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Abstract

While 3D visual self-supervised learning001
(vSSL) shows promising results in capturing002
visual representations, it overlooks the clinical003
knowledge from radiology reports. Meanwhile,004
3D medical vision-language pre-training (Med-005
VLP) remains underexplored due to the lack006
of a large-scale, publicly available 3D medi-007
cal image-report dataset. To bridge this gap,008
we introduce CT-3DVLP, the first and largest009
public 3D volume-report dataset, establishing a010
comprehensive benchmark for 3D MedVLP re-011
search. Meanwhile, we propose the T3D frame-012
work, which enhances 3D MedVLP beyond013
naive CLIP-style alignment that directly pairs014
volumes with reports but neglects local visual015
representations. Instead, we introduce Text-016
informed Multi-view Alignment (TMA), a017
novel approach that clusters volumetric data018
while enforcing consistency across different019
views of the same volume-report pair. TMA in-020
tegrates textual features into fine-grained visual021
representations, ensuring contextual coherence022
across views. We evaluate T3D across mul-023
tiple downstream tasks in both unimodal and024
cross-modal settings, including zero-shot and025
fine-tuned classification, cross-modal retrieval,026
report generation, and semantic segmentation.027
Our results show that T3D consistently out-028
performs existing vSSL and multimodal meth-029
ods, demonstrating superior zero-shot and fine-030
tuning capabilities and setting a new bench-031
mark for 3D medical image understanding1.032

1 Introduction033

Deep learning (DL) has transformed 3D medical034

image analysis, improving diagnostic accuracy and035

efficiency. However, supervised DL methods re-036

quire extensive, high-quality annotations, which037

are costly and time-consuming. To reduce this de-038

pendency, visual self-supervised learning (vSSL)039

has shown great potential in leveraging large-scale040

1All data and code will be released upon acceptance.

Figure 1: Illustration of the Text-Informed Multi-View
Alignment (TMA) method. Multiple local views V m

i

are generated from the same 3D volume, and their em-
beddings are aligned in the latent space to encourage
consistency across views from the same volume-report
pair. Each view’s embedding is refined by the corre-
sponding report to ensure consistency among all views
from the same volume. The details are illustrated in
Section 3.3.

unlabeled medical data. Existing vSSL techniques, 041

including image restoration (IR) and contrastive 042

learning (CL) (Chaitanya et al., 2020; Taleb et al., 043

2020; Xie et al., 2022a; Haghighi et al., 2022), have 044

demonstrated effectiveness in learning visual rep- 045

resentations. 046

IR-based methods reconstruct images from cor- 047

rupted versions (Vincent et al., 2010; Pathak et al., 048

2016; Chen et al., 2020; He et al., 2022; Wei et al., 049

2022; Xie et al., 2022b; Gidaris et al., 2018) but 050

primarily capture low-level features, often over- 051

looking high-level semantics crucial for tasks like 052

disease classification and tumor segmentation (Liu 053

et al., 2023c,b; He et al., 2022). Meanwhile, CL- 054

based vSSL methods (Tang et al., 2022; Zhou et al., 055

2023; Goncharov et al., 2023) enforce feature simi- 056

larity between patches from the same image while 057

treating patches from different images as negatives. 058

However, these approaches risk semantic misalign- 059

ment, as positive pairs may originate from anatom- 060

ically distinct regions, while negative pairs might 061

share similar structures (Jiang et al., 2023), leading 062
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to suboptimal feature learning.063

Medical Vision-Language Pre-training (Med-064

VLP) has emerged as a promising approach to065

enhance representation learning by aligning medi-066

cal images with radiology reports, providing clin-067

ically relevant supervision and improving feature068

informativeness in 2D medical imaging tasks (Rad-069

ford et al., 2021; Liu et al., 2023a; Wang et al.,070

2022; Wan et al., 2023). However, its application071

to 3D medical images remains underexplored due072

to dataset scarcity and the lack of large-scale pub-073

lic benchmarks. Moreover, naive CLIP-style align-074

ment relies solely on language supervision at the075

whole-volume level, limiting its ability to capture076

fine-grained 3D visual features.077

To address these challenges, we propose T3D, a078

framework designed to enhance 3D MedVLP. Our079

key contributions include:080

• We propose T3D, which integrates Global081

Cross-modal Alignment (GCA) and Text-082

informed Multi-view Alignment (TMA), a083

novel mechanism that refines visual represen-084

tations by leveraging text-informed guidance085

to enforce consistency across different views086

while capturing fine-grained visual features.087

• To train T3D, we curate CT-3DVLP, the first088

large-scale public dataset including 52,639089

paired CT volumes and radiology reports, es-090

tablishing a comprehensive benchmark for 3D091

MedVLP research.092

• Benefiting from the novel alignment, T3D093

demonstrates superior performance across var-094

ious downstream tasks in both unimodal and095

cross-modal settings, including zero-shot and096

fine-tuned classification, retrieval, report gen-097

eration, and segmentation.098

2 Related Work099

VLP for 2D Medical Images VLP has been exten-100

sively explored for 2D medical imaging to bridge101

visual and textual modalities. Early works such as102

ConVIRT (Zhang et al., 2020b) introduced global103

image-text alignment, later refined by GLoRIA and104

MGCA (Huang et al., 2021; Wang et al., 2022),105

which incorporated local alignment for better cross-106

modal representation learning. Other methods, in-107

cluding Med-UniC (Wan et al., 2023), mitigated108

language biases, while MedKLIP (Wu et al., 2023a)109

and KAD (Zhang et al., 2023) leveraged domain-110

specific knowledge. Additionally, reconstruction-111

based approaches like MRM (Zhou et al.) and 112

PRIOR (Cheng et al., 2023) utilized image-text to- 113

ken prediction tasks, further improved by (Huang 114

et al., 2023b) through adaptive token weighting. 115

Despite these advancements, 2D VLP methods do 116

not directly transfer to 3D imaging. The volumetric 117

nature of 3D data introduces challenges in aligning 118

3D scans with textual reports due to high compu- 119

tational costs. While patch-based methods (Tang 120

et al., 2022; Goncharov et al., 2023; Jiang et al., 121

2023) attempt to retain local information, they of- 122

ten lead to misalignment between cropped sub- 123

volumes and full medical reports. These limitations 124

highlight the need for specialized VLP approaches 125

tailored for 3D medical imaging. 126

VLP for 3D Medical Images While VLP has ad- 127

vanced general 3D vision (Xue et al., 2023a; Zeng 128

et al., 2023; Xue et al., 2023b; Chen et al., 2023b), 129

these methods focus on sparse 3D point clouds 130

and are not directly applicable to dense medical 131

volumes like CT scans. Early 3D MedVLP ap- 132

proaches (Chen et al., 2023c,a) attempted to align 133

full medical reports with cropped sub-volumes, in- 134

troducing misalignment biases. To address this 135

issue, (Wu et al., 2023b; Lei et al., 2023) proposed 136

downsampling high-resolution volumes for report 137

alignment, but this leads to a loss of anatomical 138

details crucial for segmentation and diagnosis. 139

Additionally, most 3D MedVLP works rely on 140

private datasets (Cao et al., 2024; Shui et al., 2025), 141

limiting reproducibility. They also heavily depend 142

on external annotation tools, such as segmenting 143

each anatomical region and categorically labeling 144

volumes, which introduces additional annotation 145

costs and potential inconsistencies. These limita- 146

tions underscore the need for a publicly available 147

dataset to advance open 3D MedVLP research. 148

vSSL for 3D Medical Imaging vSSL has been 149

widely explored in 3D medical imaging, with im- 150

age restoration (IR) and contrastive learning (CL) 151

as dominant strategies. IR-based methods recon- 152

struct corrupted images (He et al., 2022; Wei et al., 153

2022; Xie et al., 2022b) but primarily capture low- 154

level features, often overlooking high-level seman- 155

tics crucial for diagnosis (Liu et al., 2023c,b; He 156

et al., 2022). While recent works (Chen et al., 2019; 157

Zhou et al., 2019; Wu et al., 2024b) incorporated 158

anatomical priors, comprehensive semantic under- 159

standing remains underexplored. CL-based meth- 160

ods (Chaitanya et al., 2020; Taleb et al., 2020; Xie 161

et al., 2022a) enforce similarity between patches 162

from the same image while treating patches from 163
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different images as negatives. However, positive164

pairs may originate from distinct anatomical re-165

gions, leading to semantic misalignment (Jiang166

et al., 2023). vox2vec (Goncharov et al., 2023) in-167

troduced voxel-level alignment, but treating neigh-168

boring voxels as negatives introduces bias. Despite169

advancements, existing vSSL methods lack clinical170

knowledge integration, limiting their effectiveness171

in real-world medical tasks.172

3 Method173

3.1 Extracting Visual and Text Features174

Let D = {(Vi, Ri)}Ni=1 be a dataset of N samples,175

where each 3D medical image176

Vi ∈ R1×H×W×S177

(with height H , width W , and slices S) is paired178

with a radiology report Ri. We define a 3D visual179

encoder fθ(·) (e.g., 3D ResNet-50) that maps an180

input volume Vi to a latent feature map Fi:181

Fi = fθ(Vi) ∈ Rdf×h×w×s182

where df is the number of output channels, and183

h,w, s are spatial dimensions. A global 1D em-184

bedding is obtained via average pooling over all185

spatial dimensions, followed by a learnable linear186

projection:187

zvi = P v
(
AvgPool(Fi)

)
∈ R768.188

For text, we use Med-CPT (Jin et al., 2023) as189

the text encoder gϕ(·) to obtain token embeddings190

from the radiology report Ri:191

Ti = gϕ(Ri) ∈ RLr×dr ,192

where Lr is the token length and dr is the em-193

bedding dimension. We extract the [CLS] token194

embedding and project it into the shared space:195

zri = P r
(
t
[CLS]
i

)
∈ R768, where t

[CLS]
i ∈ Rdr .196

3.2 Global Cross-Modal Alignment197

To learn the global cross-modal representation, we198

align 3D volumes with their corresponding reports199

using a CLIP loss, as shown in the left part of200

Figure 2. Given a batch of B samples, the loss201

LGCA is defined as:202

LGCA = −
B∑
i=1

log
exp

(
sim(zvi , z

r
i )/τ

)∑B
j=1 exp

(
sim(zvi , z

r
j)/τ

) ,203

where sim(·, ·) denotes the dot product similar- 204

ity, and we set τ = 0.07 following (Radford et al., 205

2021). 206

3.3 Text-Informed Multi-View Alignment 207

Motivation. While the CLIP loss aligns 3D vol- 208

umes with their corresponding radiology reports 209

at a global level, it fails to capture fine-grained 210

visual features crucial for understanding 3D med- 211

ical imaging. To address this, we propose a text- 212

informed multi-view alignment scheme that en- 213

courages consistency across multiple local 3D sub- 214

volumes paired with the same report, as illustrated 215

in Figure 1. 216

Generating Local Views. To enable the learning 217

of fine-grained visual features, we generate mul- 218

tiple 3D local views from each Vi by randomly 219

cropping2 sub-volumes of size 128× 128× 64: 220

{V m
i }Mm=1 = RandomCrop

(
Vi, 128×128×64

)
, 221

222
V m
i ∈ R1×128×128×64. 223

Passing each V m
i through the 3D encoder fθ(·) 224

yields the corresponding feature map: 225

Fm
i = fθ

(
V m
i

)
∈ Rdf×h

′×w′×s′ , 226
227

h′ < h, w′ < w, s′ < s. 228

Text-Informed Local Feature Enhancement. 229

To mitigate biases in local view alignment, we in- 230

corporate text-informed features into each local 231

3D view. Treating views from different volumes 232

as negatives can be problematic, as they may con- 233

tain similar anatomical regions. Similarly, views 234

from the same volume may originate from distinct 235

regions, making naïve positive pairing unreliable. 236

Since each volume is paired with a unique ra- 237

diology report, we leverage textual information to 238

refine local visual representations, as shown in the 239

right part of Figure 2. This integration ensures 240

that semantically similar regions across different 241

volumes are not misclassified as negatives while re- 242

fining positive associations within the same volume. 243

By conditioning local views on text, we reduce bias 244

in positive and negative pair selection before align- 245

ment. 246

We extract text token embeddings Ti from the 247

text encoder gϕ(·) and reshape the local 3D feature 248

2We implement the random cropping using the MONAI
package https://docs.monai.io/en/stable/
transforms.html
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Figure 2: The T3D framework for learning multi-level 3D visual representations from corresponding medical
reports. Left: To learn global cross-modal representations, we align the full 3D volume Vi with its corresponding
medical report Ri using the loss function LGCA. The output embeddings zvi and zri are optimized to encourage the
matching of paired visual and textual features. Right: To further capture fine-grained visual representations, we
first generate M local views V m

i from the same volume using random cropping. The same visual encoder, as used
in the GCA framework, is applied to obtain the embeddings for these local views. We then refine these embeddings
using the report embedding Ti, encouraging the local views from the same volume-report pair to become more
similar in the latent space by minimizing the loss LTMA.

map Fm
i into a sequence:249

Vm
i = Reshape(Fm

i ) ∈ RLv×df ,250

251

Lv = h′ × w′ × s′.252

A single-layer Transformer block Fψ(·) refines253

Vm
i using Ti as keys and values, followed by aver-254

age pooling to obtain the text-informed local em-255

bedding:256

ẑmi = AvgPool
(
Fψ(Vm

i ,Ti)
)
∈ Rdf .257

Multi-View Alignment. Since multiple local258

views {V m
i }Mm=1 are generated per volume-report259

pair, a naïve contrastive loss is unsuitable as it as-260

sumes one-to-one positive pairings. Instead, we261

assign each local view to one of B cluster labels,262

where B is the batch size, and each cluster label263

corresponds to a specific volume-report pair in the264

batch. A linear projection layer is used to predict265

the cluster assignment probability:266

LTMA = −
B∑
i=1

M∑
m=1

log
exp

(
f(ẑmi )ci/τ

)∑
j′ exp

(
f(ẑmi )j′/τ

) .267

where f(·) is a linear projection function, and268

ci is the assigned cluster label for the correspond-269

ing volume-report pair. This objective encourages270

views from the same pair to cluster together while271

distinguishing them from those of different pairs.272

3.4 Overall Objective 273

The final optimization objective of T3D aims to 274

learn both global and local representations through: 275

Ltotal = LGCA + LTMA. 276

4 Experiments 277

Pre-training Dataset. To construct the largest 278

publicly available dataset for 3D MedVLP, we cu- 279

rate data from three public resources: BIMCV- 280

R (Chen et al., 2024), CT-RATE (Hamamci et al., 281

2024a), and INSPECT (Huang et al., 2023a). We 282

include all available samples from these datasets 283

for pretraining, except for the official test set of 284

CT-RATE. Additionally, we split the test set from 285

BIMCV-R for later cross-modal tasks, following 286

(Chen et al., 2024). For preprocessing, we follow 287

the RadGenome-CT (Zhang et al., 2024) pipeline to 288

extract unique CT-report pairs. In total, we obtain 289

52,639 samples, with 6,548 samples from BIMCV- 290

R, 25,691 samples from CT-RATE, and 20,400 291

samples from INSPECT for pre-training. All CT 292

volumes are resampled to a spacing of [1,1,4] mm, 293

resized to 256× 256× 128, and normalized to the 294

range [0,1] after truncating Hounsfield unit (HU) 295

values to [−1000,+1000]. 296

Pre-training Implementation. We use a 3D 297

ResNet503 as the visual encoder and MedCPT (Jin 298

et al., 2023) as the text encoder. The AdamW opti- 299

mizer is employed with a learning rate of 1× 10−3 300

3We use the implementation from https://docs.
monai.io/en/stable/networks.html
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and a cosine annealing scheduler. We pretrain for301

50 epochs with a 5-epoch warmup. The batch size302

is set to 32 per GPU, and we implement our training303

on 8 A100-80G GPUs, resulting in a total effective304

batch size of 256. No data augmentation is applied305

to the volumes to preserve spatial integrity and in-306

tensity. We only use random cropping to generate307

three local views of size 128 × 128 × 64. In this308

study, we generate three local views for each 3D309

volume-report pair.310

4.1 Downstream Tasks Configuration311

We evaluate T3D on a variety of downstream tasks:312

Classification: We assess zero-shot and fine-tuned313

classification on the CT-RATE (Hamamci et al.,314

2024a) and CC-CCII (Zhang et al., 2020a) official315

test set.316

Cross-modal Retrieval: We evaluate zero-shot317

image-to-text and text-to-image retrieval on the318

BIMCV-R dataset following (Chen et al., 2024).319

Report Generation: We evaluate this task on320

the official test set of CT-RATE (Hamamci et al.,321

2024a), implementing it based on the LLaVA ar-322

chitecture (Liu et al., 2024). We use Qwen2.5-323

7B-Instruct 4 as the LLM backbone and employ324

the visual encoder from our work and baselines to325

extract the visual representation.326

Segmentation: We perform multi-organ segmenta-327

tion on the AMOS (Ji et al., 2022) dataset and lung328

tumor segmentation on the MSD-Lung (Antonelli329

et al., 2022a) dataset, following the protocols in330

VoCo (Wu et al., 2024a,b).331

The detailed configurations and implementations332

for these downstream tasks are provided in Ap-333

pendix A.334

4.2 Baseline Selection335

We compare T3D with several state-of-the-art336

(SOTA) visual representation learning methods via337

vSSL and language supervision:338

3DMAE (Chen et al., 2023d): A vSSL-based339

model that reconstructs pixel-level features from340

masked volumes to learn low-level visual represen-341

tations.342

VoCo (Wu et al., 2024b): A vSSL-based model343

that crops sub-volumes and predicts their locations344

in the original volume, learning relative local visual345

features.346

MRM (Zhou et al.): A 2D MedVLP method that347

applies masked image and text modeling, leverag-348

4https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

ing cross-modal reconstruction to learn joint repre- 349

sentations. 350

IMITATE (Liu et al., 2023a): A 2D MedVLP 351

method that aligns multi-level visual features with 352

different sections of the report. 353

CT-CLIP (Hamamci et al., 2024a): A 3D Med- 354

VLP model that aligns the entire volume with text 355

using the original CLIP loss. 356

Merlin (Blankemeier et al., 2024): A 3D Med- 357

VLP model trained on in-house data using CLIP- 358

style alignment. 359

For 3DMAE (Chen et al., 2023d), we use their 360

official code to reimplement them on our curated 361

dataset since they do not release official pretrained 362

weights. For MRM (Zhou et al.) and IMI- 363

TATE (Liu et al., 2023a), we replace their 2D visual 364

encoder with a 3D version for a fair comparison 365

and use 3D input. For VoCo (Wu et al., 2024b), 366

Merlin (Blankemeier et al., 2024), and CT-CLIP 367

(Hamamci et al., 2024a), we use their official pre- 368

trained weights to ensure a fair comparison. 369

5 Results 370

We evaluate T3D across a range of downstream 371

tasks, comparing its performance against several 372

state-of-the-art models. Our results are presented 373

for each task in terms of standard evaluation met- 374

rics, and we discuss the performance of T3D in 375

comparison to the baselines. 376

5.1 Zero-shot and Fine-tuned Classification 377

For zero-shot classification and the fine-tuning set- 378

ting, T3D outperforms all baselines, achieving 379

the highest accuracy across both the CT-RATE 380

(Hamamci et al., 2024a) and CC-CCII (Zhang 381

et al., 2020a) datasets. Notably, it surpasses vi- 382

sual SSL methods and language supervision meth- 383

ods, demonstrating the superiority of our proposed 384

framework in terms of precision, AUC, and F1- 385

score, as shown in Table 1. Furthermore, in the 386

fine-tuning setting, all language supervision base- 387

lines reach or even outperform the visual SSL meth- 388

ods (Chen et al., 2023d; Wu et al., 2024b) across 389

both datasets. This demonstrates the necessity of 390

designing a VLP method to learn more representa- 391

tive 3D visual features. 392

5.2 Cross-modal Retrieval 393

In zero-shot cross-modal retrieval, we implement 394

both image-to-text and text-to-image retrieval tasks 395

to evaluate how well the image and text representa- 396

tions are aligned. T3D outperforms all baselines on 397
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Method
Zero-Shot Classification Fine-Tune Classification Cross-Modal Retrieval

CT-RATE CC-CCII CT-RATE CC-CCII BIMCV-R (Text to Image) BIMCV-R (Image to Text)

Prec. AUC ACC F1 Prec. AUC ACC F1 Prec. AUC ACC F1 Prec. AUC ACC F1 R@1 R@5 R@10 R@1 R@5 R@10

Visual SSL only

3DMAE (Chen et al., 2023d) / / / / / / / / 30.1 70.4 64.7 64.8 82.7 88.4 87.6 85.4 / / / / / /
VoCo (Wu et al., 2024b) / / / / / / / / 32.0 72.0 68.1 69.4 87.9 90.9 90.83∗ 88.7 / / / / / /

Language Supervision

MRM (Zhou et al.) 27.6 67.3 61.4 65.2 65.2 82.1 78.5 80.0 32.4 74.8 67.5 68.6 85.2 90.7 88.0 88.5 3.0 7.2 21.3 3.2 7.6 20.9
IMITATE (Liu et al., 2023a) 29.5 68.9 63.6 66.4 68.6 83.7 80.2 81.5 33.0 74.3 68.2 69.7 86.4 91.5 89.2 89.7 3.1 7.9 21.5 3.6 7.8 21.7
CT-CLIP (Hamamci et al., 2024a) 30.6∗ 70.4∗ 65.1∗ 69.1∗ 71.6 84.3 82.3 83.0 34.2∗ 75.0∗ 69.2∗ 72.8∗ 90.8 92.0 91.4 90.3 3.9 8.3 22.4 3.7 8.5 22.9
Merlin (Blankemeier et al., 2024) 33.7∗ 72.8∗ 67.2∗ 70.9∗ 73.2 86.4 85.0 85.9 37.1 76.2 71.0 75.0 91.5 91.9 91.5 89.6 4.0 8.7 23.5 4.1 8.9 23.4

T3D (Ours) 35.1 73.7 69.0 72.5 75.0 89.4 88.3 87.2 39.5 80.2 76.3 77.8 93.1 93.2 92.7 92.1 4.7 10.0 25.6 4.9 10.4 25.9

Table 1: Performance comparison of visual SSL and language supervision methods on zero-shot classification,
fine-tune classification, and cross-modal retrieval tasks. ‘/’ indicates that visual SSL methods are unable to perform
cross-modal tasks since they only learn representations from images. ‘∗’ denotes results directly cited from (Shui
et al., 2025; Wu et al., 2024b). The best results in each column are highlighted in bold.

Method AMOS MSD-Lung

Dice Dice

Visual SSL only

3DMAE (Chen et al., 2023d) 82.71∗ 65.32
VoCo (Wu et al., 2024b) 88.06∗ 68.99∗

Language Supervision

MRM (Zhou et al.) 85.12 65.67
IMITATE (Liu et al., 2023a) 84.51 67.31
CT-CLIP (Hamamci et al., 2024a) 83.44 68.37
Merlin (Blankemeier et al., 2024) 84.74 68.89

T3D (Ours) 89.83 70.12

Table 2: Semantic segmentation performance compar-
ison of visual SSL and language supervision methods
on AMOS and MSD-Lung datasets. Dice scores are
reported for both datasets. ‘∗’ denotes results directly
cited from (Wu et al., 2024b). The best results in each
column are highlighted in bold.

the R@1, R@5, and R@10 metrics in both tasks.398

This demonstrates the superiority of our framework399

and the benefits of the multi-view alignment strat-400

egy in enhancing cross-modal representation learn-401

ing.402

5.3 Report Generation403

For the report generation task, as shown in Table 3,404

we use lexical metrics such as BLEU-1 to BLEU-4405

and ROUGE-1, ROUGE-2, and ROUGE-L to eval-406

uate the quality of generated reports. Additionally,407

we utilize clinical efficacy metrics, including Pre-408

cision, Recall, and F1, following (Hamamci et al.,409

2024b), to assess the relevance and accuracy of410

the reports. On both types of metrics, T3D outper-411

forms all baselines, demonstrating the superiority412

of our framework in generating high-quality reports413

across both lexical and clinical dimensions.414

Furthermore, all language supervision-based415

visual encoders outperform the visual SSL-only416

methods, as shown in Table 3. This highlights that,417

on the report generation task, the multimodal rep-418

resentations learned through language supervision 419

result in better performance, benefiting the task’s 420

specific requirements. Sample generated reports 421

are shown in Figure 4. As shown, our method 422

detects the correct patterns, including subtle ones 423

such as lymph nodes. 424

5.4 Semantic Segmentation 425

We further evaluate the dense visual representa- 426

tions learned from our method using multi-organ 427

segmentation on the AMOS (Ji et al., 2022) and 428

MSD-Lung tumor segmentation (Antonelli et al., 429

2022b) datasets. The results, as shown in Table 2, 430

demonstrate that our method, T3D, outperforms all 431

other methods. Although VoCo (Wu et al., 2024b) 432

substantially outperforms other language supervi- 433

sion methods on the organ segmentation task, it 434

does not achieve the same advantage on the tumor 435

segmentation task. This highlights the limitations 436

of visual SSL methods, which may not fully cap- 437

ture the complexities of tumor segmentation. How- 438

ever, our method, T3D, still surpasses VoCo (Wu 439

et al., 2024b), which can be attributed to our multi- 440

view alignment approach. This approach allows for 441

learning multi-level visual features, significantly 442

benefiting the segmentation task. 443

6 Analysis 444

Loss Function Ablation: We ablate the LGCA 445

and LTMA losses, finding that the best perfor- 446

mance is achieved when both losses are used. Re- 447

moving LGCA reduces performance on the classifi- 448

cation task due to the lack of global representation, 449

while removing LTMA significantly harms seg- 450

mentation and report generation tasks due to the 451

loss of local visual feature learning. These results 452

suggest that using both losses is essential to boost 453

performance across all tasks, as shown in Table 454

4(a). 455
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Method
Report Generation on CT-RATE

Lexical Metrics Clinical Efficacy Metric

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L Precision Recall F1 GREEN RaTEScore

Visual SSL only

3DMAE (Chen et al., 2023d) 26.5 17.9 13.2 10.3 24.0 19.4 21.2 13.1 9.4 11.0 26.9 35.3
VoCo (Wu et al., 2024b) 30.3 23.7 18.5 15.2 30.1 25.1 27.4 16.3 13.2 14.6 31.7 39.6

Language Supervision

MRM (Zhou et al.) 34.7 26.9 20.9 16.7 33.4 27.2 29.6 20.4 15.3 17.5 36.7 44.9
IMITATE (Liu et al., 2023a) 41.2 31.7 25.1 21.0 37.9 31.1 32.4 25.8 17.2 20.7 40.2 49.1
CT-CLIP (Hamamci et al., 2024a) 44.4 34.4 27.9 23.6 40.1 33.8 30.9 31.7 18.1 25.3 42.9 53.1
Merlin (Blankemeier et al., 2024) 47.9 35.6 28.2 24.1 41.5 35.0 36.0 33.1 19.3 25.8 46.4 56.5

T3D (Ours) 50.1 38.3 30.4 26.2 43.8 36.7 37.8 35.5 20.7 27.4 49.2 59.6

Table 3: Comparison of methods on the report generation task on the CT-RATE official test set using both lexical and
clinical efficacy metrics. Lexical metrics include BLEU-1 to BLEU-4 and ROUGE-1, ROUGE-2, and ROUGE-L
scores, while clinical metrics include Precision, Recall, and F1 following (Hamamci et al., 2024b), as well as
GREEN (Ostmeier et al., 2024) and RaTEScore (Zhao et al., 2024). The best results in each column are highlighted
in bold.

Figure 3: Comparison of T3D (Ours) and CT-CLIP
(Hamamci et al., 2024a) across six tasks, showing AUC,
Dice, RaTES score, and R@1 for varying pre-training
data scales from 10k to the full dataset. T3D consistently
outperforms CT-CLIP across all data scales and tasks,
particularly with larger datasets.

Text-informed Alignment: We investigate the im-456

pact of incorporating the text-informing strategy457

in TMA, as shown in Table 4(b). Removing text-458

informing results in a significant drop in perfor-459

mance, particularly for tasks like report genera-460

tion and segmentation, which rely on learning fine-461

grained visual features. This decline may be due462

to the absence of report information, causing the463

local view embeddings to become ambiguous and464

harder to associate with their source volume. With-465

out text-informing, the model may confuse regions466

from different volumes.467

Number of Cropped Local Views: We investigate468

the impact of the number of local views used dur-469

ing training. Reducing the number of views from470

3 to 2 or 1 leads to a decrease in performance, par-471

ticularly for multi-organ segmentation and report472

generation tasks. This suggests that a higher num-473

ber of cropped local views encourages the model to474

learn more comprehensive spatial features. When475

increasing the number of views to 4, no further476

Loss Components Zero-shot Classification Segmentation Report Generation

LGCA LTMA CT-RATE (AUC) AMOS (Dice) CT-RATE (RaTEScore)

✓ 71.8 85.0 56.3
✓ 71.4 85.2 55.9

✓ ✓ 73.7 89.8 59.6

(a) Loss Function Ablation.

LTMA
Zero-shot Classification Segmentation Report Generation

CT-RATE (AUC) AMOS (Dice) CT-RATE (RaTEScore)

w/ Text-Informing 73.7 89.8 59.6
w/o Text-Informing 72.2 86.5 57.6

(b) Effect of Text-Informing on LTMA.

Number of Cropped Views Zero-shot Classification Segmentation Report Generation

CT-RATE (AUC) AMOS (Dice) CT-RATE (RaTEScore)

1 70.4 86.4 56.5
2 71.8 87.9 57.1
3 73.7 89.8 59.6
4 73.0 88.3 59.1

(c) Effect of Number of Cropped Local Views.

Table 4: Ablation study results for T3D. (a)
Comparison of loss functions LGCA and LTMA. (b)

Impact of text-informed alignment in LTMA. (c) Effect
of the number of cropped local views used during

pre-training. Best results are bolded.

improvement is observed. Based on this, we select 477

3 local views as the optimal choice for training, as 478

shown in Table 4(c). 479

Model Architecture Hyperparameters: We ab- 480

late the number of transformer layers in the text- 481

informed block Fψ(·), varying the layers from 1 482

to 3. The results show that performance saturates 483

after a single transformer layer, with minimal im- 484

provement observed by adding more layers. This 485

suggests that a single transformer layer is sufficient 486

for text-informed alignment, and further layers do 487

not contribute significantly to the model’s perfor- 488

mance, as detailed in Table 5. 489

Model and Data Scalability: We evaluate the im- 490

pact of both model and data scale on T3D’s per- 491

formance. As shown in Figure 3, we analyze the 492

effect of varying pre-training data scales on T3D 493
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Figure 4: Report generation results of Merlin (Blankemeier et al., 2024) and T3D (Ours). Text highlighted in
the same color indicates correct predictions, while bold and underlined text marks incorrect parts. Merlin shows
incorrect patterns in various areas, whereas T3D provides more accurate results, particularly in the detection of
lymph nodes and other pathologies.

Number of Transformer Layers Zero-shot Classification Segmentation Report Generation

CT-RATE (AUC) AMOS (Dice) CT-RATE (RaTEScore)

1 73.7 89.8 59.6
2 73.5 89.3 59.4
3 73.3 89.5 59.3

Table 5: Performance comparison of models with differ-
ent transformer layer counts during text-informing for
LTMA. Best performance for each task is bolded.

and CT-CLIP (Hamamci et al., 2024a). Our method494

consistently surpasses CT-CLIP (Hamamci et al.,495

2024a) from 10k to the full pre-training dataset,496

demonstrating the effectiveness of T3D across dif-497

ferent data scales. Additionally, we evaluate the498

scalability of our model by testing different ResNet499

architectures (ResNet18, ResNet34, and ResNet50)500

as visual encoders. As visualized in Figure 5, T3D501

shows consistent performance improvements as502

the model scale increases, highlighting its ability503

to leverage larger models for better performance504

across multiple tasks.505

7 Conclusion506

In this work, we present the first and largest pub-507

licly available 3D medical VLP dataset, named CT-508

3DVLP, curated entirely from public resources.509

We also introduce the T3D framework, which510

leverages both global alignment and a novel text-511

informed multi-view alignment strategy to en-512

hance learning and improve performance across513

various tasks. We demonstrate the effectiveness514

of T3D on six downstream tasks, including both515

uni-modal and cross-modal tasks, and show that it516

outperforms existing methods, such as vSSL and517

other language supervision approaches that rely518

Figure 5: Performance of T3D pre-trained on the pro-
posed CT-3DVLP dataset across six tasks, with varying
model scales: ResNet18, ResNet34, and ResNet50. The
results show consistent performance improvement as
the model scale increases.

on in-house data. Additionally, we highlight the 519

scalability of our method. We believe that T3D, 520

alongside the CT-3DVLP dataset, will make a sig- 521

nificant contribution to advancing research in the 522

3D medical VLP domain. 523
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Limitations524

While we propose the T3D framework and the525

largest publicly available CT-3DVLP dataset, there526

are several limitations. Even though we have col-527

lected nearly all publicly available 3D medical528

image-report pairs, the dataset still remains limited529

in size compared to the large-scale datasets used530

in models like CLIP (Radford et al., 2021). With531

only 50k samples, it falls short of the million-level532

datasets typically used in such models. Addition-533

ally, due to the complexities of 3D medical data,534

it is impractical to directly leverage powerful 2D535

visual encoders, limiting the performance of our536

model. Computational constraints also led us to use537

ResNet-50 as the visual encoder, rather than more538

advanced or larger vision models. These limita-539

tions point to areas for future work, such as dataset540

expansion and the integration of more sophisticated541

3D vision encoders.542
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A Downstream Task Details857

Zero-shot Classification: We use the CT-RATE858

dataset (Hamamci et al., 2024a) for zero-shot classi-859

fication, following the protocol in (Hamamci et al.,860

2024a). T3D is applied without fine-tuning, using861

the pretrained model for direct classification with862

the disease name as the category prompt. Eval-863

uation metrics include precision, AUC, accuracy,864

and F1 score. Image preprocessing is the same as865

during pretraining.866

Fine-tuned Classification: For fine-tuned classifi-867

cation, we follow the fine-tuning procedure from868

(Hamamci et al., 2024a) on the CT-RATE dataset.869

The images are preprocessed as in pretraining, and870

T3D is fine-tuned on the training set and evaluated871

on the test set. Metrics include accuracy, precision,872

and recall. We use a batch size of 32, a learning873

rate of 1 × 10−3, epochs as 50, and cosine learn-874

ing rate decay. Experiments are run on a single875

A100-80GB GPU.876

Zero-shot Cross-modal Retrieval: For zero-shot877

cross-modal retrieval, we use the BIMCV-R dataset878

(Chen et al., 2024) and follow (Chen et al., 2024).879

Both image and report are embedded into a latent880

space, and cosine similarity is computed to iden-881

tify the top-K matches. Retrieval performance is882

measured using recall@1-10. Image preprocessing883

is consistent with the pretraining implementation.884

Report Generation: For report generation, we use885

the official training set from the CT-RATE dataset886

(Hamamci et al., 2024a) and the official test set for887

evaluation. Following LLaVA (Liu et al., 2024), we888

use Qwen2.5-7b-Instruct as the LLM backbone and889

the pretrained visual encoder to extract image em-890

beddings. A two-layer MLP serves as the connec-891

tor, and training is done in two stages: first training892

the connector, then freezing the ViT and fine-tuning893

both the connector and the LLM. Generated reports894

are evaluated using BLEU-1 to 4 and ROUGE-1,895

2, L scores. Additional clinical efficacy metrics896

are adopted from (Hamamci et al., 2024b), with897

further evaluation using GREEN and RaTEScore898

(Ostmeier et al., 2024; Zhao et al., 2024).899

Segmentation Tasks: For multi-organ segmenta-900

tion, we use the AMOS (Ji et al., 2022) dataset,901

following the protocols in (Wu et al., 2024a). For902

lung tumor segmentation, we use the MSD-Lung903

tumor dataset (Antonelli et al., 2022b). A 3D U-904

Net architecture is employed, with a pretrained905

visual encoder and a randomly initialized decoder.906

Input volumes are normalized to a spacing of 1mm907

along the three axes, with voxel intensities trun- 908

cated within the HU range of [-1000, 1000] and 909

normalized to [0,1]. During training, the entire vol- 910

ume is used, with augmentations applied at proba- 911

bilities of 0.5 for random flipping, 0.3 for rotation, 912

0.1 for intensity scaling, and 0.1 for shifting. The 913

Dice score is used as the evaluation metric, adher- 914

ing to the fine-tuning procedure from the official 915

VoCo repository 5. 916

5https://github.com/Luffy03/VoCo
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