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A dog	is	running	from	left	to	
right on the street.	

.

Add this lesser	
panda to this video.

A	man	wearing	a	yellow	hat	
with	panda	ears is	performing	

a	magic	show.

A	girl	in	a	yellow	robe is	riding	
a	horse	across	the	grassland.

Remove	a	fish	from	the	video.
The	camera	moves	through	the	

ancient	town,	revealing	
multiple	historic	buildings.	

A	girl	is	sitting	on	the	ground,	
intently	telling	a	story	while	
gesturing	with	her	hands.

Kakashi	is	practicing	martial	
arts	with	another	person.

Figure 1: OmniV2V comprehensive capability demonstration. We showcase the excellent genera-
tion and editing results of OmniV2V, with the original input and the generated videos for each task
displayed in the figure.

ABSTRACT

The emergence of Diffusion Transformers (DiT) has brought significant advance-
ments to video generation, especially in text-to-video and image-to-video tasks.
Although video generation is widely applied in various fields, most existing models
are limited to single scenarios and cannot perform diverse video generation and
editing through dynamic content manipulation. We propose OmniV2V, a video
model capable of generating and editing videos across different scenarios based
on various operations, including: object movement, object addition, mask-guided
video edit, try-on, inpainting, outpainting, human animation, and controllable
character video synthesis. We explore a unified dynamic content manipulation
injection module, which effectively integrates the requirements of the above tasks.
In addition, we design a visual-text instruction module based on LLaVA, enabling
the model to effectively understand the correspondence between visual content and
instructions. Furthermore, we build a comprehensive multi-task data processing
system. Since there is data overlap among various tasks, this system can effi-
ciently provide data augmentation. Using this system, we construct a multi-type,
multi-scenario OmniV2V dataset and its corresponding OmniV2V-Test benchmark.
Extensive experiments show that OmniV2V works as well as, and sometimes
better than, the best existing open-source and commercial models for many video
generation and editing tasks. The source code will be released publicly.

1 INTRODUCTION

In recent years, Diffusion Transformers (DiT) has led to significant advancements in video generation
models. Text-to-video and image-to-video generation Zhou et al. (2024); Blattmann et al. (2023a;b);
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Guo et al. (2023); Zhou et al. (2022); Gupta et al. (2023); Wang et al. (2023); Ho et al. (2022); Brooks
et al. (2022); Wang et al. (2020); Singer et al. (2022); Li et al. (2018); Villegas et al. (2022); Lin et al.
(2025a) have attracted increasing attention as they approach the threshold of practical application. In
addition, downstream tasks based on these pre-trained models have become increasingly diverse, such
as object movement, object addition, mask-guided video edit, try-on, human animation, controllable
character video synthesis, inpainting, and outpainting. These tasks involve different content inputs,
reflecting the dynamic and complex nature of video generation and editing.

Current video generation models perform well on specific tasks, but each new task typically requires
dedicated modules and fine-tuning. For example, in character image animation, methods like Animate
Anyone Hu (2024) use ReferenceNet Hu (2024) to fit the reference character, while pose is driven by
adding it to the noise. For object addition, Get in Video Zhuang et al. (2025) uses a T5 encoder Chung
et al. (2024) to input instructions and compresses the original video and reference image through a 3D
VAE. In try-on, methods such as Tunnel Try-on Xu et al. (2024) and Stableviton Kim et al. (2024) use
ReferenceNet or ControlNet Zhang et al. (2023a) to inject clothing information, performing clothing
replacement by concatenating the source video, mask video, and other information along the channel
dimension. Although these approaches achieve impressive results, their complex structures and lack
of interoperability lead to significant waste of computational and data resources. We observe that
leveraging commonalities among tasks can help models better understand and perform across tasks.
For example, in mask-guided video editing, the role of text is often overlooked, either the text branch
is removed or only captions are encoded, largely ignoring the relationship between text and image. In
object movement task, boundingbox information dominates, and textual information is neglected.

To address the high deployment and training costs associated with task-specific video generation
models, we propose OmniV2V, a unified framework capable of both video generation and editing
according to diverse user operations. Building on the mainstream MM-DiT architecture, we adopt
HunyuanVideo Kong et al. (2024b) as our backbone to maximize model capacity and performance.
To enable flexible and effective handling of various tasks, we first introduce a unified dynamic
content manipulation injection module. This module integrates all dynamic content operation
inputs such as reference images, background videos, pose videos, and mask videos into a single
framework, leveraging multi-modal information. To distinguish between different visual modalities
across tasks, we employ a dynamic routing strategy that adaptively adjusts model inputs, allowing the
model to discern which content should be preserved and which should be modified. Furthermore, we
design a visual-text instruction module based on LLaVA Liu et al. (2023), enabling the model to
better understand and align visual content with textual instructions. Unlike HunyuanVideo, which
only uses LLaVA for text understanding and does not establish explicit connections between text and
visual content, our approach ensures that the model can accurately associate reference images with
textual concepts in the caption. This alignment is crucial for tasks involving reference images, as it
allows the reference character to act according to the given instructions.

To construct comprehensive datasets for various tasks, we utilize a multi-task data processing system
and leverage various open-source tools in combination to efficiently filter and select high-quality
data. To comprehensively evaluate our model’s performance on different tasks, we build task-specific
benchmarks. By comparing with existing open-source and commercial methods, it demonstrates the
strong competitiveness of our model. Extensive experiments show that our design can effectively unify
various video generation and editing tasks, significantly improving video dynamics and reference
consistency. In summary, our contributions can be summarized as follows:

• We propose OmniV2V, a unified video generation and editing framework that supports a
wide range of user operations, including object addition and replacement, video inpainting
and outpainting, pose-guided generation, and more.

• We introduce a unified dynamic content manipulation injection module that flexibly
integrates multi-modal inputs (e.g., reference images, background videos, and pose videos)
and employs a dynamic routing strategy to distinguish and process different visual modalities.

• We design a visual-text instruction module based on LLaVA, enabling the model to
effectively align and understand the correspondence between visual content and textual
instructions for more accurate and controllable video editing.

• We construct comprehensive multi-task datasets and task-specific benchmarks using a
multi-task data processing system and open-source tools, facilitating robust evaluation and
demonstrating the competitiveness of our approach against existing methods.
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2 RELATED WORK

Recent advancements in video generation have been significantly propelled by diffusion models,
which have evolved from static image synthesis (Rombach et al., 2022; Li et al., 2024; Labs, 2024) to
video generation (Hong et al., 2022; Zhang et al., 2023c). The field has seen substantial progress with
the development of large-scale frameworks (Liu et al., 2024; Yang et al., 2024; Kong et al., 2024a;
Wang et al., 2025; Zhou et al., 2024), which demonstrate unprecedented high-quality content creation
and a diverse array of generated results through extensive training on video-text pairs.

However, existing methods primarily focus on either text-guided video generation (Lin et al., 2025b)
or video generation based on a single reference image (Gao et al., 2023; Xu et al., 2025). These
approaches often struggle to provide fine-grained control over the generated content and precise
concept-driven editing, a limitation that persists despite advancements in multi-condition control.
While pioneering work such as VACE (Jiang et al., 2025) enables multi-condition capabilities through
multi-modal modeling, it fails to maintain identity consistency due to the excessive number of training
tasks. In this study, we focus on video editing and aim to enhance the consistency of characters or
objects through sophisticated data processing and the design of a video injection model.

3 METHODS

We propose a unified video editing approach, OmniV2V, which supports various primary control
signals as input to generate corresponding videos using textual information. Specifically, our method
allows for image, video, mask video, and pose video as conditional inputs to produce video content
specified by text. This enables key video editing tasks such as object replacement, object addition,
instruction-based editing, video inpainting, outpainting, pose-driven editing, and video face swapping.
In detail, we introduce a unified dynamic content manipulation injection module that categorizes
conditional inputs into image signals, mask signals, and pose signals, achieving decoupled processing
and conditional fusion of these three types. Through a dynamic conditional training strategy, the
model is capable of understanding individual signals while also integrating multiple signals, thereby
enhancing the control capability of each signal through multi-signal comprehension. Additionally,
we propose an instruction-based editing method based on LLaVA, which leverages a multimodal
understanding model to effectively interpret human instructions while integrating image signal
comprehension, thus enabling the conditional injection from text-image signals to video generation.

3.1 UNIFIED DYNAMIC CONTENT MANIPULATION INJECTION

Taking the controllable character video synthesis task as an example, we first resize the reference
images I1 and I2 to match the dimensions of the target video. We then use the 3DVAE pretrained
by HunyuanVideo13B to map the reference images I1 and I2 from the image space to the latent
space, obtaining latent representations v1 and v2, where w and h denote the width and height of the
latent, and c is the feature dimension. These latents are then processed by Tokenizer1 to obtain t1
and t2. Similarly, the noise video, masked video, mask video, and pose video are passed through the
3DVAE to obtain vnoise, vmd, vmv, and vp, respectively. Next, vnoise are processed by Tokenizer1 (K1)
to obtain and Tnoise. The pose feature vp is processed by PoseNet and Tokenizer3 (K3, initialized
with the weights of Tokenizer1) to obtain Tp.

Tnoise = K1(vnoise), Tp = K3(PoseNet(vp)) (1)

Latent-Fusion Video Tokenizer. Since the masked source video and mask video contain overlapping
information, where the masks in the mask video correspond to the masked regions in the source video.
We employ a latent fusion tokenizer to merge these two streams of tokens into a single set, thereby
effectively compressing the conditional information. Concretely, the 3D-VAE encoder encodes
both videos from the RGB channel into 16-dimensional latent representations. These features are
then concatenated to form a 32-dimensional feature vector. The original tokenizer in the pretrained
HunyuanVideo model consists of a 3D convolutional network that maps the 16-dimensional features
into a sequence of tokens. To leverage the robust tokenization capabilities of the pretrained tokenizer,
our latent fusion tokenizer inherits its weights and pads zeros in the 3D convolutional layer to
accommodate the 32-dimensional input. This process yields a set of fused tokens TM that integrate
information from both the source and mask videos.

TM = K2(ChannelCat(vmd, vmv)), (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The ouwen the ball

ball looks like <img2>

Text Prompt Tokens

Image Prompt Tokens

LLaVA

Pose video

Masked video Mask videoRef images

Add ball to video

Instruction Tokens

Noise
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VLLM-driven instruction fusion

Figure 2: The framework of OmniV2V. It consists of two main modules: a unified information injec-
tion module for integrating task requirements and a visual-text instruction module for understanding
visual-instruction correspondence.
Token Fusion. After obtaining the feature-aligned video tokens TM from the masked source and
mask videos, the pose tokens TP , and the noisy latent tokens Tnoise, a key challenge is to establish
effective correlations among them so that the noisy latent tokens can adequately incorporate the
conditional information. Previous image-editing approaches often utilize adapter-based methods
to inject conditions into the latent space. However, for the MMDIT-based HunyuanVideo model,
the large parameter count, high-dimensional feature space, and long video token sequences make it
difficult for a newly introduced module to map the conditional features into the latent space efficiently.
To address this, we propose a more efficient video condition injection mechanism that merges all
tokens. Specifically, we first apply a fully connected (FC) layer Projection to the two sets of condition
tokens, mapping them into the latent space of the video tokens. With the aligned video, mask, and
pose tokens, we directly sum them to form a new set of tokens. This approach enables effective
injection of conditional information into the video tokens. Furthermore, the learnable Projection
preceding the token addition allows the model to selectively retain or discard features, ensuring that
only the most salient conditional information is incorporated.

We then sum Tnoise, Tp, and TM , and concatenate the result with t1 and t2 along the token dimension,
together with TR, to obtain the final input H , as shown in the following equation:

H = TokenCat (t1, t2, {Projection(TM ) + Tnoise + Projection(Tp)}) (3)

PoseNet. Effectively inputting pose-guided information into the model poses a challenge. Since our
model is built on the HunyuanVideo framework, a video generation architecture based on MM-DiT.
We considered two commonly used conditional injection strategies from MM-DiT: (1)Token Addition
(as shown in figure 3(a)): This involves encoding the pose video into pose tokens using a tokenizer
and then adding them element-wise to the video tokens. (2) ControlNet-based Method (as shown in
figure 3(b)): This involves extracting pose information through an additional adapter network and
injecting it between the layers of the HunyuanVideo model. However, both methods were initially
designed for image generation and exhibit significant limitations when applied to video generation
tasks. In the Token Add approach, we found that pose information tends to leave residual artifacts in
the generated video, a problem that requires extended training time to mitigate. As for the ControlNet
method, since pose video inherently contains relatively sparse information and ControlNet’s structure
is complex with a large number of parameters, the model struggles to effectively learn the crucial
pose-guided signals, thereby affecting the injection effectiveness.

Dynamic Content Manipulation Injection. There are multiple video conditions in the model, but it
is not always necessary to use all of them during editing. For example, in some cases, the pose video
or mask video alone may suffice to generate the output, while in others, the mask video may need to
be combined with the source video. To facilitate flexible video editing with arbitrary combinations
of input conditions, we propose a dynamic content manipulation injection strategy. During training,
we randomly set some of the conditional inputs to empty, enabling the model to learn to handle
various combinations of conditional information. This unified training approach not only enhances
the model’s ability to process different sets of conditions but also improves its performance when
editing based on a single condition, thereby significantly boosting its overall editing capabilities.
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Figure 3: Three types of strategies for injecting pose information.

3.2 VLLM-DRIVEN INSTRUCTION-BASED EDITING

In previous video editing methods, the model typically overlooks the text prompt, resulting in output
videos determined solely by the input masked video and mask video. However, the absence of a text
prompt significantly limits the controllability of these methods. To address this limitation, we propose
a VLLM-driven, instruction-based editing module that leverages the strong multimodal understanding
capabilities of the pretrained LLaVA model to enable instruction-guided editing. Specifically, we
decompose the text tokens in LLaVA into three components: (1) instruction tokens, which encode
the user-provided editing instruction (i.e., what to edit); (2) text prompt tokens, which describe the
content of the video the user wishes to generate; and (3) image prompt tokens, which incorporate
a target image into the LLaVA text space. For example, to add a cat to a source video depicting a
beach scene, the instruction prompt could be “Add a cat to the video,” the text prompt might be “A
cat is playing on the beach,” and the image prompt could be “The cat looks like <image>.” To clearly
separate these three sets of tokens, we follow HunyuanCustom Hu et al. (2025) and insert a <SEP>
token between them. The concatenated tokens are then input into the LLaVA model, which, through
its autoregressive multimodal modeling capability, establishes correlations among the three sets of
tokens to produce output text tokens.

Since the CLIP image encoder in LLaVA primarily captures high-level semantic features and may
lose fine-grained image details, we additionally employ a 3D-VAE to encode the image, mapping it
into the latent space while preserving detailed information. To effectively inject these image tokens
into the model, we position the image along the temporal axis of the video tokens, specifically placing
it before the first frame of the video tokens. Given that the pretrained video model possesses strong
temporal modeling capabilities, the information from the image can be efficiently integrated into the
video tokens via temporal modeling. In particular, the base video generation model (HunyuanVideo)
utilizes 3D-RoPE to model the relative positions of video tokens, where the pixel at the t-th frame
and spatial location (i, j) is assigned a RoPE index (t, i, j). For the image tokens, we assign them
to the −1-th frame (i.e., preceding the first video frame). Furthermore, to prevent the model from
simply copy-pasting the image onto the video, we introduce a spatial shift as follows:

Pos(i, j) = RoPE(−1, i+ w, j + h), (4)

where w and h denote the width and height of the video, respectively.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Implementation Details. The design of our model does not lead to task conflict issues. As shown
in Table 1, we list the input conditions required for each task, where ‘1’ indicates that the task requires
the corresponding condition and ‘0’ means it does not. We also add the corresponding text from the
table to the beginning of the prompt. For example, in the Mask-guided video edit task, we refine the
original prompt “A brown teddy bear is lying in the pot.” to “Mask-guided. A brown teddy bear is
lying in the pot.” to further improve the model’s ability to differentiate between different tasks. We
adopted a phased strategy for the training process. We first train the mask-guided video edit task,
which easily allows the model to extend to object movement, inpainting, and outpainting tasks. The
introduction of mask information enables the model to effectively learn the ability to generate context

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

A	girl	with	colorful	hair	is	
walking	in	a	green	meadow.	

A	groundhog	is	blowing	an	
oboe	The	Golden	Gate	Bridge	
sits	on	both	sides	of	the	river.

M
as
k

So
ur
ce

vi
de
o

O
ur
s

M
as
k

So
ur
ce

vi
de
o

VA
C
E

VA
C
E

K
lin
g

K
lin
g

O
ur
s

A	girl	wearing	glowing	clothes	
dancing	with	a	spear

A	girl	wearing	blue	dress	
running	in	the	through	a	sea	
of		yellow	flowers.	

Figure 4: Qualitative of comparison on the wild dataset.

in the spatiotemporal dimensions. After extending the tasks to object movement, inpainting, and
outpainting, the model has already learned a good correspondence between objects and text, which
significantly reduces the difficulty of training the instruction edit task in the second phase. Finally,
since the aforementioned edit tasks have already learned the correspondence between characters
and masks, extending it to the controllable character video synthesis task only requires fitting the
pose information. This training process greatly reduces the time cost of training individual tasks and
enhances the model’s performance.
Datasets. To obtain the high-quality data required, we used PySceneDetect PySceneDetect (2025)
to segment transition videos into single-shot videos, Textbpn-Plus-Plus Zhang et al. (2023b) to filter
out videos with excessive subtitles, and the Koala-36M Wang et al. (2024a) model to further refine our
data selection. To extract the objects in the videos, we first used the Qwen-7B Bai et al. (2023) model
to extract all object IDs in the videos. For portrait data, we used ArcFace Deng et al. (2019) to locate
faces to ensure detection accuracy and filtered out the IDs that appeared in the most frames. Based on
keywords, we used Grounding Sam2 Ren et al. (2024) to extract object masks and bounding boxes,
discarding objects that were excessively large or small. Due to size differences between objects, we
randomly expanded the masks in all four directions to mitigate the issue of overly restrictive masks.
The Table 1 shows the data distribution used for each task.

Table 1: Input modalities and data distribution for each video editing task.

Task Image Pose Mask Masked Prompt Human No-Human Total

Controllable character 1 1 1 1 Controllable 294,822 0 294,822
Mask-guided 1 0 1 1 Mask-guided 102,374 198,653 301,027
Human Animation 1 0 0 0 Human Animation 293,567 0 293,567
Inpainting 0 0 1 1 Inpainting 148,731 151,089 299,820
Outpainting 0 0 1 1 Outpainting 199,405 101,678 301,083
Object Addition 1 0 0 0 Object Addition 148,731 151,089 299,820

Furthermore, due to the absence of a publicly available unified multi-task dataset, we have developed
the OmniV2V-Test dataset. This test set comprises 100 pairs for each task, encompassing a variety of
species, styles, and more. The diverse data distribution within the testset is designed to thoroughly
evaluate the capabilities of various models.
Evaluation Metrics. To evaluate the model performance, we use the following metrics to mea-
sure the object consistency in videos, text-video alignment, and video generation quality: ID
consistency(Face-sim). We employ RetinaFace Deng et al. (2020) and Arcface (Deng et al., 2019)
to detect and extract the embedding of the reference face and each frames of generation video, and
then compute the average cosine similarity between them. Object similarity(DINO-sim). First, we
detect each frame and get the segment result of human using YOLOv11 (Khanam & Hussain, 2024),
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Figure 5: Visualization of videos generated by OmniV2V on the wild dataset.

and then compute the similarity of the DINO-v2 (Oquab et al., 2023) feature between the reference
and results. Text-video alignment. We employ CLIP-B,CLIP-L (Radford et al., 2021) to evaluate
the alignment between the given text prompt and the corresponding generated videos. Temporal
consistency(Temporal). Following VBench (Huang et al., 2024), we utilize the CLIP-B (Radford
et al., 2021) model to calculate the similarity between each frame and its adjacent frames, as well as
the first frame, to assess the temporal consistency of the video. Dynamic degree(DD). The dynamic
degree is used to measure the movement of an object, which is calculated following VBench.

Compared Baselines. We compare with specialized models for each task. For some tasks lacking
open-source methods, we use commercially available online models as substitutes. The specific tasks
can be divided into: (1) Repainting tasks, where in inpainting we mainly compare ProPainter Zhou
et al. (2023) , VACE 14B Jiang et al. (2025) and VideoPainter Bian et al. (2025), and in outpainting,
we mainly compare M3DDM Fan et al. (2023) and the VACE 14B; (2) mask-guided video edit
tasks, where we mainly compare Kling 1.6 Keling (2025) and VACE 14B Jiang et al. (2025); (3)
Instruction edit tasks, for which there are no corresponding open-source models, we mainly compare
the commercial products Kling 1.6 and Pika Pika (2025); (4) Character Animation tasks, where we
mainly compare Animate Anyone Hu (2024), Mimicmotion Zhang et al. (2024), and Champ Zhu et al.
(2024), UniAnimate Wang et al. (2024b) and WanAnimate Wang et al. (2025), and for Controllable
Character Video Synthesis tasks, we compare Mimo Men et al. (2024) and WanAnimate.

4.2 MAIN RESULTS

Qualitative Results. As shown in the figure 4, we conducted comparisons with existing approaches
on tasks such as mask-guided editing and try-on. Our method achieves more realistic and temporally
consistent results on the wild dataset compared to VACE 14B and Kling 1.6, with objects in the edited
regions exhibiting more natural motion. Of course, qualitative comparisons for other tasks can be
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Table 2: Quantitative comparisons with mask-guided video edit baselines and controllable character
video synthesis baselines.

Method Face-sim ↑ DINO-sim ↑ CLIP-B ↑ CLIP-L ↑ FVD ↓ Temporal ↑ DD↑ SC ↑ MD ↑ VQ ↑
VACE 14B 0.587 0.576 0.330 0.274 1171.42 0.966 0.524 5.66 4.32 6.66
Kling 1.6 0.343 0.582 0.346 0.276 1049.70 0.933 0.642 3.33 8.64 7.32

OmniV2V-Unified 0.614 0.591 0.328 0.274 900.35 0.967 0.696 8.67 8.77 8.56
OmniV2V-Mask 0.638 0.625 0.342 0.281 940.22 0.968 0.718 9.33 9.12 8.33

Kling1.6 — 0.543 0.308 0.265 1055.88 0.812 0.546 7.50 2.88 3.38
Pika — 0.588 0.313 0.268 997.45 0.837 0.662 6.67 5.77 6.99

OmniV2V-Unified — 0.596 0.321 0.269 968.74 0.854 0.766 6.98 4.78 7.32
OmniV2V-Addition — 0.590 0.328 0.274 900.35 0.967 0.699 8.32 3.33 7.50

Mimicmotion 0.603 0.437 — — 1216.81 0.820 0.717 4.07 4.29 6.73
Unimate-DiT 0.612 0.451 — — 1193.14 0.831 0.832 4.11 4.44 6.85
Wan-Animate 0.609 0.445 — — 1202.37 0.825 0.828 3.92 4.33 6.69

OmniV2V-Unified 0.618 0.587 — — 998.04 0.964 0.849 5.48 6.69 8.84
OmniV2V-Animation 0.631 0.597 — — 888.46 0.972 0.882 5.73 5.81 6.99

Kling1.6 — — — — 1200.56 0.754 0.664 7.98 7.14 7.66
VACE14B — — — — 960.21 0.815 0.688 7.68 7.00 6.43

OmniV2V-Unified — — — — 942.38 0.856 0.669 8.23 7.65 7.55
OmniV2V-Inpaint — — — — 963.98 0.884 0.671 8.67 8.77 6.56

VACE14B — — 0.342 0.284 1122.56 0.804 0.556 6.98 9.64 8.94
OmniV2V-Unified — — 0.338 0.272 984.24 0.841 0.643 7.02 7.65 8.82
OmniV2V-Outpaint — — 0.346 0.282 803.21 0.831 0.747 8.22 8.77 8.56

Mimo 0.446 0.562 — — 1088.56 0.802 0.553 3.33 5.00 7.66
Wan-Animate 0.616 0.451 — — 1189.52 0.822 0.821 3.96 4.38 6.75

OmniV2V-Unified 0.593 0.553 — — 862.21 0.856 0.646 8.23 7.65 8.55
OmniV2V-Control 0.613 0.558 — — 842.33 0.869 0.687 8.38 8.53 8.12

Table 3: Comparison of anima-
tion models on TikTok dataset.

Model SSIM↑ PSNR↑ LPIPS↓ FVD↓

AA 0.718 29.56 0.285 171.90
Mimic 0.795 20.10 0.212 150.23
Champ 0.802 29.91 0.234 160.82
Uni 0.811 30.77 0.231 148.06
Uni-DiT 0.813 30.01 0.229 145.22
Wan-Ani 0.823 31.92 0.209 148.22
Ours 0.821 32.43 0.218 142.38

Table 4: Comparison on YouTube-VOS and DAVIS datasets.

Model YouTube-VOS DAVIS

PSNR↑ SSIM↑ LPIPS↓ FVD↓ PSNR↑ SSIM↑ LPIPS↓ FVD↓

M3DDM 20.20 0.7312 0.1854 66.62 20.26 0.7082 0.2026 300.00
VACE14B 23.44 0.8601 0.1662 50.44 26.97 0.8582 0.1720 269.66
Ours 24.21 0.8545 0.1643 55.78 30.22 0.8422 0.1650 250.71

Propainter 19.85 0.7261 0.2010 92.21 20.03 0.7342 0.1984 325.00
VACE14B 22.50 0.8410 0.1725 65.80 25.61 0.8371 0.1757 310.23
VideoPainter 21.34 0.7512 0.1892 88.33 21.90 0.7284 0.1935 305.70
Ours 24.90 0.8583 0.1602 52.31 31.11 0.8550 0.1600 248.56

found in the supplementary materials. Moreover, our model can effectively integrate conditions from
different modalities. As illustrated in the figure 5, we showcase the performance of our model across
various sub-tasks, demonstrating its strong potential in the field of video generation and editing. More
visualization results are available in the supplementary.

Quantitative Results. To further comprehensively validate the superiority of our method,
OmniV2V-Unified, across various tasks, we conducted extensive comparisons on OmniV2V-Test with
a range of task-specific approaches. In addition, we compared OmniV2V-Unified with the OmniV2V-
[task] models trained individually for each task. As shown in the Table 2, our model outperforms
existing baselines across different tasks. Moreover, the comparison between OmniV2V-[task] and
OmniV2V-Unified demonstrates that our method does cause some forgetting for certain tasks, but
all within an acceptable range. This also demonstrates that the HunyuanVideo-13B model is fully
capable of accommodating these tasks.

User Study To further validate the effectiveness of our proposed method, we conducted evaluations
on the objective assessment dataset of the OmniV2V-Test benchmark. Each participant assessed three
key dimensions: Subject Consistency (SC), Motion Dynamic(MD), and Video Quality(VQ). A total
of 30 participants scored each aspect on a scale from 0 to 10. As shown in the Table 2, the results
indicate that OmniV2V outperforms all existing baseline methods across all evaluated dimensions.
Notably, it achieves particularly significant improvements in motion dynamic and object consistency.
The evaluation clearly demonstrate the superiority of our approach.
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4.3 ABLATION STUDY AND DISCUSSION

Table 5: Ablation on condition injection methods

Method DINO-sim↑ CLIP-B↑ CLIP-L↑ FVD↓ Temporal↑ DD↑

ChannelCat + Fc 0.51 0.309 0.260 1233.90 0.942 0.55
TokenCat 0.54 0.336 0.262 984.82 0.958 0.59
Ours 0.53 0.312 0.263 1045.88 0.959 0.58

Table 6: Ablation study on token fusion.

Task Method DINO-sim↑ FVD↓ Temporal↑ DD↑

(1) w/o FC 0.544 1200.96 0.662 0.63
(1) w FC 0.55 862.21 0.86 0.64

(2) w/o FC 0.548 980.49 0.942 0.57
(2) w FC 0.59 900.35 0.97 0.69

Ablation on token fusion of FC. The Table 6 demonstrates the effectiveness and necessity of the
FC layer in the Token Fusion process for tasks such as (1) controllable character video synthesis, (2)
mask-guided video editing. The FC layer effectively allows the model to selectively retain or discard
features, ensuring that only the most salient conditional information is integrated.
Ablation on token fusion of condition injection methods. We have explored three different
condition injection methods: Channel Concat + Fc, Token Concat, and Addition. As shown in the
table 5, Token Concat achieves the best performance on the mask-guided video editing task. However,
since Token Concat doubles the GPU memory usage and inference time, it is not an ideal approach.
Therefore, we chose element-wise addition for condition unification.
Ablation on VLLM-driven instruction-based editing module. In the Addition experiment, we
validated the effectiveness of our VLLM-driven instruction-based editing module. As shown in
Figure 6(a), removing 3D-RoPE causes the model to simply copy the image into the video, indicating
that the spatial shift we introduced is effective. Additionally, the instruction tokens and image prompt
tokens significantly aid the model in understanding the video content and performing relevant edits.

A bird is standing on 
the beach facing to 
the right, looking 
very focused, with 

nice weather around.

Source Video

W/O
image prompt tokens

instruction tokens

W/O
spatial shift

W
All

Pose Video

Controlnnet

Additions

Ours

（a） （b）

Figure 6: Ablation on VLLM-driven instruction-based editing module (a) and posenet(b).
Ablation on posenet. We evaluate how three different methods of injecting pose information
affect the model’s ability to learn pose information. This evaluation is conducted on the controllable
character video synthesis task. All three experiments are tested after 3000 training steps. As shown in
the figure 6(b), injecting pose information using the token addition method leads to the model failing
to properly understand the front and back of the character, making it unable to capture actions such as
turning around. The controlnet-based method results in slow or even incorrect learning of character
movements. Our method effectively addresses the issues present in the aforementioned approaches.

5 CONCLUSION

In this paper, we explore a unified dynamic content manipulation injection module that effectively
integrates the requirements of various tasks. To enhance the model’s ability to understand the
correspondence between visual content and text, we design a visual-text instruction module based
on LLaVA. Given the numerous subtasks involved, we have developed a comprehensive multi-task
data processing system. Since there is data overlap among various tasks, this system efficiently
provides data augmentation. Using this system, we have constructed a multi-type, multi-scenario
OmniV2V dataset, which significantly enhances the model’s capabilities. Additionally, we have
developed the corresponding OmniV2V-Test benchmark. The extensive distribution of test data
allows for a thorough evaluation of model performance across various tasks. Both qualitative and
quantitative experiments demonstrate that OmniV2V shows significant improvements over the best
current open-source and commercial models in various video generation and editing tasks.
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STATEMENT

Reproducibility statement We have explained the implementation of OmniV2V in detail in Sec. 3
and Sec. A.5. The code and dataset pipeline used in this work will be open-source online.

Ethics statement As intelligent video generation and editing technologies become increasingly
widespread, society is also facing new challenges. The convenience of generating and editing video
content may lead to the spread of misinformation and false content, undermining public trust in
information. At the same time, these technologies may inadvertently reinforce existing biases and
stereotypes during content creation, negatively impacting cultural perceptions within society. These
issues have sparked deep reflection on ethics and responsibility, prompting policymakers, technology
developers, and all sectors of society to work together to establish appropriate regulations to ensure
the healthy development of these technologies. We should also approach their potential impacts
with caution, actively seeking a balance between innovation and social responsibility so that these
technologies can bring greater benefits to society.

This technology has the potential to be used for generating misleading or deceptive videos, which
could contribute to the spread of disinformation and fraudulent content, or even be exploited to
manipulate public opinion or create social panic, resulting in financial losses for victims and harm to
democratic institutions. However, our research is intended to promote the positive applications of this
technology in creative and entertainment fields, rather than for impersonating real individuals. We
strictly prohibit the unauthorized use of others’ likenesses or artistic works, as this could infringe
upon portrait rights and copyrights, leading to legal and ethical risks. We are fully aware of our
responsibilities in the process of technological development; therefore, we always focus on enhancing
the authenticity and quality of video content and firmly oppose any form of impersonation or
fabrication of video content.

To minimize the potential negative impacts of this technology, we recommend the implementation
of technical measures, such as video watermarking, content traceability, and automatic filtering—in
commercial applications, to enhance the traceability and security of content. We are committed
to maintaining full transparency regarding the capabilities and limitations of OmniV2V, and will
strive to address potential bias issues as we continue to improve the model. We believe that the
technological advancements brought by OmniV2V will help promote the positive application of
AIGC in film production, assistive services, educational content, and other fields, improving industry
efficiency, reducing repetitive labor, shortening production cycles, and accelerating the development
of related industries.

At the same time, we encourage the research community to continue developing and refining synthetic
content detection technologies while improving the quality of video generation. We believe that
responsible innovation and proactive risk management are essential to ensuring that such technologies
benefit society and are not misused.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We acknowledge that a large language model (LLM) was utilized solely for language editing and
grammatical improvements during the preparation of this manuscript. The LLM was not involved in
any key aspects of the research, including conceptualization, experimental design, data analysis, or
interpretation of results.

A.2 MORE VISUALIZATION RESULTS

As shown in the figure 8 and figure 9, we present more visual results for the controllable character
video synthesis task and mask-guided edit task. It can be seen that our method demonstrates strong
generalization across various scenarios. Moreover, our model largely addresses the issue of object
shape mismatch caused by mask boundaries.

As shown in the figure 11, we present more visual results for both inpainting and outpainting
tasks. our model effectively identifies small and fast-moving objects and successfully removes them,
demonstrating the model’s ability to handle complex scenarios with precision and efficiency. For the
outpainting task, our model demonstrates the ability to generalize across various styles, such as anime
and traditional chinese painting. This versatility highlights the model’s adaptability and effectiveness
in handling diverse artistic expressions.

As shown in figure 12 and figure 10, we provide additional visual results for the human animation
and instruction edit tasks. In the human animation task, our method can accurately drive characters
in various styles based on pose information, fully demonstrating the exceptional generalization
capabilities of our approach. In the task of instruction edit, our method demonstrates impressive
capabilities by directly replacing a bus in the video with a fire truck based on the given instructions,
without the need for masking. This highlights the efficiency and precision of our approach in
seamlessly handling complex video editing. Additionally, we showcase a scene where a woman is
explaining cosmetics, illustrating the potential application of our model in the live streaming domain.
By leveraging the capabilities of the model, users can easily modify visual elements to suit various
backgrounds and themes, thereby expanding the creative horizons of digital media production.

A.3 MORE EXPERIMENTS RESULTS.

More Qualitative Results. As shown in the figure 7, our model achieves better results compared to
both open-source and commercial methods in other tasks. Specifically, in the instruction addition task,
our method is able to understand the information in the text while reducing the problem of the model
faithfully replicating the original image. In the inpainting task, we found that the Kling1.6 Keling
(2025) model always tries to modify content outside the mask, resulting in lower video quality. In the
outpainting task, VACE14B Jiang et al. (2025) fails to generate boundary extensions that match the
textual descriptions well. In the controllable character video synthesis task, we mainly compare with
the open-source model Mimo Men et al. (2024) and Wan-Animat Wang et al. (2025). It can be seen
that our method achieves better subject similarity than Mimo and Wan-Animate.

A.4 PRELIMINARY

In the training process, we adopt the Flow Matching (Lipman et al., 2022) framework to train the
video generation models. For training, we first acquire the video latent representation z1 and the
corresponding identity image I . Then, we sample t ∈ [0, 1] from a logit-normal distribution (Esser
et al., 2024) and initialize the noise z0 ∼ N(0, I) according to the Gaussian distribution. After
that, we construct the training sample zt through linear interpolation. The model aims to predict the
velocity ut =

dzt
dt conditioned on the target image I , which is used to guide the sample zt towards z1.

The model parameters are optimized by minimizing the mean-squared error between the predicted
velocity vt and the real velocity ut, and the loss function is defined as:

Lgeneration = Et,x0,x1 ∥vt − ut∥2 . (5)
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To endow our model with a more extensive representational capacity and enable it to capture and
learn a broader range of complex patterns, we fully fine-tune the weights of both the pretrained video
generation model and the LLaVA model, ultimately unlocking its full potential for delivering superior
video customization results.

A.5 IMPLEMENTATION DETAILS

During training, we initialize the model with the weights of HunyuanVideo13B Kong et al. (2024b),
and keep the parameters of LLaVA and 3DVAE frozen, updating only all other parameters. The
training is divided into two stages: in the first stage, we use 128 GPUs (each with 96GB memory),
set the training video resolution to 540×896, the global batch size to 64, and the learning rate to 1e-5,
training for 10,000 steps; in the second stage, we use 256 GPUs (each with 96GB memory), set the
training video resolution to 720×1280, the global batch size to 128, and the learning rate to 3e-5,
training for 20,000 steps.

A.6 DATASET

Details. For different tasks, we need to perform customized data operations: (1) For the inpainting
task, we randomly inpaint the video based on different object masks. For the outpainting task, we
randomly crop the original video and use the bounding box of the crop as our conditional input. (2)
For the addition task in the instruction edit task, we can effectively use the before-and-after data from
the inpainting task as pairs. For the swap task in the instruction edit task, we can effectively use the
trained mask-guided video edit model to generate pairs. (3) For the Character Animation task and the
controllable character video synthesis task, we used DWpose Yang et al. (2023) to extract the actions
of characters in the videos. Due to significant differences in body types between characters, we also
performed body type data augmentation on the DWpose data.

Data augmentation.

• Enhancing Data Diversity: Taking mask-guided video editing as an example, our data
primarily involves two categories: human and non-human. However, many videos do not
contain only a single category—instead, they often include multiple objects simultaneously.
For instance, in the video description "a girl in a yellow dress playing the piano, with a
yellow cup placed beside her," there are three distinct objects: "girl," "piano," and "cup."
By extracting and labeling each of these objects separately from the same video, we can
generate multiple training samples from a single clip. This approach not only expands the
dataset effectively but also significantly enhances the diversity and richness of the training
instances.

• Increasing Data Volume: During the data preprocessing stage, we employ a scene transition
detection algorithm to split long videos into shorter segments. From these segmented clips,
we randomly sample different video snippets as individual training samples. This strategy
substantially increases the overall amount of available data.

• Caption Augmentation: For each video, we generate task-specific captions to support
different editing objectives. For the Object Addition task, the prompt is formulated as: "Add
a hat on the girl’s head." In contrast, for the mask-guided video editing task, the caption
emphasizes the editable region with precise localization, such as: "a girl wearing a yellow
dress." This targeted captioning helps the model better understand and focus on the specific
region to be edited, improving both accuracy and controllability.

A.7 LIMITATIONS AND SOCIETAL IMPACTS

Limitations Our method demonstrates strong capabilities across various video-to-video tasks.
However, since the instruction edit task is primarily driven by text input, this signal is relatively
weaker compared to signals such as mask or pose. As a result, there are scenarios where the instruction
signal is ineffective. For example, when replacing very small objects (such as insects), the model
may fail to accurately identify and replace the target object.

Meanwhile, in the controllable character video synthesis task, we observe that issues related to
character interaction caused by mask boundaries still occur frequently. For instance, when replacing
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a person holding a spear with a person holding a golden staff, the model often fails to generate the
hands properly, resulting in poor interaction between the character and the object.

Societal impacts On the positive side, intelligent video generation and editing provide creators
with a wealth of innovative tools, inspiring new ideas and enhancing the artistic and creative quality
of video content. These technologies are gradually permeating various industries. For example, in the
business sector, video generation technology is revolutionizing marketing and advertising strategies.
Companies can quickly produce high-quality promotional videos, effectively communicate brand
messages, and attract more consumers. This increase in efficiency not only reduces labor costs but
also enables businesses to implement more creative marketing campaigns, thereby strengthening their
competitiveness in the market.
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Figure 7: Qualitative comparison on all tasks.
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A gray British Shorthair cat with round eyes stands on the ground paved
with reddish-brown bricks.

A girl is riding a white tiger running across the meadow.

A joyful brown Corgi bounds towards the camera with enthusiasm from afar.

A brown dog is wearing a pair of red heart-shaped glasses.

A blue jay (Cyanocitta cristata) is eating the food in a person's hand 
and then flies away.

A is playing a red guitar with a sharp body shape, and there are snow-
capped mountains in the background.

Figure 8: More visualizations of mask-guided edit task.
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Figure 9: More visualizations of controllable character video synthesis task.
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Instruction	Edit

Replace	the	bus	with	a	fire	truck,	and	the	fire	truck	is	driving	on	the	road.

Source	Video

Edited	VideoRef	Image

Source	Video

Edited	VideoRef	Image

Add	the	cosmetic	bottle	to	the	table,	and	a	woman	is	explaining	the	benefits	of	the	
product.

Source	Video

Edited	VideoRef	Image

Source	Video

Edited	VideoRef	Image

Source	Video

Edited	VideoRef	Image

Source	Video

Edited	VideoRef	Image

Add	an	alien	spaceship	above	the	city.

Add	a	cow	with	wings	flying	through	the	sky	of	sunset	glow..

Add	a	colorful	little	monster	waving	on	the	chair.

Add	a	Sun	Wukong	practicing	kung	fu	to	a	round	cloud.

Figure 10: More visualizations of instruction edit.
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Source 
video

Result 
video

Source 
video

Result 
video

Source video

Result video

Source video

Result video

Source video

Result video

Outpaint

Inpaint

A realistic-style bottle 
with a bundle of reeds 
inserted into it.

An anime scene under
a streetlight, where a
little boy is shaking
hands with a small cat.

Figure 11: More visualizations of outpainting and inpainting task.
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Human Animation

Instruction Edit

Replace the bus with a fire truck, and the fire truck is driving on the road.

Add the cosmetic bottle to the table, and a woman is explaining the benefits of the 
product.

Ref Image

Ref Image

Ref Image

Ref Image

Ref Image

Pose Video

Output

Output

Pose Video

Output

Pose Video

Source Video

Edited Video

Source Video

Edited Video

Figure 12: More visualizations of human animation and instruction edit task.
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