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ABSTRACT

Many real-world problems like modelling environment dynamics, physical pro-
cesses, time series etc., involve solving Partial Differential Equations (PDEs) pa-
rameterized by problem-specific conditions. Recently, a deep learning architec-
ture called Fourier Neural Operator (FNO) proved to be capable of learning solu-
tions of given PDE families, for any initial conditions as input. Given the advance-
ments in quantum hardware and the recent results in quantum machine learning
methods, we propose three quantum circuits, inspired by the FNO, to learn this
functional mapping for PDEs. The proposed algorithms are distinguished based
on the trade-off between depth and their similarity to the classical FNO. At their
core, we make use of unary encoding paradigm and orthogonal quantum layers,
and introduce a new quantum Fourier transform in the unary basis. With respect to
the number of samples, our quantum algorithm is proven to be substantially faster
than the classical counterpart. We benchmark our proposed algorithms on three
PDE families, namely Burger’s equation, Darcy’s flow equation and the Navier-
Stokes equation, and the results show that our quantum methods are comparable
in performance to the classical FNO. We also show an analysis of the image clas-
sification tasks where our proposed algorithms are able to match the accuracy of
the CNNs, thereby showing their applicability to other domains.

1 INTRODUCTION

Solving Partial Differential Equations (PDEs) has been a very crucial step in understanding the
dynamics of nature. They have been widely used to understand natural phenomenon such as heat-
transfer, modelling the flow of fluids, electromagnetism, etc. and lately have also found their ap-
plications in understanding the behavior of dynamical markets. In most of these applications, a
closed form solution is difficult to find for the resulting PDEs and thus, classical solvers require a
lot of evaluations to model the solution for a given PDE. To approximate such not-so-easily solvable
PDE’s, there has been an extensive research based on neural networks. A group of these methods
Yu et al. (2018); Raissi et al. (2019); Bar & Sochen (2019) aimed at learning the solution function
for an instance of PDE and thus requires to be re-trained every time the parameters/conditions in
the PDE change. The other set of methods Zhu & Zabaras (2018); Adler & Öktem (2017); Bhatna-
gar et al. (2019) targeted at learning over a family of PDEs but for a specific resolution dependent,
making these methods limited to the discretization or the sampling density used in the training data.
A recent work Li et al. (2020) addressed both these issues and posed the problem as learning a
function-to-function mapping for parametric PDEs. Experiments on widely popular PDEs showed
that it was effective in learning the mapping from a parametric initial condition function to the so-
lution operator for a family of PDEs. The method proposes a Fourier layer, which uses a learnable
linear transform sandwiched between a Fourier Transform (FT ) and an Inverse Fourier Transform
(IFT ) operation. This is similar to the convolution operation as it also translates to multiplication
in the Fourier space.
The major bottleneck which might hinder the scalability of this classical Fourier Neural Operator
(FNO) is its time complexity, limited by the classical Fourier Transform (FT) and Inverse Fourier
Transform (IFT) operations inside the Fourier Layer. As shown previously by Musk (2020), these
operations are much faster when deployed on quantum hardware. Similar advantages have led to
significant developments in learning approaches based on near term quantum computing. The initial
demonstrations of these algorithms involved experiments on a small-scale hardware Farhi & Neven
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(2018); Coyle et al. (2020); Cappelletti et al. (2020); Grant et al. (2018) which established their
effectiveness in extracting patterns. Following this, many works Abbas et al. (2021); Mari et al.
(2020); Beer et al. (2020); Allcock et al. (2020) proposed small-scale implementations of fully con-
nected quantum neural networks on near term hardware. Other proposals Kerenidis et al. (2019);
Cong et al. (2019) for deploying convolution-based learning methods on quantum devices showed
effective training in practice. Furthermore, Chakrabarti et al. (2019) proposed quantum-hardware
implementation for generative adversarial networks. A different approach, where the inputs are en-
coded as unary states, using the two-qubits quantum gate RBS (Reconfigurable Beam Splitter) was
proposed in a recent work Johri et al. (2021). This encoding gave rise to the use of orthogonal
properties of pure quantum unitaries, as proposed in Kerenidis et al. (2021) for training, for in-
stance, orthogonal feed-forward networks to damp the gradient based issues while learning. It used
a pyramid circuit based on parameterized RBS gates to implement a learnable orthogonal matrix
as compared to the existing classical approaches which offer approximate orthogonality at the cost
of increased training time. This orthogonality in neural networks results in much smoother conver-
gence and also lesser parameters as shown by Li et al. (2019) for feed-forward neural networks and
Wang et al. (2020) for convolutional nets. The effectiveness of these orthogonal quantum networks
was further shown in another work on medical image classification Mathur et al. (2021) problem.
We also use a similar idea to do the multi-channel intermediate linear transform using orthogonal
matrix but using parameterized butterfly circuits instead of pyramid circuits.
Exploiting these advantages offered by quantum computing, in this work, we propose a new kind
of Quantum Fourier Transform (QFT), which operates on the unary states and a learnable Quantum
Linear Transform. We further propose three quantum algorithms inspired by this classical Fourier
operation which are faster than the classical operation and require fewer parameters for the same
architecture, thereby boosting their scalability. Given the input of dimension Ns × Nc, where Ns
corresponds to number of samples per PDE and Nc correspond to feature dimension, the order of
time complexity corresponding to Fourier Layer (FL) and proposed algorithms is shown in table 1.

Table 1: Comparison of order of time/depth complexities (O) of the proposed circuits with the existing clas-
sical Fourier Layer (FL). Here Ns denote the sampling dimension, Nc denote the feature dimension where
Ns � Nc and K (usually in range 4-16) denotes the maximum number of modes allowed Li et al. (2020).
This implies that the proposed quantum algorithms would be faster than the classical method. Each quantum
circuit requires Nc +Ns qubits and K independent parallel circuits are required by the Parallelized QFNO.

Method Classical FL Sequential Quantum FL Parallel Quantum FL Compound Quantum FL
Complexity Nc+Nslog(Ns) Klog(Nc)+Nclog(Ns) log(Nc)+Nclog(Ns) log(Nc+K)+Nclog(Ns)

# qubits - Nc + Ns Nc + Ns Nc + Ns
# parallel circuits - 1 K 1

The first algorithm replicates the classical operation on a quantum circuit. The other two algorithms
are modifications of the first circuit designed for the noisy learning process offered by the near term
quantum hardware. We test all the three proposed algorithms on all the three PDEs evaluated in
the classical FNO paper Li et al. (2020) namely the Burgers equation, Darcy’s Flow equation and
Navier Stokes equation on the synthetic datasets used in that paper. We also test our algorithms
against the Convolutional neural networks (CNNs) on benchmark datasets for image classification
namely MNIST, Fashion-MNIST Xiao et al. (2017), Pneumonia-MNIST Yang et al. (2021). In
all the experiments, three algorithms perform similarly and comparable to state-of-the-art FNO for
PDEs. Also, they perform decently on the image classification tasks.

2 CLASSICAL FOURIER NEURAL OPERATOR

Given a training set comprising the family of a Partial Differential Equation, the classical FNO Li
et al. (2020) aims to learn a functional mapping from a parameterized initial condition to the solu-
tion function for this family. This means given an initial condition function characterizing a PDE
instance, sampled at different points, it should predict the solution function values at those points
at the inference time. To formulate it, given two functional spaces A and U along with a set of
observations {aj , uj} (aj ∼ µ is an i.i.d. sequence sampled from some function f ∈ A), it learns
a parametric mapping G : A × Θ → U . To achieve this, it proposed a learning network based on
iteratively applying a new kind of layer which it termed as the Fourier Layer. The layer consists of
two parts, the top part involves firstly projecting the input to the Fourier domain and then applying

2



Under review as a conference paper at ICLR 2023

(a) Left: Classical Fourier Layer (b) Right: Sequential Quantum Circuit for FNO.

Figure 1: Left: Intermediate Linear Transform operation performed in the classical FNO, after
applying the Fourier Transform Li et al. (2020). As shown, it performs a linear transform on the
features corresponding to the first K modes in the Fourier Transformed input. Right: The proposed
Sequential Quantum Circuit which replicates the classical FNO operation. Further details regarding
it are given in Section 3.2.1. The dashed box incorporates the controlled butterfly incorporating a
controlled norm-loader and the parametric butterfly (Pk).

a linear transform (refer fig. 1) to first K modes and crop the rest and then reproject back to the
original domain. This is somewhat similar to convolution but the updates would be taking place in
the Fourier space. The lower part is just a simple convolution and doesn’t play any significant role
in improving performance. In this paper, we propose purely quantum algorithms for this top part as
a Quantum Fourier Layer and term the network as Quantum Fourier Neural Operator (QFNO).
Now, we look at the mathematical details of the classical Fourier layer for a 1D PDE case (eg.
Burger’s equation), showing the inputs and outputs of each transformation involved. Given a clas-
sical input x ∈ RNc×Ns , where Nc corresponds to the number of channels/features in the input
and Ns corresponds to number of samples/observations per function corresponding to a PDE, we
denote the corresponding output of this classical operation by y ∈ RNc×Ns . As the quantum matri-
ces are orthogonal and the l2-norm of any quantum state vector is 1, we first normalize the input x
(normalization doesn’t have any significant impact on the optimization process) as follows:

aij =
xij
||x||2

(1)

Now, following the classical operation, applying the Fourier Transform (FT) along the second di-
mension to this input (Ns), FT (ai) = afi where ai = (aij)j∈[1,Ns] and afi denote the corresponding
fourier-transformed coefficients. Denoting the maximum number of modes with K, intermediate
linear transform is a matrix W ∈ RNc×Nc×K and W k ∈ RNc×Nc denotes this matrix W indexed
along the last dimension (corresponding to kth mode). Here, we assume this matrix W k is orthog-
onal and thus, can be implemented by a quantum layer. This transformation is now applied to the
first K modes along the Ns dimension resulting in the following output:[

(W jafj )j∈[1,K], (a
f
j )j∈[K+1,Ns]

]
(2)

where the vector afj = (afij)i∈[1,Nc]. In the classical paper, they discard the rest of modes (make
the vectors zero) and we leave them unchanged here. We verified that this doesn’t impacts the
optimization significantly. For these transformed K vectors afj ∈ RNc , we define bfj = W jafj or
more explicitly bfij =

∑Nc
t (W j

ita
f
tj). Given W j , aj and bj , we can now write the input after Fourier

Transform and the intermediate linear transform as:[
(bfj )j∈[1,K], (a

f
j )j∈[K+1,Ns]

]
(3)

Finally, applying Inverse Fourier Transform (IFT ) operation on this transformed input, along the
Ns dimension, results in the following output as the output of the complete operation:

yi = IFT
([

(bfij)j∈[1,K], (a
f
ij)j∈[K+1,Ns]

])
(4)

where yi = (yij)j∈[1,Ns]. The Time Complexity of this complete Fourier Layer (FT+linear
transform+IFT ) is O(Nc +Nslog(Ns)).
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3 QUANTUM FOURIER NETWORKS

In this section we propose three quantum circuits to replace the Fourier layer of the FNO, namely the
Sequential (Section 3.2.1), Parallel (Section 3.2.2), and the Compound (Section 3.2.3). We compare
their computational complexities (see Table 1) and their efficiency in practice in the following sec-
tions. Before this, we also define a learnable orthogonal linear transform, using a quantum circuit,
called parameterized butterfly. Using this as the building block, we propose the Quantum Circuit to
carry out the intermediate linear transform proposed in the classical FNO (Section 2).

3.1 QUANTUM BUTTERFLY CIRCUITS

An efficient implementation of FFT, proposed by Cooley & Tukey (1965), involves connections in
shape of radix-2 butterflies resulting in a logarithmic depth complexity. Taking inspiration from this,
we propose such butterfly shaped Quantum Circuits to carry out: a) A learnable linear transform and
b) A Quantum Fourier Transform (QFT), both operating only on the unary states. Here each radix-
2 operation is implemented using RBS-gates Foxen et al. (2020). Refer supplementary for details
regarding the unitary corresponding to this gate.
Parameterized Quantum Butterfly. Due to the logarithmic depth offered by the butterfly circuits
for FT, which is important given the noisy near-term quantum hardware, we propose such a butterfly
shaped Quantum Circuit to carry out a learnable linear transform. Here, each radix-2 butterfly
shaped connection is replaced by parameterized RBS gates similar to a concurrent work Cherrat
et al. (2022). This results in a orthogonal linear transform only on the unary quantum states similar
to the pyramidal circuit proposed by Kerenidis et al. (2021). We further propose a controlled version
of these linear quantum layers to perform the operation similar to the intermediate linear transform
operation in the fourier layers.
Unary Quantum Fourier Transform. Here, we propose a butterfly-shaped Quantum Circuit to
carry out the QFT on unary states. It involves replacing each radix-2 operation in the Butterfly FT
by a single qubit gate and an RBS-gate with −π/4 as the angle. Refer supplementary for more
details and circuit diagrams for the Parameterized Butterfly layer and Unary QFT.

3.2 QUANTUM CIRCUITS FOR FOURIER LAYER

To perform the classical FNO operation using a quantum circuit, the final output state of the circuit
should correspond to the quantum-state encoding of the output resulting from this classical oper-
ation. Therefore, we load this classical output into a quantum state and for this we use the unary
dataloading similar to the one used in Johri et al. (2021) due to its logarithmic depth. It loads an
N -dimensional classical vector into normalized N quantum states corresponding to the unary rep-
resentation of numbers from 1 to N . The circuit consists of only the Reconfigurable Beam Splitter
(RBS) gates. Using controlled version of this circuit, a matrix loader can be defined which we dis-
cuss in the supplementary and it loads the normalized vectors comprising the matrix into quantum
states. Thus, for the classical output y = (y1, · · · , yNc), the encoded quantum state |y〉 is:

|y〉 =
∑
i

|ei〉 |yi〉 =

Nc∑
i

Ns∑
j

IFT
([

(bfij)j∈[1,K], (aij)j∈[K+1,Ns]

])
j
|ei〉 |ej〉 (5)

where |ei〉 denotes the state in unary notation with 1 being at the ith position. Note there is no
normalization factor, as the inputs (a1, · · · , aNc) were assumed normalized in the previous subsec-
tion. Now, we discuss the three proposed circuit namely sequential, parallelized and the compound
circuit. The sequential circuit replicates the classical operation discussed above and the other two
are modifications to it to make the quantum algorithm more efficiently deployable on hardware.

3.2.1 SEQUENTIAL QUANTUM CIRCUIT FOR FOURIER LAYER

Figure 1 shows the diagram for this circuit. Lower register of Ns qubits correspond to the second
dimension and upper register of Nc qubits correspond to the Nc dimension used in the above math-
ematical description of the classical operation. We begin by discussing the quantum dataloading
followed by quantum transforms corresponding to the classical ones formulated above.
Dataloading. Similar to the quantum-state encoding of the classical output defined above, here also

4



Under review as a conference paper at ICLR 2023

we use the unary matrix loader to load the given input into a quantum state. As shown in Figure
1, the circuit initially contains Nc controlled unary dataloaders, each encoding a row of Ns inputs
into the quantum state on the lower register. The loaded state, after controlled operation XNc in the
circuit, can be written as:

Nc∑
i

Ns∑
j

aij |ei〉 |ej〉 (6)

where the coefficients aij correspond to normalized matrix elements. Denoting the given classical
input as x ∈ RNc×Ns we have (refer supplementary for details):

aij =
xij
||x||2

(7)

Now, to apply the QFT operation on lower register, the state can be re-arranged as follows:
Nc∑
i

|ei〉 (
Ns∑
j

aij |ej〉) (8)

Quantum Fourier Transform (QFT ). Given a normalized real vector x = (xi)i=1,..M , and its
Fourier Transform xf = (xfi )i=1,..M , the QFT operation in unary basis and its inverse, the IQFT
operation, can be defined as follows:

QFT (
∑
i

xi |ei〉) =
∑
i

xfi |ei〉 and IQFT (
∑
i

xfi |ei〉) =
∑
i

xi |ei〉 (9)

Applying this QFT operation to the lower register, on the state in eq. 8, we have:
Nc∑
i

|ei〉QFT (

Ns∑
j

aij |ej〉) =

Nc∑
i

|ei〉
Ns∑
j

afij |ej〉 =

Nc∑
i

Ns∑
j

afij |ei〉 |ej〉 (10)

Quantum Linear Transform. To realize the intermediate transform used in the classical operation,
we implement an orthogonal matrix W k, corresponding to the one in the classical operation, and
realize it using a parameterized butterfly circuit. Furthermore, we propose a “k-butterfly” which is
a parameterized butterfly circuit (Pk) on the top register controlled by the kth qubit of the lower
register. As shown in Figure 1, it involves using an ancilla qubit (top-most) initialized to state |1〉.
When this qubit is in state |1〉, then combining it with upper register results in a hamming weight
2 basis |h2〉. Any transformation on this using the RBS gates would result in an another state of
the hamming weight 2 basis. We can ignore all these hamming weight 2 states using a post select
operation. To apply the k-butterfly, we flip this qubit back to 0 if the kth qubit of the lower register
is |1〉, using a CNOT gate. Thus, all the states of upper qubits are in |h2〉 basis, except for the ones
corresponding to kth unary state of the lower register:

Ns∑
j

Nc∑
i

afij |ei〉 |ej〉 |1〉 7→
∑
j=k

Nc∑
i

afij |0〉 |ei〉 |ej〉+
∑
j 6=k

Nc∑
i

afij |1〉 |ei〉 |ej〉 (11)

Now, applying K such k-butterfly circuits, we perform the operation Pj on both the unary and the
|h2〉 states. We consider the unary states in our analysis since we discard the states in other basis:

K∑
j

Pj(

Nc∑
i

afij |0〉 |ei〉) |ej〉+

Ns∑
j=K+1

(

Nc∑
i

afij |1〉 |ei〉) |ej〉 (12)

Considering only the top register, the k-butterfly operation Pj corresponds to the sub-matrix W j ∈
RNc×Nc . The overall matrix (afij) can be decomposed into Ns vectors afj = (afij)i∈[1,Nc]. Then,
for the first K vectors afj ∈ RNc we will have bfj = W jafj , where bfj will be the same as in the
classical case. Finally, the output state of this circuit after IQFT on the lower register becomes:

Nc∑
i

|ei〉 IQFT

 K∑
j

bfij |ej〉+

Ns∑
j=K+1

afij |ej〉

 (13)

Since IQFT (
∑
i x

f
i |ei〉) =

∑
i xi |ei〉, where IFT (xf ) = x, this implies that jth component

of IFT would be same as the coefficient of jth state in IQFT . From this we can conclude that
the state in eq. 5 is equivalent to the state in eq. 13 and thus, this circuit replicates the classical
operation. The depth complexity of this circuit is O((K + 1)log(Nc) + (Nc + 2)log(Ns)).
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(a) Left: Parallelized QFNO Circuit (b) Right: Compound QFNO Circuit

Figure 2: Left: Parallelized version of the Sequential Quantum Circuit to minimize the depth of the
learning part, thus making it more efficient when deployed on the noisy hardware. For each mode
(out of the top K) in the transformed input, there is a different circuit to perform the parameterized
matrix transform. Right: Another variant of the sequential circuit where instead of controlled but-
terfly circuits, there is a Compound Butterfly Circuit spanning upper register and top K qubits of
lower register.

3.2.2 PARALLELIZED QUANTUM CIRCUIT FOR FOURIER LAYER

Given the multiplicative noise model for the NISQ devices, the depth of the learnable part, which is
proportional toK for the sequential circuit, might be a hindrance to learning and it also increases the
computation time. A useful modification then can be parallelizing the learnable butterfly circuits.
Figure 2 shows this modified version of the sequential circuit, which consists of K quantum circuits
operating parallely and each implementing only one learnable circuit controlled by one of the top
K qubits in the lower register. As all the circuits upto the learnable part are similar to the sequential
circuit, we can directly write the state after the QFT, using eq. 10, as: Ns∑

j

Nc∑
i

(afij)k |ei〉k |ej〉k

K
k=1

(14)

where the index k denotes the kth parallel circuit. Also, in the kth parallel circuit, the learnable
butterfly part is controlled by the kth qubit of the lower register. We recall that the pyramid applied
on the top register is effectively mapping the vector afj to bfj (see Eq.13) and thus we can write the
updated state of the circuits as:∑

j 6=k

Nc∑
i

(afij)k |ei〉k |ej〉k +

Nc∑
i

(bfij)k |ei〉k |ek〉k

K
k=1

(15)

Now, applying IQFT on the lower register in each of the circuits independently:

=

 Nc∑
i

|ei〉k IQFT

(bfik)k |ek〉k +
∑
j 6=k

(afij)k |ej〉k

K
k=1

(16)

In supplementary, we derive that this joint output of these circuits cannot lead to the output of the
classical operation even after measurement and classical post-processing. We also show that how
measuring without applying the IQFT operation and instead applying the classical IFT , after some
post-processing, can lead to the same output as the classical operation. The depth of this parallel
version of sequential circuit is (2)log(Nc) + (Nc + 2)log(Ns) and a total of K quantum circuits are
required to execute this parallely.

3.2.3 COMPOUND QUANTUM CIRCUIT FOR FOURIER LAYER

As highlighted in previous subsection, depth of the parameterized part of the sequential circuit might
make the learning process difficult on currently available noisy quantum hardware. To deal with
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this, we propose another variant of the sequential circuit, where, instead of having the parameterized
circuit controlled by topK qubits of lower register, we span a a single bigger pyramid over the upper
register (Ns) and top K qubits in the lower register. Note the upper and lower registers are unary
independently. Therefore, if we jointly consider the upper register and topK from the lower register,
then there would be states with hamming weight two as well, corresponding to the scenario when 1
is in one of the top K qubits of the lower register. Thus, instead of a unary basis (which corresponds
to having hamming weight only one), we have hamming weight one and hamming weight two basis.
Lets imagine a butterfly circuit on Nc +K qubits. The complete unitary will be a 2Nc+K × 2Nc+K

block diagonal matrix with each block corresponding to a subspace with fixed hamming weight
Kerenidis & Prakash (2022), B = B1 ⊗B2 ⊗ ...⊗Bn, where Bi correspond to the block diagonal
unitary for subspace with hamming weight i. Since our input has hamming weight 1 or 2, we only
care about unitariesB1 andB2. B1 will be of size (Nc+K)×(Nc+K) andB2 of

(
Nc+K

2

)
×
(
Nc+K

2

)
.

Given these unitaries, we take the input state and split it into (Nc + K) hamming weight 1 states
and

(
Nc+K

2

)
hamming weight 2 states. Then we apply the B1 and B2 to these states. Also, B1 is a

butterfly matrix and B2 is the corresponding compound order two matrix Horn & Johnson (2012).
Figure 2 shows the diagram for this circuit. Given the circuit is similar to the sequential circuit till
the QFT operation, the state of this circuit would be same as the one in eq. 10. We now separate
this complete state into two sets of states corresponding to hamming weight 1 and 2:

=

Nc∑
i

K∑
j

afij |ei〉 |ej〉+

Nc∑
i

Ns∑
j=K+1

afij |ei〉 |ej〉 (17)

where the first term corresponds to hamming weight 2 states |h2〉 and similarly the second term
corresponds to hamming weight 1 states |h1〉. Lets first focus on the term corresponding to |h1〉. It
does not contain the states where the qubits in upper register are all 0 and the 1 lies in the top K
qubits of the lower register. It implies that the coefficients of all these states should be taken as zero.
Therefore, the state corresponding to this |h1〉 can also be written as:

Nc∑
i

Ns∑
j=K+1

afij |ei〉 |ej〉+

K∑
i

Ns∑
j=K+1

0 |e0〉 |eij〉 (18)

where |e0〉 denotes the state corresponding to no ones in the upper Nc register and |eij〉 denotes the
hamming weight 2 state for the lower register, where i and j denote the positions of 1. Similarly, if
we consider the first term in eq. 17 corresponding to |h2〉, we further have to include states where
both ones are in upper register or both ones in top K of the lower register. These new states again
would have zero coefficients. As a result, we can write the term corresponding to |h2〉 in eq. 17 as:

Nc∑
i

Nc∑
j>i

0 |eij〉 |e0〉+

Nc∑
i

K∑
j

afij |ei〉 |ej〉+

K∑
i

K∑
j>i

0 |e0〉 |eij〉 (19)

This results in a total of
(
Nc+K

2

)
states. Now, we apply the butterfly circuit, corresponding to unitary

B1, to the |h1〉 state in eq. 18. For notational consistency we denote this operation as a multiplication
with matrix W 1 ∈ R(Nc+K)×(Nc+K). It results in the transformed coefficients bij :

bfij =

Nc∑
t

(W 1
ita

f
tj) +

Nc+K∑
t=Nc+1

(W 1
it × 0) i ∈ [1, Nc +K] j ∈ [K + 1, Ns] (20)

Furthermore, we also apply a post select operation to preserve the basis, selecting only the states
with non-zero coefficient before applying the B1. Now, for the hamming weight 2 state, the second
order compound unitary B2, denoted by the matrix W 2 ∈ Rq×q where q =

(
Nc+K

2

)
, has each of its

elements corresponding to the determinant of a 2× 2 submatrix of W 1:

W 2
i,j = W 2

a,bW
2
a+k,b+k −W 2

a+k,bW
1
a,b+k (21)

for some a, b, k < Nc +K. After applying this unitary B2 on |h2〉 states, their coefficients cij are:

cij =

(Nc2 )∑
t

(
W 2
it × 0

)
+

NcK∑
t

(
W 2
i,t+(Nc2 ) × a

f
tj

)
+

(Nc+K2 )∑
t=NcK+(Nc2 )

(
W 2
it × 0

)
(22)
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Similar to the case of hamming weight 1, here also we use a post select operation to discard the
states which initially had coefficients zero thereby preserving the basis. Combining the transformed
|h1〉, |h2〉 states and applying IQFT on the lower register, the final output state of this circuit is:

Nc∑
i

|ei〉 IQFT

 K∑
j

cij |ej〉+

Ns∑
j=K+1

bij |ej〉

 (23)

and the order of the depth complexity is log(Nc +K) + log(Nc) + (Nc + 2)log(Ns).

4 EXPERIMENTS

In this section, we analyze our proposed Quantum algorithms for solving PDEs and Image clas-
sification tasks. We compare them against the state-of-the-arts in both the domains, i.e., classical
Fourier Networks (PDEs) and CNNs (image classification), for both the tasks. All the details related
to architecture/hyperparamaters are provided at the end of the paper. All the experiments shown in
this section are simulated, i.e., the quantum operations have been simulated using classical matrices
corresponding to quantum unitaries. The currently available quantum hardware is limited to 8-10
qubits and is also too noisy for deeper circuits. Deploying these algorithms on a quantum hardware
will involve noise which can be either due to noisy quantum gates, measurement, environment, etc.

4.1 PARTIAL DIFFERENTIAL EQUATIONS

We show results on all the three PDEs used in the classical Fourier Layer paper Li et al. (2020):
Burger’s equation, Darcy’s Flow equation and Navier-Stokes equation, using the datasets proposed
in that paper. All of these equations were designed for modelling the flow of fluids and have found
their applications in other domains as well. We abstractly describe the three tasks. For equations
and other details please refer Li et al. (2020). We analyze the performance of the trained networks
across different resolutions (Ns) for the first two and for different viscosity values for the third.
Burger’s Equation. It is a 1D-Partial Differential Equation for modeling fluid motion. The initial
condition of the fluid is represented by a function. We need to learn the mapping from this function
to the solution function at time one, for a given viscosity. Figure 3 (left) shows the comparison

Figure 3: Left: Performance comparison (relative error as used in Li et al. (2020)) of the classical
fourier networks, CNNs and the three circuit proposals for a quantum fourier layer on the Burger’s
1D PDE equation across different resolutions. The quantum fourier circuits are quite close to the
performance of the classical fourier baseline and much better than classical CNNs in minimizing the
error. Middle: Same comparison on the Darcy’s 2D PDE for different resolutions. A similar relative
performance is observed where error in CNNs is much larger and is increasing w.r.t. resolution,
whereas the error in the other four (3 quantum circuits and classical layer) is quite similar. Right:
Convergence comparison for the Navier-Stokes equation with v = 1e− 3, trained for 500 epochs.

of relative error in estimating this mapping among the classical Fourier Layer, classical CNNs and
proposed quantum circuits for the Fourier Layers, across different resolutions. The quantum circuits
perform comparably to the classical Fourier Layer and much better than classical CNNs.
Darcy’s Flow Equation. For this case, it is a 2D PDE where the aim is to learn the mapping from the
diffusion coefficient function to the solution function in presence of a forcing function. All of them
are functions of positional coordinates only. Figure 3 shows the relative error for the 2D-version
of all the methods in solving this PDE, across different resolutions. Here also the three quantum
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Figure 4: Left: Performance comparison of the CNNS, classical fourier layer and the proposed
quantum circuits on the MNIST dataset. It can be observed that all of them perform quite similarly,
classical CNNs being the best. Middle: A similar comparison on the Pneumonia-MNIST Yang et al.
(2021) dataset. The performance of CNNs is somewhat noisy here whereas it is smoother in case
of the sequential circuit, both converging to a similar value. The compound quantum circuit and the
classical Fourier baseline are also quite close to the CNNs in convergence. Right: Same comparison
on the FashionMNIST Xiao et al. (2017) data. Here, a significant difference in the performance is
observed with CNNS being the best followed by the Sequential circuit.

circuits and the classical fourier layer show similar performance, consistent across resolutions, and
the CNNs show much worse results, having error increased with resolution.
Navier Stokes Equation. Similar to Li et al. (2020), we consider the 2D-navier Stokes Equation
where the aim is to model the fluid vorticity upto instant T (> 10) given the vorticity upto time 10.
Figure 3 (right) shows the performance comparison for this equation between our proposed circuits
and classical methods. It shows the convergence comparison for this family with viscosity ν fixed
to 1e − 3 for all the methods. Here again, it can be observed that all the proposed circuits and the
classical Fourier method perform significantly better than CNNs. Also, from Table 2, sequential
circuit performs similarly to the classical method and the others converge at a slightly higher error.

Table 2: Comparison of parameters required by one layer of the proposed circuits and the existing classical
Fourier Layer along with error analysis for different ν and T values for the 2D case of a Navier Stokes equation.

Method Classical FNO Sequential QFNO Parallelized QFNO Compound QFNO
Parameters 294,912 23,040 23,040 6,144

ν = 1e− 3; T = 50 0.0139 0.0148 0.0167 0.0186
ν = 1e− 4; T = 30 0.1603 0.1618 0.1633 0.1660
ν = 1e− 5; T = 20 0.1601 0.1615 0.1626 0.1638

4.2 IMAGE CLASSIFICATION

We further compare our proposed Quantum algorithms on the downstream image classification
tasks, as a side experiment, on benchmark datasets including the MNIST , FashionMNIST Xiao
et al. (2017) and PneumoniaMNIST Yang et al. (2021) datasets. Figure 4 shows the results for
this evaluation. It can be observed that our proposed algorithms perform decently in the image-
classification task as well.

5 CONCLUSION

We proposed a quantum algorithm to carry out the recently proposed classical Fourier Neural Oper-
ator on the quantum hardware. We further proposed two more quantum algorithms, which perform
a different operation than the classical algorithm and can be much more efficiently deployed on a
quantum hardware. The aim is to make the learning process more efficient when using the noisy
quantum hardware. Experimental results further verify that proposed quantum circuits perform ef-
ficiently when solving PDEs. The sequential circuit is quite similar to the best performing classical
algorithm for PDEs and performs decently on image classification as well. An interesting future di-
rection can be further modifying the learning process of the compound circuit so that it outperforms
the sequential circuit at the same time being more efficient to deploy.
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REPRODUCIBILITY STATEMENT

We have used the JAX framework to develop the methods discussed in the paper. All the experi-
ments shown in the paper are simulated by defining the matrices using the unitaries corresponding to
the quantum gates used in the paper. The architectural and hyperparameter details for both classical
and quantum Fourier Layers are same as the ones used in Li et al. (2020). All the experiments in-
volve a 4-layered architecture corresponding to both classical Fourier baseline and quantum Fourier
circuits. The architecture for CNNs used in the Burger and Darcy Flow PDE experiement is a Fully
Convolution Networks based architecture proposed in Zhu & Zabaras (2018). For the Navier stokes,
we use the ResNet architecture for CNNs, comprising 18 Residual Blocks as used in Li et al. (2020).
For the CNNs in the image classification tasks, we use a four layered architecture with 64 channels
and also use a max-pooling layer after the second and fourth layer. For both the tasks, each classical
or quantum layer is immediately followed by a ReLU activation and Batch Normalization opera-
tion. For the classification tasks, finally the output of each of the architectures is fed to a linear
layer with projection heads equal to number of classes for that task. For the classical FNOs and
proposed quantum FNOs except the compound quantum FNO, K is fixed to 16 for 1D PDE and
image classification and 12 for 2D PDEs, and Nc = 64 for the 1D PDE and 32 for the 2D PDEs.
For image classification, Nc is set to 16. For the compound quantum FNO, due to less parameteric
requirementsK is set to 16 andNc to 48 for all the tasks. The input for the PDEs havingNc initially
1 is first projected to the the requiredNc using a linear layer for all the classical and quantum fourier
methods similar to Li et al. (2020). The final output of all the layers of Nc features is back projected
toNc = 1 using another linear layer. For all the PDEs, unless specified, 1000 train instances and 200
test instances are used and training is carried out for 500 epochs using Adam optimizer with learning
rate initialized to 0.001 and halved after every 100 epochs. It is fixed to 0.001 for the classification
task. Number of epochs for the classification tasks can be seen in the plots.
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Appendix

A QUANTUM BUTTERFLY CIRCUITS

As discussed in the paper, replacing each radix-2 butterfly shaped operation in the butterfly diagram
for Fast Fourier Transform (FFT) by a parameterized 2-qubit gate, Reconfigurable Beam Splitter
(RBS) gate, results in a parameterized butterfly circuit (See Figure 5). The gate is parameterized
by a single parameter θ and the corresponding unitary is:

RBS(θ) =

1 0 0 0
0 cos θ sin θ 0
0 −sin θ cos θ 0
0 0 0 1

 (24)

It can be observed that it applies transformations on the |01〉 and |10〉 basis and is an identity op-
eration on the remaining. These both comprise the unary basis or hamming weight 1 basis for
two qubits. It can then be understood that it applies transformation between the states with same
hamming weight basis and thus, preserves the hamming weight. Therefore, if we load our input to
a basis with a certain hamming weight, then after any transformation made of these RBS gates,
the basis states corresponding to non-zero coefficients in the output will have that same hamming
weight. Corresponding to N qubits would be only N unary states and thus, if an N -dimensional
input is encoded into N -unary states using the unary loading similar to Johri et al. (2021), then the
transformation resulting from this butterfly circuit can be seen as a multiplication of the coefficients
of these N unary states with an orthogonal matrix W ∈ RN×N . A recent work by Kerenidis et al.
(2021) further explains this orthogonal matrix multiplication for a pyramid-shaped circuit.
Unary QFT. As shown in Figure 5 (Right), replacing the RBS gate in parameterized butterfly cir-
cuit with a fixed single qubit gate and a fixed angle RBS gate results in a circuit which can perform
QFT in the unary basis. The depth complexity of this circuit is still O(log(M )) where M is the
number of qubits and also the total number of unary states. The single qubit gate is just a Phase
gate which rotates about the Z-axis with angle set to − 2πk

N and matrix corresponding to this gate

is:
(

1 0

0 e−i
2πk
N

)
where N and k corresponding to each ω are same as in the corresponding radix-2

operation in the classical butterfly Fourier Transform (ωkN ).

Figure 5: Left: Parameterized Quantum Circuit generated by replacing each connection in the But-
terfly Diagram for FFT by 2-qubit RBS(θ) gate, where θ is a learnable parameter unique to each
gate. As discussed in the text, it acts as an orthogonal feed-forward neural network layer which
transforms the coefficients of unary basis states. Right: Replacing the 2-qubit parameterized RBS
gate by a single qubit rotation gate and RBS gate, with angle fixed to −π/4, results in the circuit for
doing QFT on the unary states.

B DATALOADERS

Since our input is a Nc ×Ns matrix, to load it into a quantum state, the matrix can be interpreted as
Nc vectors each of size Ns. The resultant should be a superposition of these vectors. In the paper
we discussed a recent work Johri et al. (2021) which used dataloaders to load N dimensional input
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Figure 6: Quantum circuit for loading a classical vector into unary basis Johri et al. (2021). It
comprises of (N − 1) RBS gates where the angles for each of these gates (αi) are pre-calculated
using the input. See Johri et al. (2021) for further details.

to N unary quantum states. One of the proposed dataloaders is shown in Figure 6 for 8 qubits. It
involves firstly flipping the first qubit to state |1〉. Then it involves applying (N-1) RBS gates with
precomputed angles (αi) for loading this vector. It can be observed that it is a log-depth circuit. For
a classical input vector a = (a1,...,aN ), it results in the following quantum state:

|a〉 =
1

||a||

N∑
i

ai |ei〉 (25)

where |ei〉 denotes the unary basis states for N qubits. There will be total N such state and coeffi-
cient of each of these states would correspond to the normalized classical vector element. To load the
input matrix b ∈ RNc×Ns we can superpose its row vectors bi, where each of these vectors would be
first loaded using some controlled vector-loader. To do so, we first load the norms corresponding to
each of these rows ||bi|| using the norm-loader shown in the circuit diagrams in the paper. It results
in the following state on the upper register:

1

||b||

Nc∑
i

||bi|| |ei〉 (26)

Now, for each of the unary states |ei〉 in the upper register, we load the corresponding row vectors
(bij)j∈[1,Ns] in the lower register using a controlled version of the unary vector loader (controlled
operations labelled ||Xi|| in the circuit diagrams) which involves applying the unary vector loader
and its adjoint along with CNOT gates. For more details on this loader, refer Cherrat et al. (2022).
The final loaded state after Nc of these controlled unary vector loaders is:

1

||b||

Nc∑
i

Ns∑
j

bij |ei〉 |ej〉 (27)

C PARALLEL QUANTUM CIRCUIT

Given the final state, after the IQFT, for the parallelized circuit in Eq.16 in the paper:

=

 Nc∑
i

|ei〉k IQFT

(bfik)k |ek〉k +
∑
j 6=k

(afij)k |ej〉k

K
k=1

(28)

We denote coefficients of this state corresponding to kth circuit by (cij)k and thus re-writing it as:

=

 Nc∑
i

Ns∑
j

(cij)k |ei〉k |ej〉k

K
k=1

(29)
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where (cij)k are explicitly given by using the equation for the fourier transform as follows:

(cij)k =
1

Ns

∑
j 6=k

(afij)ke
i 2πjNs + (bfik)ke

i 2πkNs

 (30)

Similarly writing cij for the sequential circuit discussed in the paper (using eq. 13):

cij =
1

Ns

 Ns∑
j=K+1

afije
i 2πjNs +

K∑
j

bfije
i 2πjNs

 (31)

Comparing the above two equations leads to the observation that coefficients in Eq. 31 wouldn’t be
a subset of coefficients in Eq. 30 and there is no closed form classical processing/transformation to
achieve this. Thus, this parallel circuit results in a somewhat different operation which is intuitively
similar to the sequential circuit. Given, the experimental results, this operation is also effective
in dealing with PDEs/Images, at the same time being more effective than sequential circuit under
noisy scenarios. However, if we remove the IQFT operation from this circuit and instead apply the
classical IFT , measuring after eq. 15, we get the following K matrices after applying the square
root operation: [

(bfk)k, (a
f
j )j 6=k

]K
k=1

(32)

where bfj and afj have been defined previously. There are K such Nc × Ns matrices. In case we
combine bfk from all of the K matrices with (afj )j∈[K+1,Ns] from any of the K matrices, suppose
the first one, it leads to the following Nc ×Ns matrix:[

(bfj )j∈[1,K], (a
f
j )j∈[K+1,Ns]

]
(33)

which is exactly same as eq. 3. Thus, this circuit (without the IQFT) followed by some classical
post-processing and IFT can replicate the classical fourier layer operation.

D WHY COMPOUND MATRIX ?

The intuition behind why a different operation than classical, in form of this compound matrix,
might work lies in the expressive power of this operation. The matrix for the sequential circuit can
be interpreted as a special case of this compound matrix where instead of trainable connections,
upper and lower registers interact using a fixed control gate. Due to this special connection, this
transform is making the convergence efficient. This compound matrix, thus, is a more expressive
version of the linear transform and also with a lower depth. Using it was further backed by the
assumption that if optimized carefully it might lead to either a more parallelized version of the
sequential circuit or a completely different and a more efficient learned matrix. Also, this is more
a quantum-native operation which would be quite complex to carry out classically and thus can
provide a better demonstration of quantum-advantage.
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