ratio to ρ = 0.566 (a 33.6% decrease). The overflow rate increases by 3.8 percentage points to 5.3%;
training time is slightly higher at 3.6%. Eliminating periodic training is more detrimental: the rate
falls to 35.2 Mbps (29.5% below full), beamforming-gain ratio drops to ρ = 0.374 (56.1% decrease),
and the overflow rate rises by 4.9 percentage points to 6.4% while using 0% training time. These
results indicate that both temporal context and periodic training contribute to performance, with
training providing the larger share of the gain in both throughput and alignment.

5 Conclusion

We presented a cross-layer design for near-field mmWave tailored to delay-sensitive traffic under ex-
plicit energy constraints. By jointly optimizing beam alignment, power, and queue-aware scheduling,
our method balances training overhead and data transmission time, yielding higher achievable rate
and lower overflow than DFT and near-field codebook baselines while approaching full-CSI perfor-
mance. Future work includes extending to multi-user settings, formulating simpler greedy methods
to reduce the model training and evaluation time, exploiting ML optimization algorithms with higher
sample efficiency and lower training convergence time (18; 38), and integration of application-centric
objectives for further impact on next generation wireless IoT and XR application systems.
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A DFT codebook implementation

In our implementation, we set the DFT grid sizes equal to the UPA dimensions, i.e., P =Mx and
Q = Mz . Let M = MxMz and stack the UPA elements into the column vector h ∈ CM using
column-major order (indexm varies fastest inside each n). Recall δn and δm as defined above. Define
the 1-D spatial frequency grids

up =
2p

Mx
− 1, p = 0, . . . ,Mx − 1, wq =

2q

Mz
− 1, q = 0, . . . ,Mz − 1.

For each grid pair (up, wq) the corresponding normalized steering column fp,q ∈ CM has entries

fp,q[m,n] =
1√
M

exp
(
− jπ(δnup + δmwq)

)
, m = 1, . . . ,Mz, n = 1, . . . ,Mx,

where fp,q[m,n] denotes the entry at element (m,n) in the same stacking order used for h. The 2-D
DFT dictionary (codebook) is the M ×M matrix formed by concatenating these columns,

F =
[
f0,0 f1,0 . . . fMx−1,Mz−1

]
∈ CM×M .

B Main system parameters

We evaluate all methods(Section 2), each run for E=40 episodes of T=5000 slots under distinct
random seeds (seed0 + episode index). Unless otherwise stated, policies are evaluated in determin-
istic (greedy) mode (deterministic=True in PPO), and all PHY/MAC/system parameters are
kept identical across methods. Baselines use the settings in Section 4.1 (DFT or near-field codebook
sweeping every τtrain slots with pt=Pmax; full-CSI uses matched filtering with no training overhead).

C Compressive sensing based beam training

For algorithmic recovery we equivalently work with the column-form by taking Hermitian transpose:

ỹ = yH ∈ Cm×1, Ã = AH ∈ Cm×M , w̃ = wH ∈ Cm×1

which yields the standard CS model
ỹ = Ãα+ w̃.

The detailed algorithm is in Algorithm 1.
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Table 3: Main system parameters.

Parameter Meaning Value

fc Carrier (central) frequency 30GHz
λ Wavelength (λ = c/fc) 10mm
d Antenna spacing λ/2 = 5mm
Mx ×Mz UPA size (horizontal × vertical) 128× 8 (M = 1024 elements)
W System bandwidth 20MHz
Ts Slot duration 1ms
τtrain Beam-training period 10 slots (default)
τov Time for one overhead in beam training 1/2048× 10−4 ms
Lpath Number of channel paths 3
σ2 Noise variance 5.2× 10−10

Tage History window length in observation 64 slots
Qmax Queue capacity 80,000 bits
λarr Packet arrival intensity 2000 pkts/s
bpkt Bits per packet 6000 bits
E[ℓt] Mean arrival per slot (λarrbpktTs) 12,000 bits/slot
T Maximum iterations for TSP 1
Plevel Power discretization levels 10 (i.e., p ∈ {0.1, . . . , 1.0}, Pmax = 1)
mlevel Pilot/overhead budget levels 10 (ratios; mi =

⌈
i+1
mlevel

M
⌉
, i = 0, . . . , 9,

with M =MxMz)
Klevel Sparsity levels 10 (ratios; Ki =

max{1,
⌈

i+1
2Klevel

mt

⌉
}, i = 0, . . . , 9)

Algorithm 1 TSP

Require: A ∈ CM×m, row-measurements y ∈ C1×m, target sparsity k, max iterations T
1: ỹ← yH , Ã← AH

2: z← ÃH ỹ

3: Ŝ ← TopK(|z|, k) (TopK: indices of the k largest |zi|)
4: for t = 1 to T do
5: α̂Ŝ ← Ã†

Ŝ
ỹ (LS on current support (pseudoinverse))

6: r← ỹ − ÃŜ α̂Ŝ
7: z← ÃHr
8: Ŝnew ← Ŝ ∪ TopK(|z|, k)
9: if Ŝnew = Ŝ then

10: break (Converged: support unchanged)
11: end if
12: Ŝ ← Ŝnew
13: end for
14: α̂← 0 ∈ CM ; α̂Ŝ ← Ã†

Ŝ
ỹ

15: return α̂, Ŝ

D PPO

We denote policy and value parameters by ω and ν, respectively.

We estimate advantages with generalized advantage estimation (GAE) using a critic Vν :

δt = rt + γVν(st+1)− Vν(st), Ât =

L−1∑
ℓ=0

(γ λGAE)
ℓ δt+ℓ. (12)

The multi-discrete action at = (bt,mt,Kt, pt) is modeled by a factorized categorical policy

πω(at | st) =

4∏
j=1

π(j)
ω

(
a
(j)
t | st

)
. (13)
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PPO maximizes the clipped surrogate with ratio ρt(ω) = πω(at|st)
πωold

(at|st) :

LCLIP
t (ω) = min

(
ρt(ω) Ât, clip

(
ρt(ω), 1− ϵ, 1 + ϵ

)
Ât

)
, (14)

and we train an actor–critic with

L(ω,ν) = −Et[LCLIP
t ] + c1 Et

[(
Vν(st)− r′t

)2] − c2 Et

[
H
(
πω(· | st)

)]
, (15)

where c1, c2 > 0 weight value regression and entropy regularization. The target r′t is the truncated,
bootstrapped return Rollouts are used to compute Ât in Eq. (12) and to optimize Eq. (15) via
minibatch SGD.

Training schedule (total rounds). Unless otherwise noted, we use γ = 0.99 and λGAE = 0.95.
Training proceeds for Nupd PPO updates, each collecting nsteps transitions per environment over
Nenv parallel environments. The total number of environment steps is

Ttot = Nupd nsteps Nenv.

In our reported runs we used Ttot = 15.16M environment steps. Each update performs Kepoch

epochs of minibatch SGD with minibatch size Mmb. The remaining hyperparameters are standard
PPO: clipping parameter ϵ, learning rate η with Adam, value loss weight c1, and entropy weight c2.

Network architecture. Observations are fed to a shared multilayer perceptron (MLP) with two
hidden layers of widths (128, 64) and elementwise nonlinearity (ReLU or Tanh). From the shared
trunk, we branch into: (i) a policy head that outputs concatenated logits for the four categorical factors

2︸︷︷︸
bt

+ mlevel︸ ︷︷ ︸
mt

+ Klevel︸ ︷︷ ︸
Kt

+ Plevel︸ ︷︷ ︸
pt

= 32,

which are then partitioned to form π
(j)
ω in Eq. (13); and (ii) a value head that outputs the scalar Vν(st).

The input size (observation size) for the full model is 4Tage + 2 (the 4 features per slot from the
history window plus qt and τt); with Tage = 64 this equals 258. For the no-history ablation we set
Tage = 0, giving an input size of 4 · 0 + 2 = 2. Both actor and critic use the shared (128, 64) trunk
with separate linear output layers, advantage normalization, and gradient clipping.
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