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ABSTRACT

Standard multi-agent reinforcement learning (MARL) algorithms are vulnera-
ble to sim-to-real gaps. To address this, distributionally robust Markov games
(RMGs) have been proposed to enhance robustness in MARL by optimizing the
worst-case performance when game dynamics shift within a prescribed uncer-
tainty set. Solving RMGs remains under-explored, from problem formulation to
the development of sample-efficient algorithms. A notorious yet open challenge is
if RMGs can escape the curse of multiagency, where the sample complexity scales
exponentially with the number of agents. In this work, we propose a natural class
of RMGs where the uncertainty set of each agent is shaped by both the environ-
ment and other agents’ strategies in a best-response manner. We first establish
the well-posedness of these RMGs by proving the existence of game-theoretic
solutions such as robust Nash equilibria and coarse correlated equilibria (CCE).
Assuming access to a generative model, we then introduce a sample-efficient al-
gorithm for learning the CCE whose sample complexity scales polynomially with
all relevant parameters. To the best of our knowledge, this is the first algorithm to
break the curse of multiagency for RMGs.

1 INTRODUCTION

A flurry of problems naturally involve decision-making among multiple players with strategic objec-
tives. Multi-agent reinforcement learning (MARL) serves as a powerful framework to address these
challenges, demonstrating potential in various applications such as social dilemmas (Leibo et al.,
2017; Baker, 2020; Zhang et al., 2024), autonomous driving (Lillicrap et al., 2015), robotics (Kober
et al., 2013; Rusu et al., 2017), and games (Mnih et al., 2015; Vinyals et al., 2019). Despite the
recent success of standard MARL, its transition from prototypes to reliable production is hindered
by robustness concerns due to the complexity and variability of both the real-world environment
and human behaviors. Specifically, environmental uncertainty can arise from sim-to-real gaps (To-
bin et al., 2017), unexpected disturbance (Pinto et al., 2017), system noise, and adversarial attacks
(Mahmood et al., 2018); agents’ behaviors are subject to unknown bounded rationality and variabil-
ity (Tversky & Kahneman, 1974). The solution learned at training time can fail catastrophically
when faced with a slightly shifted MARL problem during testing, resulting in a significant drop in
overall outcomes and each agent’s individual payoff (Balaji et al., 2019; Zhang et al., 2020a; Zeng
et al., 2022; Yeh et al., 2021; Shi et al., 2024; Slumbers et al., 2023).

To address robustness challenges, a promising framework is (distributionally) robust Markov games
(RMGs) (Littman, 1994; Shapley, 1953). It is a robust counterpart to the common playground of
standard MARL problems — Markov games (MGs) (Zhang et al., 2020c; Kardes et al., 2011). In
standard MGs, agents consider (competitive) personal objectives and simultaneously interact with
each other within a shared unknown environment. The goal is to learn some solution concepts
called equilibria, which are joint strategies/policies of agents that all of them stick with rationally
with other agents fixed; for instance, Nash equilibria (NE) (Nash, 1951; Shapley, 1953), correlated
equilibria (CE), and coarse correlated equilibria (CCE) (Aumann, 1987; Moulin & Vial, 1978). To
promote robustness, RMGs differ from standard MGs by defining each agent’s payoff (objective) as
its worst-case performance when the dynamics of the game shift within a prescribed uncertainty set
centered around a nominal environment.
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1.1 THE CURSE OF MULTIAGENCY IN ROBUST MARL

Sample efficiency is a crucial metric for MARL due to the limited availability of data relative to the
high dimensionality of the problem. In MARL, agents strive to learn a rationally optimal solution
(equilibrium) through interactions with an unknown environment (Silver et al., 2016; Vinyals et al.,
2019; Achiam et al., 2023). In contemporary applications, the environment is often extremely large-
scale, while data acquisition can be prohibitively limited by high costs and stakes. As such, a
notable challenge in terms of scalability for sample efficiency in MARL is known as the curse of
multiagency — the sample complexity requirement scales exponentially with the number of agents
(induced by the exponentially growing size of the joint action space). This issue has been recognized
and studied in extensive MARL problems, but remains open for robust MARL. We concentrate on
learning finite-horizon multi-player general-sum Markov games with a generative model (Kearns &
Singh, 1999), where the number of agents is n, the episode length is H, the size of the state space is
S, and the size of the i-th agent’s action space is A;, for 1 <i < n.

® Breaking the curse of multiagency in standard MARL. A line of pioneering work (Jin et al.,
2021; Bai & Jin, 2020; Song et al., 2021; Li et al., 2023) has recently introduced a new suite of
algorithms using adaptive sampling that provably break the curse of multiagency in standard MGs.
In particular, to find an e-approximate CCE, Li et al. (2023) requires a sample complexity no more
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up to logarithmic factors, which depends only on the sum of individual actions, rather than the
number of joint actions.

o The persistent curse of multiagency in robust MARL. The development of provable sample-
efficient algorithms for RMGs is largely underexplored, with only a few recent studies (Zhang et al.,
2020c; Kardes et al., 2011; Ma et al., 2023; Blanchet et al., 2023; Shi et al., 2024). Focusing on a
class of RMGs with uncertainty sets satisfying the (s, a)-rectangularity condition, existing works all
suffer from the curse of multiagency, significantly limiting their scalability. For example, using the
total variation (TV) distance as the divergence function, the state-of-the-art (Shi et al., 2024), using
non-adaptive sampling, finds an e-approximate robust CCE with a sample complexity no more than
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up to logarithmic factors, where o; € [0,1) is the uncertainty level for the i-th agent. As a result,
the sample size requirement becomes prohibitive when the number of agents is large.

Consequently, there is a significant desire to explore paths that could break through the curse of
multiagency in RMGs, which is much more involved than its standard counterpart due to compli-
cated non-linearity introduced by planning for worst-case performances. Nevertheless, the family of
RMGs is a much richer class of problems because of the flexibility in choosing the uncertainty sets
to capture different robust design considerations. While convenient, the (s, a)-rectangularity condi-
tion prevalent in current approaches can be overly restricted in practice, as each agent’s uncertainty
set is assumed to be independent of other agents’ strategies and can be decoupled into independent
subsets for each state-joint action pair (s, a), suggesting it might be challenging to break the curse
of multiagency in the existing framework. Given these limitations, we are motivated to develop new
classes of RMGs that can provide robust solutions applicable to more realistic MARL problems with
sample-efficient algorithms. This raises an open question:

Can we design RMGs with practically-meaningful uncertainty sets that come with sample
complexity guarantees breaking the curse of multiagency?

1.2 CONTRIBUTIONS

We propose a new class of RMGs with a fictitious uncertainty set that explicitly captures uncertain-
ties in the environment in view of other agents’ strategies, making it suitable for complex real-world
scenarios. We begin by verifying the game-theoretic properties of the proposed class of RMGs to
ensure the existence of robust variants of well-known standard equilibria notions, robust NE and ro-
bust CCE. Next, due to the general intractability of learning NE, we focus on designing algorithms
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Algorithm Uncertainty set Equilibria Sample complexity
2 .
(Sh'D 13—11\1\721024) (s, a)-rectangularity | robust NE/CE/CCE % min {H , ﬁ}
ietal., 1<i<n O
Robust-Q-FTRL fictitious SHS S, ..o As . 0
(this work) (s, a;)-rectangularity £obusH CCE T {H’ ming<;<n 0s }

Table 1: We compare our results with prior work on finding an e-approximate equilibrium in finite-
horizon multi-agent general-sum robust MG, omitting logarithmic factors in the sample complexi-
ties. Our result is the only computationally tractable algorithm that breaks the curse of multiagency.

that can provably overcome the curse of multiagency in learning an approximate robust CCE, re-
ferring to a joint policy where no agent can improve their benefit by more than ¢ through rational
deviations.. Specifically, for sampling mechanisms to explore the unknown environment, we assume
access to a generative model that can only draw samples from the nominal environment (Shi et al.,
2024). The main contributions are summarized as follows.

e We introduce a new class of robust Markov games using fictitious uncertainty sets with policy-
induced (s, a;)-rectangularity condition (see Section 2.2 for details), which is a natural adaptation
from robust single-agent RL to robust MARL. The uncertainty set for each agent ¢ can be decom-
posed into independent subsets over each state and its own action tuple (s, a;), where each subset is
a “ball” around the expected nominal transition determined by other agents’ policies and the nomi-
nal transition kernel, a divergence function p, and the radius/uncertainty level o;. We verify several
essential facts of this class of RMGs: the existence of the desired equilibrium — robust NE and
robust CCE for this new class of RMGs using game-theoretical tools such as fixed-point theorem;
the existence of best-response policies and robust Bellman equations.

e We consider the total variation (TV) distance as the divergence function p for uncertainty sets
due to its popularity in both practice (Pan et al., 2023; Lee et al., 2021; Szita et al., 2003) and theory
(Panaganti & Kalathil, 2022; Blanchet et al., 2023; Shi et al., 2024). We propose Robust-Q-FTRL
that can find e-approximate robust CCE with high probability, as long as the sample size exceeds
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up to logarithmic factors. To the best of our knowledge, this is the first algorithm to break the curse
of multiagency in RMGs. It provably finds an e-approximate robust CCE using a sample size that is
polynomial to all salient parameters. Table 1 provides a detailed comparison to prior works in robust
MARL, where our results significantly improve upon prior art (2) (Shi et al., 2024) by reducing the
exponential dependency on the size of each agent’s action space to a linear dependency. To achieve
this, we utilize adaptive sampling and online adversarial learning tools, coupled by a tailored design
and analysis for robust MARL due to the nonlinearity of the robust value function, which contrasts
with the linear payoff functions in standard MARL with respect to the transition kernel.

Notation. In this paper, we use the notation [T'] := 1,2, ..., T for any positive integer T' > 0, and
A(S) for the simplex over the set S. For any policy 7 and function Q(-) defined over a domain
B, the variance of Q under  is given by Var,(Q) = Y .5 7(a)[Q(a) — E[Q]]>. We define
r = [2(s,a)](s,a)esx4 € RS54 as any vector that represents values for each state-action pair,
and z = [2(s,a;)](s,a:)esxA; € R4 as any vector representing agent-wise state-action values.
Similarly, we denote z = [z(s)]scs as any vector representing values for each state. For X' =
(S, {Ai}iem), H, {oi}ien), £, 3). let f(X) = O(g(X)) denote that there exists a constant C1 > 0

such that f < C}g, with O(+) similarly defined but omitting logarithmic factors.

2 PRELIMINARIES

In this section, we begin with some background on multi-agent general-sum standard Markov games
(MGs) in finite-horizon settings, followed by a general framework of a robust variant of standard
MGs —- distributionally robust Markov games.
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2.1 STANDARD MARKOV GAMES

A finite-horizon multi-agent general-sum Markov game (MG) is characterized by the tuple MG =
{S,{Ai}1<i<n, P,r, H}. This setup features n agents each striving to maximize their individual
long-term cumulative rewards within a shared environment. At each time step, all agents observe
the same state over the state space S = {1,--- , .S} within the shared environment. For each agent
i(i € [n)), A = {1,---, A;} denotes its action space containing A; possible actions. The joint
action space for all agents (resp. the subset excluding the i-th agent) is defined as A := A; x---x A,
(resp. A_; = H#i Aj for any i € [n]). We use the notation a € A (resp. a_; € A_;) to denote a
joint action profile involving all agents (resp. all except the i-th agent). In addition, the probability
transition kernel P = {P} }1<n<p, with each P, : S x A — A(S), describes the dynamics of
the game: Pj,(s’|s,a) is the probability of transitioning from state s € S to state ' € S at time
step h when agents choose the joint action profile @ € A. The reward function of the game is
r = {rinti<i<ni<n<z, witheach r; 5 : S x A — [0, 1] normalized to the unit interval. For any
(i,h,s,a) € [n] x [H] x 8 x A, r;,1(s, a) represents the immediate reward received by the i-th
agent in state s when the joint action profile a is taken. Last but not least, H > 0 represents the
horizon length.

Markov policies and value functions. In this work, we concentrate on Markov policies that the ac-
tion selection rule depends only on the current state s, independent from previous trajectory. Namely,
the i-th (¢ € [n]) agent chooses actions according to m; = {m;p, : S — A(A;) }1<n<m. Here,
7;.n(a | s) represents the probability of selecting action a € A; in state s at time step h. As such,
the joint Markov policy of all agents can be denoted as m = (71, ...,m,) : S X [H] — A(A), i.e
given any s € S and h € [H], the joint action profile a € A of all agents is chosen following the
distribution 7, (- | 8) = (m1,h, To,h - - - Tnn) (- | 8) € A(A).

To continue, for any given joint policy 7 and transition kernel P of a M@, the i-th agent’s long-term
cumulative reward can be characterized by the value function V;TAP : & — R (resp. Q-function

QZ’hP : 8 x A R) as below: forall (h,s,a) € [H] x S x A,

H

H
‘/1777};(}’(3) ::Eﬁ,p[ZT“(st,a,«,) |5h:5]7 Q:’hp( —EWP[ZT’Z,‘ st,a,« |Sh—5 ahfa}
t=h t=h
(C))

In this context, the expectation is calculated over the trajectory {(s¢, at)}n<i<m produced by fol-
lowing the joint policy 7 under the transition kernel P.

2.2 DISTRIBUTIONALLY ROBUST MARKOV GAMES

A general distributionally robust Markov game (RMG) is represented by the tuple
RMG = {8 {Ai}1<i<n. {UT (P*) h1<i<n.m H}.

Here, S,{A; }1<1<,,,r H are defined in the same manner as those in standard MGs (see Sec-
tion 2.1). RMGs differ from standard MGs: for each agent ¢ (1 < ¢ < n), the transition kernel is not
fixed but can vary within its own prescribed uncertainty set /7 (PO) centered around some nominal
kernel P? : Sx A +— A(S) that represents a reference (such as the training environment). The shape
and the size of the uncertainty set {15 (P°)};c[,) are further specified by a divergence function p
and the uncertainty levels {0 };c[n], serving as the “distance” metric and the radius respectively.

Various choices of the divergence function have been considered in robust RL literature, including
but not limited to f-divergence (such as total variation, 2 divergence, and Kullback-Leibler (KL)
divergence) (Yang et al., 2022; Zhou et al., 2021; Lu et al., 2024; Wang et al., 2024) and Wasserstein
distance (Xu et al., 2023). Different uncertainty sets lead to distinct RMGs, as they address distinct
types of uncertainty and game-theoretical solutions. This paper focuses on variability in environ-
mental dynamics (transition kernels), though uncertainty in agents’ reward functions could also be
considered similarly but is omitted for brevity.

Robust value functions and best-response policies. For any RMG, each agent seeks to maximize
its worst-case performance in the presence of other agents’ behaviors despite perturbations in the
environment dynamics, as long as the kernel transitions remain within its prescribed uncertainty set
uy (PY). Mathematically, given any joint policy 7 : S x [H] + A(A), the worst-case performance
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of any agent i is characterized by the robust value function V,';°" and the robust Q-function Q] '
forall (i, h, s,a;) € [n] x [H] x S x A;,

VToi(s) = inf V%P (s and ™9 (s a;) =  inf P (s a;). 5)
ih ( ) PEL[:i(PO) i,h ( ) Qz,h ( ) Peugi(PO) Qz,h ( ) (
Note that different from (4), here the Q-function for any ¢-th agent is defined only over its own action
a; € A; rather than the joint action a € A.

To continue, we denote m_; as the policy for all agents except for the i-th agent. By optimizing the
i-th agent’s policy 7} : S x [H] — A(A;) (independent from 7_;), we define the maximum of the
robust value function as

Vﬂ'; ><7T_7;,P(8) (6)

’
*TT— 3,05 ,_ T X T —4,04 _
Vz‘,h, (5) = max V1h s)= ih

max inf
T} SX[H]—A(A;) T SX[H]=A(A;) Peuyt (PO)
for all (4, h, s) € [n] x [H] x S. The policy that achieves the maximum of the robust value function
for all (i, h, s) € [n] x [H] x S is called a robust best-response policy.

Solution concepts for robust Markov games. In view of the conflicting objectives between agents,
establishing equilibrium becomes the goal of solving RMGs. As such, we introduce two kinds of
solution concepts — robust NE and robust CCE — robust variants of standard NE and CCE (usually
considered in standard MGs) specified to the form of RMGs.

e Robust NE. A product policy m = my X mg X - - X m, : & x [H] — [[i-; A(A;) is said to be
a robust NE if
Vi (s) = Vil 7 (), V(s,i) € S x [n]. 9]
Given the strategies of the other agents 7_;, when each agent wants to optimize its worst-case perfor-
mance when the environment and other agents’ policy stay within its own uncertainty set /7 (PY),
robust NE means that no player can benefit by unilaterally diverging from its present strategy.

® Robust CCE. A distribution over the joint product policy £ = {&n}nera @ [H] = A(S =
[Tien A(A:)) is said to be a robust CCE if it holds that

Erxne [Vi77(5)] 2 Enne [Vii 77 (s)] s V(i,5) € [n] x S. (8)

Considering all agents follow the policy drawn from the distribution &, i.e., 7y, ~ &, forall h € [H],
when the distribution of all agents but the ¢-th agent’s policy is fixed as the marginal distribution of
&, robust CCE indicates that no agent can benefit from deviating from its current policy.

Note that, for standard MGs, CCE is defined as a possibly correlated joint policy 7<°E : S x [H]
A(A) (Moulin & Vial, 1978; Aumann, 1987) if it holds that

VISP > omax VTP W(s,i) €S x [n] ©)
il T rlSx[H A4, 0L ’ ’ '

This correlated policy 7““F can also be viewed as a distribution ¢ over the product policy space since
each joint action a can be seen as a deterministic product policy. Careful readers may note that the
definition (9) of CCE in standard MGs is in a different form from the one (8) in RMGs, as the latter
does not include the expectation operator E.¢[-] with respect to the policy distribution (§) over the
value function. We emphasize that the definition with the expectation operator outside of the value
(or cost) function with respect to a distribution of product pure strategies in (8) is a natural formula-
tion originating from game theory (Moulin et al., 2014; Moulin & Vial, 1978). In standard MARL
and previous robust MARL studies, the definition in (9) is typically used because (9) and (8) are iden-
tical in those situations, as the expectation operator and the corresponding value functions are linear
with respect to the joint policy, allowing them to be interchanged (Li et al., 2023; Shi et al., 2024).

3 ROBUST MARKOV GAMES WITH FICTITIOUS UNCERTAINTY SETS

Given the definition of general RMGs, a natural question arises: what kinds of uncertainty sets
should we consider to achieve the desired robustness in our solutions? To address this, we focus on
a specific class of RMGs characterized by a type of natural yet powerful uncertainty sets.



Under review as a conference paper at ICLR 2025

3.1 A NOVEL UNCERTAINTY SET DEFINITION IN RMGS

We propose a new class of uncertainty sets, named fictitious uncertainty sets, which count in the
uncertainty induced by both the environment and agents’ behaviors in a correlated manner. Before
introducing the uncertainty sets, we provide some auxiliary notations as below. We denote a vector
of any transition kernel P : S x A — A(S) or P : § x A — A(S) respectively as P, s q =
Pu(-|s,a) e RS, P == P)(-]s,a) € R"*5 forall (s,a) € S x A. Then for any (possibly
correlated) joint Markov policy (defined in section 2.1) m : S x [H] — A(A), we define the
expected nominal transition kernel conditioned on the situation that the i-th agent chooses some
action a; € A; and other agents play according to the conditional policy (i.e., a_; ~ m(-| s, a;))
given s € S and a; as below: for all (h,s,a;) € [H] x S x A;,

T4 Thla;, A5 | S
Py = Banmy(san) [Phsal = W [Ph sl - (10)
a_;€A_; b ¢

Armed with the above definitions, now we are in a position to define the fictitious uncertainty sets,
denoted as {Z/lgi (P°,-) }ie[n]’ which satisfy a policy-induced (s, a;)-rectangularity condition.

Definition 1. For any joint policy w : S x [H] — A(A), divergence function p : A(S) x A(S) —
R™ and accessible uncertainty levels o; > 0 for all i € [n], the fictitious uncertainty sets
{ug:(P°, )}, c[n) Satisfy the policy-induced (s, a;)-rectangularity condition: for all i € [n] and

v(h,S,Cﬁ) € [H] X 8 X Ai’

h,s,a; h,s,a; h,s,a;

ug (P, m) =g (P, ). ue (Plo) ={Peaw)n(P P, ) <o}, an
where ® represents the Cartesian product.

In words, conditioned on a fixed joint policy 7, the uncertainty set I (P°, ) for each i-th agent can
be decomposed into a Cartesian product of subsets over each state and agent-action pair (s,a;). Each
uncertainty subset U (Py; o.a,) OVEr (s, a;) is defined as a “ball” around a reference — the expected

nominal transition kernel P;;;iw conditioned on both transition kernel and agents’ behavior 7.
vy

Further discussions of fictitious uncertainty sets. It is in order to remark on the proposed type of
uncertainty sets, in comparison with prior works.

e A natural adaptation from single-agent robust RL. When agents follow some joint policy 7 :
S x [H] — A(A), fixing other agents’ policy 7_;, from the perspective of each individual agent
i, RMGs with our policy-induced (s, a;)-rectangularity condition will degrade to a single-agent
robust RL problem with the widely used (s, a;)-rectangularity condition in the single-agent literature
(Iyengar, 2005; Zhou et al., 2021). Namely, from any agent ¢’s viewpoint, in a RMG, it has an
“overall environment” player that can not only manipulate the environmental dynamics but also
other players’ policy m_;.

o Allowing uncertainty from both the environment and agents’ behaviors in a correlated manner.
One essential feature of our proposed uncertainty set is that it is shaped by both the environment and
agents’ strategies in a (possibly) correlated manner. Specifically, for any agent 7 and a given policy 7,

any uncertainty subset U (P,:r ;"ai) (over any (h, s, a;)) is constructed as a neighborhood around

a nominal center P,;r ;"’ai (see (10)) that depends on both the nominal environment P° and other
agents’ conditional strategies (- | s, a;).

o Comparisons to prior works. Prior works on provable sample-efficient algorithms have fo-
cused on a different type of uncertainty sets with (s, a)-rectangularity condition (Ma et al., 2023;
Blanchet et al., 2023; Shi et al., 2024). This class of uncertainty sets decouples the uncertainty into
independent subsets for each state-joint action pair (s, @), accounting for the uncertainty of the envi-
ronment and agents’ strategies independently. In comparison, the proposed uncertainty set lifts this
independence assumption across subsets over different (s, a;,a_;) for any a_; € A;, enabling the
environment and agents’ strategies to shape the uncertainty set in a correlated manner.
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3.2 PROPERTIES OF RMGS WITH FICTITIOUS UNCERTAINTY SETS

Throughout the paper, we focus on the class of RMGs with the proposed fictitious uncertainty sets,
represented as

RMG, = {8, {Ai}lgign,{ug"(P(), Vh<i<n. T, H}

and abbreviated as fictitious RMGs in the remaining of the paper. In this section, we present key facts
about fictitious RMGs related to best-response policies, equilibria, and the corresponding one-step
lookahead robust Bellman equations. The proofs are postponed to Appendix C.

First, we introduce the following lemma, which verifies the existence of a robust best-response
policy that achieves the maximum robust value function (cf. (6)).

Lemma 1. For any i € [n], given m_; : S x [H] — A(A;), there exists at least one policy T; :
S x [H] — A(A;) for the i-th agent that can simultaneously attain Vf}jxw’“a" (s) = Vz*h”*’a’ (s)
forall s € S and h € [H)|. We refer this policy as the robust best-response policy.

Existence of robust NE and robust CCE. fictitious RMGs can be viewed as hierarchical games
with n+nS Z?:l A; agents. This includes the original n agents and n additional sets of .S Z?:l A;
independent adversaries, each determining the worst-case transitions for one agent over a state plus
agent-wise-action pair. Considering the solution concepts — robust NE and robust CCE — intro-
duced in Section 2.2, the following theorem verifies the existence of them for any fictitious RMGs
using Kakutani’s fixed-point theorem (Kakutani, 1941), focusing on robust NE firstly.

Theorem 1 (Existence of robust NE). For any RMG, = {S, {Ai}i<i<ns {Z/Igi(PO, Jh<i<ns
r,H } with an uncertainty set defined in Definition 1, there exists at least one robust NE.

Analogous to standard Markov games, since {robust NE} C {robust CCE}, Theorem 1 indicates
the existence of robust CCEs directly.

Fortunately, the class of fictitious RMGs feature a robust counterpart of the Bellman equation —
robust Bellman equation, which is detailed in Appendix B.2.

4 SAMPLE-EFFICIENT LEARNING: ALGORITHM AND THEORY

In this section, we focus on designing sample-efficient algorithms for solving fictitious RMGs when
agents need to collect data by interacting with the unknown shared environment in order to learn
the equilibria. To proceed, we shall first specify the data collection mechanism and the divergence
function for the uncertainty set. Then we propose a sample-efficient algorithm Robust-Q-FTRL
that leverages a carefully-designed adaptive sampling strategy to break the curse of multiagency.

4.1 PROBLEM SETTING AND GOAL

Recall that the uncertainty sets are constructed by specifying a divergence function p and the un-
certainty level to control its shape and size. In this work, we focus on using the TV distance as the
divergence function p for the uncertainty set, following Szita et al. (2003); Lee et al. (2021); Pan
et al. (2023), defined by

1
VPP e AS): prv(PP) =5 |P— P, (12)

For convenience, throughout the paper, we abbreviate 7 (-) := U7 (-) when there is no ambiguity.
Data collection mechanism: a generative model. We assume the agents interact with the envi-
ronment through a generative model (simulator) (Kearns & Singh, 1999), which is a widely used
sampling mechanism in both single-agent RL and MARL (Zhang et al., 2020b; Li et al., 2022).
Specifically, at any time step h, we can collect an arbitrary number of independent samples from

any state and joint action tuple (s,a) € S x A, generated based on the true nominal transition
kernel P%: fori =1,2,..., 5} , 4 oy PY(-]s,a).
Goal. Consider any fictitious RMGs RMG . = {S, {Ait1<i<n, {U(P°, ) }i<icn, T H}. While

learning exact robust equilibria is computationally challenging and may not be necessary in practice,
instead in this work, we focus on finding an approximate robust CCE (defined in (8)). Namely, a
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distribution { == {&{n e « [H] = A(S = []igp A(Ai)) is said to be an e-robust CCE if

= Ern V* o —Epne [V <e. 13
gapcce(§) segn@%gn{ ¢ [ (s)] e[ViiT(s)]} <e (13)
Armed with a generative model of the nominal environment, the goal is to learn a robust CCE using
as few samples as possible.

4.2 ALGORITHM DESIGN

With the sampling mechanism over a generative model in hand, we propose an algorithm called
Robust-Q-FTRL to learn an e-robust CCE in a sample-efficient manner, summarized in Algorithm 2
in the appendix. Robust-Q-FTRL draws inspiration from Q-FTRL developed in the standard MG
literature (Li et al., 2022), but empowers tailored designs for learning in fictitious RMGs to achieve
a robust equilibrium and to tackle statistical challenges arising from agents’ nonlinear objectives.
Overall, Robust-Q-FTRL takes a single pass to learn recursively from the final time step h = H to
h = 1. Ateach time step h € [H], an online learning process with K iterations will be executed.
Before introducing the algorithm, we first concentrate on two essential steps customized for learning
in fictitious RMGs.

Constructing the empirical model via N-sample estimation. For each time step h, we denote

wéf 5, as the current learning policy of the i-th agent before the beginning of the k-th iteration for any

k € [K]. And we denote the joint product policy as 7 = (w’f Byt ,Wfl) »)- During each iteration k,
for each agent i € [n], we require to generate N independent samples from the generative model over
each (s, a;) € S X A; to obtain an empirical model, detailed in Algorithm 1. It includes an empirical
reward function represented by rf) n € R4 and transition kernels denoted by Pfh € R94:%3_ Note
that different from standard MGs, we need to generate N samples instead of 1 sample per iteration
to handle the additional statistical challenges induced by the non-linear objective of agents (/N will
be specified momentarily).

Estimating robust Q-function of the current policy 7rh We denote XA/Z n € RY as the estimation
of the i-th agent s robust value function at time step h. For any agent ¢, w1th the empirical reward

function rl 1> empirical kernel Plkh, and the estimated robust value function VZ ,h+1 at the next step
in hand, the robust Q-function {g¥, } of current policy 7} can be estimated as:

V(i h,s,a;) € [n] x [H] x S x Ai: ¥ (s,a:) =18, (s,a:) + inf P‘Z;hﬂ. (14)
’ ' PeUi (PF ‘

ih,s,a;

Unlike the linear function w.r.t. Pk, in standard MGs, (14) lacks a closed form and introduces an
additional inner optimization problem Solving (14) directly is computationally challenging due to
the need to optimize over an S-dimensional probability simplex, with complexity growing expo-
nentially with the state space size S. Fortunately, by applying strong duality, we can solve (14)
equivalently via its dual problem with tractable computation (Iyengar, 2005):

afn(s,ai) =l (s, a)
+ o max {PE Vi), —oi(a—min [Vipa] ()}, (15)
a€[ming Vi hy1(s),maxg Vi p41(s)] s

where [V],, denotes the clipped version of any vector V' € RS determined by some level a > 0,
o, ifV(s) > a
ly, [V = .
namely, [V]a(s) {V(s), otherwise.
for constructing nonlinear robust objectives in the online learning process and ensuring the desired
statistical accuracy.

’. This is a key component of Robust-Q-FTRL, serving

Overall pipeline of Robust-Q-FTRL. With these technical modules in place, we introduce Robust-
Q-FTRL, which follows a similar online learning procedure as Q-FTRL for standard MGs (Li et al.,
2022). The complete procedure is summarized in Algorithm 2. We denote Qﬁ n € RS54 as the
estimated robust Q-function of the equilibrium for the i-th agent at the k-th iteration of time step h.
To begin with, Robust-Q-FTRL initialize the robust value function, robust Q-function ‘72 H+1(s) =
Q?,h(s, a;) = 0, and the policy 7ri17h(ai |s) = 1/A; for all i € [n]. Then subsequently from the
final time step h = H to h = 1, for each step h, a K iterations online learning process will be
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executed. At each k-th iteration, given current policy wi‘j, as described above, an empirical model
({rﬁ nticn) and {Pi}fh}ie[n]) is constructed by N-sample estimation (cf. algorithm 1). Then the
robust Q-function {q, };c(n) of the current policy ), is estimated by (15).

Now we are ready to specify the loss objective and proceed the online learning procedure. With the
current one-step update {¢¥,, }, we update the Q-estimate as Q¥ , = (1 — ax)Q ;" + akgl),. Here,
{ax }re[k) is a series of rescaled linear learning rates with some ¢, > 24, where for all k& € [K],

Colog K

[l (1 — ), if0<k<n<K
kE—14+cqlogK ’

1
o, ifk=n (16)

ap = and af = {
Let the Q-estimate be the online learning loss objective at this moment, we apply the Follow-the-
Regularized-Leader strategy (Shalev-Shwartz, 2012; Li et al., 2022) to update the corresponding

k
olicy as: 7 (a; | s) = —2 (2 1Q8n(s.00) with = /28K for k= 1,2,.... This
policy ih (ai|s) S, exp (nk+1Qﬁh,(s,a/)) Nk+1 arH
is a widely used adaptive sampling and learning procedure for MARL problems.

After completing K iterations for time step h, we finalize the robust value function estimation by
setting it to its confidence upper bound, incorporating carefully designed optimistic bonus terms
{Bin} as: forall (i,h,s) € [n] x [H] xS,

KSY AL [1 &
,Bi,h,(s>=cb\/1og3( Zgzl >\/ = > af {vary (g (dha(s0) +H,aD)
k=1

where ¢, denotes some absolute constant, 6 € (0, 1) is the high probability threshold, Finally, after
the recursive learning process ends for all time steps h = H, H — 1, --- , 1, we output a distribution
of product policy & = {&x } nem) over all the policies {m = (w} , x - X7k ;) }ne(m)pepx] occurs

during the process that defined as &, (7¥) := o for all (h, k) € [H] x [K].
4.3 THEORETICAL GUARANTEES

In this section, we provide the theoretical guarantees for the sample complexity of our proposed
algorithm Robust-Q-FTRL (Algorithm 2), shown as below:

Theorem 2 (Upper bound). Using the TV uncertainty set defined in (12). Consider any 6 € (0,1)
and any fictitious RMGs RMG, = {S, {Ai1<i<n, {UT (PO, ) }icicn, T, H} with o; € (0, 1] for

alli € [n]. Foranye < \/min {H %} Algorithm 2 can output an e-robust CCE E ie.,

P mini<i<n

N *, T ,0% T,05%
gapcce(§) = et cn {Eﬂwg [Vm (s)] — E & [Vm (s)] } <e
with probability at least 1 — 0, as long as N > Clﬁgﬂ min { minl;gn oo H} and K > Cleifd Here

C is some universal large enough constant. Namely, it is sufficient if the total number of samples
acquired in the learning process obeys

(C1)’HOS Y i Ai 1
Now HENS S A, > e et

1<i<n

Before we jump into more discussions of the above theorem, in addition, we introduce the
information-theoretic minimax lower bound for this problem as well.

Lower bound for learning in fictitious RMGs. Considering the instances of fictitious RMGs
that the action space for all the agents except the i-th agent contains only a single action, i.e.,
A; = 1 forall j # 4. As such, all the agents j # 4 will take a fixed action and the
game reduces to a single-agent robust MDP with (s, a)-rectangularity condition (Zhou et al.,
2021). So the goal of finding the robust equilibrium — robust NE/CCE also degrades to find-
ing the optimal policy of the i-th agent. Invoking the results from Shi et al. (2024, Theo-
rem 2), the lower bound for the class of fictitious RMGs is achieved directly: consider any tuple
{S,{Ai}1<i<n, {oit1<i<n, H } obeying o; € (0,1 — co] with 0 < ¢y < 1 being any small enough
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C1

.. a4 ifo; < FL
positive constant, and H > 16log2. Lete < {H’ "= 2H for any ¢; < i. We can con-

1 otherwise
struct a set of fictitious RMGs M = {RMG,; };¢[1}, such that for any dataset generated from the
nominal environment with in total IV, independent samples over all state-action pairs, we have

nfec 10 AT, A MAXRMG, eM {IF’Mgi(gapCCE(f) > 5)} > 1, provided that

3 . .
CoSH? maxi<;<n A; min {H, ;} (18)

ming <;<n 0;

Nay < =

Here, the infimum is taken over all estimators E Pr g, denotes the probability when the game is
MG, for all MG; € M, and C is some small enough constant.

Armed with both the upper bound (Theorem 2) and lower bound in (18), we are now ready to discuss
the implications of our sample complexity results.

Breaking the curse of multiagency in the sample complexity for RMGs. Theorem 2 demonstrates
that for any fictitious RMGs, Robust-Q-FTRL algorithm finds an e-robust CCE when the total
number of samples exceeds

_ [ SHS A
O (Zlf<" min{H,1}> . (19)
€

minlgign g;

To the best of our knowledge, Robust-Q-FTRL with the above sample complexity in (19) is the first
algorithm for RMGs breaking the curse of multiagency, regardless of the types of uncertainty sets.
Our sample complexity depends linearly on the sum of each agent’s actions .., A; rather than
their product []}"_; A,—making the algorithm highly scalable as the number of agents increases.
Nonetheless, there still exist gaps between our upper bound and the lower bound—especially in
terms o the dependency on the horizon length H and the accuracy level e—an interesting direction
to investigate in the future.

Comparisons with prior works. All prior works focus on learning equilibria for a different kind of
robust MGs with (s, a)-rectangular uncertainty sets (Ma et al., 2023; Blanchet et al., 2023; Shi et al.,
~ 3 n .
2024). However, the state-of-the-art sample complexity O (S’HE[+1A min {H , m})
(Shi et al., 2024) still suffers from the curse of multiagency with an exponential dependency on the
number of agents when all agents have equal action spaces, which uses nonadaptive sampling. Our
work circumvents the curse of multiagency by resorting to a tailored adaptive sampling and online
learning procedure, together with the introduction of a new class of fictitious RMGs, providing a

fresh perspective to learning RMGs.

Technical insights. For sample complexity analysis, while previous works have addressed the curse
of multiagency in sequential games like standard Markov games (MGs) and Markov potential games,
these methods are not directly applicable to RMGs. Prior approaches assume a linear relationship
between the value function and the transition kernel, allowing statistical errors across K iterations to
cancel out. However, in RMGs, the robust value function, due to its distributionally robust require-
ment, is highly nonlinear and often lacks a closed form, making it impossible to linearly aggregate
statistical errors. To tackle the nonlinear challenges in RMGs, we design a variance-style bonus term
through non-trivial decomposition and control of auxiliary statistical errors caused by nonlinearity,
resulting in a tight upper bound on regret during the online learning process.

5 CONCLUSION

Robustness in MARL presents greater challenges than in single-agent RL due to the strategic inter-
actions between agents in a game-theoretic setting. This work proposes a new class of RMGs with
fictitious uncertainty sets that naturally extends from robust single-agent RL and addresses more
realistic scenarios where each agent’s uncertainty is influenced by both the environment and the be-
havior of others. We then propose Robust-Q-FTRL, the first algorithm to break the curse of multia-
gency in robust Markov games regardless of the uncertainty set definitions, with sample complexity
scaling polynomially with all key parameters. This opens up new research directions in MARL,
such as uncertainty set selection, equilibrium refinement, and sample-efficient algorithm design.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Robert J] Aumann. Correlated equilibrium as an expression of Bayesian rationality. Econometrica:
Journal of the Econometric Society, pp. 1-18, 1987.

Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least squares
policy iteration with provable performance guarantees. In International Conference on Machine
Learning, pp. 511-520. PMLR, 2021.

Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 551-560. PMLR, 2020.

Bowen Baker. Emergent reciprocity and team formation from randomized uncertain social prefer-
ences. Advances in neural information processing systems, 33:15786-15799, 2020.

Bharathan Balaji, Sunil Mallya, Sahika Genc, Saurabh Gupta, Leo Dirac, Vineet Khare, Gourav Roy,
Tao Sun, Yunzhe Tao, Brian Townsend, et al. Deepracer: Educational autonomous racing plat-
form for experimentation with sim2real reinforcement learning. arXiv preprint arXiv:1911.01562,
2019.

Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimization. Mathemat-
ical Programming, 167(2):235-292, 2018.

Jose Blanchet and Karthyek Murthy. Quantifying distributional model risk via optimal transport.
Mathematics of Operations Research, 44(2):565-600, 2019.

Jose Blanchet, Miao Lu, Tong Zhang, and Han Zhong. Double pessimism is provably efficient
for distributionally robust offline reinforcement learning: Generic algorithm and robust partial
coverage. arXiv preprint arXiv:2305.09659, 2023.

Jose Blanchet, Miao Lu, Tong Zhang, and Han Zhong. Double pessimism is provably efficient
for distributionally robust offline reinforcement learning: Generic algorithm and robust partial
coverage. Advances in Neural Information Processing Systems, 36, 2024.

Qiwen Cui, Kaiqing Zhang, and Simon Du. Breaking the curse of multiagents in a large state space:
R1 in markov games with independent linear function approximation. In The Thirty Sixth Annual
Conference on Learning Theory, pp. 2651-2652. PMLR, 2023.

Constantinos Daskalakis, Noah Golowich, and Kaiqing Zhang. The complexity of markov equi-
librium in stochastic games. In The Thirty Sixth Annual Conference on Learning Theory, pp.
4180-4234. PMLR, 2023.

John Duchi and Hongseok Namkoong. Learning models with uniform performance via distribution-
ally robust optimization. arXiv preprint arXiv:1810.08750, 2018.

Rui Gao. Finite-sample guarantees for wasserstein distributionally robust optimization: Breaking
the curse of dimensionality. arXiv preprint arXiv:2009.04382, 2020.

Songyang Han, Sanbao Su, Sihong He, Shuo Han, Haizhao Yang, and Fei Miao. What is the solution
for state adversarial multi-agent reinforcement learning? arXiv preprint arXiv:2212.02705, 2022.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257-280, 2005.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning—a simple, efficient, decentral-
ized algorithm for multiagent RL. arXiv preprint arXiv:2110.14555, 2021.

Shizuo Kakutani. A generalization of brouwer’s fixed point theorem. 1941.

11



Under review as a conference paper at ICLR 2025

Shyam Sundar Kannan, Vishnunandan LN Venkatesh, and Byung-Cheol Min. Smart-LLM: Smart
multi-agent robot task planning using large language models. arXiv preprint arXiv:2309.10062,
2023.

Erim Kardes, Fernando Ordéfiez, and Randolph W Hall. Discounted robust stochastic games and an
application to queueing control. Operations research, 59(2):365-382, 2011.

Michael J Kearns and Satinder P Singh. Finite-sample convergence rates for Q-learning and indirect
algorithms. In Advances in neural information processing systems, pp. 996—-1002, 1999.

Jens Kober, J] Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238-1274, 2013.

Tor Lattimore and Csaba Szepesvari. Bandit algorithms. Cambridge University Press, 2020.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning, pp. 6120-6130. PMLR, 2021.

Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037, 2017.

Gen Li, Yuejie Chi, Yuting Wei, and Yuxin Chen. Minimax-optimal multi-agent RL in Markov
games with a generative model. Advances in Neural Information Processing Systems, 35:15353—
15367, 2022.

Gen Li, Yuling Yan, Yuxin Chen, and Jianqing Fan. Minimax-optimal reward-agnostic exploration
in reinforcement learning. arXiv preprint arXiv:2304.07278, 2023.

Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is Q-learning minimax optimal?
a tight sample complexity analysis. Operations Research, 72(1):222-236, 2024.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pp. 4213-4220, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157-163. Elsevier, 1994.

Miao Lu, Han Zhong, Tong Zhang, and Jose Blanchet. Distributionally robust reinforcement learn-
ing with interactive data collection: Fundamental hardness and near-optimal algorithm. arXiv
preprint arXiv:2404.03578, 2024.

Shaocong Ma, Ziyi Chen, Shaofeng Zou, and Yi Zhou. Decentralized robust v-learning for solving
markov games with model uncertainty. Journal of Machine Learning Research, 24(371):1-40,
2023.

A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking reinforcement learning algorithms on real-world robots. In Conference on robot
learning, pp. 561-591. PMLR, 2018.

Jeremy McMahan, Giovanni Artiglio, and Qiaomin Xie. Roping in uncertainty: Robustness and
regularization in markov games. arXiv preprint arXiv:2406.08847, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, and Georg Ostrovski. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Hervé Moulin and J-P Vial. Strategically zero-sum games: the class of games whose completely
mixed equilibria cannot be improved upon. International Journal of Game Theory, 7(3):201-221,
1978.

12



Under review as a conference paper at ICLR 2025

Herve Moulin, Indrajit Ray, and Sonali Sen Gupta. Coarse correlated equilibria in an abatement
game. Technical report, Cardiff Economics Working Papers, 2014.

John Nash. Non-cooperative games. Annals of mathematics, pp. 286-295, 1951.

Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780-798, 2005.

Yuxin Pan, Yize Chen, and Fangzhen Lin. Adjustable robust reinforcement learning for online 3d
bin packing. arXiv preprint arXiv:2310.04323, 2023.

Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning with a
generative model. In International Conference on Artificial Intelligence and Statistics, pp. 9582—
9602. PMLR, 2022.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In International Conference on Machine Learning, pp. 2817-2826. PMLR, 2017.

Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv
preprint arXiv:1908.05659, 2019.

Aviad Rubinstein. Settling the complexity of computing approximate two-player nash equilibria.
ACM SIGecom Exchanges, 15(2):45-49, 2017.

Andrei A Rusu, Matej Vecerik, Thomas Rothorl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell.
Sim-to-real robot learning from pixels with progressive nets. In Conference on robot learning,
pp- 262-270. PMLR, 2017.

Shai Shalev-Shwartz. Online learning: Theory, algorithms, and applications. 2007.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107-194, 2012.

Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online learning algorithms.
Machine Learning, 69(2):115-142, 2007.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):
1095-1100, 1953.

Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with
near-optimal sample complexity. Journal of Machine Learning Research, 25(200):1-91, 2024.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price of
distributional robustness in reinforcement learning with a generative model. In Proceedings of
the 37th International Conference on Neural Information Processing Systems, pp. 79903-79917,
2023.

Laixi Shi, Eric Mazumdar, Yuejie Chi, and Adam Wierman. Sample-efficient robust multi-agent
reinforcement learning in the face of environmental uncertainty. In Forty-first International Con-
ference on Machine Learning, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

Oliver Slumbers, David Henry Mguni, Stefano B Blumberg, Stephen Marcus Mcaleer, Yaodong
Yang, and Jun Wang. A game-theoretic framework for managing risk in multi-agent systems. In
International Conference on Machine Learning, pp. 32059-32087. PMLR, 2023.

Ziang Song, Song Mei, and Yu Bai. When can we learn general-sum Markov games with a large
number of players sample-efficiently? arXiv preprint arXiv:2110.04184, 2021.

Istvan Szita, Balint Takdcs, and Andras Lorincz. e—mdps: Learning in varying environments. Jour-
nal of Machine Learning Research, 3(1), 2003.

13



Under review as a conference paper at ICLR 2025

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23-30.
IEEE, 2017.

Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics and biases: Biases in
judgments reveal some heuristics of thinking under uncertainty. science, 185(4157):1124-1131,
1974.

Daniel Vial, Sanjay Shakkottai, and R Srikant. Robust multi-agent bandits over undirected graphs.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 6(3):1-57, 2022.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Micha¢l Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

He Wang, Laixi Shi, and Yuejie Chi. Sample complexity of offline distributionally robust linear
Markov decision processes. arXiv preprint arXiv:2403.12946, 2024.

Yuanhao Wang, Qinghua Liu, Yu Bai, and Chi Jin. Breaking the curse of multiagency: Provably
efficient decentralized multi-agent RL with function approximation. In The Thirty Sixth Annual
Conference on Learning Theory, pp. 2793-2848. PMLR, 2023.

Young Wu, Jeremy McMahan, Xiaojin Zhu, and Qiaomin Xie. Data poisoning to fake a nash
equilibria for markov games. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 15979-15987, 2024.

Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for distri-
butionally robust reinforcement learning. arXiv preprint arXiv:2303.02783, 2023.

Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Toward theoretical understandings of robust
Markov decision processes: Sample complexity and asymptotics. The Annals of Statistics, 50(6):
3223-3248, 2022.

Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne Driscoll, Erik Rozi, Patrick Liu, Jihyeon Lee,
Marshall Burke, David B Lobell, and Stefano Ermon. Sustainbench: Benchmarks for monitor-

ing the sustainable development goals with machine learning. arXiv preprint arXiv:2111.04724,
2021.

Lanting Zeng, Dawei Qiu, and Mingyang Sun. Resilience enhancement of multi-agent reinforce-
ment learning-based demand response against adversarial attacks. Applied Energy, 324:119688,
2022.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh.
Robust deep reinforcement learning against adversarial perturbations on state observations. Ad-
vances in Neural Information Processing Systems, 33:21024-21037, 2020a.

Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning on
state observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

Kaiqing Zhang, Sham Kakade, Tamer Basar, and Lin Yang. Model-based multi-agent RL in zero-
sum Markov games with near-optimal sample complexity. Advances in Neural Information Pro-
cessing Systems, 33:1166—-1178, 2020b.

Kaiqing Zhang, Tao Sun, Yunzhe Tao, Sahika Genc, Sunil Mallya, and Tamer Basar. Robust multi-
agent reinforcement learning with model uncertainty. Advances in neural information processing
systems, 33:10571-10583, 2020c.

Runyu Zhang, Jeff Shamma, and Na Li. Equilibrium selection for multi-agent reinforcement learn-
ing: A unified framework. arXiv preprint arXiv:2406.08844, 2024.

Zhengqing Zhou, Qinxun Bai, Zhengyuan Zhou, Linhai Qiu, Jose Blanchet, and Peter Glynn. Finite-
sample regret bound for distributionally robust offline tabular reinforcement learning. In Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 3331-3339. PMLR, 2021.

14



Under review as a conference paper at ICLR 2025

Algorithm 1: N-sample estimation(ﬂh ={mjn}iem) 9, h) .

Initialization: the reward 7 = 0 € RS54 and the transition model P = 0 € RS4ixS,

1
2 for (s,a;) € S x A; do
3 fort =1to N do
4 Sample a’(s,a;) = [a;(s, a;)]1<j<n constructed by independent actions drawn from
policy:
aj(s.0) X mpn(-ls) (G#9)  and  ai(s,a) = a. (20)

5 Sample from the generative model:

rih(s,ai) =71 n(s, a'(s,a;)), S';a ~ Ph( - |s,a'(s, ai)). (21
6 Set (s, a;) = + Py ri n(s,a;) and ]3(5/ |s,a;) = & > te[N] 1{st, =5}

Return: empirical model (7, P).

N

Algorithm 2: Robust-Q-FTRL

Input: learning rates {oy, } and {741}, number of iterations K per time step, and number of

samples N per iteration.

Initialization: ‘/}}’Hﬂ(s) = Qgh(s, a;) = 0and 771-17h(a2- | s) = 1/A, for all i € [n] and then all

(h,s,a;) € [H] x S x A;.

// start recursive learning process.

forh=H,H—1,---,1do

4 fork=1,2,--- K do

5 fori=1,2,--- ;ndo

// construct empirical models and estimate current
robust Q-function

-

~

w

6 (rf), PF,) < N-sample estimation (7 = {7%, };c(), 4, h). (Algorithm 1)
7 Estimate the robust Q-function ¢¥,, of current 7% according to (15).

// Online learning procedure
8 Update the Q-estimate Qﬁh =(1- ak)Qﬁgl + aquk,h and apply FTRL:

xp (nee1Q” ) (s,as
Vis.a) €S x Avs i (ai]s) = 2 lnidhaced)
o 24 exXp (nkﬂQ?,h(s,a’))

// set the final robust value estimate at time step h.
9 fori=1,2,--- ,ndo
10 For all s € S: set §3; 5 (s) to be the optimistic bonus term in (17) and
K
Vin(s) = min { 3~ af (xy (- 19), aals, ) + Binls), H—h+1},  (22)
k=1

1 Quiput: aset of policies {7, = (7}, x -+ x 7& )} (k) nepa) and a distribution

£= {Eh}he[H] over them. For any time step &, &, is the distribution over {7} } (] so that

gh(ﬂ-ﬁ) = 04?’

Ziyuan Zhou and Guanjun Liu. Robustness testing for multi-agent reinforcement learning: State
perturbations on critical agents. arXiv preprint arXiv:2306.06136, 2023.

A RELATED WORK

Breaking curse of multiagency for standard Markov games. Breaking the curse of multiagency
is a major and prevalent challenge in sequential games. In standard multi-agent general-sum MGs,
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it has been shown that learning a Nash equilibrium requires an exponential sample complexity
(Song et al., 2021; Rubinstein, 2017; Bai & Jin, 2020). However, for other types of equilibria,
such as CE and CCE, many works have successfully broken the curse of multiagency. Specifi-
cally, for finite-horizon general-sum MGs in the tabular setting with finite state and action spaces,
Jin et al. (2021) developed the V-learning algorithm for learning CE and CCE with the sample

complexity of O(HSS (max;epn) Ai)?/€?) and O(H®S max;e[, Ai/€?), respectively; Daskalakis
et al. (2023) achieved a sample complexity of O(H'"'S® max;ef, Ai/€®) for learning a CCE.
Beyond tabular settings, Wang et al. (2023) and Cui et al. (2023) extended these results to lin-

ear function approximation, achieving sample complexities of O(d*H® (max;c(,) A?) /€%) and

O(H'%d* log (maxie[n] Ai) /€*), respectively, where d is the dimension of the linear features. For
Markov potential games, a subclass of MGs, Song et al. (2021) provided a centralized algorithm that

learns a NE with a sample complexity of O(H*S? max;cp,) A;/€%).

Finite-sample analysis for distributionally robust Markov games. Robust Markov games under
environmental uncertainty are largely underexplored, with only a few provable algorithms (Zhang
et al., 2020a; Kardes et al., 2011; Ma et al., 2023; Blanchet et al., 2023; Shi et al., 2024). Exist-
ing sample complexity analyses all suffer from the daunting curse of multiagency issues, or impose
an extremely restricted uncertainty level that can fail to deliver the desired robustness (Ma et al.,
2023; Blanchet et al., 2024; Shi et al., 2024). Specifically, they all consider a class of RMGs with
the (s, a)-rectangularity condition, where the uncertainty sets for each agent can be decomposed
into independent sets over each (s, a) pair. Shi et al. (2024) considered the generative model with
an uncertainty set measured by the TV distance, Blanchet et al. (2023) treated a different sam-
pling mechanism with offline data for both the TV distance and KL divergence. In addition, Ma
et al. (2023) required the uncertainty level be much smaller than the accuracy-level and an instance-
dependent parameter (i.e., o; < max{ g, 55t} for all ¢ € [n]). This can thus fail to maintain the
desired robustness, especially when the accuracy requirement is high (i.e., ¢ — 0) or the RMG has
small minimal positive transition probabilities (i.e., pmin — 0).

Robust MARL. Standard MARL algorithms may overfit the training environment and could fail
dramatically due to the perturbations and variability of both agents’ behaviors and the shared envi-
ronment, leading to performance drop and large deviation from the equilibrium. To address this, this
work considers a robust variant of MARL adopting the distributionally robust optimization (DRO)
framework that has primarily been investigated in supervised learning (Rahimian & Mehrotra, 2019;
Gao, 2020; Bertsimas et al., 2018; Duchi & Namkoong, 2018; Blanchet & Murthy, 2019) and has
attracted a lot of attention in promoting robustness in single-agent RL (Nilim & El Ghaoui, 2005;
Iyengar, 2005; Badrinath & Kalathil, 2021; Zhou et al., 2021; Shi & Chi, 2024; Wang et al., 2024;
Shi et al., 2023). Beyond the RMG framework considered in this work, recent research has advanced
the robustness of MARL algorithms from various perspectives, including resilience to uncertainties
or attacks on states (Han et al., 2022; Zhou & Liu, 2023), the type of agents (Zhang et al., 2021),
other agents’ policies (Li et al., 2019; Kannan et al., 2023), offline data poisoning (Wu et al., 2024;
McMahan et al., 2024), and nonstationary environment (Szita et al., 2003). A recent review can be
found in Vial et al. (2022).

B PRELIMINARIES

Denoting the vectors * = [x;]1<i<n and ¥ = [y;]1<i<n, We use the notation z < y (or x > y) to
signify that x; < y; (or z; > y;) for every 1 < ¢ < n. The Hadamard product of two vectors x
and y in R® is denoted as x o y = [x(s) - y(s)],_g- In addition, for any series of vectors {z; }ie(s,
diag(x1,x2, - ,zg) denote a block diagonal matrix by placing each given vector z; along the
diagonal, with zeros filling the off-diagonal blocks. 0 (or 1) represents the all-zero (or all-one)
vector, while e; € R denotes a basis vector of dimension S with 1 in the i-th position and 0
elsewhere.

B.1 ADDITIONAL MATRIX AND VECTOR NOTATION
Before continuing, we introduce or recall some matrix and vector notation that will be used through-

out the paper. In particular, for any joint policy 7 : S x [H] — A(A) and any (i, h) € [n] x [H]:
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Matrices for policy. We introduce three matrices associated with m, i.e., IIf € RS*STli=i4

T
Hh

c RSz 45 and 7" € RS*S4i| which are defined as block diagonal matrices that

adhere to the following properties:

The matrix II7 is given by diag (m,(1)",m(2)7,..., 7, (S)), where mu(s) =
[Th(a|s)]aca € A(A) for each s € S represents the joint policy vectors across all agents.
The matrix II; * can be expressed as diag (W,iﬁh(].)—r,ﬂ',i’h(Q)T,...,7T—_ri7h(S)>, where

min(s) = [mn(@—ils)la_ca_,
from all agents except agent <.

The matrix II}" is defined as diag (m}h(l)—r, min(2) 7, ... ,ﬂxh(S)), where 7; 5(s) =
[Tin(ails)l, ca € A(A;) foreach s € S represents the policy of the i-th agent.

€ A(A_;) for all s € S denotes the joint policy vectors

Reward vectors. We recall the definition of r; j, and introduce the reward vectors r", and 7, ;* as
follows:

Let 755 = [1i,n(5,8)](s,a)es5xA4 € RSTLi=1 4 represent the reward function for the i-th player
at time step h, where S is the state space and A is the action space.

The reward vector [, € R® corresponds to the joint policy m = {7n}nem at time step h.
Specifically, for each s € S, 77}, (s) = Eann, (s)[1i,n (5, a)], where the expectation is taken over
the actions a drawn from pOlle 7, in state s.

The reward vector r:,;’ € RS4i corresponds to the joint policy 7_; = {7T_Z' h}he[H] at
time step h, excluding agent i. Specifically, for all s € S and a; € A;, 7 T, h ‘(s,a;) =
Ea_,~n_in(s)[Ti.n(5,a)], where the expectation is over the actions a_; drawn from the joint
policy m_; 5, for all agents except agent i.

Matrices for transition variants. We first introduce the following notations related to transitions
associated with the nominal transition kernel and the policy 7:

Define P € RSTIiZ1 4iXS | the matrix representing the nominal transition kernel at time step
h. Specifically, for any (s,a) € S x A, P}?)Sqa € R'*S represents the row corresponding to the
state-action pair (s, a). '

Define P, ' € R54i*9 the matrix representing the nominal transition kernel at time step h,
assomated with the joint policy w_;. Specifically, for all s,s’ € S and a; € A;, P;Lr ;a (s') =

Ea imrm_in(s) [P .(s)]. Here, P,;T s‘a € RS represents the row corresponding to the state-
action pair (s, a;).

Let Igﬂ"’ RS4i%S denote the empirical transition kernel matrix at time step h, associated with
the joint policy 7_; and agent <. Similarly, Ph ;a € R'*9 represents the row corresponding to

the state-action pair (s, a;).
Define P} € R®*% as P} := 17 PP, where II7 is the policy matrix at time step / under joint
policy 7.

fany favy iy i . . . .
Define P, , € RS as P, , := I} P, where II} denotes the policy matrix at time step /
under policy 7;.

We introduce matrix notations for transitions that are associated not only with the nominal transition
and policy 7, but also with value functions:

For time step h € [H], joint policy 7, and a value vector V' € R®, we define P, V g RSAxS
as the matrix representing the worst-case transition probability kernel within the uncertainty set
for agent ¢, centered around the nominal kernel. The row corresponding to the state-action pair

(s,a;) in PT; ", denoted as P], " € RS, is given by:

i,h,s,a;

T_i,V _ .
Pz‘,h,s,a,i = argmlnpeugi(P:;im)’PV (23a)

We also define the transition matrices for specific value vectors as:

T™,0; 0,
V. -V ng T,V o pT=iVind . 7,0
PR Pl N and P, =F, . = argmm??eu,‘ﬁ(P]’L'jab)fPVi,thl-

(23b)
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Finally, we define square matrices B;T’hv € R9*5 as: E?’,}/ =15 P, 0wV
* By replacing the nominal transition kernel with the empirical transition kernel, we similarly

define ﬁf,; V" as the worst-case probability transition kernel within the uncertainty set for agent

1, centered around the empirical kernel 13:}: ‘. The row corresponding to the state-action pair

. BTV . StV .
(s,a;)in P],"" is denoted as P, """ € RS and is defined as:
DT—i,V _ . )
i hsas = argmlnpeugi(P:;y;ai)PV. (23¢)

The transition matrices Pi”,’LV for specific value vectors are defined as:

T™,0, T,
~TT_ 2 ~TT_ 3

SV Vi pr,V iVih
P ::Pih7 Mt and P =P ek

— 3 04
i,h i,h,s,a; i,h,s,a; = argmin Pv;,h—o—l’

(23d)

Peus (P4 )

ih,s,a;

o : 5™V SxS 5™V m pr—i,V
Additionally, we define square matrices P, ;, € R as: Py =1L"F, 0.

Variance. We now introduce notations for variance corresponding to a specific probability distribu-
tion. For a probability vector P € R'*S and a vector V' € R, we denote the variance of V' with
respect to P as Varp(V), defined as:

Varp(V) := P(V o V) — (PV) o (PV), (24)

Additionally, for a transition kernel P™— € R¥4:*5 and a vector V' € R®, we define Varp~—; (V) €
RS54 as a vector of variances. The entry corresponding to (s, a;) in Varp=_; (V) is given by:

Varpr—i(s,a;) := Varpr—i (V), (25)

T

where Ps ,; denotes the row of the transition matrix corresponding to state s and action a;.
B.2 ROBUST BELLMAN EQUATIONS FOR RMGS WITH FICTITIOUS UNCERTAINTY SETS

For any joint policy 7 : S x [H] — A(A), the robust value function can be expressed as

H
ViRl (s) = inf E{Zn—(st, ar) | sn =8| = Equm,(s) [1in(s,@) +  inf PV
Ut (POm) =32 Uy (P,

(26)

It can be verified directly by definition. The robust Bellman equation described above is intrinsi-
cally linked to the policy-induced (s, a;)-rectangularity condition (cf. (11)) of the uncertainty set.
This condition leads to a well-posed and computationally-tractable class of RMGs by allowing the
decomposition from an overall uncertainty set to independent subsets across different agents, time
steps, and each state-action pair (s, a;).

Note that the specified robust Bellman equation is different for a joint correlated policy and a joint
product policy, induced by different expected nominal transition kernels. In particular, for any joint
product policy 7 : S x [H] + [[;c,) A(A;), the expected nominal transition kernel conditioned

on the i-th agent’s action a; € A;, current state s € S, and the policy 7 can be expressed by

T

Ph,s,ai = ]EO,N7T;L(' | s,a;) [P}(L),s,a] - Ea—i"’ﬂ'—i,h(' [s) [Pl(m),s,(a,,,a_,;)} e2))

forany (i, h, s,a;) € [n] x [H] xS x A;, where the last equality holds since the policy 7 is a product
policy, and the distribution of a_; is independent of a;. It is observed that the expected nominal
transition kernel P}z s.a; for a product policy 7 is independent of the ¢-th agent’s policy given (s,a;).
This differs from (10) for a possibly correlated policy, where (10) can generally depend on the i-th
agent’s policy.

i

B.3 PRELIMINARY FACTS ABOUT FTRL

Our proposed algorithm (see Algorithm 2) is inspired by online adversarial learning. In this section,
we introduce the formulation of online learning and review key aspects of a widely-used algorithm,
the Follow-the-Regularized-Leader (FTRL) algorithm.
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Problem setting: online learning for weighted average loss. We consider an online learning prob-
lem over K steps, commonly found in adversarial learning settings (Lattimore & Szepesvari, 2020).
The learner is presented with an action set .A, and loss functions fi, ..., fx : A = R>¢ are provided
for each step. At each time step k, the learner selects a distribution over the action set, 7 € A(A),
and observes the loss function fy (7). The goal of the learner is to minimize the weighted aver-

age loss over the K steps, which is defined as: L¥ = Zszl af fx(my). To evaluate the learner’s
performance, the regret for the online learning process is defined as:

K K
RE = Za,}ffk(m) - [ min Zakak(ﬂ)] . (28)
k=1

TeA(A) b1

FTRL and its regret bound. A widely-used method for solving the online learning problem
described above is the Follow-the-Regularized-Leader (FTRL) algorithm, introduced by Shalev-
Shwartz & Singer (2007); Shalev-Shwartz (2007). At each step k + 1, the learner selects a soft-
greedy action by solving:

L k=1,2,..., (29)

K
Tht1 = argﬂénAi&) [Z af fi(m) + Fi(r)
=1

where Fj, () represents a convex regularization function. The following theorem provides a refined
regret bound for the FTRL algorithm when the loss function is linear with respect to the policy.

Theorem 3 (Theorem 3 in Li et al. (2022)). Forall k € [K] and policy =, the loss function is defined

as fi(m) = (71, 1), where l;, € RIAl represents a loss vector. The learner’s choice w1 in episode
k + 1 is updated according to the FTRL algorithm:

exp (= nes1Li(a))
>weaexp (= mp1Le(a’))’

foralla € A,

= i L Fy. =
Tet1(a) argﬂglAl&){@T, k) + Fr(m)}

(30)

acA nTlJrlﬁ(a) log(m(a)). Suppose 0 <
a1 < landm = n2(1 — «q), and for all k > 2, assume 0 < o, < Land 0 < np11(1 — ag) < 1.
Define:

where the regularization function is given by Fy(m) = Y

€2y

~ N2, l‘fk:17
T ik > 1

—ag?

Then, the regret of the FTRL algorithm is bounded by:
K K
R, < KA, ) — Kl
g |30l ) - Yol o)

<

n n
N log A e . 1
D alikanVare, (1) + 5= 4+3 3~ o od 4% (nkaknlklm > 3>. (32)
k=1 nt k=1

W ot

C PROOF FOR SECTION 3

C.1 PROOF OF THEOREM 1

Step 1: preliminaries. First, we introduce some useful definition and existing facts that are standard
in real analysis and game theory literature.

Definition 2 (Upper semi-continuous). A point-to-set mapping x € X +— ¢(x) € Y is upper
semi-continuous if lim,,_, o 2 = 20, y" € ¢(x™),lim, o0 y" = yo imply that y° € ¢(xp).
Theorem 4 (Kakutani’s fixed point Theorem (Kakutani, 1941)). If X is a closed, bounded, and

convex set in a Euclidean space, and ¢ is a upper semi-continuous correspondence mapping X into
the family of all closed convex subsets of X, then there exists x € X so that x € ¢(x).
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Step 2: constructing an auxiliary single-step game. Focusing on finite-horizon RMG MG, =
{S, {Aiti<i<n, {Z/Igi (P <i<n, T, H}, we shall verify the theorem by firstly consider a one-step
game and then apply the results recursively to the sequential Markov games.

Without loss of generality, we focus on any of the steps h € [H|] and construct an auxiliary one-step
game. Towards this, we first introduce a fixed value function V; 5,11 € RS with 0 < Vin+1 < H for
the ¢-th agent, representing the possible value function obtained at the next time step h+ 1. Focusing
on time step h, for any joint product policy 7 : S — Hie[n] A(A;), we abuse the notation defined

in (27) to denote the expected nominal transition kernel over each (s, a;) as:
P’z;iai = Eﬂ(“ﬂ‘ | s,a:) [P’?’S,(ai,a—i)} = Eﬁﬂ‘(‘lﬂ' [s) [P}(L),&(ai,a—i)} : (33)

Armed with this, for any joint product policy 7 : S Hie[n] A(A;), we can define the payoffs to
maximize for the players as below:

VseS: fi,s(ﬂ-i(s)a 7'('_1‘(8); ‘/i,h+1) = EG/\/T{'(S) [Ti,h(sv a’)] + Eaiwﬂi(s) lnf ) P‘/;,h-l-l 5
Ui (th;lai)
(34)

which is defined analogous to the robust Bellman equation (cf. (26)) by replacing a real robust value
function vector (associated with some policy) to some fixed vector V; j,41.

Now we are ready to introduce the following useful mapping: for any 7 : S — [], €n] A(A),
p(m) = {U |ui(s) € argmaxs geaca,) fi,s(mi(s), m=i(8); Vins1), V(i 8) € [n] x 5}~ 35)

Step 3: the existence of NE of the auxiliary game. To apply Theorem 4, there are three required
conditions. First, we know that the space of product policy is X = {7 : & = [[;c[,) A(Ai)} is a
closed, bounded and convex set in Euclidean space.

* Verifying that ¢(7) is an upper semi-continuous correspondence. Before starting, we
introduce the following two useful lemmas with the proof postponed to Appendix C.2.2
and C.2.3.

Lemma 2. The set of function { f; s(7;(s), 7—i(8); Vin+1),0 < Vi pg1) < H} is equicon-
tinuous with respect 1o 7}(s), m—;(s) for all (i,s) € [n] X S.
Lemma 3. Foranyi € [n] and then x—; : S = [, 1; ;1) A(A;), the functions

Vs€S:  gis(x_i(s),Vin1) = maxpens) fis(mi(s),2-i(s); Ving1) (36)

are continuous with respect to x_;(s) and the set {g; s(-,V)|V € R%,0 <V < H} is
equicontinuous.

Armed with above lemmas, we are in the position to prove this condition. We suppose there
are two sequence lim,, o, 2" = 2%, y" € ¢(2"),lim, . y™ = y°. Recall the definition
of a upper semi-continuous correspondence (cf. Definition 2), we are supposed to show that

Y0 € ¢p(2%), ie.,
V(i,s) € ] x St fis(y(s),2%(s); Ving1) = maxwencs) fis(mi(s), 2%,(s); Vingr)-
(37)
Towards this, we have
fis (Wi (5),225(5); Vingr) — gis (22 (s), Ving)|
< | fis (Wi (5), 22 (5); Vingr) — fis(yi'(s), 273(8); Vins)|
+ [ fis (W7 (5), 27 5(8); Vi) — 9i,s(325(5), Ving)|

©) n n
= 1£is (W7 (5),225(8); Vinsr) = fis (U7 (), 225(5); Vinan)|
+ 1905 (2"5(5), Viner) = 91.0(2%,(5), Vi) 0 as m— o0, (38)
where the first inequality follows from the triangle inequality, (i) holds
by the assumption y* €  @(z™) so that f;(y7(s),2";(s);Vint1) =
maxreas) fis(mi(s), 22;(s); Vint1), and the last line can be verified by the con-
tinuity implied by Lemma 2 and Lemma 3.
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* Verifying ¢(r) is convex for any 7 € X. Finally, we gonna work on the convexity of ¢()
for any m € X. To begin with, by the definition of ¢(7) in (35), we know that ¢(7) C X
and the maximum of the continuous function f; s(m;(s), 7—;(s); Vi .p+1) (cf. Lemma 2) on
a compact set exists, i.e., ¢p(x) # 0.

Suppose there exists two Nash equilibrium z : S — Hie[n] A(A),v:S Hie[n] A(A;)

and z,v € ¢(m). Then we have that for any (4, s) € [n] x S,

fi S(Z’L( ) ( ) 1h+1) fz e(vz(s , T 1(5);‘/1',h+1)
= fz s( z( ) ( )7‘/Z,h+1)' (39)

ul(s)EA (As)

To continue, for any 0 < A\ < 1, one has
7,8 ) —1 a‘/Z
s ((s), 7(5): Vi)
=M fi,s(2i(8), m=i(8); Vijhg1) + (1 = N) fis(vi(s), m—i(8); Vi hs1)

= )‘<]Eal~zq( 5) |: h (S a”L)] +Eai~zi(s |:UU (lnf71 )P‘/i,ll+1:|)

+ (1 — A) (Eai'\'vi(s) [T:;Lq (3, Cll):| + Eaiwvi(s) |: (Hlf ) P%,}L+1:|>
Ui —i

hsa

= B Az (5)+ (1= M)vi(s)] [T:ﬁi(&ai)} +Eai~[)\zi(s)+(1)\)vi(s)]|: inf PVi,h+1]
Ui (Plz,zfa%)

= fis(Azi(s) + (1 = Nvi(s), 7-i(8); Vin1)- (40)

where we denote 7; " (s,0:) = Eq_,~n_,(s) [Fin(s, (ai,a_;))]. Hence, we show that
Azi(8) + (1 — A)vi(s) € ¢(r) forall (4,5) € [n] x Sand 0 < X < 1, thus verify that ¢(7)
is convex for any 7 € X.

Step 4: the existence of robust NE in RMGs. Armed with above results, now we consider a general
form to show that there exists a policy 7 : [H] x S = [];¢(,) A(A;) that satisfies

V(i h,s) € [n] X [H] x S V77 (s) = V5707 (s). (41)

We shall prove this by induction.
* The base case. Starting with the final step i = H, we recall that by definition,
V(i,s) € [n] xS Viii(s) =0. (42)

To apply the results in the one-step game constructed in Step 2, we consider the one-step
game at h = H and using the payoff function (cf. (34))

VseS:  fis(mi(s),m—i(s); Vf;jrl) = Eqn(s)[1i,n(s, a@)]. (43)
We know that there exists a policy 7 so that
V(i,s) € n] x S V7 (s) = Vi "7 (s) (44)
by setting 7z as the NE of the one-step game.
 Induction. Assuming that there exists a policy 7 so that for subsequent steps h+1,--- , H,
V(i hys) €[] x {h+1,--- \H}y xS : V7% (s) =V ;"7 (s), (45)
which are achieved by determining certain policies for {741, Thy2, -, 7 }. We are
supposed to prove that at time step i, we can ensure our policy 7 satisfying
V(i,s) € [n] x S+ V7T(s) = Vi (s) (46)

by choosing a proper policy 7, at the time step h.
Towards this, it is observed that

VT s)
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max i
wSX[H]—=A(A) 7

= anﬂ-{ S)yxm_; n(s)lTs )
ﬂé:SX[rE?i{A(Ai) z’h'(‘)x ﬂ’h(()[r ’h(s a)]

. ! XT_i,04
+ anWQh(S) mf,, i PVL‘,;L+1
peusi (P )

= ex Earrt , (s)xm_in(s)[Tin(s, @)
ih i

3 PXT 04
max [ inf PV;W,’”T o ]
Tt SXNEAAD Lpeysi (PTE )

h,s,a;

max E, .
w(EAA) 70 (8)

= max Eamn  (s\xm_ () Tin(8,a)] +Eq orr S|: inf P‘/;*,meai].
i p(s)EA(A;) in()XT—in )[ ’ ( )} i~y (s) Peuei (Pnfi ) ,h+1

h,s,a;

(47)
where we denote h™ = {h + 1,h + 2,--- | H} as the set that includes all the time steps
after h until the end of the episode, and the last equality follows from the fact

max inf PV»WEX?L“M = inf P max Vﬂgxw*i’oi
" S A e (pr ) we (BLL,) T ST Ay
: *,M—i,04
= 1nﬂf_1 PV 5 (48)
Ui (Ph,s,;li)
*, T

which holds by the definition of V7, "17". Now invoking the results in the auxiliary one-

step game with V; 41 = V.*}’Li‘f’ai, one has that there exists a policy with 7, that satisfies

Wis) € (] x S = V7 (s) = VT (s), 49)

Combining the results in the base case and induction, we complete the proof by recursively choosing
TS = Hie[n] A(A;) forh=H,H —1,--- 1 as the NE of the corresponding one-step game at
time step  and arrive at

V(i,s) € [n] x S: V77 (s) =V % (s). (50)

C.2 PROOF OF AUXILIARY FACTS
C.2.1 PROOF OF LEMMA 1

The proof is obtained by recursively showing that for each (h, s), there exist a policy. Then the
product policy of them will be that final policy

Without loss of generality, we consider any ¢ € [n] with the other agents’ policy 7; : S x [H] —
A(A;) fixed. We shall prove this lemma by induction.

* The base case. Consider the base case h = H. Conditioned on the other agents’ policy
i+ S X [H] — A(A_;), the maximum of the robust value function of the i-th agent can
be expressed by

VseS8S: VI 4% (g) = ma YK
() i SxIHS A B ()

= max
w:SX[H]—=A(As)

= o (ISI}EIZ(A)E%NTF;H(&) [Ea,iwﬂ,i,H(s) [ri,H(S;a)H . (51)
i H i

Since the maximum of the continuous function Eo, w7/ _ (s) [Eaﬂ.NLin (s)[ri, 1 (5, a)H on
a compact set A(A4;) exists, by setting

Vse S %,'71.[(5) = argmaxﬂ)H((Q)NA(Ai)]EaiNW;YH(S) [Ea,¢~7r,Z,H(s)[Ti,H(57a)]] s
(52)
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we arrive at
VseS: Vi (s) = Vi (s). (53)

This complete the proof for the base case.
* Induction. Assuming thatfort =h+ 1,h + 2,--- , H, we have

VseS: VT (s) = VT (s). (54)

Then, we want to prove for the step h, where the maximum of the robust value function of
the i-th agent can be expressed as: forall s € S,

VT s)

! . .
Vi T s)

max
7 :SX[H]—=A(A;)

E i~ml o (s Ea P~ 9 y
wSxHIs AU @ 20) B lrin(s: )l

. *, T — 4,04
+]EGL'N7W,IL(S) o ln,fii P‘/;l,h-i-l
Up* (Ph,,s,ai

6

=

E i~ s Ea PN s 3 )
s BiSacny Borriao Forlrints @l

. %iXTl‘fi,O‘i
+ ]Eai"“ﬂ"i,h(s) o ln,fii P‘/;l,h-i-l
Up* (Ph,,s,a.i>

= o (?EX(A-)EMNWL“(S) [Ea—iNﬂ'fi,h(S)[TiJl(S?a)]]
ih i

+ Egymorm o (s) inf PV (55)
usi (P —i )

h,s,a;

where (i) holds by the induction assumption in (54). Similarly to the base case,
the maximum of the continuous function Eg ~rs (s) [Ea_,~r_, ,(s)[rin(s; @)]] +

Ea;mm; n(s) |10f, 0, (P12 PV T | on a compact set A(A;) exists. So without
o P h,s,a; ’

conflict, for all s € S, we can set
i, (S)

= argmaxw;’h(S)NA(Ai)anw;,h(s) [Emwmi,h(s)[’“i,h(s» a)]]

. %1 XT_4,04
tBajmminsy | nf PV ’ (56)
ugt (Pl
. . . T X _ i,0i . T X —i,04 .
since the function mfu;'i ( pr-i ) PVZZJF’IT 7" and especially Vf;;? 7" are independent
h,s,a;

from the policy in the first  steps ({7s,¢(5) }scs,tc(n))-
Consequently, (56) directly implies that

VseS: VT (s) = VT (s). (57)
Combining the results in base case and the induction, we complete the proof by showing that
V(h,s) € [H] x St VX717 (s) = VT (s). (58)

C.2.2 PROOF OF LEMMA 2

First, we define the distance between any two policy m, " € X = {7 : & = [[;c,; A(4i)} as
below:

d s ! = i\ — 7 i . 59

(m,7") max JmeX |mi(a; | s) — mi(a; | s)| (59
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To prove the continuity, given any € > 0, we want to show that there exists d(¢) > 0 such that if

d(m, ') < d(e), (60)
then

| fis(mi(s), m_i(8); Vingr) = fis(mi(s), 7 5(); Ving1)| < € (61)
for any fixed {V; ny1}iepn) With 0 < Vi 41 < H forall i € [n]. Towards this, we observe that

| fis(mi(8), i (8); Vina1) — fis(mi(s), 73 (8); Vi)

IEa~7r(s) [Ti,h(sa a’)] + ]anyr\wri(s) |: (lIlﬂf ) P‘/i,h+1:|
Ui i

= Eqnrr(s)[Ti,0(8,@)] + Eqyrr(s) [ inf PVi,h—i—l]
i)

h,s,a;

< |Ea~7r(s) [Ti,h(sv a)] - ]EaNTr/(s) [Ti,h(sa a)} |

+ Eai~7ri(s)|: inf ) P‘/i,h+1:| _Eai~7r£(s)|: inf/ P‘/i,h-‘rl:l . (62)
Ui (Ph,:.lai Ui (P:,;:Lai)
The first term can be bounded by

‘ECLNTF(S) [ri,h(sa CL)} - E(IN’IT’(S) [ri,h(sa a‘)”

< (a; — " )

< Z H mi(a;]s) H m(a; | $) (s,i?géixf“h(s’a)
acA'ie[n] i€ [n]

<SS ] mitails) = ] micails)), (63)
acA'i€[n] i€[n]

where the last inequality holds by the definition of reward function max, q)esx.a 7i,n(s,a) < 1

forall (i, h) € [n] x [H]. To continue, we first define the difference between d;(s, a;) == 7i(a; | s) —
m;(a; | ). Therefore, we have

Hma1| Hﬂ' (a;]s)

i€[n] i€[n]

(arls)— T (malas ] 9) + &(s,ai))\

i€[n]

Z (H 52’(5,02')) - <H mi(a; | s)) ‘
[Y|>1,YC[n] \i€Y icye
s Z <H 52’(&%‘)) : (H mi(ai | s)) ‘ < (2" —1)é(e), (64)

| Y|>1,YC[n] ey ISR

where the last inequality holds by (60). Plugging (64) back to (63) indicates that

‘]anﬂ'(s) [’ri,h(& a)} - anﬂ"(s) T4, h S, a H A 2” — 1 ) (65)

i€[n]

For the second term in (62), we observe that

Eai’\/ﬂ'i(s) |: inf ) P%7h+1:| — Eai,\,ﬂ.;(s) |: inf , P‘/;7h+1:|
PE““( ,Zfa,i) peu=i (P, i)

h,s,a;

<

Eg;mmi(s) { inf PVi,h+1} - Eai~7'ri(s)|: inf PVi7h+1:|

peui (Pl Peu%( P )

h,s,a; h,s,a;
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+ Eai~m(s) |: inf P‘/i7h+1:| - Eai,\,ﬂ.;(s) |: inf PV;’}H_I}
Peui < ,’:;;) peuci(p ,f;‘a )
Yk { E [PO } [Vins1]
;o (s max m_i(a_;|s s,(aq,a—; (2 o
= Taivmi(s) a€lming V; py1(s),maxs Vi n41(s)] ilails) | Ths,(aia—s) ot
~Er (asls) {P,?’S,(ai,a_i)} Vinsl, } Z |7i(a; | s) — mi(a; | s)| inf  PVinp
arcA,; peui (P, 7, )
11)
R ECIDES | EACID) (€)
afleAl ! J#i
(111)
<H [ 4@ " -1de)+HAAE) <2H [] 42" —1)-d(e), (66)
j#i,5€[n] i€[n]

where the first inequality holds by the triangle inequality, and (i) follows from applying the dual
form of TV distance

inf PV = max ) {P V], —oi (a —min [V], (s/)) }, (67)

PeU(P) a€[ming V (s),maxs V(s s’

and the maximum operator is 1-Lipschitz, (ii) arises from the fact that ||V;, < H, and (iii)
can be verified by following the same pipeline of (64). Combining (65) and (66), one has

| firs(mi(8), m_i(8); Vinar) = fis(mh(s), 7 3(8); Vingr)| < 3H J] Ai(2" —1)-6(e).  (68)

i€[n]

Consequently, letting 1 (¢) = 57 H“‘i“{jf(}wl), we have when d(7, ') < & (e),
i€ z

| fi,s(mi(8), m—i(8); Visng1) — fis(mi(s), w_3(8); Ving1)| <e.

C.2.3 PROOF OF LEMMA 3

Without loss of generality, we consider any i € [n]. Consider z_; : S = [];; ;e A(A;) and
Y—i : S = [, 4 jen) A(A;). Before continuing, for all s € S, we denote
uj o = argmax e a(s) fi,s(mi(s), £-i(8); Vins1),
v s = argmax e n(s) fis(mi(8), y—i(8); Vintr)- (69)
Then we have for any s € S,

i,s(x—i(8), Vina1) = 9i,s(Y—i(s), Vint1)

= maxyen(s) fis(m(8),2-i(8); Ving1) — maxeencs) fis(mi(s), y—i(s); Ving1)

= fi,s(u] g, 0—i(8); Vions1) — fis (V] s y—i(8); Vint1)

< fis(uf g 2-i(8); Vint1) = fis(W 5, y—i(8); Vint1)  — 0 as y—i(s) = z—i(s), (70)

where the last line holds by Lemma (2) which shows that the function f; 5 is continuous. Similarly,
one has

Gi,s(2—i(8), Vins1) — gi,s(y—i(s), Vint1)
Z fi,s(vz,sﬂr z( ) 7 h+1) f’L 9( 1, svy—i(s); ‘/i,h+1) - O as y—i(s) — :17_1(5) (71)
We complete the proof by showing that

19i.s(x=i(8), Vint1) — Gi,s(Y=i(8), Vins1)| = 0 as  y_;(s) = x_i(s). (72)
D PROOF OF THEOREM 2

We will present the proof of Theorem 2 by first outlining the proof structure, followed by a step-
by-step explanation of the key components. Auxiliary proofs will be provided at the end of this
section.

25



Under review as a conference paper at ICLR 2025

D.1 PROOF PIPELINE

To proof Theorem 2, recall the goal is to show that

Vi) el xSt E_ [V )] ~E, ¢ [V (e)] < 73)
where £ = {Eh}he[m is the output distribution over the set of policies {r = (mf, x --- x
Wﬁ’h)}ke[;{]ﬁe[[_]] from Algorithm 2. Namely, 7 ~ & means
Vhe[H]: mp~ €,, where Zh(w,’j) =ak. (74)
We first introduce the best-response policy for player ¢:
7 = [Tl = arg w:;:SX[IE]ai(A(.Ai)}ETrNE [fo,mi} '

Recall that value function EWNE {tha’} satisfies the following Bellman equation for all (i, s, h) €
[n] x & x [H]:

E,.¢ Vi) =0,

E,.¢ [V (6)]

=E, ¢ z (@l s)rin(s,a) + Eqmor, inf . PE. ¢ [thiJ ;
acA Peu; ( h.s,a; )
- Z > ol mh(al s)rin(sa) + Zak Eqinrt, mf | PRt {th?l} ’
k=1 acA Peul (P:;f;i)

where Ph . 'a is defined as:

ﬂ,k

Zi 0
Ph,s,ai = IEa, 7L n(18) |: h, s,(al,a,l)i| Z 7T72 h a_; | S) |: h,s,(a;,a_; )i| :
a_;€EA_;

We decompose the error in the value functions as follows:

E,.¢ Vi ] — B, [V

*, g =TT —k, T —
<E, g |V ] B (V07 4B [VI0] - B [T
A B (75)
+]E7r~g |:Vi7h:| - ETI'NE[ 17,Th] :
c
We define the following auxiliary value functions for all s € S:
E,.¢[Viu(s)]
K K
=2 Bt (o) [ (s:00)] + D0l g ot (o) inf  PE,_¢ Vi |
k=1 k=1 PeU(Pfy, 4, )
(76a)
E,.¢[Vin" ()]
K .
=Y 0B, o) [rEa(s,a0)] Z A Bamriy | it P [V
k=1 PeU(Pf, . ., )
(76b)
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K
ETWE [V:;Li(s)} = max Z osz Tﬁh(s, a;) + inf PEWNE [V:’Z_H] ,
weA Peui (Pl ..., '

(76¢)

where for all s € S, we also have

E, g |[Vign()] =B ¢ [Vidh' (9] =B, ¢ [ViGz(s)] =0
Here, we use the fact that E__~ {V:; 71} >E, ¢ [thm (s)} . Using the error decomposition in
(75), we will now individually bound the three terms, A, B, and C, in the following sections.

D.2 CONTROLLING B: ADVERSARIAL ONLINE LEARNING

D.2.1 STEP 1: SHOWING THAT V; j;, IS AN ENTRY-WISE UPPER BOUND ON EME {V:;,}

The following lemma demonstrates that the value estimate ‘Z » for the i™ player serves as an opti-

* T — 4

mistic estimate of the auxiliary value Eﬁwg [Vi:h } , as defined in (76).

Lemma 4. With probability at least 1 — 6, it holds that

forall (i,h) € [n] x [H].

akﬂ',,‘,:|
)

‘Z,h >E ¢ |:Vi:h
Proof. See Appendix D.4.1 O

The following lemma demonstrates that the value estimate \71 » for the i player serves as an opti-
SN

mistic estimate of the auxiliary value ]Ew~§ {Vi’ h l} , as defined in (76).

Lemma 5. For value vector Vz pandE__ [VZ h} , it holds that

\s>

3
>E__ { :h}, forall (i, h) € [n] x [H].
Proof. See Appendix D.4.2 O

D.2.2 STEP 2: CONSTRUCTING RECURSION

5T

To begin with, according to the definition of ‘th(s) andE__ = {Vi, h(s)} , we have

~

Vin(s) =B, ¢ [Vin(s)]

K

. K . >
= min Zak anﬂﬁh rﬁh(s, a;) + inf PVint1| +Bin(s),H—h+1
P Peusi(PE, ..,
K k . VAl
- Z o Egorr, |Tin(s,0i) + Enfk PE, ¢ [Vi,hﬂ}
' Peui P’L h,s,a;
k2
K
<> f By, [rh(sa)+  inf PV | + Binls)
k=1 Peusi ( i\hys,a
K
K k : val
— Z ap Bk, [Tin(s @) + inf PE, ¢ {Vi’hﬂ}
= ~ peren (..,

27



Under review as a conference paper at ICLR 2025

K
K : oy
=> ap Egimmt, inf PVint1| + Bin(s)

=1 ' PeUi (Pik,h,s,ai

K
K . vaid
Y B, inf  PE_; [V“L +1} (77)

k=1 ' PeUi (Pik.h,a‘,ai

To simplify the notations, we define transition kernel associated estimated value function similarly

as (23). For all k € [K], we define matrix notations 131”}: Y and 131”2 Y as:

~_k {7 ~ak V.
T Vo pT—iViht1
B, =P, )
~_k ¥ ~nk P ~
"V pTliVih41l .
i,h,s,a; " Pi,h,s a; = argimin o [ =7 ,P‘/i,h-&-ly
' ' PeUp"( P 1 s a;
Jhys,ag
— k T
ﬁfrk,V Aw—i7]E7r~g[V7ﬂ,h+l]
i,h ih
ﬁﬂk’v _ "ﬂ'iz"Ewwg[V;th] — aremin PE - Vﬂ—
ihysa; T Lih,s,as = arg Peus (ﬁw}*:> wn | Vih1 | -

. . ~rF T SxS ~k ¥ SxS
Additionally, we define square matrices P, € R and P, € R as: P, =
Y. q i,h i,h =i,h
ok =k vV ~rk v PN LN . .
II,¢ P, and P, = II,¢ P. . We rewrite the result of (77) in a vector form, we can
h Tih =i,h h *ih

obtain that

Vin — E & [V?h}

s

~

/\T{'k,v —T
<> ap by, (Vz‘,hﬂ —E ¢ [Vi,hHD + Bin-

K K
Krm; . > Kyrm; . =TT
< E ag 1 Hlfwk PVinyr| + Bin — E ap 7 mfﬂk PVint1
k=1 PEU (P,i,,j;,ai> k=1 PeEU <P1.{,Z,ai
K ‘o K -
B e P e .
= E ap Py Vingr+ Bin — E o By E g [Vi,h—H]
k=1 k=1
K

=~
Il
—

To continue, we first introduce an lemma of the upper bound for bonus vector 3; 5.
Lemma 6. The bonus vector B, p, is bounded by the following inequality:

10g3(KSZ£¥1Ai) K X« N
Bin < 3cp f7dei H-1+ kZ:Oék Varé:’;,‘?Vi,h+1
=1 ’

Proof. See Appendix D.4.3 O

To proceed, we introduce some notations for convenience. Let e denote the S-dimensional standard
basis vector, with support on the s-th element. Additionally, we define:

) j—1 K kT
bp=e, and b, =el [ (D arP;, . Vj=h+1,... H. (78)
r=h \k=1

Armed with above notations and fact, for any s € S, we have
H .
Vin(s) — ]E,mg [Vi,h(s)} = <€S7 Vin — Emg [Vi,hD = Z <b27/8i,j>
j=h
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) log3 KSy i, Ai
§Z<b{b,3ch\/ 8 — )y

j=h
H K 3 KSZ7= P
log” (—&=i=1—" N
+ZZO[A; <biw3cb\/ ( K.Hfs )Varﬁwky‘7{/i,j+1>
j=h k=1 iy
H3log3 (Ko A logd (K5 S Ay H K . ~
= 3cb\/ (K 5 ) + 3cp ( KHS )ZZ <b{l,Varﬁ?5,‘71/i7j+1>,
(79)

With elementary inequality v/Varp(V + V') < \/Varp(V)++/Varp(V”) for any transition kernel
P € RS and vector V, V' € R, we further decompose (79) as

Vin(s) =B, ¢ [Vin(s)]

H3log? (K52 A log?(KSZim Auy H K
<3Cb\/ R 5 + 3¢ KH5 ZZak <b{L7Var13,rkVV”+1>

44,5

3, KSY" . Ay K
log? (X2 im Ay K A N k7
< 3cp I E oy, E bh,VarA,rk v | Vij+1 EWN& qu_l

717

log (XS Zjm Avy [ K H , .
+ 3¢ KH(S Z ar Z <b2,Varﬁﬂk,(/ (EWNE [V"’j+1D> + H?

—1,]

H3 logB(KSZ?:l Ai)
< Dy + Dy + D5 + 3cp i :

where we define the three terms D1, Dy, D3 as:

log (KSZé 1 K /. —
Dy =3¢ KH Zzo‘k <bh’var”k o (Vi ~Erg {Vi’j+1D>

Jj=h k=1
log? (K8 iy ) -
D2 = 3Cb\/ ( K]{(S Z Qg < hs Var::k v Eﬂ_wg |:V,L‘7j+li| )>
j=hk=1 ’
logg(KS > A,;) H K _ .
_ 3cb\/ KH(S Zh]; ak <bﬁl, VarEz;;‘v (EwNE {Vi,j+1} >>
J=h k=
logg(Kszzl:lAi) H K .
Dy = 30 3" <b{b, Var yocv (B [Vrs] )> (80)
j=h k=1

We now control the three terms D1, Do, D3 separately.

Controlling D;. We can directly obtain the following upper bound on D;:

KSY 0 A _ N —
D, = 3Cb\/10g ( KH(S Z Z <b{L,Varﬁz:,o (Vi,j+1 -E ¢ {V2j+1])>

j=h k=1
logg(KSng‘:lAq;) H K R _
= 3o KH 2D ok <bi” Varpr v (Vi B {VW‘HDH '1>
j=h k=1 - 00
gg(KSZL_lAi) H K R _ )
%) 30 J((8 LORRN L0 8y
j=h k=1

29



Under review as a conference paper at ICLR 2025

(i) Hlog3(7KS i Ai’) H K RNIPN —
< 3Cb\/ I > S <bi, Vijri—E, ¢ {Vi,j-s-l} HOO : 1>
j=h k=

h k=1
H3 IOgB(KSE;=1 Ai) N -
< 3 K her Vigni —E. ¢ [Vi’j“} Hoo @D

us

E, ¢ [le] HOO < H for

where (i) follows from the elementary upper bound ‘
allh <j<H.

Vi,jHH < H,
oo

Before deriving the upper bounds for the terms D» and D3, we first introduce the following auxiliary
lemmas, which will be instrumental in the subsequent derivation.

Lemma 7. For all (i,h) € [n] x [H], the estimated robust value function E__ ¢ [VZT h} satisfies the

following inequality:
77 5> . 1
rgleach ~E [Viyh(s)] - IS%I‘ISlE ~E {Vlh(s)} < min {i,H —h+ 1} .
Proof. See Appendix D.4.4. O

With Lemma 7, we have the following lemma on variance base on different transition probability in
the same uncertainty set, and we leave the proof to Appendix D.4.5.

Lemma 8. For a transition kernel P' € R® and any P € RS such that P € U (P"), the following
bound holds for all (i, h,) € [n] x [H]:

Verp: (B¢ [VT]) = Var (5. [V1,])| < win {

%

,H—h+1}. (82a)

Controlling D5. We can directly apply Lemma 8 and arrive at

Varges s (B, [Vina] ) = Vorges s (B, [Via])

T

<W%y@%AwH@_wﬁﬂmﬁpm4ﬂ

T

Vet ger (B [Pin]) = Vorgor o (B, [Tiaea])

—i,h —i,h

1
SQmin{,H}.
g

We insert (83) back to the expression of Dy, and we can obtain that

logs(KSE;L:IAi) H K ' .
Dy = 3¢, P I <b{L,Varﬁ,M (B, [vivj+1])>

i

j=h k=1
10g3(KSEZL=1Ai) H K ] .
-3 2 Kol Var v (B, 6 (Vi)
CM o 4 < w7 B [T
log?( KSZl LA 3 H 1
SSCb\/ 5 Z<bi72mm{az H} 1>
j=
Hlogh (XS 1
_ GCb\/ o8 ) min {H} . (83)
g;
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Controlling Ds. We first apply Lemma 12, and we can directly deduce that

1Og3(KSZ?:1 Am) H K ) -
Dy = 3¢ L3> af <b{L, Var i (B [ Vi) )>

i,j

log KSY i, Aiy H ) .
< 3Cb\/ og”( KI_; ) ;l <biu Varzf=1 K P (EWNE {Vi,j-&-l} >>

k =—i,j

We now introduce the following lemma on Zj{:h <b§;, VarzK Kﬁﬂ,kaEﬂ_NE [V:jﬂ} >, which
k=1 % L5 ’

is an empirical-transition version of Lemma 16.

Lemma 9. Let § € (0,1). With probability at least 1 — §, the following condition holds for all
(h,i) € [H] x [n]:

H
kg (el
j:

<3H <r§1€a§< E. g {V;h(s)] - r&rgg E. & [Vivh(s)}> . (84)

Proof. See Appendix D.4.6. O

Therefore, we can further achieve the following upper bound of D3 by applying Lemma 9:

log? (£ &L /) -
D3 < 3¢y KH Z <b€l, VE\I’E’{;1 aféfiv (EWNE {Vi,j+1:| )>

j=h
Hlog? (K2 Ay . ' -
< 9cb\/ = 9 (IgeagEﬂNg [Vi}h(s)} — rsrélg Eﬂwg {Vi7h(s)})
@) Hlog? (K52, Ai 1
< 90b\/ o (—= )min{,H} (85)
K g;

where (i) holds due to Lemma 8.

D.2.3 STEP 3: SUMMING UP THE RESULT

We combine the result of (81), (83), (85), yielding
KS3 7, A )
5

~ o o3 logs(
Vin —E, ¢ [Via] < 36 -

Hl 3 KSZ;l:lAq‘, 1
<cb\/ og (—==—) <3H+15min{,H}>1
K 0;

H31log® KSYh A
“FSCb\/ & ( 5 ) ‘

14+ D1+ Dy + D5

PR L LR N

‘Z‘,h — E,wg [V: h} , which indicates that

Moreover, Lemma 5 implies that ‘71 g [V:h} =

~

Vn =B [V] |,

max ‘
he[H]

H1 3, KSY %, A 1
gcb\/ og 9 ) <3H+15min{,H})
K o
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~

>
i =B [Vl

H3log? (KE A
+3cb\/ g B ) max

K h<j<H
O S 570
= 10 K 2 netn) € |V || o
336%\/ (K o )

where (i) holds by taking K > 12¢2H? logg(%), and involving the basic facts that
‘7}7 H41l = Eﬂwg [V? H +1] = 0. Eventually, we can achieve the following upper bound of term

e, . H3log? (K8 =iz
E, ¢ [ij,ﬁ} ~E, ¢ [Vi’h} < 360b\/ o8 (K r—by (86)

D.3 CONTROLLING TERMS A AND C

In this section, we derive an upper bound for the difference between the true value function and
the estimated value function. We consider a more general case involving a given set of policies
{75} ket (> Where either 7 = ) for all (b, k) € [H] x [K], or 7 = 77 x «*; , for all
(h,k) € [H] x [K]. Additionally, we define a distribution over the set of policies ¢ = {Cp}nem)»
with ¢y« [H] = A(S = ¢, A(A)), where Cp (7F) = off forall (h, k) € [H] x [K]. Our

objective is to derive an upper bound for |E,¢ {th(s)} —Erne {V: h(s)}

Ernc¢ [Vzh(s)} is defined as

Ervc [Vin(s)]

, where for all s € S,

K

- Zak 7k n(8) [ T4, h(s al + Zalf:(]Ea ~TE, (s) inf PEWNC |:V:,h+1} ’
k=1 PeU <A“;i

s,a;

— =k
with ]E,Wg [V;HH(S)} = 0. Here, ¥, (s, a;) represents the empirical estimation of 7, ,* (s, a;),

7,
and P, denotes the empirical estimation of P, ', ~for all (h,s,a;, k) € [H] x & x A; x

i, h s,a;

i i .. ok e
[K]. For notational clarity, we define the empirical reward vector rf, = RS, such that rzh (s) =
[k, (s, ;)] forall s € S.

aiN%zk,h (S

We first introduce the following two lemmas in terms of estimation error of transition model and
reward function:

Lemma 10. Let § € (0, 1) and consider anyéh, i k) X [n] x [ |- With a probability of at
least 1 — 9, for any fixed value vector V € R>, where 0 < V( ) < H forall s € S, the following
inequality holds:

i,h

P’“V P’1 V’

K log (185’21.":%AiNHK)
§22akK N Var o (V) +

Ph

log ( 188 Z;”ZEAiNHK)

1
N

H?log (1852 LA NKH)
1
N )
where Var . (+) is as defined in (25).

h

<3
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Proof. See Appendix D.4.7. O

Lemma 11. There exists a constant ¢, such that for any fixed pair (h, i) € [H]x [n], with probability
at least 1 — 6, the following inequality holds:

K
E 04157" E ak 7”1h
k=1

Proof. See Appendix D.4.8. O

log (£5%)
< Cr Tl

For clarity of presentation, we extend the definitions in (23) and introduce additional notations re-
lated to transitions associated with the estimated value function. With a slight abuse of notation, we

define the matrix notations P YV and P’T as follows for all (i, h, k) € [n] x [H] x [K]:

~k 7 R 1%

AV _ pre «~<[ font]

P =P, )
Vo %Ez‘»EWNC[V;Hl] o . PE V“
ih,s,a; "~ T i,h,s,a; - argmlnpeuai (P%]il ) m~( i,h+1| >

P h,s,a;

~nk TF ~7F R [V’.r ]
TV pT—ilbr~ Vit

P =P, )

SRV ’\%EwEWNC[V;hJA] _ PE VT
ihs,a; - Lihsa; = argmlnpeu (P%L ) m~G | Vi ht1 | -

ishys,a;

~7F YV ~k 7
Additionally, we define the square matrices P; ;€ R®*5 and P} h’V e R5%S5 g5

N V 7E SRRV 7V A N
B = H PZ h ) Bi’h = Hh Pi,h :
At any time step h € [H], we have

Ernc [Vih] = Brnc {Vzh}

. K K .
) K sk K11™i,h .
= Qg iy + ay, I, 1ank PEr~¢ [ f h+1]
T )
Z K—zF < K7en . byl
TN v Y inf P [V
k=1 k=1 Peui (ﬁ:ja_)
(s.a;

K pf,V 7T WV m
Tz h  + Zak P?h Ernnc Vi) Z Qg 7"@ h Zak Lin EwNC [Vi,h+1}
k=1 k=1
(87)

=
Mw
w

where (i) holds by the robust Bellman equation in (26) with matrix notation in (23), (ii)
arises from the definition in (76). Moreover, through simple observation, we directly have

PFVErne [V;h H} < PTVE e {Vifh +1} for all (A, k) € [H] x [K]. Thus, we further control
(87) as

Ennc [V7h] ~ Ennc [V0)

K K R
_ K p7F, v ™ K—7=* Kpr kvad
= T h , + E a Py Erg [Vi,h-',-J - E Ty p — E ap Py Exac [Vi,h+1]
— =1 k=1

~k =k "k,V "k,V —
i( { (?"Zh - r?,h) + (EZh EWNC[ViTh—&-l} - EZh Er~c¢ [Vz‘,hﬂD

=

I
(-1

1

el
Il
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ﬂ_ v T ~7k YV —T
—+ P Eﬂ—,\,( |:V,L h+1:| _Bi’h EWNC |:Vi7h+1:|

T

K
= Z kK (B?h VE#~C [‘/Zrh+1] P VEMC [Vz h+1D

— =~k Y/
=k _ak TS — "V —
Tin = Ton| T1L2is Erne [Vingr| = Bin Ernc [Vina

} . (88)

<

=ay

Applying (88) recursively leads to

H [j—-1 K
Ennc [Vih] = Ennc [Via] €0 l]‘[ (Z ol PT V)] ag ;, (89)

j=h Lr=h \k=1

where the inequality holds by adopting the following notations:
h—1 / K
j—1 - K - K K L
7h v 7h v 7h v
[H (Z Ilc(Pi,r )] = (Z O‘IIfBi,h ) <Z ai{—z h+1> (Z aIIC(Pi,j—1> .
k

k=1 k=1
Next, similar to (88), we can achieve that

} —Er [th]

K K
(:Z zi{ )+ Zo‘k Ere [ i h+1} Zak Tz h— Z%KP% "Ernc Vi)
part k=1

k=1
K Y 7V 74
() (e o)

75V — *, .
+ (Bi,hvaTr~€ [Vi,h-&-l} - Py, VEr~e [Vi,hﬂ})]

Ennc |V

(i) T whk .
< Z% (Pﬂ VB [Vi7h+1] _Bi,h’vEmC [Vz‘,h+1])

e | J
Where (i) holds due to robust Bellman equation, and (ii) holds due to the direct observation that

PTr V]E,WC |:Vzh+1i| < BiZ’VJEWNC [Vi}hﬂ}. Then following the routine of achieving (89), we

can obtain that

Tr,V

=~k _=k 7V T
TZ-fh - Tzh‘ + ‘P;T,h EﬂNC {Vi,h+1} - Pz h Eﬂ~< |:V1 h+1]

H j—1 K o
Erc [Vzh} B VA <Y [H (Z akKP;j,:Vﬂ as . (90)

j=h Lr=h \k=1

Summing up (90) and (89), one has
Enng [Vin] = Enne [V

< max {EWNC [th] —Er ¢ [Vi,h} s Ernc [th} —Er~c [Vzﬂh]}
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where the max operator is taken entry-wise for vectors. To continue we apply Lemma 10 and
Lemma 11, and we can obtain the following upper bound on a ; forall (i, 5) € [n] x [H]:

§ : K
ag,h B ak |: :|
k=1

r

_ e —
A 7V e sV vdi
ih T Ti,h‘ + ‘Pi,h Erce [Vint1| = Bin Erne |Vintr

185", AiKNnH

- K log( 4 ) Evai
<2) o ~ Var o (Erne [Vinia
Zh ’
k=1

1883 | AiKNnH -
( 3 ) 1+c 710g(¥)
N " K

holds with probability at least 1 — 4.

log
+

L

D.3.1 CONTROLLING THE FIRST TERM IN (91)

To simplify notation, let us introduce some additional symbols. Recall that e, represents the standard
basis vector in S-dimensional space associated with the s-th component. We define

J—1

di =e, and d) =e! [H(Z ,{<P )] forj=h+1,..., H. (92)

r=h

With these notations in place, for any s € S, we consider

B [Vi3(5)] = Ennc [Vin ()] = (e B [Vi3] = Brnc [V ] ) = S (dh.af,).

j=h
Applying Lemma 10, we obtain
Ennc [Vi3()] = Banc [Vin(s)]
H K log (185’ > A KNH
<3 (4230 ) for (oo (e 7))
j=h k=1
188", ALKNH
o (B o
+ N + ¢ K
188" | ALKNH
H log (Ei%) H2log (KS(SnH)
< te\| ——————=
N K

185", AiJKNH

+ i <di7 2 é allc( log ( N5 ) \/Varp?k (Eﬁwg [V2j+1i| >> . (93)

By applying the triangle inequality, we can further decompose the term of interest as follows:

Exnc [Vin(s)] = Ennc {V (

s

Hlog (1852;1 isA KNH 2 log KSnH
< —I— Bi + Bs, 94)
N
where we define term B and B5 as:
log (185 z;l:%AiKNH) —
=S (.o Z o . War g (Enne [Vi51])
i=h 7
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By = ZH:QXK:%K <d{w \/ Vari:;; v (IE,,NC {VLHD — Varﬂik (Emc {szHDD

\/ og (1881 | A[KNH/6)
N

We then analyze the bounds for the terms B; and B2 separately.

Controlling ;. First, we introduce the following lemma and corresponding inequality to establish
control over the term Zk 1 Q% \/Var s (EﬂNg [VL_H} ):

Lemma 12. For any transition kernels Py, . .., P,, € R®, and any weight a1, .. ., a,, € [0,1] with
ai+ ...+ a, =1, one has

Zam/Varpi(V) <,/Varsm 4.p,(V),
i=1

where V denote any fixed value vector V€ RS with0 < V(s) < H forall s € S.

Proof. Initially, since f(x) = y/x is a concave function, we have

m
Z aiVarpi (V
i=1

Moreover, according to the definition of variance in (24), we obtain that

m

Z a“/Varpi(V) =

> aiVarp, (V)= a;(Ep, (Vo V)= (EpV oEpV))

i=1

<ZQ1EP VOV (Za Ep V) (ialEsz> s
=1

=1

where the last inequality holds due to the elementary fact that f(x) = 22 is a convex function.

Therefore, we have proven the result of the lemma. O

With Lemma 12, we can further control 3; with

185> AiKNnH)

A

E

log ( 18S3°™ | Ay KNnH)

H
0 ) -
<2 ~ > <d;, \/Varzle ok PTET (IEMC [Vi,j+1])>
j=h R

w
- log( . ) HZ <dh’var2k LK pTE T (Ewc [V?,j+1D>- (95)

The last inequality holds due to Cauchy-Schwartz inequality. To further achieve the upper bound of

B1, we introduce the following lemma of Zf{:h <dfl, VaerK Lo PR (IE,FNC [VZHJ ) >:
Lemma 13. Consider any § € (0,1). With probability at least 1 — 0, one has for all (h,i) €
[H] x [n] :

H

S (dVary et (Be [T]))

i=h
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18537, AinKNH
<3H | maxE~¢ {V?, 1(5)} —minE,¢ [V?Th 1(5)} 1+2H Log( 8 )
- sES sht sES bt N

(96)
Proof. See Appendix D.4.9. O
Lemma 14. For all (i,h) € [n] x [H]|, the estimated robust value function E ¢ [V?,h} satisfies

the following inequality:

—m . —m . 1
Igleagﬂiﬂwg [Vi7h(s)] - grlelgEﬂNC {Vlh(s)} < min {Ui,H —h+ 1} .

Proof. The proof of Lemma 14 closely parallels that of Lemma 7. Therefore, we omit the details
here for brevity and clarity. O

Apply Lemma 13 to (95), we arrive at

1 18§37, A;KNnH %
op (BEELARNEY [ -
Br=2 N B (diVargy prse (o (Vi)
j=h -
=< \/3H2 <r£1€a§<E,m< |:Vi,h+1(s)} - g}eig]Ew% [Vi,h+1(8):|)
18§37, A;KNnH " An
log (%) log(ws P A KNH)
-2 | 1+2H 0
N N
0 1 log (188 Sy AinKNH
<2 3H2min{,H—h+1} 1+2H\/Og( - )
o

185> " . AinKNnH
log( 21:16 n n )

N

H2min{1/0;, H} log (M)
<6 7
- N

o7

where (i) holds by applying Lemma 7 and Lemma 14, and the final inequality follows by taking
N > AH2 log (185 ZlegAiKnNH).

Controlling 5. Initially, with similar analysis as Lemma 8, we have the following lemma:

Lemma 15. For transition kernel P' € RS and any P € RS such that P € U° (P"), the following
bounds are established for all (i, h) € [n] x [H]:

’Varp/ (ET{'NC [V:h]) — Varg (E,Wg [thD’ < min {;,H —h+ 1} .

(2

With Lemma 15, we observe that

Varg?k (Eﬂwg [VZ.HID —Var v (Eﬂwc [V?’jHD‘

H}T <Varp?’“i (IE,W( [VZJ‘HD — VarPfff‘V (Ewc {V2j+1D>|

37

®




Under review as a conference paper at ICLR 2025

(i)
1

o0

1
§min{,H—h+1}1, (98)
i

VarPf’ii (]EMC [Vm‘HD - VarPf:,v (vac {vi,jﬂD

where (i) and (ii) follows from the definition of matrix notations H}“ (cf B. 1) and P%k Pﬁk’v

(cf B.1), and the last inequality holds by applying Lemma 15 with P/ = Pj s ,P = P’ 61728,
forall (s,a;) € S X A,.

Plugging back (98) to (94), it can be verified that
H K ‘ - _
= 35050l (i Vorg o (B 7)) ~Vorgg (B 7))

j=h k=1
(18SZL AKNnH)

log

N

log ( 18S -1 | AiKNnH>

H K : ' 1
SZQZakK N <dﬁl, min{,H}1>
) g;

H2 min { 1 H } log (1SR AdN 0 )

<2 N 99)
Consequently, combining (97) and (99), (94) can be bounded by
Ennc [Vi3()] = Eanc [Vin(s)]
853", A;KNnH
Hlog (1 21716 ) H? log(K H)
< N +cr + By + B
185" , A;KNnH -
f— N ‘s K
H2 min { } log (ISS z;;lgAiKNnH)
8 ’L
+ N
_ H2log(XSnil ) 1 H? mm{ H}log (w) (o
c\| ————2>—= ,
- K N

where the last inequality holds by taking N > 4H? log (185 i 6AiKN”H).

D.3.2 CONTROLLING THE SECOND TERM IN (91)

To do so, similar to (92), we define

w = e, and wi: [H (ZafPffv>] Vij=h+1,--- H. (102)

With the above notations in mind, following the routine of (93) gives: for any s € S,
Ennc [Vi3(5)] = Banc [Vi(5)]

log ( 185" | A,;KNnH)

< i <wh,220zk NzS \/VarP;?k (]EWN( [VZJ'-H})
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. log (18S py léA KNnH log KS”H 1
N

Hlog (186‘21 léA KNnH H2log( KSnH)

<

N

I K log (185 DO AiKNnH>
i 5 —n
+y <wfl,22akK ~ \/Varpik (Erme [Vi7j+1])>. (103)
j=h k=1
Furthermore, following the routine established in (94), we can decompose the expression as follows:

Ern [Vii(5)] ~ Ennc [Via(9)]

Hlog (185 Z?ZléAiKNnH) s log(KSé”H)
< o\ ———2—
N K
7 ‘ K B log ( 185 Z?:15AiKNnH) —
3 (g 23 o - Varee (Bane [V7,0))
i=h k=1 '
185 A;KNnH
o Hlog (SSELpN) [ spi
- N " K
log (185 ?ZléAiKNnH) log (185 Z;‘ZléAiKNnH>
+ B3 + N - By + N Bs, (104)

where (i) holds due to the triangle inequality and the fundamental inequality /Varp(V + V') <

\/Varp(V) + /Varp(V”) for any transition kernel P € R and vectors V, V’ € R¥, and we define
the three terms Bs, B4 and Bs as

188> . A;,KNnH
10g< 2 n

o
<wh’2zak N ) \/V3rpffk_=v (]E'“'NC [‘/177+1})>
Vg B [V5) = Vo (Bene [

Bs

||
u Mm i Mm i M:

<wh,22ak P
S (2ol g (e ] 2 2) )

Next, we will control the three main terms Bs, By, B5 in (104) separately as outlined below:

oy
|

Controlling 53. Initially, we apply Lemma 12, and we can obtain the following upper bound of Bs:

H < K log (183 >, AiKNnH

, 5
wi,ZZakK N >\/V3"P%k,v (Ernc [‘/7,72+1])>

=i,

log (18S > AiKNnH) I

5
<2 N Z <wh’ \/Vaer Lok PTh v (Ernc [ny+1])>

Jj=h

We further apply Cauchy-Schwartz inequality, and we can obtain that

1853 AiKNnH) H

log
Bs <2 ( N(S Z <wh7 \/Varzk ) KPﬂ—k v (EWNC [Vzirﬁrl])>

j=h

39
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5
<2 N th <wh,Vaer L akPTRY v (Erng [V;Trj+1])>
J

log <1ss >, AiKNnH) I

In addition, to further bound the term of interest, we introduce the following lemma and inequalities
H j T

for 1L (v Vargy pets (e [V5]))-

Lemma 16. For any joint policy w, we have for all (h,i) € [H| x [n]:

H

S (b Vargy i (Bonc (V)

j=h

<31 (mE< V7 (6)) ~ i B (V6] ). (105)
Proof. See Appendix D.4.10. O

Lemma 17. Forall (i, h) € [n] x [H], the estimated robust value function E .. [th} satisfies the
following inequality:

. 1
max Er ¢ [Vi7,(s)] — HélgE,TNC [V (s)] < min {

,H—h+1}.
seS i

Proof. The proof of Lemma 17 closely parallels that of Lemma 7. Therefore, we omit the details
here for brevity and clarity. O

Then applying Lemma 16 and Lemma 17 yields

log (ISS’Z LA KNnH

Bs <2

an

wh’varzf gy (Bre [V;’Z+1])>

log (ISSZ A KNnH
<2 \/ maXE,rNC [Vﬂ i (5)} - mlgEﬂNg [Vﬂ i (s))]
€

H? min{l/cr,;,H}log(
<4 )
= N

18S3°™ | Ay KNnH)
5

(106)

where the last inequality follows from Lemma 17.
Controlling 3, and B5 With similar analysis as Lemma 8, we have the following lemma:

Lemma 18. For any joint policy =, transition kernel P’ € R, and any P € RS such that P €
U7 (P’), the following bounds are established for all (i, h) € [n] x [H]:

1
Varp: (Bnnc [Vi3]) = Vars (Enee [V7])] < min {0_, H—h+t 1} .

We apply Lemma 18, and we can directly obtain the following upper bound of 5,:

H
By = Z <wh72z% Vargf’“ (Ernc [Vilj4a]) — Va"gs v (Ennc [nyﬂ])‘>
=h
H K 1
< Z <wi,22akK min{,H}1>
05
j=h k=1
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251/H2min{H,%} (107)

Then the remainder of the proof shall focus on B5. Recalling the definition in (104), one has

Bs = i <wh’22ak \/Var 7 (Brnc [Vjﬁl} ~ B [Vlﬂﬂ“])>
j=h
< Z <wh72zak \/HVar Er~¢ [VZjJrl} —Er~c [erﬂ]) HOO1>
j=h
H
Z<wh7‘ LI [ zg+1} —Erne [VZEH]HM 1>
< 2hISnja§XH Brne {Vm‘+1} — B [Vija] HOO (108)

Summing up (106), (107), and (108) and inserting back to (104), we conclude
Erne [th(s)] = Ernc [V:h(s)]

Hlog (M) H?2 IOg(KS;an)
< Cr
- N K
log ( 185 ZzlzlaAjKNnH) log ( 185 Z?:léAiKNnH)
+ Bs + N - By + N - Bs
) Hlog (185 E;L:ISAT;KNnH) H2log (Kszan)
< N +Cr K
. 185> | AiKNnH
H?min{1/0;, H}log (%)
+ 6\ N
H2log (185 > AT;KNnH)
B — -
- e I e [t

D.3.3 SUMMING UP THE RESULTS: UPPER BOUND FOR TERM A AND C

Inserting (101) and (109) back into (91), we observe that
Enng [Vi3] = Ennc [Vi4]|

< max {IEWNC (V%] — Ennc [V:h} s Ernc [V?,h] —Ern [th”

H2log(KS”H) H2min{%,H}log (w)
SmaX Cr #1_’_12 i

1
N

185> . AiKNnH
g (g oS5

T 1 1
y C K + N
H2log (S Xl KN
4 — -
+2 N pnax, Erc [Vi,j-&-l} —Erng [Vilj41] Hoo 1

+6

H2min{ 1, H}log (w>
z 1
N )
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which indicates that

e
i?elz[%}}](] ‘ ¢ [ »h] ¢ o
H?log(£5nH) H? mm{ H}log (M)
T —_— 12 gq
>C K + =
185" | Ai;KNnH
N Hlog (f)
N
H?2log (W) »
+2 N }{2%?] ’ Er~¢ [Vi,hﬂ] —Erne [Vifrhﬂ] Hoo

() | H2log(KSnl) H? min {%,H} log (w)
< 5 :

A ——m—m———2—2 + 12
<c i% * N
S>T A n
Hlog (M) 1 . -
e N AR
12 1og(E5E) 72 mm{ }log (M)
<20\ ———— +24
<2c K + N
2H log (M)
N . (110)

, and invoking the basic fact that

where (i) holds when N > 4HZ?log (M)

3
Ernc [VZT H +1} = Ernc [Vi41] = 0. With (110), we can achieve the following upper bound
on term A and term C"

2 min{(},H}log (1852%: 6A'KNnH)

o log KSnH 2H log 1852 LA KNnH)
+ 2¢,

(111)
H2min {1, 1 } log (w)
S A i
2 log (Ksnil) 2H log 185 2i 1 As KNnH)
+ 2¢,
(112)
D.3.4 SUMMING UP THE RESULTS
Summing up the results in (111), (86), (112), we can achieve the upper bound of our target:
E g [Viﬁﬂﬁ] - Ew~§[ zﬂl]
H31 M H21 KSnH
§366b\/ e’ 2 )1+4Cr L
K
4 log (S5 T AN N min { £ H } log (SR AN ) 1
+ N + a .
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Therefore, there exists a constant C, such that when NV and K satisfies:

1 1 " A KNnH\ 1
N > CH? min —  H ;log 8S21=1 i -,
ming<;<n 0; 1) €2
K > CH®log® (KSZ%_l AiH> 12
€

we achieve max;c(,) B,z [V;7" '] —E__g [V/] < -1 with probability at least 1 — 4. Therefore,

the total number of samples we need is at least

Na”_HSZKN o(smax1<‘<”AH min{ 1 H})

-1 64 ming<;<n 0;

Thus, we finish the proof of Theorem 2.
D.4 PROOF OF AUXILIARY LEMMAS
D.4.1 PROOF OF LEMMA 4

Before proving Lemma 4, we first introduce the following lemma regarding the properties of the
learning rate.

Lemma 19 (Li et al. (2023, Lemma 1)). For any k > 1, one has

r 2¢q log K
— § { ko b2 o
ap =1, o 1, 1rélfngk oy < A (113a)

In addition, if k > colog K + 1 and ¢, > 24, then one has
1
k

A — 113b
1512?/2% - K6 ( )

We will now prove the lemma with induction argument. Initially, the base step H + 1 trivially holds
true, since we have

~

Vigy1 =E__¢ |:ng11:| =0.
Next, we assume that the lemma holds for step i + 1, namely
—k, Ty
~E [Vvt,h+1]
and attempt to justify the validity of Lemma 4 for step h. Let [}, denote [, = —qf; n(s,),VE > 1,

then the update rule of Algorithm 2 can be viewed as the FTRL algorithm applied to the loss vectors
{lx } ke[k)- According to the definition of {n } re[x] and {a }re(k], We have

( i )2_ o kE—2+cqlogK k-1

Vine1 2 E_

— > =1—ap>(1—ag)? (114)

Nie+1 g1 k—14+cylogK — k—14cylogK

This property (114) permits us to invoke Theorem 3 to obtain

g 3ol e~ Yl (state)

where 7; j, is defined as

Ti,h
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5 K 1
= ga{(UQH‘Jil,hHio +{ Z kak 2“ z;L||3 1< Nk H th 3)}4—3@1 T]QquhH

1— oy
k=

According to the definition of {ay }< | and {1, }_,, we have the following fact:

o log K 1 1 .
1— ap = 1— Ca IOgK licaol%gK 1+cq logllg 2 2¢q log K if k 2 2’
k—1—|—ca10gK K/;j-ciglogK RToea og i 2%, ifk>K/2+1,
(1152)

log K log K g log K 2¢q log? K
= < . 115b
Ml Ot oo H Sy\/5 =1/ < N7i (115b)

K K .
Therefore, we can re-control maX,,e 4, Y p—q @5 qF, (s,a;) — > 1, o <7rfh, qar, (s, )> with

K
fleaj(, Zak ql h s a7’ Zak z;h7q7]ih(s7 )> (1]6)

5 o N log A
<23 af P var, o (ah(s) +

k=2 Q o NK+1

05 (20) Mo’ K o o)

=3 Qe Vargk (s) (qt,h Sy )

3= vVEkH
C1
20 < calog? K log A;
52 o R Vares o (e )+ 2 T, A1)
k=K/2+1 ’ ﬁéj_l/ \C/s
2
Now we separately control the four terms Cy,Cs,C3 in (117).
¢ For term C1, we have
KZ/zafk’gzKVar (dkats, >)<KZ/2 8 K s o (d(5.)
k ok ; )
Vi) S g e o L
K/2
log? K | 2 H3/21og K
< — = |%.nS," < ——
— kZZQ Kg\/ﬁuq%h( )Hoo Z \/>
2H3/?log? K 2H3/?log? K

<2 X2 K2< 2 log” K . (18)

- K¢ K5
where the third inequality holds due to the elementary bound ||¢¥ (s, )| < H.

¢ For term Co, we have
log A; vk H 2cq H log? A,
DB log Ay | <y | e 28 S (119)
NK+1 log K

where the first equality holds due to the definition of g 4.
* For term C3, we initially have

2calog
8c3 H1 K
g < Y [P 120
QCQIOgK

Clearly, the right-hand side of (120) is upper bounded by 1/3 for all k obeying k > cg H> log* %
for some large enough constant cg > 0. Consequently, one can derive

Ti,h
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~{o3ar ekl (2 il - 3)}

)
+ Zafmllal | + s0f i el

1ogK (QC(XlogK)2 colf Jog" 2 21 k 13 3 1ogK
§3K6 latallZ, e 8 kZ:Z neeillainlls p + latull2

24¢3 log" K Z 3
=  KSH { i
24¢3 H3log® K 1
< et o oo
- K6 — K4’
where the second line comes from (115) and the fact that K/2 > co H log4 % .

(121)

Combining previous three items, we can obtain that

K K
aed, Z ak qin(s, ai) — Z ag (Tn ain(s,-))
T k=1 =

5(2c0)'® 2H3?log® K 20 [cnlog? K i K &
S T | TR 2 oV (dla(e)
k=K/2+1
. 2caHlog2Ai+i
K K*
o log? (K Ay) caHlog? (K A;)

<10 i Zak Vare (o (afn(s,)) +2 o A (122)

According to the definition of qi7 h (s, a;) in the update rule of Algorithm 2, we have

K
K | k . >
max E oy, T17h(s,ai) + 1anc PVih+1
a;€EA; - Peuvl(piyh’s,ai
K
K k ~
- E Qy EaiNﬂ'f n(8) Ti,h(s7 (17;) + Pey H})f]; ,PV;,thl
k=1 Ui (P, ai
K K
K k K/ k _k
= arlnea}‘ E ag qi,h(s’ai) - E o <7Tz',h,qi,h(3, )>
T k=1 k=1

IN

K 3

calog® (K A;) coHlog® (K A)

10 = KH - § :akaarWﬁh(S) (qih(s7 )) + 2 = K : = /Bi7h(8)
k=1

Moreover, according to the induction hypothesis, we have for all s € S

ETA’NE {V:;_(s)} = max Zaf [rﬁh(s, a;) + inf PEng [V:;;l”

a; €A; — Peuai(Pik.h,s,ai)
K
K |k : W
< max E oy (s, a:) + inf PVint1
a; EA; et ’ PeuUi (P, )

i€
K A~

< ZakKanwk (s) [rﬁh(s,ai) + inf PVint1| + Bin(s)
k=1 v

Thus, we finished the proof of the lemma.
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D.4.2 PROOF OF LEMMA 5

We will prove the lemma with induction argument. Initially, the base step H + 1 trivially holds true,
since we have

Vigr1 =E ¢ {Vi,HJrl} =0.
Next, we assume that the lemma holds for step h + 1, namely
‘Z‘,h-ﬁ-l >2E ¢ [V;T,h+1:| .

According to the definition of IA/Z nandE__ = [V:T h} , we have

X _
VT - K . k , i VT
IEWN€ I:Vz7h(8):| kzﬂak IEMN”%(S) -r%h(s,al) + Peu"il(rlggfhysyai) 73’IE7W5 [Vz7h+l}]
X -
< ofE, (s, a;) + inf PV
= ; k Saj~mk, (s) 1,h( 1) PG“”i(Pfh,,s,ai) i,h+1
K -
K k . ; U, .
< ; O Byt () _n,h<s7 W il P ] + Bins)

T

Since, we also trivially have Eﬂwg {Viﬁh(s)} < H — h + 1, we can deduce that forall s € S
E,.¢[Vin(s)]

K
< min Z afanﬂkh(s) rﬁh(s, a;) + inf PVint1
= g PeUi (PE, .. )

i,h,s,a;

+ Bin(s),H—h+ 1}
= Vin(s).

Thus, we finished the proof of the lemma.

D.4.3 PROOF OF LEMMA 6

Recall that for all s € S, bonus term f3; 5, (s) is defined as

logS(KSZ?:lAi) K
Bin(s) =cp KHé ZakK {Var,rf,h(ws) (qﬁh(s, )) + H} . (123)
k=1

For any k € [K], we have the following inequality for Var_« C1s) (qf,h(s’ )) :
Varze, (1o (@n(s:))

< War (4 (s,)) + 2V S 5, Wi ()
= k, Cls) \Tin (S alakCls) ih 8 18 )Vint1(s

(i) rk D —~ N
<242 > wf(ai| S)Pi,I;“V(' | s,a:) (Vuh+1 ° Vi,h+1)
a; €A,
2
k ’\Tr}ii,‘A/ =5
- ( Z i n (@ | S)Pi,h (- | 57ai)Vz‘,h+1>
a;€A;
=242 <es, Varﬁ,,kf/ Vi7h+1> . (124)
LZin
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where e, denotes an S-dimensional standard basis supported on the s-th element, and (i) holds due

ok
to the elementary fact that < 1and Pf,;“ (s']s,a;)| < 1foralls,s’ € S,a; € A,.

Tfh(s,ai)

We insert the result of (124) back to (123), and rewrite the result in vector form, we can achieve that

1 3, KSY " A N
Bin < 3Cb\/ o8 ( 8 ) (H 14 Varﬁwk,f/Vi,hﬂ)
L

KH

D.4.4 PROOF OF LEMMA 7

To prove Lemma 7, we start by analyzing the value function of policy 7 under uncertainty set o;.
We first establish bounds on minses B¢ [V:r h(s)] :

winE, ¢ [V74(9)

K
= min Z Oéé( Eaiwﬂ'i’ch (s) [Tﬁh(S, ai)] + ]E(lq‘,’\‘ﬂ'?"h (s) inf ?EWNE |:V;n—,h+1(5)i|
sES Pt Jh i, h Peui (Pik,h,,s,ai>

> glelg ]Eﬂwg [Vi,thl(s)} .
This follows from the robust Bellman equation (26).

Next, we examine max,es E__¢ [Vj h (s)} :

max[E__ = [V?h(s)}

sES
K
= ma;cZakK Eo,mrk, (s) [rﬁh(s, a;)] + Eo,mrt, (s) inf PE, ¢ [Vzhﬂ(s)]
€ k=1 , , Peui (Pik:h,s,a,i
K
<1+5 0 max inf  PE__- [V? s } . (125)
; g (s,a;)ESXA; Peui (P,;;Zat) g ’h+1( )

We now construct an auxiliary distribution vector P, _ = € R¥ by strictly reducing some elements
of P/ ' such that:

h,s,a;

k k k
0 < P}/L,s,ai < ‘Pi,h,s,ai and Z Pi.,h,s,ai (sl) - PI{L,s,ai (S,) = ||Pi/7,,s,a,; - P',h,s,a,;

f 1 = 0;.
s'eS
(126)
Let es:, denote the standard basis vector supported on s7 ,. We can show:
Hp + 0 T ph <1||P’ S +1 : "I <o,
9 hs,a; T 0i |Cst i,h,s,a; L2 h,s,a; thsailll T o9 Oi |Est, L Tis
127)
where the first inequality follows from the triangle inequality of the total variation distance.
From (127), we conclude that:
inf  PE, ¢ |Vip]
Peui (Pl ..,
/ T il
<(P .. +o, [esf } E A[VZ- ]
( h,s,a; ih g Rl (128)

=T =T
< |[[Phsally HEME {Vi,h+1} HOO +ok e [Vi,h+1(8;,h+1)}

<(1-0y) rsneachﬂwg [Vi’hﬂ(s)} +o; rsrgg E. & [Vi’hﬂ(s)} .
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Substituting (128) into (125) yields:

v < — o v i v )
glea‘;(EﬂNE [th(s)} <14(1-0y) gleaé(Eﬂ~E [V%hﬂ(s)} +o; lglelélEﬂNE [V%hﬂ(s)} (129)

Combining (125) and (129) gives:
maxE, ¢ [Vin(s)] - minE, ¢ V()]
<14 (1—o0y) (Igleagc E ¢ [Vzhﬂ(s)} — rsrgél E ¢ {Vzhﬂ(s)})
<1+(1-0y) [1 +(1-0y) (I;leag(EWNg {VZ,H_Q(S)} - ISIg‘IS‘l]Eﬂ_NE [V;h_ﬂ(s)])]
(L—o)" " 1

1—
<ol < — (130)
g; g;

Combining this with the basic fact that max,¢c s Eﬁwg [V;h(s)] — minges EﬁNg [Vi h(s)} < H-—
h + 1, we complete the proof.

D.4.5 PROOF FOR LEMMA 8

We introduce the following notation for the value function at time h:

vhe[H], Vin =E_; [th(s)} ~minE_¢ {V?h(s')} : (131)
; ; s'e ;
which normalizes the value function V:T n- This definition leads to the following bound:
<span 1
ijf’;’ gmin{,H—h+1}, (132)
o0 i

a result derived using Lemma 7. With this notation established, we now consider any transition

kernel P’ € RS and any P € RS such that P € U (P'). For all (i, h) € [n] x [H], we analyze the
variance difference between the value functions under these kernels:

ot (5, ] = vy (. 7] )|
= [Varp: (V") = Vary (V55|

—=span

SR e
{1 21
<o (mln{a,Hh+1}) §m1n{0,Hh+1}. (133)

D.4.6 PROOF OF LEMMA 9

Analogous to Appendix D.4.9, we introduce some auxiliary values and reward functions to control

H

3 <b{” Var e gt (Bre Vi) )>

i=h K Lij

as below for any time step h and agent <.

Definition 3. For any time step h € [H] and the i-th agent, we denote Vzlin =
Mminges EﬂNg [th(s)} as the minimum value of all the entries in vector EWNE [Vzrh} We fur-

ther define V;z =E ¢ {Vg,h} - Vzlinl as the truncated value function. Eventually for reward

—min —min

. —min
function, we define 7'} = 25:1 a?]EaiNW@} rh (ha) + (Vhﬂ -V ) 1 as the truncated re-
ward function..
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Then applying the robust Bellman’s consistency equation in (26) gives

—min

V'}L:E%[V } v

K K 7 =T mln
_ Zak E,, ag) + Zak P, ]EWNE [Vi’hﬂ} vt
k=1
K
K k min mm 71' "V —y
= Ak Ea,,w;ihfi,h('a a;) + (Vh+1 ) L+ ZO% in Vit
k=1
K . —
. ~mV—y
=Tin + Z akKBi,h Vit (134)
k=1

The above fact leads to

Varg ok BTV (Ew~5 [VZWD

!
- Varzk Lo BT, (Vi)
~tk VvV K ~mF V—y K ~mF V—y
:Zalfc(ch (Vh+1°Vh+1)_(Z Kch Vh+1 O(Z Kch Vh+1)
k=1 k=1 k=1
where (i) follows from the fact that Var__,. . v (V —bl) = Var K prtv (V) for any
k=1 i Silief P

value vector V € R® and scalar b. According to (134) and (26), we have

T

Varzf kBT (E,mg [Vi,hﬂD

k —i,h

K/\Tr V 7m1n °2
Qg Pz R (Vh+1 o Vh+1) (Vh Tih )

I
MR

K/\Tr V Evad 17 T —min min _ —min
oy Py (Vh+1 OVh+1) = V3oV + 2V, o =T o7y

AT

V — — —/
P (Vh+1 OVh+1) = VoV, +2[|Vy |1,

IN
i

—min

where the last inequality arises from r“““ < Zk LOKE,, rﬁh(-, a;) < 1since V?jrnl Vi
0 by definition.

Consequently, combining (145) and the definition of bfl in (92), we arrive at

H

3 (v e (e )

]:h k=1 k Jh

(1) (ot 2L (Voo Vi) VoV, s 2V )
() (S (77 -7207))

where (i) and the last inequality hold by the fact HV;LH > HV;L 1 H > > HV;{ H . Further

according to basic calculus, we have

H
S (Voo g (Bene [Tn]))

i=h

(

INZ

—
w2 |7

H
=2
j=h

) H
>
j=h
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_ i _(b{l“)T (Vi o Vi) - 007 (V4 ov;)] vorr [V

h
B Vs Vinaa 420 7]

(135)

§3H‘V;

D.4.7 PROOF OF LEMMA 10

To prove the inequality involving P “V V and PZ }; v V, we start by analyzing the absolute differ-
ence between these terms:

P’“ V- P”" V‘

i,h,s,a; i,h,s,a;
= iank PV — iank PV
PeUi (P:;iai> PeUi (A:r;; %)

) 7, . /
= E PV a — U4 ( - |4 « )

air 71—1’“‘()z»’c‘[mm ‘/'lf{lglr;,)rillél)(g V(s)] |: h,s,ai[ ] ai\@ HBH[ ] (S) :|

ok
—E, 2k max P ,Va—az(a—minVas’)H
i h qe[ming V(s),maxs V(s)] |: z,h,s,al[ ] s’ [ ] ( )
~k ko

<E, max P Ve—P 5 [V]als (136)

Nk ae[ming V(s),max, V(s)] h.s, 7'[ ] s 1[ }

where (i) follows from applying the robust Bellman equation (26), and the last inequality uses the
fact that the maximum operator is 1-Lipschitz.

~k
Next, we apply Bernstein’s inequality to bound the difference between Pf: va;[V]a and PZ ,; va;V]a
for fixed «, k, and (s, a;). With probability at least 1 — §, we have:

210g 2H log (2)
Var . o) 28 137
S\ Ve h]:al Vl]a) + IN (137)

To extend this bound to all (s,a;), we use a uniform bound over an £1-net for «. The net size
IN., | <32 allows us to apply the union bound:

~k

T ’\

P Ve — B

h,s,a; zhsal
)8,

%)ii ’\%i,
Ph,s,a,i [V]O‘ - P)i,h,s,ai [V]Ol
7k, ~7k
< P _p
041161]&\7}; h,s,a; [V]a i,h,s,a; [V]Ol +e1
2log (QS Rl 'K”) 2H log (25 i ANy \Kn)
< Var o« (V
= N arpgv’j:fa’_( )+ o +e
2log (w) Hlog (M)
= Var s, (V 138
o \ N ar ;T:Iila ( )+ N 5 ( )
H10g<w)
where the last steps use that e; = o ° and |N.,| < 9N.

Inserting this back into (136) gives:

”’ V- P ’“ V’
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2log (25 E;;éAm}m) Hlog (23 Z;;%AiNKn)
< Var .. (V 1
= N e (V) + N
H2log (25 ZL%AiNKn)
<3 1

N
This completes the proof by showing that the bound holds uniformly over all (s,a;) € S x A;.

D.4.8 PROOF OF LEMMA 11

Before proving Lemma 11, we first state a modified version of the Freedman inequality for martin-
gales, which is crucial for our analysis.

Theorem 5. SupposeY,, = > ;_, Xi € R, where { X} is a real-valued scalar sequence such that
| Xp| <R and  E[X, |{X;}j<k]| =0 forallk>1

for some constant R > 0. Define
Wy =Y Ex1[X7],
k=1

where Ej,_1 denotes the conditional expectation given {X; };<x. For any k > 0, with probability at
least 1 — ¢, the following holds:

2
[Y,| < \/8Wy log 3(5 +5R10g% < kW, + (H +5R) log S?n (139)

Proof. Suppose deterministically that W,, < o2 for some 0. According to Li et al. (2024), with
probability at least 1 — d, we have

2 2K 4 2K
|V,] < \/8rnax {Wn, ;K} log 5 + gRlog 5

for any positive integer K > 1. Utilizing the trivial bound W,, < nR?, set 0> = nR? and K =
log, 1. Then:

4logon 4 4logyn
—— + Rl
5 3%

4
\/SW log36 \/8R21g35+3R1 36

/ 3 3
< 1/8W, log Tn + 5Rlog Tn’

where we used 4 log, n < 3n for any integer n > 1. This establishes the first inequality in (139).
The second inequality follows from the elementary inequality 2ab < a? + b?. O

Y, < \/8 max {W,,, R?} log

To prove Lemma 11, we apply Lemma 5. Define

R = e f (7E(6) k)] < { s off | { o 17 )

ke[K] ke[K] ke(K]

< 2¢q log K 7
- K
where the first line uses Lemma 19. We further define
K

Wic =3 (ei)?Vanu 1 ((Fa(s), 7in(5,)

k=1

S{grela}};(]a }{Zak Varp, k-1 ((7F ()arﬁh(sv'»)}
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20a log K

> K Zak Varhk 1( zh( ))7

where we use variance operator Varh7k_1[-] to denote the variance conditional on what happens
before the beginning of the k-th round of data collection for step h. Applying Freedman’s inequality

(Lemma 5) with k1 = \/W , we obtain
ZakKIE (s,a;) ZafE Rk rlh (s, a;)
< kWk + <I31 + 5R1) log (3f>

< 2¢q logK()zK:ak Vary, -1 (r fh( ) + (2 Klogl(lg) n 1000}1;%[() log (3;()

08 (5) S vy (rha(s) + 4] )
—o° \s5) oy Vary, k-1 (ri,h(s)) T —
K = .

< 2¢,

with probability at least 1 — 9. Taking a union bound over all s € S, there exists an absolute constant
¢, such that

log(K S/0)
S Cp Tl

Zak

Ti, z h

D.4.9 PROOF OF LEMMA 13

In this section, we want to take the accessible range of the robust value function E ¢ [V:r j +1] into

consideration when controlling Z i=h <d{l, Var oK pFEY (ETWC [VZT j +1} ) > Towards this,

k 1 k —1,J
we introduce some auxiliary values and reward functions as below.

Definition 4. For any time step h € [H] and the i-th agent, we denote V;Lnin =
minges Er ¢ [V:h(s)} as the minimum value of all the entries in vector Er ¢ {V:h} We fur-

ther define V;l = Ere [V?r ] — V?inl as the truncated value function. Eventually for reward

min

—min
function, we define T} = Zk LaKE ainit, i a) + (Vh+1 Vi ) 1 as the truncated re-
ward function..

. . . . —
With above notation, we introduce the following fact of V;,:

V), =B [V } vt
b & K
K 7 s mln
= Z Ea,wﬂ"‘ T’L h( al + Z ak =, h ETFNC |:Vi,h+1:| Vh
k=1 k=1
K K
K K ,V T
= Zak Eommr, min(ai) + Zak Pl Erne [Vz h+1}
k=1 ' k=1
K sy K
KD K 7V 2 min
+ (Z o By — Z oy 27y, )Erwc [Vz h+1} Vi 1
k=1 k=1

K
_ K k min —min
= E Qg ]anﬁf.hﬁ,h( a;) + (Vh+1 Vi )
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K L K Sy K L

K p7m Vi Kpro K pn*,V Evdd

+ Z o Py Vi + (Z a Py — Z o Py, )EwNC [Vi,h+1}
=1 k=1 k=1

K K K
—min 7k Vi ’\7" V 7V —T
=7 S ol PV + (Z ol P =Sk PT, V)]EWNC [Vi’hﬂ} . (140)
k=1 k=1
where (i) holds by the robust Bellman’s consistency equation of E.¢ [VZT h} . With the above fact

in hand, we control VaerK_1 ke P (]EWNC [VZhHD as follows:

Vors apegy (Bre [Vinea))

(:)Varzk kP (Vh+1>

7 sh
K K
= Z pr v (Vh—H °© Vh+1) Z Kpﬂ Vvh+1 Z KB:hVVh+1)
k=1 k=1
where (i) follows from the fact that Var ok pFhT (V-01) = Var

S
value vector V' € R® and scalar b, Additionally accordmg to (140), we have

v e (5o [P

P:hv (Vh+1 © Vh+1)

V') for any

PWC ‘/(
71 k

Mx

k=1

! I m o2
—min ’ T, 17
- (Vh —Tih — ( E Qg Bi,h - E Qg Bi,h )Erwc [Vi,h+1} )
k=1 k=1

K
— — — . ~7F V T
=-V,oV,+2V,0 (F?ﬁn + (Z apf by Z O‘kKP:h V)EW~C |:Vi,h+1} )
1

P
k=
. K Lk K 02
~ (e + (0ot BL = Dol P B [Vi] )
k=1 k=1

v
+ ZO‘ Py (Vh+1 ° Vh+1)
Furthermore, we have

Vorst agaye (Beme (Vi)

K
7k
= Z O‘kKBz,h v <Vh+1 ° Vh+1)

k=1
min o 7,V vl
+2Vho<zh +<Zak—zh ZO%KBM ) s [Vi,h+1])
K K AT — 02 — —
- ( B (Za ch _Zak Py )]EW~C [Vi,thl} ) —VipoVy
k=1
(i) &
7k vV ! 1
< Z akKBz h (Vh+1 ° Vh+1> VoV
k=1
/ a v K k17
J— /\Tr ;T\,V 57T
+ 2||Vh||oo< ‘ (Zai{fz oo ZO‘II:BM )]ETWC [Vi,h—&-l} D (141)
k=1 k=1
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K
< ZakKBZhV (Vh+1 ° Vh-H) — Vo Vi+ 2||V;l||ool

H?log (w)

1
N )

+6[ V|l oo (142)

holds with probability at least 1 — §, where (i) arises from rmm < Z o OKE, ar rF, (a;) <1

a;~77 ), i,h
min

since V'] thm < 0 by definition, and the last inequality holds by Lemma 10. Finally, combining
(142) and the definition of d}, in (92), the term of interest can be controlled as

k=10 £ 5

S (g e (s 7))
j=h
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j=h 1
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H2|V) [0
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where (i) holds by the fact ||V} ]|ec > |[Vii1lleo = - > [V ]loo. With further basic calculus, we
can finally obtain that
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D.4.10 PROOF OF LEMMA 16

Analogous to Appendix D.4.9, we introduce some auxiliary values and reward functions to control
H

Z <wi’varzfl akk T Y (Erc [Vzﬂﬁrl])>

j=h
as below: for any time step h and the i-th agent
Definition 5. For any time step h € [H| and the i-th agent, we denote V™" .=
] We fur-

ther define V;, = Cly— Vming g the truncated value function. Eventually for reward function, we

minges Er ¢ [th(s)} as the minimum value of all the entries in vector Er ¢ [th

k
define rin,in = Zk 100 anﬂ L Tin (- a5) + (VIR — Vi) 1 as the truncated reward function..

Then applying the robust Bellman’s consistency equation in (26) gives

K K
. ~k ~k .
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The above fact leads to
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- K pat, v / / K paf Vit K pal Vi,
= afPLY (Vi o Vi) = (O af PE Y Vi) o (D el TV VL)
k=1 k= k=1
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L K . .\ 02
e Zo‘kKB?hV (Vi1 0Vis) — (Vé - T?ﬁ”)

k=
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o K p7t,V ! min min min
= Zak Pl (Vg1 0 Vigr) = Ve o Vi + 2V o r — i oy

i,h

k=1
K
<> ol 2T (Vi o Vi) = Vi o Vi + 201V e, (145)
k=1
where (i) follows from the fact that VarEK WK PV (V —b1) = VaurZK WK PRV (V) for any
k=1 %k —i,h k=1 %k —i,h

value vector V' € R® and scalar b, (ii) holds by (144) and (26), and the last inequality arises from
;n;ln <ry, < lsince yymin — ymin: < () by definition.

Consequently, combining (145) and the definition of wi in (102), we arrive at
H

3 ik Vo (e V2] )

K
<> ()’ (Z oK PTY (Vi o Vi) —Vio Vi + Q'V’”'“’l>

K
. %k’
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H
=" [@i™)T (Vi o Vi) = )T (V] 0 V)| + 2]Vl
j=h
< Jlwr ™ (Vi © Viral o + 2H [V llos
< 3H ||V |loo, (146)

where (i) and the last inequality hold by the fact ||V} |lcc > |V} 1lloc = --+ > [|[VE]|oo and basic
calculus.
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