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Abstract

We present a novel approach to neural code generation that incorporates real-time
execution signals into the language model generation process. While large lan-
guage models (LLMs) have demonstrated impressive code generation capabilities,
they typically do not utilize execution feedback during inference, a critical sig-
nal that human programmers regularly leverage. Our method, Execution-Guided
Classifier-Free Guidance (EG-CFG), dynamically incorporates execution signals as
the model generates code, providing line-by-line feedback that guides the genera-
tion process toward executable solutions. EG-CFG employs a multi-stage process:
first, we conduct beam search to sample candidate program completions for each
line; second, we extract execution signals by executing these candidates against test
cases; and finally, we incorporate these signals into the prompt during generation.
By maintaining consistent signals across tokens within the same line and refreshing
signals at line boundaries, our approach provides coherent guidance while preserv-
ing syntactic structure. Moreover, the method naturally supports native parallelism
at the task level in which multiple agents operate in parallel, exploring diverse
reasoning paths and collectively generating a broad set of candidate solutions. Our
experiments across diverse coding tasks demonstrate that EG-CFG significantly
improves code generation performance compared to standard approaches, achiev-
ing state-of-the-art results across various levels of complexity, from foundational
problems to challenging competitive programming and data science tasks. Our
code is available at: https://github.com/boazlavon/eg_cfg

1 Introduction

Large language models (LLMs) have recently demonstrated remarkable code generation capabilities,
significantly advancing performance in tasks such as general programming problems [1, 2, 3],
competitive coding challenges [4], and real-world software engineering tasks [5]. However, current
LLM-based code generation methods primarily rely on pattern recognition derived from static
representations of code rather than explicitly modeling code execution at runtime [1, 3]. Consequently,
the generated programs often appear to be correct superficially, but fail to execute correctly on actual
inputs, reflecting a critical gap between learned syntactic patterns and genuine executability.

State-of-the-art approaches typically use iterative refinement [6, 7, 8] or self-debugging strategies
[9, 10]. Recent approaches adopt multi-agent or agentic workflows, explicitly employing iterative
refinement and collaborative feedback mechanisms [11, 12, 13, 14]. However, these methods typically
operate in discrete cycles: generating complete candidate solutions, executing them, and then using
feedback from failures to guide subsequent attempts. Such approaches do not continuously integrate
execution signals during inference, thus limiting their ability to dynamically adjust toward runtime
correctness at the token level.

In contrast, human programmers frequently execute incomplete code fragments to quickly detect
errors, assess progress, and iteratively refine their implementations based on concrete runtime
outcomes, while exploring multiple candidate implementations and planning at varying levels of
detail before finalizing solutions [15, 16]. This iterative, real-time refinement process explicitly
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Figure 1: MBPP & MBPP-ET performance. EG-CFG (DeepSeek-V3) sets a new state-of-the-art
results.

Figure 2: HumanEval & HumanEval-ET performance. EG-CFG (DeepSeek-V3) matches the state-of-
the-art on HumanEval and sets a new state-of-the-art on HumanEval-ET.

grounds coding decisions in observed execution behavior rather than relying purely on syntactic or
structural reasoning [17].

Inspired by these human coding practices and by LLM exploration techniques [18, 19, 20, 21],
our proposed approach generates dynamic execution signals by explicitly sampling multiple can-
didate continuations at varied completion horizons, systematically adjusting decoding temperature
to encourage exploration of different reasoning paths. Executing these diverse candidates yields
rich execution-based feedback, explicitly mirroring human iterative refinement and exploratory
problem-solving processes.

Unlike methods that provide explicit correctness indicators, such as scalar pass/fail or ranking
signals [4, 22], or explicit verbal critiques and structured reflections on execution failures [9, 20],
our method provides the raw execution outcome as a soft guidance signal. This approach allows
the model to autonomously interpret and integrate minimally processed feedback into its generation
process, bridging a significant gap between explicit externally-supervised reinforcement, in which
the model is explicitly told what runs were successful [9], and implicit self-verification, where the
model autonomously assesses the correctness of its own reasoning [10].

To incorporate the execution-based signal, our method utilizes Classifier-Free Guidance (CFG) [23],
conditioning token-level generation decisions on the runtime outcome obtained by executing candidate
code completions during inference. This approach guides the model toward solutions that are both
syntactically plausible and executable, substantially improving correctness.

As depicted in Figure 1, our Execution-Guided Classifier-Free Guidance (EG-CFG) approach achieves
state-of-the-art performance on the MBPP and MBPP-ET benchmarks [3], significantly outperforming
existing methods. Using the open-source DeepSeek-V3-0324 model [24], EG-CFG attains 96.6%
accuracy on MBPP and 73.0% on MBPP-ET, surpassing previous leading approaches such as
QualityFlow [11] (94.2%), MetaGPT [25] (87.7%), and LPW [26] (84.8% on MBPP, 65.8% on MBPP-
ET), all of which utilized leading closed-source models. On the HumanEval benchmark (Figure 2),
EG-CFG achieves state-of-the-art accuracy of 99.4%, matching LDB [27] and establishes a new
state-of-the-art on the HumanEval-ET benchmark, reaching 89.02% accuracy and surpassing LPW’s
84.8% accuracy achieved with GPT-4o. Furthermore, EG-CFG establishes a new state-of-the-art on
DS-1000 (Figure 3), a domain-specific benchmark focused on challenging data science problems,
achieving 69.9% accuracy. Lastly, EG-CFG achieves a new state-of-the-art on the CodeContests
benchmark (Figure 4) with 60.6% accuracy using DeepSeek-V3-0324, demonstrating its effectiveness
on challenging competitive programming problems.
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Figure 3: DS-1000 performance. EG-CFG (DeepSeek-V3) achieves new state-of-the-art, surpassing
GPT-4.

Figure 4: CodeContests performance. EG-CFG (DeepSeek-V3) sets a new state-of-the-art, outper-
forming GPT-4 and GPT-4o methods.

The superior performance of EG-CFG on MBPP-ET and HumanEval-ET highlights that our method
not only generates accurate code but also significantly enhances robustness and reliability under
complex and extended test scenarios. Summarizing, our main contributions are: (i) a framework
for dynamically generating code while executing fragments of the code and using the execution
traces to guide the generation process, (ii) introducing native parallelism at the task level that is
not achievable in the sequential iterative refinement methods, (iii) using CFG in order to generate
code that is conditioned on the execution feedback, and (iv) obtaining new state-of-the-art results on
the MBPP, MBPP-ET, HumanEval-ET, DS-1000 and CodeContests benchmarks using open-source
models, outperforming previous methods that are based on the leading closed-source models.

2 Related Work

Program synthesis has long served both as a means to evaluate LLMs’ capabilities [1, 28] and as a key
goal of the research community to automate code generation [29, 30]. Modern LLMs are typically
assessed via automated benchmarks: given a coding problem description, the model generates
code that is then validated on a set of test cases (unit-test). In this work, we focus on six code
generation benchmarks: MBPP [3], HumanEval [1], DS-1000 [31] and CodeContests [4], along with
the extended variants MBPP-ET and HumanEval-ET [32]. MBPP combines crowd-sourced tasks and
math-based problems [33], HumanEval includes hand-written Python challenges, DS-1000 presents
challenging data science problems involving libraries like Pandas and NumPy, and CodeContests
features competitive programming problems requiring advanced algorithmic reasoning.

While zero-shot prompting, meaning directly querying an LLM on a task, is one evaluation strategy,
few-shot prompting [34], which provides a small number of input–output examples, is more widely
adopted. Other methods, such as Chain-of-Thought (CoT) [35], leverage the model’s autoregressive
nature to iteratively solve such tasks by decomposing them into sub-tasks. Similar approaches, such
as Tree-of-Thoughts [21] extend CoT by exploring multiple candidate reasoning paths at a higher
level of granularity.

With the growing ability of LLMs to utilize external signals and tools [36], LLMs have been
augmented with feedback mechanisms to improve code generation. Approaches such as Reflexion
[9], Program-aided Language Models (PAL) [6], and ReAct [7] iteratively update prompts based
on external tools’ outputs or intermediate results. In particular, Self-Debugging [10] demonstrates
how LLMs can leverage debugging tools: the model generates code, tests it on available unit-test
examples, and refines its output using the debugging feedback. Another related approach, LPW [26],
employs a structured two-phase process involving initial high-level plan generation followed by
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iterative refinement and debugging guided by execution feedback. The Multi-Granularity Debugger
(MGDebugger) [37] also uses the LLM to simulate the execution of generated Python programs,
employing the simulated trace as additional feedback for code refinement.

While some approaches use a single LLM to solve coding problems, agentic methods employ
multiple LLM instances to tackle a single task. Works such as MetaGPT [25] introduce a framework
in which a given task is split into multiple procedures, each assigned to a dedicated LLM agent.
AgentCoder [12] extends these multi-agent frameworks by employing both a test-designer agent
and an executor agent, effectively integrating the Self-Debugging paradigm [10] into an agentic
workflow and demonstrating the benefits of execution feedback. Current agentic workflows, such as
MapCoder [13] and LPW [26], typically rely on discrete cycles of sequential agent interactions or
distinct refinement phases, inherently limiting their ability to fully leverage the power of parallelism
within a single task. In contrast, EG-CFG breaks this barrier by introducing native parallelism at the
task level. Multiple agents run concurrently on the same task, each with a different configuration,
simultaneously exploring diverse reasoning paths without the constraints of sequential cycles, fully
leveraging the power of parallelism.

Although code generation methods have advanced dramatically, they all rely on naive decoding
methods such as temperature or top-p sampling [18]. In particular, execution-feedback techniques
generate a complete solution, execute it, and then refine the code. For example, the model is prompted
to produce a function, its implementation is tested against unit tests, and the resulting feedback is
appended to the original prompt. This process repeats iteratively until a correct solution emerges.
This approach contrasts with recent advances in LLM inference techniques, especially guidance
methods such as Classifier Guidance [38] and Classifier-Free Guidance (CFG) [23, 39]. These
methods condition generation on external constraints or classifier signals, directing the model to
sample tokens from multiple contrastive distributions. Although CFG has shown strong performance,
its guidance signals remain static, predefined and fixed throughout the sampling process [40].

As far as we can ascertain, guidance methods such as CFG have yet to be applied at scale to dynamic,
execution-driven reasoning. This work bridges this gap by demonstrating that a single open-source
model, augmented with execution feedback and a novel token-sampling strategy, outperforms the
state-of-the-art across multiple widely adopted coding benchmarks at different complexity levels -
from foundational problems to challenging competitive programming and data sceince tasks. Our
contribution differs from prior work in multiple key aspects, including:

1. Prior approaches generate entire code blocks (or sub-blocks) and use the execution feedback
of the entire block; by contrast, our approach gradually generates the solution line-by-line by
sampling and executing multiple candidate continuation programs at each step.

2. Instead of explicitly relying on unit-test pass/fail signals or direct reflections on correctness, our
method incrementally constructs code fragments and leverages their execution traces as an implicit
feedback signal, guiding the model without explicit external supervision.

3. Our method relies on a single prompting scheme where multiple agents perform the same task
and differ only in their parameter configurations. Each agent explores diverse reasoning paths and
collectively generating a broad set of candidate solutions. This enables a level of parallelism that is
unattainable in methods where agents communicate sequentially.

4. We replace naive decoding with CFG, using innovative trace-inspired prompts for dual-
distribution interpolation sampling.

3 Method
We present Execution-Guided Classifier-Free Guidance (EG-CFG), a novel inference-time decoding
method for neural code generation that explicitly integrates dynamic execution signals into the
autoregressive generation process. A programming task τ is represented by three components:

τ = (ptask, T, fname), (1)
where ptask is a textual definition of the programming task, T = {tj}|T |

j=1 is the set of test cases,
and fname is the target Python function name. The goal is to generate executable Python code
w∗ = [w∗

0 , w
∗
1 , . . . , w

∗
N−1] that solves the task correctly, formally satisfying:

Execute(w∗, tj) = success, ∀tj ∈ T. (2)
We consider two distinct instruction templates p0: the standard DeepSeek-Coder 3-shot prompt [41],
consisting of concise instructions accompanied by short illustrative examples, and an alternative
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prompt explicitly designed to encourage the generation of step-by-step solutions with more atomic
logic. See Appendix A for the example prompts used.

We build the instruction prompt by incorporating the task components into the prompt template:

pinst = BUILDINSTRUCTIONPROMPT(p0, τ) (3)

At each step i, given a previously generated token sequence w<i, the LLM M assigns a probability
distribution M(wi | pinst,w<i

), which is conditioned on the instruction prompt pinst. This generation
proceeds iteratively until reaching a maximum token length Nmax or an end-of-code token. We build
the instruction prompt by injecting the instruction task to the prompt template. We first run the model
to produce an initial output sequence ppre based on pinst:

wi
pre = argmaxM(wi | pinst,w<i

), ppre = [pinst, w
0
pre, · · · , wn−1

pre ] (4)

The generated sequence ppre contains reasoning tokens that precede the final executable solution. We
identify the beginning of this solution block at index isolution by locating a special start-of-code token,
which is defined in p0. We then define the prefix of all preceding tokens, ppre-sol, as:

ppre-sol = ppre[: isolution] (5)

Additionally, we define an index idyn that marks the end of the final few-shot example within the
instruction prompt pinst, which is used to inject future signals into the prompt.

The prompt psol that we pass to the LLM is constructed autoregressively by aggregating executable
code tokens into ppre-sol as formalized later in Equation 14 of section 3.3. This prompt contains
partial solutions that are progressively updated until the solution is formed.

3.1 Dynamic Execution Feedback
Our dynamic execution feedback explicitly generates multiple candidate continuations based on a
partially completed solution. Specifically, given psol we generate a set of candidate continuations
using beam-search decoding. Each candidate explicitly extends the current solution by d additional
lines of code, capturing meaningful variations in potential solutions and providing a granular basis
for execution-based guidance. Formally, given parameters specifying the number of candidates s,
completion horizon d, and sampling temperature t, the beam search sampling is performed to obtain
s candidates.

wi
cj ∼ M(wi | psol, w

<i
cj ; t) until CountLines(cj) ≥ d, cj = [w0

cj , · · · , w
i
cj ], j = 1, . . . , s (6)

Each candidate cj is generated autoregressively with a stopping condition triggered after d newline
characters, representing a plausible continuation of the next d lines of code. These candidates form
the basis for generating detailed execution signals used to guide subsequent inference steps.

Executable Extraction To handle potentially invalid candidate continuations, we extract executable
components via Abstract Syntax Tree (AST) parsing. Formally, for each candidate cj , we apply the
executable extraction function:

ĉj = ExtractExecutable(cj), j = 1, . . . , s. (7)

This extraction function iteratively attempts to parse each candidate cj as follows: (1) attempt
parsing cj (2) if unsuccessful, append a Python pass statement to the last line and retry; (3) if
still unsuccessful, iteratively remove the last line and retry. This ensures minimal modifications for
syntactic validity. After extraction, we apply uniqueness filtering to remove duplicates:

C = Unique
(
{ĉj}sj=1

)
. (8)

This AST-based verification explicitly ensures that execution guidance relies solely on syntactically
valid and executable code.

Execution Feedback and Trace For each unique executable candidate ĉj ∈ C, we explicitly
execute it against all provided test cases T = {tm}|T |

m=1 and record the resulting execution feedback:

ej,m = ExtractExecutionFeedback(ĉj , tm), ∀ĉj ∈ C, tm ∈ T. (9)

Our approach is agnostic to the precise structure of the execution feedback ej,m. In our implementa-
tion, execution feedback specifically takes the form of execution traces: a structured representation
of a program’s runtime behavior, capturing detailed step-by-step information during execution.
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Specifically, we use a custom debugger for structured execution traces. A trace ej,m is defined as a
sequence of N j,m runtime events, εk, resulting from the execution of a program ĉj with input tm:

ej,m = [εk]
Nj,m

k=1 , εk = (Ek, ℓk, vk, τk, rk, xk) (10)
Each event εk is a tuple containing the event type Ek ∈ {call, line, return, exception}, the
source line number ℓk, mappings from variable names to their values (vk) and types (τk), the return
value rk, and any exception details xk. This structured representation provides comprehensive insight
into the correctness and behavior of executed code, serving as a precise basis for dynamic feedback
in our inference framework.
Dynamic Signal Aggregation The dynamic execution feedback signal is the concatenation of
a fixed instruction string, denoted pdyn-inst, to the aggregated execution feedback. This yields the
dynamic signal prompt:

psignal = [pdyn-inst, {(ĉj , tm, ej,m)}ĉj∈C, tm∈T ], (11)

where each tuple consists of a candidate completion ĉj , a test case tm, and its corresponding execution
trace ej,m. Now we form a new prompt naming this prompt pdyn as dynamic signal prompt:

pdyn = [psol[: idyn], psignal, psol[idyn :]] (12)
An example of the obtained prompt is shown in appendix Appendix B.

3.2 Classifier-Free Guidance (CFG)

Inspired by [23, 39], we utilize CFG to explicitly guide token generation by interpolating between
two probability distributions: (i) an unconditional (prior) distribution based on the evolving solution
prompt psol, and (ii) a conditional distribution based on dynamic signal prompt pdyn which incorporates
execution feedback. Formally, for each token wi, the CFG distribution is computed as:

logMCFG(wi | psol, pdyn) = logM(wi | psol) + γ [logM(wi | pdyn)− logM(wi | psol)] , (13)
where γ ≥ 0 explicitly controls the strength of guidance. Higher values of γ encourage the model
to follow the execution-based guidance, while lower values allow greater flexibility toward the
unconditional prior.

3.3 Execution-Guided Inference Loop

Our inference procedure extends standard autoregressive token generation by explicitly incorporating
dynamic execution feedback via CFG. Starting from an initial prompt ppre-sol (Equation 5), we
autoregressively sample tokens wi from the CFG-conditioned distribution MCFG(wi | psol, pdyn),
progressively constructing the solution sequence psol. At each token-generation step, we reuse the
dynamic signal psignal (Equation 11), injecting it into psol at index idyn to form pdyn as described in
Equation 12. psignal itself is regenerated only upon completing a new line.

wi
sol = argmaxMCFG(wi | psol, pdyn), psol = [ppre-sol, w

0
sol, · · · , wn−1

sol ] (14)

3.4 Parallel Multi-Agent Execution

Given an input task as defined in Equation 1, we launch a parallel multi-agent inference process where
each agent is assigned a unique configuration: candidate count s, generation horizon d, sampling
temperature t, instruction prompt template p0 and guidance strength γ. Once any agent finds a correct
solution, it is immediately returned and all remaining agents are terminated. The full pseudo-code for
both the execution-guided inference loop and the multi-agent controller is provided in Appendix C.

4 Experiments

Implementation Details We conduct our experiments using two LLMs across different parameter
scales: DeepSeek-Coder-1.3B [41], which is small enough to run locally on our machines (NVIDIA
GeForce RTX 2080 Ti and RTX 3090 GPUs), and a large open-source model, DeepSeek-V3-0324
[24], which we use through a cloud inference endpoint. We use Fireworks AI which was chosen
based on two criteria: a modest cost, and the availability of a log probability output that is required
to perform the CFG (Equation 13). The full code used for our experiments is provided in the
supplementary materials.
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Hyperparameter Settings As explained in section 3.4, our method launches multiple parallel
agents for each task. Each agent is assigned a different hyperparameter configuration. The following
hyper-parameter sets were used in our experiments: s = 3, t ∈ {0.7, 0.75, 0.85, 0.95, 1.2, 1.5},
d ∈ {2, 3, 6, 8}, γ ∈ {0, 0.5, 1, 3}. Additionally, we evaluate both p0 prompt templates, see section 3
and appendix Appendix A.

Evaluation Benchmark Our evaluations use widely-adopted benchmarks: MBPP [3] (500 tasks)
and HumanEval [1] (164 tasks), along with their extended test versions MBPP-ET and HumanEval-
ET [32]. To assess performance on more challenging tasks, we also evaluate on the DS-1000 data
science benchmark [31] (1000 tasks) and the CodeContests competitive programming benchmark
[4] (using the ExecEval framework [42]). We report accuracy: the percentage of problems passing
all test cases. To rigorously test generalization and prevent overfitting to public tests, evaluations
on HumanEval, HumanEval-ET, MBPP-ET, CodeContests, and DS-1000 rely on hidden test cases
inaccessible during inference. DS-1000’s structure, providing only a single input-output example per
problem, further tests model robustness against reliance on examples.

Baselines We compare our EG-CFG method against several established state-of-the-art methods for
code generation and debugging: a Baseline LLM using the few-shot template from DeepSeek-Coder’s
evaluation [41]; MGDebugger [37], an iterative refinement method combining test-case feedback
with LLM-simulated execution traces; MapCoder [13], which employs multi-agent interactions;
QualityFlow [11], which incorporates agentic workflows for iterative enhancement; LPW [26], which
utilizes a structured two-phase workflow with runtime execution feedback; and CodeSim [14], a
search-based method that adapts semantically similar code snippets.

4.1 Results
Using the DeepSeek-V3-0324 model, EG-CFG achieves new state-of-the-art (SOTA) results across all
evaluated benchmarks. On MBPP and MBPP-ET (Table 1), it surpasses prior methods using large
closed-source models like GPT-4 and Claude 3.5. On HumanEval (Table 2), it matches the state-of-
the-art (LDB) at 99.4% and sets a new state-of-the-art on the challenging HumanEval-ET variant.
Furthermore, it establishes new state-of-the-art on CodeContests (Table 3), significantly exceeding its
own baseline, MapCoder, and previous GPT-4 based approaches like LPW and CodeSim, and also
sets a new state-of-the-art on DS-1000 (69.9%, Table 4), outperforming CONLINE/GPT-4.

We note that across all tested baselines, the publicly available code was highly sensitive to the
specific model and could not be readily applied to DeepSeek models. We invested substantial effort
in debugging and adapting the code to ensure it produced meaningful results that represented each
baseline method as favorably as possible. Other methods, such as QualityFlow, have not released
their code, preventing us from evaluating them on the DeepSeek models. While LPW did release
a public implementation, we encountered substantial technical issues during the execution of their
published code on the DeepSeek-Coder 1.3b model, resulting in unusually low scores despite our
best debugging efforts on that benchmark.

Run time A key advantage of EG-CFG is its native parallelism, a design choice that aligns with
the growing trend of leveraging large-scale, parallel compute in modern agentic systems. This
architectural choice is a key differentiator from iterative refinement methods, which are inherently
sequential and therefore cannot leverage parallel compute to accelerate work on a single task. In
contrast, EG-CFG is designed to explore diverse reasoning paths simultaneously across multiple agents
(as described in section 3.4). This fundamental architectural difference makes wall-clock time the
most relevant and fair metric for comparison. As can be seen in Table 5, on the MBPP benchmark,
our method is more efficient than MGDebugger and competitive with MapCoder. When comparing
with LPW, our method is more efficient with the smaller model but slower with the larger model.

Fairness of Comparison To demonstrate EG-CFG’s qualitative advantage is not just a larger
compute budget, we drastically increased baseline token usage. On MBPP (DeepSeek-V3-0324),
we raised MGDebugger and MapCoder retry counts 40-fold (from 5 to 200). Despite this 40x
compute increase, gains were marginal : MGDebugger improved by only 6.8 percentage points,
from 86.8% to 93.6% (solving 34 of its 86 prior failures). MapCoder’s improvement was even
smaller, at 1.6 percentage points, from 87.2% to 88.8% (solving 8 of its 64 prior failures). Both
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Table 1: Performance on the MBPP and MBPP-ET benchmarks. Our proposed EG-CFG achieves
a new state-of-the-art overall accuracy. The DeepSeek–Coder-1.3B and –V3-0324 results for all
baselines were obtained by our study using the official implementations provided by each baseline
method. The results below the double separator were collected from the respective papers.

Model Method MBPP MBPP-ET
Acc. (%) RSR (%) Acc. (%) RSR (%)

DeepSeek-Coder 1.3B Baseline LLM 49.4 0.0 42.6 0.0
DeepSeek-Coder 1.3B EG-CFG (Ours) 83.2 66.79 59.8 29.96
DeepSeek-Coder 1.3B MapCoder [13] 55.2 11.46 46.2 6.27
DeepSeek-Coder 1.3B MGDebugger [37] 70.4 41.5 44.6 3.48

DeepSeek-V3-0324 Baseline LLM 82.8 0.0 64.8 0.00
DeepSeek-V3-0324 EG-CFG (Ours) 96.6 80.23 73.0 23.29
DeepSeek-V3-0324 MapCoder [13] 87.2 25.58 69.6 13.63
DeepSeek-V3-0324 MGDebugger [37] 86.8 23.25 64.8 0.00
DeepSeek-V3-0324 LPW [26] 84.0 6.97 65.2 1.13

GPT-4 Baseline LLM 68.3 - 49.2 -
GPT-4 Self-Collaboration [43] 78.9 - 62.1 -
GPT-4 Self-Debugging [10] 80.6 - - -
GPT-4 MetaGPT [25] 87.7 - - -
GPT-4 MapCoder [13] 83.1 - 57.5 -

GPT-4o LPW [26] 84.8 - 65.8 -

CodeQwen1.5 MGDebugger [37] 80.8 - - -
DeepSeek-Coder-V2-Lite MGDebugger [37] 80.0 - - -

Claude-Sonnet-3.5 Baseline LLM [11] 88.7 - - -
Claude-Sonnet-3.5 QualityFlow [11] 94.2 - - -

Table 2: Performance on the HumanEval and HumanEval-ET benchmarks. Our proposed EG-CFG
matches the state-of-the-art on HumanEval and achieves a new state-of-the-art on HumanEval-ET.

Model Method HumanEval HumanEval-ET
Acc. (%) RSR (%) Acc. (%) RSR (%)

DeepSeek-V3-0324 Baseline LLM 82.92 0.0 79.20 0.0
DeepSeek-V3-0324 EG-CFG (Ours) 99.4 94.04 89.02 47.21
DeepSeek-V3-0324 MapCoder [13] 96.95 82.14 81.70 12.02
DeepSeek-V3-0324 MGDebugger [37] 87.20 25.05 81.09 9.09
DeepSeek-V3-0324 LPW [26] 95.12 71.42 84.74 26.63

GPT-4 Baseline LLM 67.7 - 50.6 -
GPT-4 Self-Collaboration [43] 90.7 - 70.1 -
GPT-4 Self-Debugging [10] 61.6 - 45.8 -
GPT-4 MetaGPT [25] 85.9 - - -
GPT-4 MapCoder [13] 80.5 - 70.1 -

GPT-4o LPW [26] 98.2 - 84.8 -

LLaMA 3 LDB [27] 99.4 - - -

Claude-Sonnet-3.5 QualityFlow [11] 98.8 - - -

CodeQwen1.5 MGDebugger [37] 91.5 64.1 - -
DeepSeek-Coder-V2-Lite MGDebugger [37] 94.5 76.3 - -

remained significantly below EG-CFG’s 96.6% accuracy , showing our performance gap is due to the
execution-guided feedback loop’s quality, rather than the amount of computation.

Ablation study We performed an ablation study on the MBPP and MBPP-ET benchmarks to
evaluate various components of our method. The results are reported in Table 6. When omitting
the beam search of Equation 6, which creates multiple solutions instead of a single completion, the
performance of the method drops and becomes much closer to the baseline performance. The role
of CFG is evident from the second ablation, in which a value of γ = 1 is used in Equation 13. In
this case, there is a clear drop in performance, although results are still clearly above the baseline.
Finally, a similar drop in performance is observed when replacing the detailed execution trace used
as part of the dynamic signal with a minimal execution trace, formally defined as the final event of
the execution trace (Equation 10).
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Table 3: Performance on the CodeContests benchmark. Our proposed EG-CFG achieves a new
state-of-the-art overall accuracy on CodeContests. The runs on DeepSeek-V3-0324 are by us, and all
other results are quoted from the literature. ∗ The LPW results were obtained on a custom test-set;
the published code was not compatible with evaluating on DeepSeek. ∗∗Reported by the MapCoder
paper [13]. ∗∗∗Reported by the CodeSim paper [14].

Model Method Accuracy (%) RSR (%)
DeepSeek-V3-0324 Baseline LLM 41.81 0.00
DeepSeek-V3-0324 EG-CFG (Ours) 60.6 32.29
DeepSeek-V3-0324 MapCoder [13] 50.30 14.59
DeepSeek-V3-0324 CodeSim [14] 52.72 18.76

GPT-4o LPW [26]∗ 34.7 -
GPT-4o LDB [27]∗∗∗ 29.3 -

GPT-4 CodeSim [14] 29.1 -
GPT-4 MapCoder [13] 28.5 -
GPT-4 Self-Planning [44]∗∗ 10.9 -
GPT-4 Analogical [45]∗∗ 10.9 -

GPT-3.5 Turbo CodeSim [14] 16.4 -
GPT-3.5 Turbo MapCoder [13] 12.7 -
GPT-3.5 Turbo Analogical [45]∗∗ 7.3 -
GPT-3.5 Turbo Self-Planning [44]∗∗ 6.1 -

MoTCoder-15B MoTCoder [46] 26.34 -

Table 4: Performance on the DS-1000 benchmark. Our proposed EG-CFG achieves a new state-
of-the-art overall accuracy on DS-1000. ∗Reported by the SelfEvolve paper [47]. ∗∗Reported by
DS-1000 [31] official leaderboard.

Model Method Accuracy (%) RSR (%)
DeepSeek-V3-0324 EG-CFG (Ours) 69.9 50.73
DeepSeek-V3-0324 Baseline LLM 38.9 0.00

GPT-4 CONLINE [48] 68.0 -
GPT-4 Baseline LLM 60.2 -

GPT-3.5 Turbo SelfEvolve [47] 57.1 -
GPT-3.5 Turbo Self Debugging [10]∗ 53.0 -
GPT-3.5 Turbo DocPrompting [49]∗ 45.50 -

GPT-4o Baseline LLM∗∗ 59.9 -
Claude 3.5 Sonnet Baseline LLM∗∗ 54.3 -
DeepSeek-Coder-V2-SFT Baseline LLM∗∗ 53.2 -
Qwen2-72B-Instruct Baseline LLM∗∗ 52.8 -

5 Conclusions
This paper introduces Execution-Guided Classifier-Free Guidance (EG-CFG), a novel approach that
fundamentally reframes neural code generation by incorporating real-time execution signals directly
into the inference process. Our method bridges a critical gap between static pattern recognition and
execution semantics by dynamically sampling candidate continuations, extracting execution traces,
and leveraging these signals to guide token-level generation decisions.

The empirical results demonstrate that EG-CFG achieves new state-of-the-art results across a diverse
set of benchmarks. Using DeepSeek-V3-0324, it achieves 96.6% accuracy on MBPP, 73.0% on
MBPP-ET, 99.4% on HumanEval, 89.02% on HumanEval-ET, 69.9% on DS-1000, and 60.6% on
CodeContests, surpassing both open-source and proprietary model-based approaches. The superior
performance on both MBPP-ET and HumanEval-ET underscores the method’s robustness and
effectiveness in generating reliable and accurate code under complex and extended test scenarios.
Notably, our approach demonstrates robust performance even with smaller models, achieving 83.2%
accuracy using DeepSeek-Coder-1.3B, comparable to results from substantially larger models like
GPT-4. This scalability highlights the effectiveness of execution signals as a guiding mechanism
regardless of model capacity.

The EG-CFG approach offers several advantages over existing methods. Unlike discrete iterative
refinement techniques that operate at coarse granularity between complete solution attempts, our
method provides continuous feedback at the token level. By integrating execution signals that reflect
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Table 5: Per-task runtime statistics (in seconds) for each model and method on MBPP.
Model Method Mean ± SD (s)
DeepSeek-Coder 1.3b EG-CFG 123.23 ± 344.91
DeepSeek-Coder 1.3b MGDebugger 495.16 ± 411.07
DeepSeek-Coder 1.3b MapCoder 121.9 ± 213.89
DeepSeek-Coder 1.3b LPW 197.71 ± 128.07

DeepSeek-V3-0324 EG-CFG 271.37 ± 271.45
DeepSeek-V3-0324 MGDebugger 842.24 ± 705.19
DeepSeek-V3-0324 MapCoder 283.84 ± 197.54
DeepSeek-V3-0324 LPW 87.51 ± 210.84

Table 6: Ablation results for EG-CFG on DeepSeek-Coder 1.3b on MBPP and MBPP-ET benchmarks.
Method MBPP MBPP-ET

Acc. (%) RSR (%) Acc. (%) RSR (%)
EG-CFG 83.2 66.79 59.8 29.96
EG-CFG, no beam search 58.2 17.39 43.6 1.74
EG-CFG w/o CFG (γ = 1) 75.2 50.98 48.2 9.74
EG-CFG, minimal trace 76.4 53.35 51.2 14.98
Baseline LLM 49.4 0.0 42.6 0.0

actual runtime behavior, EG-CFG mirrors the incremental testing and debugging process that human
programmers employ.

Looking forward, this work opens several promising research directions. The execution-guided
framework could be extended to more complex programming tasks requiring longer-horizon planning
or multi-file interactions. Additionally, the principles of EG-CFG, which dynamically incorporate
external semantic signals into generation, could benefit domains that rely on grounding in systems,
such as database querying, formal verification, or simulation-based tasks. More broadly, EG-CFG
represents a shift in generative modeling beyond static, pattern-based generation toward responsive,
context-aware methods informed by environmental interaction. As models scale and applications
expand, such approaches can drive the development of systems that generate high-quality outputs
while reasoning about their real-world behavior, enabling more reliable and aligned generation.

6 Limitations

While the EG-CFG framework demonstrates significant improvements in code generation performance,
several important limitations should be acknowledged.

First, the approach introduces computational overhead compared to standard inference methods. The
beam search exploration, execution of multiple candidate continuations, and dual-distribution interpo-
lation in the CFG mechanism collectively increase inference time. Though our parallel execution
strategy mitigates this overhead somewhat, future work should explore more efficient methods for
extracting and incorporating execution signals. Second, EG-CFG’s effectiveness is contingent upon
the availability of executable test cases that adequately exercise the target functionality. In real-world
programming scenarios, comprehensive test cases may not always be available or easily generated by
LLMs, potentially limiting the approach’s applicability.

Finally, because our inference loop is bottom-up, it does not exploit task decomposition, a strategy that
has been shown to improve code generation [37]. Future work could integrate our sampling strategy
with iterative refinement methods, task-decomposition methods or with top-down problem-inspection
techniques [50] to achieve even better performance. Despite these limitations, EG-CFG represents
a significant advancement in execution-aware code generation and provides a solid foundation for
future research addressing these challenges.
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A The two pinst prompts used by our method

The two basic instruction prompts used by our method are provided in Figure 5 and Figure 6.
The former is the standard DeepSeek-Coder 3-shot prompt [41], consisting of concise instructions
accompanied by short illustrative examples, and the latter is an alternative prompt explicitly designed
to encourage the generation of step-by-step solutions with more atomic logic.
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Raw DeepSeek-Instruct Prompt for MBPP Task 395

You are an AI programming assistant, utilizing the Deepseek Coder model,
developed by Deepseek Company, and you only answer questions related to
computer science.
### Instruction:
Please refer the given examples and generate a python function for my problem.
Examples are listed as follows:
- Example 1:
>>> Problem:
Write a function to find the similar elements from the given two tuple lists.
>>> Test Cases:
assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)

>>> Code:
def similar_elements(test_tup1, test_tup2):

res = tuple(set(test_tup1) & set(test_tup2))
return (res)

- Example 2:
>>> Problem:
Write a python function to identify non-prime numbers.
>>> Test Cases:
assert is_not_prime(2) == False
assert is_not_prime(10) == True
assert is_not_prime(35) == True

>>> Code:
import math
def is_not_prime(n):

result = False
for i in range(2,int(math.sqrt(n)) + 1):

if n % i == 0:
result = True

return result

- Example 3:
>>> Problem:
Write a function to find the largest integers from a given list of numbers using...
>>> Test Cases:
assert heap_queue_largest([25, 35, 22, 85, 14, 65, 75, 22, 58],3) == [85, ...
assert heap_queue_largest([25, 35, 22, 85, 14, 65, 75, 22, 58],2) == [85, ...
assert heap_queue_largest([25, 35, 22, 85, 14, 65, 75, 22, 58],5) == [85, ...

>>> Code:
import heapq as hq
def heap_queue_largest(nums,n):

largest_nums = hq.nlargest(n, nums)
return largest_nums

Here is my problem:
>>> Problem:
Write a python function to find the first non-repeated character in a given
string.
>>> Test Cases:
assert first_non_repeating_character("abcabc") == None
assert first_non_repeating_character("abc") == "a"
assert first_non_repeating_character("ababc") == "c"

### Response:

Figure 5: The DeepSeek-Instruct prompt used for MBPP Task 395. This prompt includes multiple
solved examples followed by the target task.
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Long-Instruct Prompt for MBPP Task 395 (pinst)

You are an AI programming assistant, utilizing the Deepseek Coder model,
developed by Deepseek Company, ...
### Instruction:
Write a python function to find the first non-repeated character in a given
string.

Write a Python function that satisfies the following test cases:
>>> Test Cases:
[’assert first_non_repeating_character("abcabc") == None’,
’assert first_non_repeating_character("abc") == "a"’,
’assert first_non_repeating_character("ababc") == "c"’]

Your solution should be written in as many lines as possible.
This ensures that prefixes of your function remain valid Python programs.
Allowing **incremental execution and debugging**.

Write the function **step by step**, progressively introducing variables and logic.
Avoid using list comprehensions, lambda functions, or overly compact one-liners.
Instead, follow these guidelines:**

Avoid list comprehensions, use loops instead:
Incorrect:
def square_numbers(lst):

return [x ** 2 for x in lst]

Correct:
def square_numbers(lst):

squares = []
for num in lst:

squared_value = num ** 2
squares.append(squared_value)

return squares

Avoid inline expressions, use variables instead
Incorrect:
def calculate_area(length, width):

return (length * width) / 2
Correct:
def calculate_area(length, width):

product = length * width
area = product / 2
return area

Incorrect:
result.append(x + y)
Correct:
z = x + y
result.append(z)
Incorrect:
def compute_value(a, b, c):

return (a + b) * (c / (a - b) + (a * c) / (b + c))
Correct:
def compute_value(a, b, c):

term1 = a + b
term2 = a - b
term3 = c / term2
term4 = a * c / (b + c)
result = term1 * (term3 + term4)
return result

### Response:

Figure 6: Long-Instruct prompt for MBPP Task 395. This instruction-only prompt includes stylistic
constraints that encourage traceable, step-by-step completions suitable for dynamic signal extraction.
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B Example Dynamic Prompt Structure

This appendix provides a concrete example illustrating the structure of the dynamic prompt pdyn used
by our EG-CFG method (described at the end of Section 3.1). Figure 7 below shows how the different
components are assembled into the dynamic prompt pdyn. It displays the original task instruction
(pinst), followed by the dynamically injected signal (psignal). This signal begins with the dynamic
signal instruction (pdyn-inst) and includes execution traces for each candidate, obtained in this example
by executing s = 2 candidates against a single test case (|T | = 1). Finally, the figure shows the
model’s partially completed response generated up to that point.
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Instruction from pinst: Write a python function to find the first non-repeated
character in a given string.
assert first_non_repeating_character("aabc") == "b"
assert first_non_repeating_character("abcabc") == None
assert first_non_repeating_character("abc") == "a"
assert first_non_repeating_character("ababc") == "c"

Dynamic Signal Instruction (pdyn-inst) starts at idyn
Below are execution traces from running the response function after appending
several possible future continuations. These continuations represent plausible
ways the function might continue from its current state. They are not
necessarily full solutions - some may be partial, exploratory, or incomplete.
For each candidate continuation, multiple test cases (invocations) were
executed to observe its behavior under different inputs. Each entry includes:
- A candidate version of the function
- A specific test case used for invocation
- The resulting execution trace for that test case

These dynamic signals can help you better understand how different plausible
continuations behave at runtime, and guide you toward a more accurate solution.
Execution feedback for a single test (|T | = 1) and s = 2 candidates:
# Function:
def first_non_repeating_character(s):

char_count = {}
for char in s:

char_count[char] = char_count.get(char , 0) + 1
for char in s:

if char_count[char] == 1:
return char

return None

# Invocation: first_non_repeating_character("aabc")
# Execution Trace:

s = ’aabc’, char_count = {}
...
char = ’c’ -> char_count = {’a’: 2, ’b’: 1, ’c’: 1}
char = ’b’ -> count = 1 -> return ’b’

# Function:
def first_non_repeating_character(s):

char_count = {}
for char in s:

char_count[char] = char_count.get(char , 0) + 1
for char in s:

if char_count[char] == 2:
return char

return None

# Invocation: first_non_repeating_character("aabc")
# Execution Trace:

s = ’aabc’, char_count = {}
...
char = ’c’ -> char_count = {’a’: 2, ’b’: 1, ’c’: 1}
char = ’a’ -> count = 2 -> return ’a’

### Response:

‘‘‘python
def first_non_repeating_character(s):

char_count = {}
for char in s:

char_count[char] = char_count.get(char , 0) + 1

Figure 7: Example of pdyn with injected psignal at index idyn
.
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C EG-CFG Pseudo-Code

To complement the formal description in Section 3, we provide full pseudo-code for our method in
this appendix. Algorithm 1 outlines the controller responsible for coordinating a multi-agent parallel
inference process, where each agent explores diverse reasoning paths using a unique configuration.
Each agent independently invokes the core decoding routine defined in Algorithm 2, which integrates
dynamic execution feedback via classifier-free guidance (CFG). This loop incrementally generates a
solution by incorporating real-time execution feedback into the prompt.

Algorithm 1 Multi-Agent Parallel Inference Controller

Input: Task τ = (ptask, T, fname) (Eq.1), Model M , EG-CFG ConfigurationsH = {(p0, s, d, t, γ)}
1: Launch parallel agents A = {ah : h ∈ H}
2: for all agents ah ∈ A with config (p0, s, d, t, γ) in parallel do
3: pinst ← BUILDINSTRUCTIONPROMPT(p0, τ) ▷ Build instruction prompt, Equation 3
4: psol ← EG-CFG-INFERENCELOOP(pinst, T,M, s, d, t, γ)
5: if Execute(psol, tj) = success,∀tj ∈ T then ▷ Verify solution, Equation 2
6: return psol ▷ Return first valid solution and terminate other agents
7: end if
8: end for
9: return null ▷ Failure: No correct solution found

Algorithm 2 Execution-Guided Classifier-Free Guidance (EG-CFG) Inference Loop
Input: pinst, T, M, s, d, t, γ
1: ppre ←M(pinst) ▷ Generate initial output sequence, Equation 4
2: Locate isolution, idyn in ppre
3: ppre-sol ← ppre[: isolution] ▷ Extract reasoning prefix before solution code, Equation 5
4: psol ← ppre-sol
5: psignal ← null
6: while true do
7: if psignal = null or (wi−1 exists and ’\n’ in wi−1) then
8: Craw ← [] ▷ Initialize list for executable candidates
9: for all each j = 1, . . . , s do

10: Initialize cj ← []
11: while CountLines(cj) < d do ▷ Generate a candidate continuation, Equation 6
12: Sample wk

cj ∼M(wk | psol, w
<k
cj ; t)

13: Append wk
cj to cj

14: end while
15: ĉj ← ExtractExecutable(cj) ▷ Extract executable part, Equation 7
16: Append ĉj to Craw
17: end for
18: C ← Unique(Craw) ▷ Filter for unique candidate continuations, Equation 8
19: E ← [] ▷ Initialize list for feedback tuples
20: ▷ Candidate executions against test cases run in parallel, Equation 9
21: for all each ĉj ∈ C do
22: for all each tm ∈ T do
23: ej,m ← ExtractExecutionFeedback(ĉj , tm)
24: Append (ĉj , tm, ej,m) to E
25: end for
26: end for
27: psignal ← [pdyn-inst, E ] ▷ Construct the full dynamic signal, Equation 11
28: end if
29: pdyn ← [ psol[: idyn], psignal, psol[idyn :] ] ▷ Inject signal into the prompt, Equation 12
30: wi ← argmaxMCFG(w | psol, pdyn) ▷ Sample next token using CFG, Eq.13 Eq.14
31: Append wi to psol ▷ Append new token to the solution, Eq.13 Eq.14
32: if wi = EOT or length(psol) ≥ Nmax then
33: return psol
34: end if
35: end while
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