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ABSTRACT

Standard multi-agent reinforcement learning (MARL) algorithms are vulnera-
ble to sim-to-real gaps. To address this, distributionally robust Markov games
(RMGs) have been proposed to enhance robustness in MARL by optimizing the
worst-case performance when game dynamics shift within a prescribed uncer-
tainty set. Solving RMGs remains under-explored, from problem formulation to
the development of sample-efficient algorithms. A notorious yet open challenge is
if RMGs can escape the curse of multiagency, where the sample complexity scales
exponentially with the number of agents. In this work, we propose a natural class
of RMGs where the uncertainty set of each agent is shaped by both the environ-
ment and other agents’ strategies in a best-response manner. We first establish
the well-posedness of these RMGs by proving the existence of game-theoretic
solutions such as robust Nash equilibria and coarse correlated equilibria (CCE).
Assuming access to a generative model, we then introduce a sample-efficient al-
gorithm for learning the CCE whose sample complexity scales polynomially with
all relevant parameters. To the best of our knowledge, this is the first algorithm to
break the curse of multiagency for RMGs.

1 INTRODUCTION

A flurry of problems naturally involve decision-making among multiple players with strategic objec-
tives. Multi-agent reinforcement learning (MARL) serves as a powerful framework to address these
challenges, demonstrating potential in various applications such as social dilemmas (Leibo et al.,
2017; Baker, 2020; Zhang et al., 2024), autonomous driving (Lillicrap et al., 2015), robotics (Kober
et al., 2013; Rusu et al., 2017), and games (Mnih et al., 2015; Vinyals et al., 2019). Despite the
recent success of standard MARL, its transition from prototypes to reliable production is hindered
by robustness concerns due to the complexity and variability of both the real-world environment
and human behaviors. Specifically, environmental uncertainty can arise from sim-to-real gaps (To-
bin et al., 2017), unexpected disturbance (Pinto et al., 2017), system noise, and adversarial attacks
(Mahmood et al., 2018); agents’ behaviors are subject to unknown bounded rationality and variabil-
ity (Tversky & Kahneman, 1974). The solution learned at training time can fail catastrophically
when faced with a slightly shifted MARL problem during testing, resulting in a significant drop in
overall outcomes and each agent’s individual payoff (Balaji et al., 2019; Zhang et al., 2020a; Zeng
et al., 2022; Yeh et al., 2021; Shi et al., 2024; Slumbers et al., 2023).

To address robustness challenges, a promising framework is (distributionally) robust Markov games
(RMGs) (Littman, 1994; Shapley, 1953). It is a robust counterpart to the common playground of
standard MARL problems — Markov games (MGs) (Zhang et al., 2020c; Kardeş et al., 2011). In
standard MGs, agents consider (competitive) personal objectives and simultaneously interact with
each other within a shared unknown environment. The goal is to learn some solution concepts
called equilibria, which are joint strategies/policies of agents that all of them stick with rationally
with other agents fixed; for instance, Nash equilibria (NE) (Nash, 1951; Shapley, 1953), correlated
equilibria (CE), and coarse correlated equilibria (CCE) (Aumann, 1987; Moulin & Vial, 1978). To
promote robustness, RMGs differ from standard MGs by defining each agent’s payoff (objective) as
its worst-case performance when the dynamics of the game shift within a prescribed uncertainty set
centered around a nominal environment.
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1.1 THE CURSE OF MULTIAGENCY IN ROBUST MARL

Sample efficiency is a crucial metric for MARL due to the limited availability of data relative to the
high dimensionality of the problem. In MARL, agents strive to learn a rationally optimal solution
(equilibrium) through interactions with an unknown environment (Silver et al., 2016; Vinyals et al.,
2019; Achiam et al., 2023). In contemporary applications, the environment is often extremely large-
scale, while data acquisition can be prohibitively limited by high costs and stakes. As such, a
notable challenge in terms of scalability for sample efficiency in MARL is known as the curse of
multiagency — the sample complexity requirement scales exponentially with the number of agents
(induced by the exponentially growing size of the joint action space). This issue has been recognized
and studied in extensive MARL problems, but remains open for robust MARL. We concentrate on
learning finite-horizon multi-player general-sum Markov games with a generative model (Kearns &
Singh, 1999), where the number of agents is n, the episode length is H , the size of the state space is
S, and the size of the i-th agent’s action space is Ai, for 1 ≤ i ≤ n.

• Breaking the curse of multiagency in standard MARL. A line of pioneering work (Jin et al.,
2021; Bai & Jin, 2020; Song et al., 2021; Li et al., 2023) has recently introduced a new suite of
algorithms using adaptive sampling that provably break the curse of multiagency in standard MGs.
In particular, to find an ε-approximate CCE, Li et al. (2023) requires a sample complexity no more
than

Õ

(
H4S

∑n
i=1 Ai

ε2

)
(1)

up to logarithmic factors, which depends only on the sum of individual actions, rather than the
number of joint actions.

• The persistent curse of multiagency in robust MARL. The development of provable sample-
efficient algorithms for RMGs is largely underexplored, with only a few recent studies (Zhang et al.,
2020c; Kardeş et al., 2011; Ma et al., 2023; Blanchet et al., 2023; Shi et al., 2024). Focusing on a
class of RMGs with uncertainty sets satisfying the (s,a)-rectangularity condition, existing works all
suffer from the curse of multiagency, significantly limiting their scalability. For example, using the
total variation (TV) distance as the divergence function, the state-of-the-art (Shi et al., 2024), using
non-adaptive sampling, finds an ε-approximate robust CCE with a sample complexity no more than

Õ

(
H3S

∏n
i=1 Ai

ε2
min

{
H,

1

min1≤i≤n σi

})
(2)

up to logarithmic factors, where σi ∈ [0, 1) is the uncertainty level for the i-th agent. As a result,
the sample size requirement becomes prohibitive when the number of agents is large.

Consequently, there is a significant desire to explore paths that could break through the curse of
multiagency in RMGs, which is much more involved than its standard counterpart due to compli-
cated non-linearity introduced by planning for worst-case performances. Nevertheless, the family of
RMGs is a much richer class of problems because of the flexibility in choosing the uncertainty sets
to capture different robust design considerations. While convenient, the (s,a)-rectangularity condi-
tion prevalent in current approaches can be overly restricted in practice, as each agent’s uncertainty
set is assumed to be independent of other agents’ strategies and can be decoupled into independent
subsets for each state-joint action pair (s,a), suggesting it might be challenging to break the curse
of multiagency in the existing framework. Given these limitations, we are motivated to develop new
classes of RMGs that can provide robust solutions applicable to more realistic MARL problems with
sample-efficient algorithms. This raises an open question:

Can we design RMGs with practically-meaningful uncertainty sets that come with sample
complexity guarantees breaking the curse of multiagency?

1.2 CONTRIBUTIONS

We propose a new class of RMGs with a fictitious uncertainty set that explicitly captures uncertain-
ties in the environment in view of other agents’ strategies, making it suitable for complex real-world
scenarios. We begin by verifying the game-theoretic properties of the proposed class of RMGs to
ensure the existence of robust variants of well-known standard equilibria notions, robust NE and ro-
bust CCE. Next, due to the general intractability of learning NE, we focus on designing algorithms
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Algorithm Uncertainty set Equilibria Sample complexity
P2MPO

(s,a)-rectangularity robust NE S4 (
∏n

i=1 Ai)
3
H4/ε2(Blanchet et al., 2024)

DR-NVI
(s,a)-rectangularity robust NE/CE/CCE SH3 ∏n

i=1 Ai

ε2 min
{
H, 1

min1≤i≤n σi

}
(Shi et al., 2024)

Robust-Q-FTRL fictitious
(this work) (s, ai)-rectangularity robust CCE SH6 ∑

1≤i≤n Ai

ε4 min
{
H, 1

min1≤i≤n σi

}
Table 1: We compare our results with prior work on finding an ε-approximate equilibrium in finite-
horizon multi-agent general-sum robust MG, omitting logarithmic factors in the sample complexi-
ties. Our result is the only computationally tractable algorithm that breaks the curse of multiagency.

that can provably overcome the curse of multiagency in learning an approximate robust CCE, re-
ferring to a joint policy where no agent can improve their benefit by more than ε through rational
deviations.. Specifically, for sampling mechanisms to explore the unknown environment, we assume
access to a generative model that can only draw samples from the nominal environment (Shi et al.,
2024). The main contributions are summarized as follows.

•We introduce a new class of robust Markov games using fictitious uncertainty sets with policy-
induced (s, ai)-rectangularity condition (see Section 2.2 for details), which is a natural adaptation
from robust single-agent RL to robust MARL. The uncertainty set for each agent i can be decom-
posed into independent subsets over each state and its own action tuple (s, ai), where each subset is
a “ball” around the expected nominal transition determined by other agents’ policies and the nomi-
nal transition kernel, a divergence function ρ, and the radius/uncertainty level σi. We verify several
essential facts of this class of RMGs: the existence of the desired equilibrium — robust NE and
robust CCE for this new class of RMGs using game-theoretical tools such as fixed-point theorem;
the existence of best-response policies and robust Bellman equations.

•We consider the total variation (TV) distance as the divergence function ρ for uncertainty sets
due to its popularity in both practice (Pan et al., 2023; Lee et al., 2021; Szita et al., 2003) and theory
(Panaganti & Kalathil, 2022; Blanchet et al., 2023; Shi et al., 2024). We propose Robust-Q-FTRL
that can find ε-approximate robust CCE with high probability, as long as the sample size exceeds

Õ

(
SH6

∑n
i=1 Ai

ε4
min

{
H,

1

min1≤i≤n σi

})
(3)

up to logarithmic factors. To the best of our knowledge, this is the first algorithm to break the curse
of multiagency in RMGs. It provably finds an ε-approximate robust CCE using a sample size that is
polynomial to all salient parameters. Table 1 provides a detailed comparison to prior works in robust
MARL, where our results significantly improve upon prior art (2) (Shi et al., 2024) by reducing the
exponential dependency on the size of each agent’s action space to a linear dependency. To achieve
this, we utilize adaptive sampling and online adversarial learning tools, coupled by a tailored design
and analysis for robust MARL due to the nonlinearity of the robust value function, which contrasts
with the linear payoff functions in standard MARL with respect to the transition kernel.
Notation. In this paper, we use the notation [T ] := 1, 2, . . . , T for any positive integer T > 0, and
∆(S) for the simplex over the set S. For any policy π and function Q(·) defined over a domain
B, the variance of Q under π is given by Varπ(Q) :=

∑
a∈B π(a)[Q(a) − Eπ[Q]]2. We define

x = [x(s,a)](s,a)∈S×A ∈ RSA as any vector that represents values for each state-action pair,
and x = [x(s, ai)](s,ai)∈S×Ai

∈ RSAi as any vector representing agent-wise state-action values.
Similarly, we denote x = [x(s)]s∈S as any vector representing values for each state. For X :=
(S, {Ai}i∈[n], H, {σi}i∈[n],

1
ε ,

1
δ ), let f(X ) = O(g(X )) denote that there exists a constant C1 > 0

such that f ≤ C1g, with Õ(·) similarly defined but omitting logarithmic factors.

2 PRELIMINARIES

In this section, we begin with some background on multi-agent general-sum standard Markov games
(MGs) in finite-horizon settings, followed by a general framework of a robust variant of standard
MGs —- distributionally robust Markov games.
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2.1 STANDARD MARKOV GAMES

A finite-horizon multi-agent general-sum Markov game (MG) is characterized by the tupleMG ={
S, {Ai}1≤i≤n, P, r,H

}
. This setup features n agents each striving to maximize their individual

long-term cumulative rewards within a shared environment. At each time step, all agents observe
the same state over the state space S = {1, · · · , S} within the shared environment. For each agent
i (i ∈ [n]), Ai = {1, · · · , Ai} denotes its action space containing Ai possible actions. The joint
action space for all agents (resp. the subset excluding the i-th agent) is defined asA := A1×· · ·×An

(resp. A−i :=
∏

j ̸=iAj for any i ∈ [n]). We use the notation a ∈ A (resp. a−i ∈ A−i) to denote a
joint action profile involving all agents (resp. all except the i-th agent). In addition, the probability
transition kernel P = {Ph}1≤h≤H , with each Ph : S × A 7→ ∆(S), describes the dynamics of
the game: Ph(s

′ | s,a) is the probability of transitioning from state s ∈ S to state s′ ∈ S at time
step h when agents choose the joint action profile a ∈ A. The reward function of the game is
r = {ri,h}1≤i≤n,1≤h≤H , with each ri,h : S × A 7→ [0, 1] normalized to the unit interval. For any
(i, h, s,a) ∈ [n] × [H] × S × A, ri,h(s,a) represents the immediate reward received by the i-th
agent in state s when the joint action profile a is taken. Last but not least, H > 0 represents the
horizon length.

Markov policies and value functions. In this work, we concentrate on Markov policies that the ac-
tion selection rule depends only on the current state s, independent from previous trajectory. Namely,
the i-th (i ∈ [n]) agent chooses actions according to πi = {πi,h : S 7→ ∆(Ai)}1≤h≤H . Here,
πi,h(a | s) represents the probability of selecting action a ∈ Ai in state s at time step h. As such,
the joint Markov policy of all agents can be denoted as π = (π1, . . . , πn) : S × [H] 7→ ∆(A), i.e.,
given any s ∈ S and h ∈ [H], the joint action profile a ∈ A of all agents is chosen following the
distribution πh(· | s) = (π1,h, π2,h . . . , πn,h)(· | s) ∈ ∆(A).
To continue, for any given joint policy π and transition kernel P of aMG, the i-th agent’s long-term
cumulative reward can be characterized by the value function V π,P

i,h : S 7→ R (resp. Q-function
Qπ,P

i,h : S ×A 7→ R) as below: for all (h, s, a) ∈ [H]× S ×A,

V π,P
i,h (s) := Eπ,P

[ H∑
t=h

ri,t
(
st,at

)
| sh = s

]
, Qπ,P

i,h (s,a) := Eπ,P

[ H∑
t=h

ri,t
(
st,at

)
| sh = s,ah = a

]
.

(4)

In this context, the expectation is calculated over the trajectory {(st,at)}h≤t≤H produced by fol-
lowing the joint policy π under the transition kernel P .

2.2 DISTRIBUTIONALLY ROBUST MARKOV GAMES

A general distributionally robust Markov game (RMG) is represented by the tuple

RMG =
{
S, {Ai}1≤i≤n, {Uσi

ρ (P 0)}1≤i≤n, r,H
}
.

Here, S, {Ai}1≤i≤n, r,H are defined in the same manner as those in standard MGs (see Sec-
tion 2.1). RMGs differ from standard MGs: for each agent i (1 ≤ i ≤ n), the transition kernel is not
fixed but can vary within its own prescribed uncertainty set Uσi

ρ (P 0) centered around some nominal
kernel P 0 : S×A 7→ ∆(S) that represents a reference (such as the training environment). The shape
and the size of the uncertainty set {Uσi

ρ (P 0)}i∈[n] are further specified by a divergence function ρ
and the uncertainty levels {σi}i∈[n], serving as the “distance” metric and the radius respectively.

Various choices of the divergence function have been considered in robust RL literature, including
but not limited to f -divergence (such as total variation, χ2 divergence, and Kullback-Leibler (KL)
divergence) (Yang et al., 2022; Zhou et al., 2021; Lu et al., 2024; Wang et al., 2024) and Wasserstein
distance (Xu et al., 2023). Different uncertainty sets lead to distinct RMGs, as they address distinct
types of uncertainty and game-theoretical solutions. This paper focuses on variability in environ-
mental dynamics (transition kernels), though uncertainty in agents’ reward functions could also be
considered similarly but is omitted for brevity.

Robust value functions and best-response policies. For any RMG, each agent seeks to maximize
its worst-case performance in the presence of other agents’ behaviors despite perturbations in the
environment dynamics, as long as the kernel transitions remain within its prescribed uncertainty set
Uσi
ρ (P 0). Mathematically, given any joint policy π : S × [H] 7→ ∆(A), the worst-case performance

4
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of any agent i is characterized by the robust value function V π,σi

i,h and the robust Q-function Qπ,σi

i,h :
for all (i, h, s, ai) ∈ [n]× [H]× S ×Ai,

V π,σi

i,h (s) := inf
P∈Uσi

ρ (P 0)
V π,P
i,h (s) and Qπ,σi

i,h (s, ai) := inf
P∈Uσi

ρ (P 0)
Qπ,P

i,h (s, ai). (5)

Note that different from (4), here the Q-function for any i-th agent is defined only over its own action
ai ∈ Ai rather than the joint action a ∈ A.

To continue, we denote π−i as the policy for all agents except for the i-th agent. By optimizing the
i-th agent’s policy π′

i : S × [H] → ∆(Ai) (independent from π−i), we define the maximum of the
robust value function as

V
⋆,π−i,σi

i,h (s) := max
π′
i:S×[H]7→∆(Ai)

V
π′
i×π−i,σi

i,h (s) = max
π′
i:S×[H] 7→∆(Ai)

inf
P∈Uσi

ρ (P 0)
V

π′
i×π−i,P

i,h (s) (6)

for all (i, h, s) ∈ [n]× [H]×S . The policy that achieves the maximum of the robust value function
for all (i, h, s) ∈ [n]× [H]× S is called a robust best-response policy.

Solution concepts for robust Markov games. In view of the conflicting objectives between agents,
establishing equilibrium becomes the goal of solving RMGs. As such, we introduce two kinds of
solution concepts — robust NE and robust CCE — robust variants of standard NE and CCE (usually
considered in standard MGs) specified to the form of RMGs.

• Robust NE. A product policy π = π1 × π2 × · · · × πn : S × [H] 7→
∏n

i=1 ∆(Ai) is said to be
a robust NE if

V π,σi

i,1 (s) = V
⋆,π−i,σi

i,1 (s), ∀(s, i) ∈ S × [n]. (7)
Given the strategies of the other agents π−i, when each agent wants to optimize its worst-case perfor-
mance when the environment and other agents’ policy stay within its own uncertainty set Uσi

ρ (P 0),
robust NE means that no player can benefit by unilaterally diverging from its present strategy.

• Robust CCE. A distribution over the joint product policy ξ := {ξh}h∈[H] : [H] 7→ ∆(S 7→∏
i∈[n] ∆(Ai)) is said to be a robust CCE if it holds that

Eπ∼ξ

[
V π,σi

i,1 (s)
]
≥ Eπ∼ξ

[
V

⋆,π−i,σi

i,1 (s)
]
, ∀(i, s) ∈ [n]× S. (8)

Considering all agents follow the policy drawn from the distribution ξ, i.e., πh ∼ ξh for all h ∈ [H],
when the distribution of all agents but the i-th agent’s policy is fixed as the marginal distribution of
ξ, robust CCE indicates that no agent can benefit from deviating from its current policy.

Note that, for standard MGs, CCE is defined as a possibly correlated joint policy πCCE : S × [H] 7→
∆(A) (Moulin & Vial, 1978; Aumann, 1987) if it holds that

V πCCE,P
i,1 (s) ≥ max

π′
i:S×[H]→∆(Ai)

V
π′
i×πCCE

−i ,P

i,1 (s), ∀(s, i) ∈ S × [n]. (9)

This correlated policy πCCE can also be viewed as a distribution ξ over the product policy space since
each joint action a can be seen as a deterministic product policy. Careful readers may note that the
definition (9) of CCE in standard MGs is in a different form from the one (8) in RMGs, as the latter
does not include the expectation operator Eπ∼ξ[·] with respect to the policy distribution (ξ) over the
value function. We emphasize that the definition with the expectation operator outside of the value
(or cost) function with respect to a distribution of product pure strategies in (8) is a natural formula-
tion originating from game theory (Moulin et al., 2014; Moulin & Vial, 1978). In standard MARL
and previous robust MARL studies, the definition in (9) is typically used because (9) and (8) are iden-
tical in those situations, as the expectation operator and the corresponding value functions are linear
with respect to the joint policy, allowing them to be interchanged (Li et al., 2023; Shi et al., 2024).

3 ROBUST MARKOV GAMES WITH FICTITIOUS UNCERTAINTY SETS

Given the definition of general RMGs, a natural question arises: what kinds of uncertainty sets
should we consider to achieve the desired robustness in our solutions? To address this, we focus on
a specific class of RMGs characterized by a type of natural yet powerful uncertainty sets.
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3.1 A NOVEL UNCERTAINTY SET DEFINITION IN RMGS

We propose a new class of uncertainty sets, named fictitious uncertainty sets, which count in the
uncertainty induced by both the environment and agents’ behaviors in a correlated manner. Before
introducing the uncertainty sets, we provide some auxiliary notations as below. We denote a vector
of any transition kernel P : S × A 7→ ∆(S) or P 0 : S × A 7→ ∆(S) respectively as Ph,s,a :=
Ph(· | s,a) ∈ R1×S , P 0

h,s,a := P 0
h (· | s,a) ∈ R1×S , for all (s,a) ∈ S × A. Then for any (possibly

correlated) joint Markov policy (defined in section 2.1) π : S × [H] 7→ ∆(A), we define the
expected nominal transition kernel conditioned on the situation that the i-th agent chooses some
action ai ∈ Ai and other agents play according to the conditional policy (i.e., a−i ∼ πh(· | s, ai))
given s ∈ S and ai as below: for all (h, s, ai) ∈ [H]× S ×Ai,

P
π−i

h,s,ai
= Ea∼πh(· | s,ai)

[
P 0
h,s,a

]
=

∑
a−i∈A−i

πh(ai,a−i | s)
πi,h(ai | s)

[
P 0
h,s,a

]
. (10)

Armed with the above definitions, now we are in a position to define the fictitious uncertainty sets,
denoted as

{
Uσi
ρ (P 0, ·)

}
i∈[n]

, which satisfy a policy-induced (s, ai)-rectangularity condition.

Definition 1. For any joint policy π : S × [H] 7→ ∆(A), divergence function ρ : ∆(S)×∆(S) 7→
R+ and accessible uncertainty levels σi ≥ 0 for all i ∈ [n], the fictitious uncertainty sets{
Uσi
ρ (P 0, π)

}
i∈[n]

satisfy the policy-induced (s, ai)-rectangularity condition: for all i ∈ [n] and
∀(h, s, ai) ∈ [H]× S ×Ai,

Uσi
ρ (P 0, π) := ⊗ Uσi

ρ

(
P

π−i

h,s,ai

)
, Uσi

ρ

(
P

π−i

h,s,ai

)
:=
{
P ∈ ∆(S) : ρ

(
P, P

π−i

h,s,ai

)
≤ σi

}
, (11)

where ⊗ represents the Cartesian product.

In words, conditioned on a fixed joint policy π, the uncertainty set Uσi
ρ (P 0, π) for each i-th agent can

be decomposed into a Cartesian product of subsets over each state and agent-action pair (s, ai). Each
uncertainty subset Uσi

ρ (P
π−i

h,s,ai
) over (s, ai) is defined as a “ball” around a reference — the expected

nominal transition kernel Pπ−i

h,s,ai
conditioned on both transition kernel and agents’ behavior π.

Further discussions of fictitious uncertainty sets. It is in order to remark on the proposed type of
uncertainty sets, in comparison with prior works.

• A natural adaptation from single-agent robust RL. When agents follow some joint policy π :
S × [H] 7→ ∆(A), fixing other agents’ policy π−i, from the perspective of each individual agent
i, RMGs with our policy-induced (s, ai)-rectangularity condition will degrade to a single-agent
robust RL problem with the widely used (s, ai)-rectangularity condition in the single-agent literature
(Iyengar, 2005; Zhou et al., 2021). Namely, from any agent i’s viewpoint, in a RMG, it has an
”overall environment” player that can not only manipulate the environmental dynamics but also
other players’ policy π−i.

• Allowing uncertainty from both the environment and agents’ behaviors in a correlated manner.
One essential feature of our proposed uncertainty set is that it is shaped by both the environment and
agents’ strategies in a (possibly) correlated manner. Specifically, for any agent i and a given policy π,
any uncertainty subset Uσi

ρ

(
P

π−i

h,s,ai

)
(over any (h, s, ai)) is constructed as a neighborhood around

a nominal center P
π−i

h,s,ai
(see (10)) that depends on both the nominal environment P 0 and other

agents’ conditional strategies πh(· | s, ai).
• Comparisons to prior works. Prior works on provable sample-efficient algorithms have fo-

cused on a different type of uncertainty sets with (s,a)-rectangularity condition (Ma et al., 2023;
Blanchet et al., 2023; Shi et al., 2024). This class of uncertainty sets decouples the uncertainty into
independent subsets for each state-joint action pair (s,a), accounting for the uncertainty of the envi-
ronment and agents’ strategies independently. In comparison, the proposed uncertainty set lifts this
independence assumption across subsets over different (s, ai,a−i) for any a−i ∈ Ai, enabling the
environment and agents’ strategies to shape the uncertainty set in a correlated manner.

6
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3.2 PROPERTIES OF RMGS WITH FICTITIOUS UNCERTAINTY SETS

Throughout the paper, we focus on the class of RMGs with the proposed fictitious uncertainty sets,
represented as

RMGπ =
{
S, {Ai}1≤i≤n, {Uσi

ρ (P 0, ·)}1≤i≤n, r,H
}

and abbreviated as fictitious RMGs in the remaining of the paper. In this section, we present key facts
about fictitious RMGs related to best-response policies, equilibria, and the corresponding one-step
lookahead robust Bellman equations. The proofs are postponed to Appendix C.

First, we introduce the following lemma, which verifies the existence of a robust best-response
policy that achieves the maximum robust value function (cf. (6)).

Lemma 1. For any i ∈ [n], given π−i : S × [H] 7→ ∆(Ai), there exists at least one policy π̃i :

S × [H]→ ∆(Ai) for the i-th agent that can simultaneously attain V
π̃i×π−i,σi

i,h (s) = V
⋆,π−i,σi

i,h (s)

for all s ∈ S and h ∈ [H]. We refer this policy as the robust best-response policy.

Existence of robust NE and robust CCE. fictitious RMGs can be viewed as hierarchical games
with n+nS

∑n
i=1 Ai agents. This includes the original n agents and n additional sets of S

∑n
i=1 Ai

independent adversaries, each determining the worst-case transitions for one agent over a state plus
agent-wise-action pair. Considering the solution concepts — robust NE and robust CCE — intro-
duced in Section 2.2, the following theorem verifies the existence of them for any fictitious RMGs
using Kakutani’s fixed-point theorem (Kakutani, 1941), focusing on robust NE firstly.

Theorem 1 (Existence of robust NE). For any RMGπ =
{
S, {Ai}1≤i≤n, {Uσi

ρ (P 0, ·)}1≤i≤n,

r,H
}

with an uncertainty set defined in Definition 1, there exists at least one robust NE.

Analogous to standard Markov games, since {robust NE} ⊆ {robust CCE}, Theorem 1 indicates
the existence of robust CCEs directly.

Fortunately, the class of fictitious RMGs feature a robust counterpart of the Bellman equation —
robust Bellman equation, which is detailed in Appendix B.2.

4 SAMPLE-EFFICIENT LEARNING: ALGORITHM AND THEORY

In this section, we focus on designing sample-efficient algorithms for solving fictitious RMGs when
agents need to collect data by interacting with the unknown shared environment in order to learn
the equilibria. To proceed, we shall first specify the data collection mechanism and the divergence
function for the uncertainty set. Then we propose a sample-efficient algorithm Robust-Q-FTRL
that leverages a carefully-designed adaptive sampling strategy to break the curse of multiagency.

4.1 PROBLEM SETTING AND GOAL

Recall that the uncertainty sets are constructed by specifying a divergence function ρ and the un-
certainty level to control its shape and size. In this work, we focus on using the TV distance as the
divergence function ρ for the uncertainty set, following Szita et al. (2003); Lee et al. (2021); Pan
et al. (2023), defined by

∀P, P ′ ∈ ∆(S) : ρTV (P, P ′) :=
1

2
∥P − P ′∥1 . (12)

For convenience, throughout the paper, we abbreviate Uσi(·) := Uσi
ρTV

(·) when there is no ambiguity.
Data collection mechanism: a generative model. We assume the agents interact with the envi-
ronment through a generative model (simulator) (Kearns & Singh, 1999), which is a widely used
sampling mechanism in both single-agent RL and MARL (Zhang et al., 2020b; Li et al., 2022).
Specifically, at any time step h, we can collect an arbitrary number of independent samples from
any state and joint action tuple (s,a) ∈ S × A, generated based on the true nominal transition
kernel P 0: for i = 1, 2, . . ., sih,s,a

i.i.d∼ P 0
h (· | s,a).

Goal. Consider any fictitious RMGsRMGπ =
{
S, {Ai}1≤i≤n, {Uσi(P 0, ·)}1≤i≤n, r,H

}
. While

learning exact robust equilibria is computationally challenging and may not be necessary in practice,
instead in this work, we focus on finding an approximate robust CCE (defined in (8)). Namely, a

7
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distribution ξ := {ξh}h∈[H] : [H] 7→ ∆(S 7→
∏

i∈[n] ∆(Ai)) is said to be an ε-robust CCE if

gapCCE(ξ) := max
s∈S,1≤i≤n

{
Eπ∼ξ

[
V

⋆,π−i,σi

i,1 (s)
]
− Eπ∼ξ

[
V π,σi

i,1 (s)
]}
≤ ε. (13)

Armed with a generative model of the nominal environment, the goal is to learn a robust CCE using
as few samples as possible.

4.2 ALGORITHM DESIGN

With the sampling mechanism over a generative model in hand, we propose an algorithm called
Robust-Q-FTRL to learn an ε-robust CCE in a sample-efficient manner, summarized in Algorithm 2
in the appendix. Robust-Q-FTRL draws inspiration from Q-FTRL developed in the standard MG
literature (Li et al., 2022), but empowers tailored designs for learning in fictitious RMGs to achieve
a robust equilibrium and to tackle statistical challenges arising from agents’ nonlinear objectives.
Overall, Robust-Q-FTRL takes a single pass to learn recursively from the final time step h = H to
h = 1. At each time step h ∈ [H], an online learning process with K iterations will be executed.
Before introducing the algorithm, we first concentrate on two essential steps customized for learning
in fictitious RMGs.

Constructing the empirical model via N -sample estimation. For each time step h, we denote
πk
i,h as the current learning policy of the i-th agent before the beginning of the k-th iteration for any

k ∈ [K]. And we denote the joint product policy as πk
h = (πk

1,h, · · · , πk
n,h). During each iteration k,

for each agent i ∈ [n], we require to generate N independent samples from the generative model over
each (s, ai) ∈ S×Ai to obtain an empirical model, detailed in Algorithm 1. It includes an empirical
reward function represented by rki,h ∈ RSAi and transition kernels denoted by P k

i,h ∈ RSAi×S . Note
that different from standard MGs, we need to generate N samples instead of 1 sample per iteration
to handle the additional statistical challenges induced by the non-linear objective of agents (N will
be specified momentarily).

Estimating robust Q-function of the current policy πk
h. We denote V̂i,h ∈ RS as the estimation

of the i-th agent’s robust value function at time step h. For any agent i, with the empirical reward
function rki,h, empirical kernel P k

i,h, and the estimated robust value function V̂i,h+1 at the next step
in hand, the robust Q-function {qki,h} of current policy πk

h can be estimated as:

∀(i, h, s, ai) ∈ [n]× [H]× S ×Ai : qki,h(s, ai) = rki,h(s, ai) + inf
P∈Uσi (Pk

i,h,s,ai
)
PV̂i,h+1. (14)

Unlike the linear function w.r.t. P k
i,h in standard MGs, (14) lacks a closed form and introduces an

additional inner optimization problem. Solving (14) directly is computationally challenging due to
the need to optimize over an S-dimensional probability simplex, with complexity growing expo-
nentially with the state space size S. Fortunately, by applying strong duality, we can solve (14)
equivalently via its dual problem with tractable computation (Iyengar, 2005):

qki,h(s, ai) = rki,h(s, ai)

+ max
α∈[mins V̂i,h+1(s),maxs V̂i,h+1(s)]

{
P k
i,h

[
V̂i,h+1

]
α
− σi

(
α−min

s′

[
V̂i,h+1

]
α
(s′)
)}

, (15)

where [V ]α denotes the clipped version of any vector V ∈ RS determined by some level α ≥ 0,

namely, [V ]α(s) :=

{
α, if V (s) > α,

V (s), otherwise.
. This is a key component of Robust-Q-FTRL, serving

for constructing nonlinear robust objectives in the online learning process and ensuring the desired
statistical accuracy.

Overall pipeline of Robust-Q-FTRL. With these technical modules in place, we introduce Robust-
Q-FTRL, which follows a similar online learning procedure as Q-FTRL for standard MGs (Li et al.,
2022). The complete procedure is summarized in Algorithm 2. We denote Qk

i,h ∈ RSAi as the
estimated robust Q-function of the equilibrium for the i-th agent at the k-th iteration of time step h.
To begin with, Robust-Q-FTRL initialize the robust value function, robust Q-function V̂i,H+1(s) =
Q0

i,h(s, ai) = 0, and the policy π1
i,h(ai | s) = 1/Ai for all i ∈ [n]. Then subsequently from the

final time step h = H to h = 1, for each step h, a K iterations online learning process will be

8
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executed. At each k-th iteration, given current policy πk
h, as described above, an empirical model

({rki,h}i∈[n] and {P k
i,h}i∈[n]) is constructed by N -sample estimation (cf. algorithm 1). Then the

robust Q-function {qki,h}i∈[n] of the current policy πk
h is estimated by (15).

Now we are ready to specify the loss objective and proceed the online learning procedure. With the
current one-step update {qki,h}, we update the Q-estimate as Qk

i,h = (1− αk)Q
k−1
i,h + αkq

k
i,h. Here,

{αk}k∈[K] is a series of rescaled linear learning rates with some cα ≥ 24, where for all k ∈ [K],

αk =
cα logK

k − 1 + cα logK
and αn

k =

{
αk

∏n
i=k+1(1− αi), if 0 < k < n ≤ K

αn if k = n
. (16)

Let the Q-estimate be the online learning loss objective at this moment, we apply the Follow-the-
Regularized-Leader strategy (Shalev-Shwartz, 2012; Li et al., 2022) to update the corresponding

policy as: πk+1
i,h (ai | s) =

exp
(
ηk+1Q

k
i,h(s,ai)

)
∑

a′ exp
(
ηk+1Qk

i,h(s,a
′)
) with ηk+1 =

√
logK
αkH

for k = 1, 2, . . .. This

is a widely used adaptive sampling and learning procedure for MARL problems.

After completing K iterations for time step h, we finalize the robust value function estimation by
setting it to its confidence upper bound, incorporating carefully designed optimistic bonus terms
{βi,h} as: for all (i, h, s) ∈ [n]× [H]× S ,

βi,h(s) = cb

√
log3(

KS
∑n

i=1 Ai

δ
)

√
1

KH

K∑
k=1

αK
k

{
Varπk

i,h(·|s)
(
qki,h(s, ·)

)
+H

}
, (17)

where cb denotes some absolute constant, δ ∈ (0, 1) is the high probability threshold, Finally, after
the recursive learning process ends for all time steps h = H,H − 1, · · · , 1, we output a distribution
of product policy ξ̂ = {ξ̂h}h∈[H] over all the policies {πk

h = (πk
1,h×· · ·×πk

n,h)}h∈[H],k∈[K] occurs
during the process that defined as ξh(πk

h) := αK
k for all (h, k) ∈ [H]× [K].

4.3 THEORETICAL GUARANTEES

In this section, we provide the theoretical guarantees for the sample complexity of our proposed
algorithm Robust-Q-FTRL (Algorithm 2), shown as below:

Theorem 2 (Upper bound). Using the TV uncertainty set defined in (12). Consider any δ ∈ (0, 1)
and any fictitious RMGsRMGπ =

{
S, {Ai}1≤i≤n, {Uσi(P 0, ·)}1≤i≤n, r,H

}
with σi ∈ (0, 1] for

all i ∈ [n]. For any ε ≤
√
min

{
H, 1

min1≤i≤n σi

}
, Algorithm 2 can output an ε-robust CCE ξ̂, i.e.,

gapCCE(ξ̂) := max
s∈S,1≤i≤n

{
Eπ∼ξ̂

[
V

⋆,π−i,σi

i,1 (s)
]
− Eπ∼ξ̂

[
V π,σi

i,1 (s)
] }
≤ ε

with probability at least 1− δ, as long as N ≥ C1H
2

ϵ2 min
{

1
min1≤i≤n σi

, H
}

and K ≥ C1H
3

ϵ2 . Here
C1 is some universal large enough constant. Namely, it is sufficient if the total number of samples
acquired in the learning process obeys

Nall := HKNS
∑

1≤i≤n

Ai ≥
(C1)

2H6S
∑

1≤i≤n Ai

ε4
min

{
H,

1

min1≤i≤n σi

}
.

Before we jump into more discussions of the above theorem, in addition, we introduce the
information-theoretic minimax lower bound for this problem as well.

Lower bound for learning in fictitious RMGs. Considering the instances of fictitious RMGs
that the action space for all the agents except the i-th agent contains only a single action, i.e.,
Aj = 1 for all j ̸= i. As such, all the agents j ̸= i will take a fixed action and the
game reduces to a single-agent robust MDP with (s, a)-rectangularity condition (Zhou et al.,
2021). So the goal of finding the robust equilibrium — robust NE/CCE also degrades to find-
ing the optimal policy of the i-th agent. Invoking the results from Shi et al. (2024, Theo-
rem 2), the lower bound for the class of fictitious RMGs is achieved directly: consider any tuple{
S, {Ai}1≤i≤n, {σi}1≤i≤n, H

}
obeying σi ∈ (0, 1− c0] with 0 < c0 ≤ 1

4 being any small enough

9
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positive constant, and H > 16 log 2. Let ε ≤
{

c1
H , if σi ≤ c1

2H ,

1 otherwise
for any c1 ≤ 1

4 . We can con-

struct a set of fictitious RMGs M = {RMGi}i∈[I], such that for any dataset generated from the
nominal environment with in total Nall independent samples over all state-action pairs, we have
inf ξ̂∈[H]7→∆(S7→

∏n
i=1 Ai)

maxRMGi∈M

{
PMGi

(
gapCCE(ξ̂) > ε

)}
≥ 1

8 , provided that

Nall ≤
C2SH

3 max1≤i≤n Ai

ε2
min

{
H,

1

min1≤i≤n σi

}
. (18)

Here, the infimum is taken over all estimators ξ̂, PRMGi
denotes the probability when the game is

MGi for allMGi ∈M, and C2 is some small enough constant.

Armed with both the upper bound (Theorem 2) and lower bound in (18), we are now ready to discuss
the implications of our sample complexity results.

Breaking the curse of multiagency in the sample complexity for RMGs. Theorem 2 demonstrates
that for any fictitious RMGs, Robust-Q-FTRL algorithm finds an ϵ-robust CCE when the total
number of samples exceeds

Õ

(
SH6

∑
1≤i≤n Ai

ϵ4
min

{
H,

1

min1≤i≤n σi

})
. (19)

To the best of our knowledge, Robust-Q-FTRL with the above sample complexity in (19) is the first
algorithm for RMGs breaking the curse of multiagency, regardless of the types of uncertainty sets.
Our sample complexity depends linearly on the sum of each agent’s actions

∑n
i=1 Ai rather than

their product
∏n

i=1 Ai—making the algorithm highly scalable as the number of agents increases.
Nonetheless, there still exist gaps between our upper bound and the lower bound—especially in
terms o the dependency on the horizon length H and the accuracy level ε—an interesting direction
to investigate in the future.

Comparisons with prior works. All prior works focus on learning equilibria for a different kind of
robust MGs with (s,a)-rectangular uncertainty sets (Ma et al., 2023; Blanchet et al., 2023; Shi et al.,

2024). However, the state-of-the-art sample complexity Õ
(

SH3 ∏n
i=1 Ai

ε2 min
{
H, 1

min1≤i≤n σi

})
(Shi et al., 2024) still suffers from the curse of multiagency with an exponential dependency on the
number of agents when all agents have equal action spaces, which uses nonadaptive sampling. Our
work circumvents the curse of multiagency by resorting to a tailored adaptive sampling and online
learning procedure, together with the introduction of a new class of fictitious RMGs, providing a
fresh perspective to learning RMGs.

Technical insights. For sample complexity analysis, while previous works have addressed the curse
of multiagency in sequential games like standard Markov games (MGs) and Markov potential games,
these methods are not directly applicable to RMGs. Prior approaches assume a linear relationship
between the value function and the transition kernel, allowing statistical errors across K iterations to
cancel out. However, in RMGs, the robust value function, due to its distributionally robust require-
ment, is highly nonlinear and often lacks a closed form, making it impossible to linearly aggregate
statistical errors. To tackle the nonlinear challenges in RMGs, we design a variance-style bonus term
through non-trivial decomposition and control of auxiliary statistical errors caused by nonlinearity,
resulting in a tight upper bound on regret during the online learning process.

5 CONCLUSION

Robustness in MARL presents greater challenges than in single-agent RL due to the strategic inter-
actions between agents in a game-theoretic setting. This work proposes a new class of RMGs with
fictitious uncertainty sets that naturally extends from robust single-agent RL and addresses more
realistic scenarios where each agent’s uncertainty is influenced by both the environment and the be-
havior of others. We then propose Robust-Q-FTRL, the first algorithm to break the curse of multia-
gency in robust Markov games regardless of the uncertainty set definitions, with sample complexity
scaling polynomially with all key parameters. This opens up new research directions in MARL,
such as uncertainty set selection, equilibrium refinement, and sample-efficient algorithm design.

10
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Algorithm 1: N-sample estimation
(
πh = {πj,h}j∈[n], i, h

)
.

1 Initialization: the reward r̂ = 0 ∈ RSAi and the transition model P̂ = 0 ∈ RSAi×S .
2 for (s, ai) ∈ S ×Ai do
3 for t = 1 to N do
4 Sample at(s, ai) = [aj(s, ai)]1≤j≤n constructed by independent actions drawn from

policy:
aj(s, ai)

ind.∼ πj,h(· | s) (j ̸= i) and ai(s, ai) = ai. (20)
5 Sample from the generative model:

rti,h(s, ai) = ri,h(s,a
t(s, ai)), sts,ai

∼ Ph

(
· | s,at(s, ai)

)
. (21)

6 Set r̂(s, ai) = 1
N

∑
t∈[N ] r

t
i,h(s, ai) and P̂

(
s′ | s, ai

)
= 1

N

∑
t∈[N ] 1

{
sts,ai

= s′
}

.

7 Return: empirical model
(
r̂, P̂

)
.

Algorithm 2: Robust-Q-FTRL
1 Input: learning rates {αk} and {ηk+1}, number of iterations K per time step, and number of

samples N per iteration.
2 Initialization: V̂i,H+1(s) = Q0

i,h(s, ai) = 0 and π1
i,h(ai | s) = 1/Ai for all i ∈ [n] and then all

(h, s, ai) ∈ [H]× S ×Ai.
// start recursive learning process.

3 for h = H,H − 1, · · · , 1 do
4 for k = 1, 2, · · · ,K do
5 for i = 1, 2, · · · , n do

// construct empirical models and estimate current
robust Q-function

6
(
rki,h, P

k
i,h

)
← N -sample estimation

(
πk
h = {πk

j,h}j∈[n], i, h
)
. (Algorithm 1)

7 Estimate the robust Q-function qki,h of current πk
h according to (15).

// Online learning procedure

8 Update the Q-estimate Qk
i,h = (1− αk)Q

k−1
i,h + αkq

k
i,h and apply FTRL:

∀(s, ai) ∈ S ×Ai : πk+1
i,h (ai | s) =

exp
(
ηk+1Q

k
i,h(s,ai)

)
∑

a′ exp
(
ηk+1Qk

i,h(s,a
′)
) .

// set the final robust value estimate at time step h.
9 for i = 1, 2, · · · , n do

10 For all s ∈ S: set βi,h(s) to be the optimistic bonus term in (17) and

V̂i,h(s) = min
{ K∑

k=1

αK
k

〈
πk
i,h(· | s), qki,h(s, ·)

〉
+ βi,h(s), H − h+ 1

}
, (22)

11 Output: a set of policies {πk
h = (πk

1,h × · · · × πk
n,h)}k∈[K],h∈[H] and a distribution

ξ̂ = {ξ̂h}h∈[H] over them. For any time step h, ξ̂h is the distribution over {πk
h}k∈[K] so that

ξ̂h(π
k
h) = αK

k .

Ziyuan Zhou and Guanjun Liu. Robustness testing for multi-agent reinforcement learning: State
perturbations on critical agents. arXiv preprint arXiv:2306.06136, 2023.

A RELATED WORK

Breaking curse of multiagency for standard Markov games. Breaking the curse of multiagency
is a major and prevalent challenge in sequential games. In standard multi-agent general-sum MGs,
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it has been shown that learning a Nash equilibrium requires an exponential sample complexity
(Song et al., 2021; Rubinstein, 2017; Bai & Jin, 2020). However, for other types of equilibria,
such as CE and CCE, many works have successfully broken the curse of multiagency. Specifi-
cally, for finite-horizon general-sum MGs in the tabular setting with finite state and action spaces,
Jin et al. (2021) developed the V-learning algorithm for learning CE and CCE with the sample
complexity of Õ(H6S(maxi∈[n] Ai)

2/ϵ2) and Õ(H6Smaxi∈[n] Ai/ϵ
2), respectively; Daskalakis

et al. (2023) achieved a sample complexity of Õ(H11S3 maxi∈[n] Ai/ϵ
3) for learning a CCE.

Beyond tabular settings, Wang et al. (2023) and Cui et al. (2023) extended these results to lin-
ear function approximation, achieving sample complexities of Õ(d4H6

(
maxi∈[n] A

5
i

)
/ϵ2) and

Õ(H10d4 log
(
maxi∈[n] Ai

)
/ϵ4), respectively, where d is the dimension of the linear features. For

Markov potential games, a subclass of MGs, Song et al. (2021) provided a centralized algorithm that
learns a NE with a sample complexity of Õ(H4S2 maxi∈[n] Ai/ϵ

3).

Finite-sample analysis for distributionally robust Markov games. Robust Markov games under
environmental uncertainty are largely underexplored, with only a few provable algorithms (Zhang
et al., 2020a; Kardeş et al., 2011; Ma et al., 2023; Blanchet et al., 2023; Shi et al., 2024). Exist-
ing sample complexity analyses all suffer from the daunting curse of multiagency issues, or impose
an extremely restricted uncertainty level that can fail to deliver the desired robustness (Ma et al.,
2023; Blanchet et al., 2024; Shi et al., 2024). Specifically, they all consider a class of RMGs with
the (s,a)-rectangularity condition, where the uncertainty sets for each agent can be decomposed
into independent sets over each (s,a) pair. Shi et al. (2024) considered the generative model with
an uncertainty set measured by the TV distance, Blanchet et al. (2023) treated a different sam-
pling mechanism with offline data for both the TV distance and KL divergence. In addition, Ma
et al. (2023) required the uncertainty level be much smaller than the accuracy-level and an instance-
dependent parameter (i.e., σi ≤ max{ ε

SH2 ,
pmin
H } for all i ∈ [n]). This can thus fail to maintain the

desired robustness, especially when the accuracy requirement is high (i.e., ε → 0) or the RMG has
small minimal positive transition probabilities (i.e., pmin → 0).

Robust MARL. Standard MARL algorithms may overfit the training environment and could fail
dramatically due to the perturbations and variability of both agents’ behaviors and the shared envi-
ronment, leading to performance drop and large deviation from the equilibrium. To address this, this
work considers a robust variant of MARL adopting the distributionally robust optimization (DRO)
framework that has primarily been investigated in supervised learning (Rahimian & Mehrotra, 2019;
Gao, 2020; Bertsimas et al., 2018; Duchi & Namkoong, 2018; Blanchet & Murthy, 2019) and has
attracted a lot of attention in promoting robustness in single-agent RL (Nilim & El Ghaoui, 2005;
Iyengar, 2005; Badrinath & Kalathil, 2021; Zhou et al., 2021; Shi & Chi, 2024; Wang et al., 2024;
Shi et al., 2023). Beyond the RMG framework considered in this work, recent research has advanced
the robustness of MARL algorithms from various perspectives, including resilience to uncertainties
or attacks on states (Han et al., 2022; Zhou & Liu, 2023), the type of agents (Zhang et al., 2021),
other agents’ policies (Li et al., 2019; Kannan et al., 2023), offline data poisoning (Wu et al., 2024;
McMahan et al., 2024), and nonstationary environment (Szita et al., 2003). A recent review can be
found in Vial et al. (2022).

B PRELIMINARIES

Denoting the vectors x = [xi]1≤i≤n and y = [yi]1≤i≤n, we use the notation x ≤ y (or x ≥ y) to
signify that xi ≤ yi (or xi ≥ yi) for every 1 ≤ i ≤ n. The Hadamard product of two vectors x
and y in RS is denoted as x ◦ y =

[
x(s) · y(s)

]
s∈S . In addition, for any series of vectors {xi}i∈[S ,

diag(x1, x2, · · · , xS) denote a block diagonal matrix by placing each given vector xi along the
diagonal, with zeros filling the off-diagonal blocks. 0 (or 1) represents the all-zero (or all-one)
vector, while ei ∈ RS denotes a basis vector of dimension S with 1 in the i-th position and 0
elsewhere.

B.1 ADDITIONAL MATRIX AND VECTOR NOTATION

Before continuing, we introduce or recall some matrix and vector notation that will be used through-
out the paper. In particular, for any joint policy π : S × [H] 7→ ∆(A) and any (i, h) ∈ [n]× [H]:
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Matrices for policy. We introduce three matrices associated with π, i.e., Ππ
h ∈ RS×S

∏n
i=1 Ai ,

Π
π−i

h ∈ RS×S
∏

j ̸=i Aj , and Ππi

h ∈ RS×SAi , which are defined as block diagonal matrices that
adhere to the following properties:

• The matrix Ππ
h is given by diag

(
πh(1)

⊤, πh(2)
⊤, . . . , π⊤

h (S)
)
, where πh(s) =

[πh(a | s)]a∈A ∈ ∆(A) for each s ∈ S represents the joint policy vectors across all agents.

• The matrix Π
π−i

h can be expressed as diag
(
π−i,h(1)

⊤, π−i,h(2)
⊤, . . . , π⊤

−i,h(S)
)

, where
π−i,h(s) = [πh(a−i | s)]a−i∈A−i

∈ ∆(A−i) for all s ∈ S denotes the joint policy vectors
from all agents except agent i.

• The matrix Ππi

h is defined as diag
(
πi,h(1)

⊤, πi,h(2)
⊤, . . . , π⊤

i,h(S)
)

, where πi,h(s) =

[πi,h(ai | s)]ai∈Ai
∈ ∆(Ai) for each s ∈ S represents the policy of the i-th agent.

Reward vectors. We recall the definition of ri,h and introduce the reward vectors rπi,h and r
π−i

i,h as
follows:

• Let ri,h = [ri,h(s,a)](s,a)∈S×A ∈ RS
∏n

i=1 Ai represent the reward function for the i-th player
at time step h, where S is the state space and A is the action space.

• The reward vector rπi,h ∈ RS corresponds to the joint policy π = {πh}h∈[H] at time step h.
Specifically, for each s ∈ S, rπi,h(s) = Ea∼πh(s)[ri,h(s,a)], where the expectation is taken over
the actions a drawn from policy πh in state s.

• The reward vector r
π−i

i,h ∈ RSAi corresponds to the joint policy π−i = {π−i,h}h∈[H] at
time step h, excluding agent i. Specifically, for all s ∈ S and ai ∈ Ai, r

π−i

i,h (s, ai) =

Ea−i∼π−i,h(s)[ri,h(s,a)], where the expectation is over the actions a−i drawn from the joint
policy π−i,h for all agents except agent i.

Matrices for transition variants. We first introduce the following notations related to transitions
associated with the nominal transition kernel and the policy π:

• Define P 0
h ∈ RS

∏n
i=1 Ai×S , the matrix representing the nominal transition kernel at time step

h. Specifically, for any (s,a) ∈ S ×A, P 0
h,s,a ∈ R1×S represents the row corresponding to the

state-action pair (s,a).
• Define P

π−i

h ∈ RSAi×S , the matrix representing the nominal transition kernel at time step h,
associated with the joint policy π−i. Specifically, for all s, s′ ∈ S and ai ∈ Ai, P

π−i

h,s,ai
(s′) =

Ea−i∼π−i,h(s)[P
0
h,s,a(s

′)]. Here, Pπ−i

h,s,ai
∈ R1×S represents the row corresponding to the state-

action pair (s, ai).
• Let P̂π−i

i,h ∈ RSAi×S denote the empirical transition kernel matrix at time step h, associated with

the joint policy π−i and agent i. Similarly, P̂π−i

h,s,ai
∈ R1×S represents the row corresponding to

the state-action pair (s, ai).
• Define Pπ

h ∈ RS×S as Pπ
h := Ππ

hP
0
h , where Ππ

h is the policy matrix at time step h under joint
policy π.

• Define P̂
π

i,h ∈ RS×S as P̂
π

i,h := Ππi

h P̂
π−i

i,h , where Ππi

h denotes the policy matrix at time step h
under policy πi.

We introduce matrix notations for transitions that are associated not only with the nominal transition
and policy π, but also with value functions:

• For time step h ∈ [H], joint policy π, and a value vector V ∈ RS , we define Pπ−i,V
i,h ∈ RSAi×S

as the matrix representing the worst-case transition probability kernel within the uncertainty set
for agent i, centered around the nominal kernel. The row corresponding to the state-action pair
(s, ai) in P

π−i,V
i,h , denoted as Pπ−i,V

i,h,s,ai
∈ RS , is given by:

P
π−i,V
i,h,s,a−i

= argminP∈Uσi
ρ (P

π−i
h,s,ai

)
PV. (23a)

We also define the transition matrices for specific value vectors as:

Pπ,V
i,h := P

π−i,V
π,σi
i,h+1

i,h and Pπ,V
i,h,s,ai

:= P
π−i,V

π,σi
i,h+1

i,h,s,ai
= argminP∈Uσi

ρ (P
π−i
h,s,ai

)
PV π,σi

i,h+1.

(23b)
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Finally, we define square matrices Pπ,V
i,h ∈ RS×S as: Pπ,V

i,h := Ππi

h P
π−i,V
i,h .

• By replacing the nominal transition kernel with the empirical transition kernel, we similarly
define P̂π−i,V

i,h as the worst-case probability transition kernel within the uncertainty set for agent

i, centered around the empirical kernel P̂π−i

i,h . The row corresponding to the state-action pair

(s, ai) in P̂
π−i,V
i,h is denoted as P̂π−i,V

i,h,s,ai
∈ RS and is defined as:

P̂
π−i,V
i,h,s,a−i

= argminP∈Uσi
ρ (P̂

π−i
i,h,s,ai

)
PV. (23c)

The transition matrices P̂π,V
i,h for specific value vectors are defined as:

P̂π,V
i,h := P̂

π−i,V
π,σi
i,h+1

i,h and P̂π,V
i,h,s,ai

:= P̂
π−i,V

π,σi
i,h+1

i,h,s,ai
= argminP∈Uσi

ρ (P̂
π−i
i,h,s,ai

)
PV π,σi

i,h+1,

(23d)

Additionally, we define square matrices P̂
π,V

i,h ∈ RS×S as: P̂
π,V

i,h := Ππi

h P̂
π−i,V
i,h .

Variance. We now introduce notations for variance corresponding to a specific probability distribu-
tion. For a probability vector P ∈ R1×S and a vector V ∈ RS , we denote the variance of V with
respect to P as VarP (V ), defined as:

VarP (V ) := P (V ◦ V )− (PV ) ◦ (PV ), (24)

Additionally, for a transition kernel Pπ−i ∈ RSAi×S and a vector V ∈ RS , we define VarPπ−i (V ) ∈
RSAi as a vector of variances. The entry corresponding to (s, ai) in VarPπ−i (V ) is given by:

VarPπ−i (s, ai) := Var
P

π−i
s,ai

(V ), (25)

where P
π−i
s,ai denotes the row of the transition matrix corresponding to state s and action ai.

B.2 ROBUST BELLMAN EQUATIONS FOR RMGS WITH FICTITIOUS UNCERTAINTY SETS

For any joint policy π : S × [H] 7→ ∆(A), the robust value function can be expressed as

V π,σi

i,h (s) = inf
Uσi

ρ (P 0,π)
E
[ H∑
t=h

ri(st, at) | sh = s
]
= Ea∼πh(s)

[
ri,h(s,a) + inf

Uσi
ρ

(
P

π−i
h,s,ai

)PV π,σi

i,h+1

]
.

(26)

It can be verified directly by definition. The robust Bellman equation described above is intrinsi-
cally linked to the policy-induced (s, ai)-rectangularity condition (cf. (11)) of the uncertainty set.
This condition leads to a well-posed and computationally-tractable class of RMGs by allowing the
decomposition from an overall uncertainty set to independent subsets across different agents, time
steps, and each state-action pair (s, ai).

Note that the specified robust Bellman equation is different for a joint correlated policy and a joint
product policy, induced by different expected nominal transition kernels. In particular, for any joint
product policy π : S × [H] 7→

∏
i∈[n] ∆(Ai), the expected nominal transition kernel conditioned

on the i-th agent’s action ai ∈ Ai, current state s ∈ S, and the policy π can be expressed by

P
π−i

h,s,ai
= Ea∼πh(· | s,ai)

[
P 0
h,s,a

]
= Ea−i∼π−i,h(· | s)

[
P 0
h,s,(ai,a−i)

]
(27)

for any (i, h, s, ai) ∈ [n]× [H]×S×Ai, where the last equality holds since the policy π is a product
policy, and the distribution of a−i is independent of ai. It is observed that the expected nominal
transition kernel Pπ−i

h,s,ai
for a product policy π is independent of the i-th agent’s policy given (s, ai).

This differs from (10) for a possibly correlated policy, where (10) can generally depend on the i-th
agent’s policy.

B.3 PRELIMINARY FACTS ABOUT FTRL

Our proposed algorithm (see Algorithm 2) is inspired by online adversarial learning. In this section,
we introduce the formulation of online learning and review key aspects of a widely-used algorithm,
the Follow-the-Regularized-Leader (FTRL) algorithm.
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Problem setting: online learning for weighted average loss. We consider an online learning prob-
lem over K steps, commonly found in adversarial learning settings (Lattimore & Szepesvári, 2020).
The learner is presented with an action setA, and loss functions f1, . . . , fK : A → R≥0 are provided
for each step. At each time step k, the learner selects a distribution over the action set, πk ∈ ∆(A),
and observes the loss function fk(πk). The goal of the learner is to minimize the weighted aver-
age loss over the K steps, which is defined as: LK =

∑K
k=1 α

K
k fk(πk). To evaluate the learner’s

performance, the regret for the online learning process is defined as:

RK =

K∑
k=1

αK
k fk(πk)−

[
min

π∈∆(A)

K∑
k=1

αK
k fk(π)

]
. (28)

FTRL and its regret bound. A widely-used method for solving the online learning problem
described above is the Follow-the-Regularized-Leader (FTRL) algorithm, introduced by Shalev-
Shwartz & Singer (2007); Shalev-Shwartz (2007). At each step k + 1, the learner selects a soft-
greedy action by solving:

πk+1 = arg min
π∈∆(A)

[
k∑

i=1

αk
i fi(π) + Fk(π)

]
, k = 1, 2, . . . , (29)

where Fk(π) represents a convex regularization function. The following theorem provides a refined
regret bound for the FTRL algorithm when the loss function is linear with respect to the policy.

Theorem 3 (Theorem 3 in Li et al. (2022)). For all k ∈ [K] and policy π, the loss function is defined
as fk(π) = ⟨πk, lk⟩, where lk ∈ R|A| represents a loss vector. The learner’s choice πk+1 in episode
k + 1 is updated according to the FTRL algorithm:

πk+1(a) = arg min
π∈∆(A)

{⟨π, Lk⟩+ Fk(π)} =
exp

(
− ηk+1Lk(a)

)∑
a′∈A exp

(
− ηk+1Lk(a′)

) , for all a ∈ A,

(30)

where the regularization function is given by Fk(π) =
∑

a∈A
1

ηk+1
π(a) log(π(a)). Suppose 0 <

α1 ≤ 1 and η1 = η2(1− α1), and for all k ≥ 2, assume 0 < αk < 1 and 0 < ηk+1(1− αk) ≤ ηk.
Define:

η̂k :=

{
η2, if k = 1,
ηk

1−αk
, if k > 1.

(31)

Then, the regret of the FTRL algorithm is bounded by:

Rn ≤ max
a∈A

[
K∑

k=1

αK
k ⟨πk, lk⟩ −

K∑
k=1

αK
k lk(a)

]

≤ 5

3

n∑
k=1

αn
k η̂kαkVarπk

(lk) +
logA

ηn+1
+ 3

n∑
k=1

αn
k η̂

2
kα

2
k∥lk∥3∞I

(
η̂kαk∥lk∥∞ >

1

3

)
. (32)

C PROOF FOR SECTION 3

C.1 PROOF OF THEOREM 1

Step 1: preliminaries. First, we introduce some useful definition and existing facts that are standard
in real analysis and game theory literature.

Definition 2 (Upper semi-continuous). A point-to-set mapping x ∈ X 7→ ϕ(x) ∈ Y is upper
semi-continuous if limn→∞ xn = x0, y

n ∈ ϕ(xn), limn→∞ yn = y0 imply that y0 ∈ ϕ(x0).

Theorem 4 (Kakutani’s fixed point Theorem (Kakutani, 1941)). If X is a closed, bounded, and
convex set in a Euclidean space, and ϕ is a upper semi-continuous correspondence mapping X into
the family of all closed convex subsets of X , then there exists x ∈ X so that x ∈ ϕ(x).
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Step 2: constructing an auxiliary single-step game. Focusing on finite-horizon RMGMGrob ={
S, {Ai}1≤i≤n, {Uσi

ρ (P 0)}1≤i≤n, r,H
}

, we shall verify the theorem by firstly consider a one-step
game and then apply the results recursively to the sequential Markov games.

Without loss of generality, we focus on any of the steps h ∈ [H] and construct an auxiliary one-step
game. Towards this, we first introduce a fixed value function Vi,h+1 ∈ RS with 0 ≤ Vi,h+1 ≤ H for
the i-th agent, representing the possible value function obtained at the next time step h+1. Focusing
on time step h, for any joint product policy π : S 7→

∏
i∈[n] ∆(Ai), we abuse the notation defined

in (27) to denote the expected nominal transition kernel over each (s, ai) as:

P
π−i

h,s,ai
= Eπ(a−i | s,ai)

[
P 0
h,s,(ai,a−i)

]
= Eπ−i(a−i | s)

[
P 0
h,s,(ai,a−i)

]
. (33)

Armed with this, for any joint product policy π : S 7→
∏

i∈[n] ∆(Ai), we can define the payoffs to
maximize for the players as below:

∀s ∈ S : fi,s(πi(s), π−i(s);Vi,h+1) = Ea∼π(s)[ri,h(s,a)] + Eai∼πi(s)

 inf
Uσi

(
P

π−i
h,s,ai

)PVi,h+1

 ,

(34)
which is defined analogous to the robust Bellman equation (cf. (26)) by replacing a real robust value
function vector (associated with some policy) to some fixed vector Vi,h+1.

Now we are ready to introduce the following useful mapping: for any π : S 7→
∏

i∈[n] ∆(Ai),

ϕ(π) :=
{
u |ui(s) ∈ argmaxπ′

i(s)∈∆(Ai) fi,s(π
′
i(s), π−i(s);Vi,h+1),∀(i, s) ∈ [n]× S

}
. (35)

Step 3: the existence of NE of the auxiliary game. To apply Theorem 4, there are three required
conditions. First, we know that the space of product policy is X = {π : S 7→

∏
i∈[n] ∆(Ai)} is a

closed, bounded and convex set in Euclidean space.

• Verifying that ϕ(π) is an upper semi-continuous correspondence. Before starting, we
introduce the following two useful lemmas with the proof postponed to Appendix C.2.2
and C.2.3.
Lemma 2. The set of function {fi,s(π′

i(s), π−i(s);Vi,h+1), 0 ≤ Vi,h+1) ≤ H} is equicon-
tinuous with respect to π′

i(s), π−i(s) for all (i, s) ∈ [n]× S .
Lemma 3. For any i ∈ [n] and then x−i : S 7→

∏
j ̸=i,j∈[n] ∆(Aj), the functions

∀s ∈ S : gi,s(x−i(s), Vi,h+1) := maxπ′
i∈∆(S) fi,s(π

′
i(s), x−i(s);Vi,h+1) (36)

are continuous with respect to x−i(s) and the set {gi,s(·, V )|V ∈ RS , 0 ≤ V ≤ H} is
equicontinuous.
Armed with above lemmas, we are in the position to prove this condition. We suppose there
are two sequence limn→∞ xn = x0, yn ∈ ϕ(xn), limn→∞ yn = y0. Recall the definition
of a upper semi-continuous correspondence (cf. Definition 2), we are supposed to show that
y0 ∈ ϕ(x0), i.e.,

∀(i, s) ∈ [n]× S : fi,s(y
0
i (s), x

0
−i(s);Vi,h+1) = maxπ′

i∈∆(S) fi,s(π
′
i(s), x

0
−i(s);Vi,h+1).

(37)
Towards this, we have

|fi,s(y0i (s), x0
−i(s);Vi,h+1)− gi,s(x

0
−i(s), Vi,h+1)|

≤ |fi,s(y0i (s), x0
−i(s);Vi,h+1)− fi,s(y

n
i (s), x

n
−i(s);Vi,h+1)|

+ |fi,s(yni (s), xn
−i(s);Vi,h+1)− gi,s(x

0
−i(s), Vi,h+1)|

(i)
= |fi,s(y0i (s), x0

−i(s);Vi,h+1)− fi,s(y
n
i (s), x

n
−i(s);Vi,h+1)|

+ |gi,s(xn
−i(s), Vi,h+1)− gi,s(x

0
−i(s), Vi,h+1)| → 0 as n→∞, (38)

where the first inequality follows from the triangle inequality, (i) holds
by the assumption yn ∈ ϕ(xn) so that fi,s(y

n
i (s), x

n
−i(s);Vi,h+1) =

maxπ′
i∈∆(S) fi,s(π

′
i(s), x

n
−i(s);Vi,h+1), and the last line can be verified by the con-

tinuity implied by Lemma 2 and Lemma 3.
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• Verifying ϕ(π) is convex for any π ∈ X . Finally, we gonna work on the convexity of ϕ(π)
for any π ∈ X . To begin with, by the definition of ϕ(π) in (35), we know that ϕ(π) ⊆ X
and the maximum of the continuous function fi,s(πi(s), π−i(s);Vi,h+1) (cf. Lemma 2) on
a compact set exists, i.e., ϕ(x) ̸= ∅.
Suppose there exists two Nash equilibrium z : S 7→

∏
i∈[n] ∆(Ai), v : S 7→

∏
i∈[n] ∆(Ai)

and z, v ∈ ϕ(π). Then we have that for any (i, s) ∈ [n]× S ,

fi,s(zi(s), π−i(s);Vi,h+1) = fi,s(vi(s), π−i(s);Vi,h+1)

= max
ui(s)∈∆(Ai)

fi,s(ui(s), π−i(s);Vi,h+1). (39)

To continue, for any 0 ≤ λ ≤ 1, one has

max
ui(s)∈∆(Ai)

fi,s(ui(s), π−i(s);Vi,h+1)

=λfi,s(zi(s), π−i(s);Vi,h+1) + (1− λ)fi,s(vi(s), π−i(s);Vi,h+1)

= λ

(
Eai∼zi(s)

[
r
π−i

i,h (s, ai)
]
+ Eai∼zi(s)

[
inf

Uσi

(
P

π−i
h,s,ai

)PVi,h+1

])

+ (1− λ)

(
Eai∼vi(s)

[
r
π−i

i,h (s, ai)
]
+ Eai∼vi(s)

[
inf

Uσi

(
P

π−i
h,s,ai

)PVi,h+1

])

= Eai∼[λzi(s)+(1−λ)vi(s)]

[
r
π−i

i,h (s, ai)
]
+ Eai∼[λzi(s)+(1−λ)vi(s)]

[
inf

Uσi

(
P

π−i
h,s,ai

)PVi,h+1

]
= fi,s(λzi(s) + (1− λ)vi(s), π−i(s);Vi,h+1). (40)

where we denote r
π−i

i,h (s, ai) := Ea−i∼π−i(s) [ri,h(s, (ai,a−i))]. Hence, we show that
λzi(s) + (1− λ)vi(s) ∈ ϕ(π) for all (i, s) ∈ [n]×S and 0 ≤ λ ≤ 1, thus verify that ϕ(π)
is convex for any π ∈ X .

Step 4: the existence of robust NE in RMGs. Armed with above results, now we consider a general
form to show that there exists a policy π : [H]× S 7→

∏
i∈[n] ∆(Ai) that satisfies

∀(i, h, s) ∈ [n]× [H]× S : V π,σi

i,h (s) = V
⋆,π−i,σi

i,h (s). (41)

We shall prove this by induction.

• The base case. Starting with the final step h = H , we recall that by definition,

∀(i, s) ∈ [n]× S : V π,σi

i,H+1(s) = 0. (42)

To apply the results in the one-step game constructed in Step 2, we consider the one-step
game at h = H and using the payoff function (cf. (34))

∀s ∈ S : fi,s(πi(s), π−i(s);V
π,σi

i,H+1) = Ea∼π(s)[ri,h(s,a)]. (43)

We know that there exists a policy π so that

∀(i, s) ∈ [n]× S : V π,σi

i,H (s) = V
⋆,π−i,σi

i,H (s) (44)

by setting πH as the NE of the one-step game.
• Induction. Assuming that there exists a policy π so that for subsequent steps h+1, · · · , H ,

∀(i, h, s) ∈ [n]× {h+ 1, · · · , H} × S : V π,σi

i,h (s) = V
⋆,π−i,σi

i,h (s), (45)

which are achieved by determining certain policies for {πh+1, πh+2, · · · , πH}. We are
supposed to prove that at time step h, we can ensure our policy π satisfying

∀(i, s) ∈ [n]× S : V π,σi

i,h (s) = V
⋆,π−i,σi

i,h (s) (46)

by choosing a proper policy πh at the time step h.
Towards this, it is observed that

V
⋆,π−i,σi

i,h (s)
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= max
π′
i:S×[H]7→∆(Ai)

V
π′
i×π−i,σi

i,h (s)

= max
π′
i:S×[H]7→∆(Ai)

Ea∼π′
i,h(s)×π−i,h(s)[ri,h(s,a)]

+ Eai∼π′
i,h(s)

[
inf

P∈Uσi

(
P

π−i
h,s,ai

)PV
π′
i×π−i,σi

i,h+1

]
= max

π′
i,h(s)∈∆(Ai)

Ea∼π′
i,h(s)×π−i,h(s)[ri,h(s,a)]

+ max
π′
i,h(s)∈∆(Ai)

Eai∼π′
i,h(s)

max
π′
i,h+ :S×h+ 7→∆(Ai)

[
inf

P∈Uσi

(
P

π−i
h,s,ai

)PV
π′
i×π−i,σi

i,h+1

]

= max
π′
i,h(s)∈∆(Ai)

Ea∼π′
i,h(s)×π−i,h(s)[ri,h(s,a)] + Eai∼π′

i,h(s)

[
inf

P∈Uσi

(
P

π−i
h,s,ai

)PV
⋆,π−i,σi

i,h+1

]
.

(47)

where we denote h+ = {h + 1, h + 2, · · · , H} as the set that includes all the time steps
after h until the end of the episode, and the last equality follows from the fact

max
π′
i,h+ :S×h+ 7→∆(Ai)

inf
Uσi

(
P

π−i
h,s,ai

)PV
π′
i×π−i,σi

i,h+1 = inf
Uσi

(
P

π−i
h,s,ai

)P max
π′
i,h+ :S×h+ 7→∆(Ai)

V
π′
i×π−i,σi

i,h+1

= inf
Uσi

(
P

π−i
h,s,ai

)PV
⋆,π−i,σi

i,h+1 , (48)

which holds by the definition of V ⋆,π−i,σi

i,h+1 . Now invoking the results in the auxiliary one-
step game with Vi,h+1 = V

⋆,π−i,σi

i,h+1 , one has that there exists a policy with πh that satisfies

∀(i, s) ∈ [n]× S : V π,σi

i,h (s) = V
⋆,π−i,σi

i,h (s). (49)

Combining the results in the base case and induction, we complete the proof by recursively choosing
πh : S 7→

∏
i∈[n] ∆(Ai) for h = H,H − 1, · · · , 1 as the NE of the corresponding one-step game at

time step h and arrive at

∀(i, s) ∈ [n]× S : V π,σi

i,1 (s) = V
⋆,π−i,σi

i,1 (s). (50)

C.2 PROOF OF AUXILIARY FACTS

C.2.1 PROOF OF LEMMA 1

The proof is obtained by recursively showing that for each (h, s), there exist a policy. Then the
product policy of them will be that final policy

Without loss of generality, we consider any i ∈ [n] with the other agents’ policy πi : S × [H] 7→
∆(Ai) fixed. We shall prove this lemma by induction.

• The base case. Consider the base case h = H . Conditioned on the other agents’ policy
πi : S × [H] 7→ ∆(A−i), the maximum of the robust value function of the i-th agent can
be expressed by

∀s ∈ S : V
⋆,π−i,σi

i,H (s) = max
π′
i:S×[H]7→∆(Ai)

V
π′
i×π−i,σi

i,H (s)

= max
π′
i:S×[H]7→∆(Ai)

Eai∼π′
i,H(s)

[
Ea−i∼π−i,H(s)[ri,H(s,a)]

]
= max

π′
i,H(s)∼∆(Ai)

Eai∼π′
i,H(s)

[
Ea−i∼π−i,H(s)[ri,H(s,a)]

]
. (51)

Since the maximum of the continuous function Eai∼π′
i,H(s)

[
Ea−i∼π−i,H(s)[ri,H(s,a)]

]
on

a compact set ∆(Ai) exists, by setting

∀s ∈ S : π̃i,H(s) = argmaxπ′
i,H(s)∼∆(Ai)Eai∼π′

i,H(s)

[
Ea−i∼π−i,H(s)[ri,H(s,a)]

]
,

(52)
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we arrive at

∀s ∈ S : V
π̃i×π−i,σi

i,H (s) = V
⋆,π−i,σi

i,H (s). (53)

This complete the proof for the base case.
• Induction. Assuming that for t = h+ 1, h+ 2, · · · , H , we have

∀s ∈ S : V
π̃i×π−i,σi

i,t (s) = V
⋆,π−i,σi

i,t (s). (54)

Then, we want to prove for the step h, where the maximum of the robust value function of
the i-th agent can be expressed as: for all s ∈ S,

V
⋆,π−i,σi

i,h (s)

= max
π′
i:S×[H] 7→∆(Ai)

V
π′
i×π−i,σi

i,h (s)

= max
π′
i:S×[H] 7→∆(Ai)

Eai∼π′
i,h(s)

[
Ea−i∼π−i,h(s)[ri,h(s,a)]

]
+ Eai∼πi,h(s)

 inf
Uσi

ρ

(
P

π−i
h,s,ai

)PV
⋆,π−i,σi

i,h+1


(i)
= max

π′
i:S×[H]7→∆(Ai)

Eai∼π′
i,h(s)

[
Ea−i∼π−i,h(s)[ri,h(s,a)]

]
+ Eai∼πi,h(s)

 inf
Uσi

ρ

(
P

π−i
h,s,ai

)PV
π̃i×π−i,σi

i,h+1


= max

π′
i,h(s)∼∆(Ai)

Eai∼π′
i,h(s)

[
Ea−i∼π−i,h(s)[ri,h(s,a)]

]
+ Eai∼πi,h(s)

 inf
Uσi

ρ

(
P

π−i
h,s,ai

)PV
π̃i×π−i,σi

i,h+1

 . (55)

where (i) holds by the induction assumption in (54). Similarly to the base case,
the maximum of the continuous function Eai∼π′

i,h(s)

[
Ea−i∼π−i,h(s)[ri,h(s,a)]

]
+

Eai∼πi,h(s)

[
infUσi

ρ

(
P

π−i
h,s,ai

) PV
π̃i×π−i,σi

i,h+1

]
on a compact set ∆(Ai) exists. So without

conflict, for all s ∈ S, we can set

π̃i,h(s)

= argmaxπ′
i,h(s)∼∆(Ai)Eai∼π′

i,h(s)

[
Ea−i∼π−i,h(s)[ri,h(s,a)]

]
+ Eai∼πi,h(s)

 inf
Uσi

ρ

(
P

π−i
h,s,ai

)PV
π̃i×π−i,σi

i,h+1

 , (56)

since the function infUσi
ρ

(
P

π−i
h,s,ai

) PV
π̃i×π−i,σi

i,h+1 and especially V
π̃i×π−i,σi

i,h+1 are independent

from the policy in the first h steps ({π̃i,t(s)}s∈S,t∈[h]).
Consequently, (56) directly implies that

∀s ∈ S : V
π̃i×π−i,σi

i,h (s) = V
⋆,π−i,σi

i,h (s). (57)

Combining the results in base case and the induction, we complete the proof by showing that

∀(h, s) ∈ [H]× S : V
π̃i×π−i,σi

i,h (s) = V
⋆,π−i,σi

i,h (s). (58)

C.2.2 PROOF OF LEMMA 2

First, we define the distance between any two policy π, π′ ∈ X = {π : S 7→
∏

i∈[n] ∆(Ai)} as
below:

d(π, π′) := max
i∈[n]

max
(s,ai)∈S×Ai

|πi(ai | s)− π′
i(ai | s)|. (59)
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To prove the continuity, given any ϵ > 0, we want to show that there exists δ(ϵ) > 0 such that if

d(π, π′) < δ(ϵ), (60)

then ∣∣fi,s(πi(s), π−i(s);Vi,h+1)− fi,s(π
′
i(s), π

′
−i(s);Vi,h+1)

∣∣ < ϵ (61)

for any fixed {Vi,h+1}i∈[n] with 0 ≤ Vi,h+1 ≤ H for all i ∈ [n]. Towards this, we observe that∣∣fi,s(πi(s), π−i(s);Vi,h+1)− fi,s(π
′
i(s), π

′
−i(s);Vi,h+1)

∣∣
=

∣∣∣∣Ea∼π(s)[ri,h(s,a)] + Eai∼πi(s)

[
inf

Uσi

(
P

π−i
h,s,ai

)PVi,h+1

]

− Ea∼π′(s)[ri,h(s,a)] + Eai∼π′
i(s)

[
inf

Uσi

(
P

π′
−i

h,s,ai

)PVi,h+1

]∣∣∣∣
≤
∣∣Ea∼π(s)[ri,h(s,a)]− Ea∼π′(s)[ri,h(s,a)]

∣∣
+

∣∣∣∣Eai∼πi(s)

[
inf

Uσi

(
P

π−i
h,s,ai

)PVi,h+1

]
− Eai∼π′

i(s)

[
inf

Uσi

(
P

π′
−i

h,s,ai

)PVi,h+1

]∣∣∣∣. (62)

The first term can be bounded by∣∣Ea∼π(s)[ri,h(s,a)]− Ea∼π′(s)[ri,h(s,a)]
∣∣

≤
∑
a∈A

∣∣∣∣ ∏
i∈[n]

πi(ai | s)−
∏
i∈[n]

π′
i(ai | s)

∣∣∣∣ max
(s,a)∈S×A

ri,h(s,a)

≤
∑
a∈A

∣∣∣∣ ∏
i∈[n]

πi(ai | s)−
∏
i∈[n]

π′
i(ai | s)

∣∣∣∣, (63)

where the last inequality holds by the definition of reward function max(s,a)∈S×A ri,h(s,a) ≤ 1
for all (i, h) ∈ [n]× [H]. To continue, we first define the difference between δi(s, ai) := π′

i(ai | s)−
πi(ai | s). Therefore, we have∣∣∣∣ ∏

i∈[n]

πi(ai | s)−
∏
i∈[n]

π′
i(ai | s)

∣∣∣∣
=

∣∣∣∣ ∏
i∈[n]

πi(ai | s)−
∏
i∈[n]

(πi(ai | s) + δi(s, ai))

∣∣∣∣
=

∣∣∣∣ ∑
|Y|≥1,Y⊆[n]

(∏
i∈Y

δi(s, ai)

)
·

(∏
i∈Yc

πi(ai | s)

)∣∣∣∣
≤

∑
|Y|≥1,Y⊆[n]

∣∣∣∣
(∏

i∈Y
δi(s, ai)

)
·

(∏
i∈Yc

πi(ai | s)

)∣∣∣∣ ≤ (2n − 1)δ(ϵ), (64)

where the last inequality holds by (60). Plugging (64) back to (63) indicates that∣∣Ea∼π(s)[ri,h(s,a)]− Ea∼π′(s)[ri,h(s,a)]
∣∣ ≤ ∏

i∈[n]

Ai(2
n − 1)δ(ϵ). (65)

For the second term in (62), we observe that∣∣∣∣Eai∼πi(s)

[
inf

P∈Uσi

(
P

π−i
h,s,ai

)PVi,h+1

]
− Eai∼π′

i(s)

[
inf

P∈Uσi

(
P

π′
−i

h,s,ai

)PVi,h+1

]∣∣∣∣
≤
∣∣∣∣Eai∼πi(s)

[
inf

P∈Uσi

(
P

π−i
h,s,ai

)PVi,h+1

]
− Eai∼πi(s)

[
inf

P∈Uσi

(
P

π′
−i

h,s,ai

)PVi,h+1

]∣∣∣∣
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+

∣∣∣∣Eai∼πi(s)

[
inf

P∈Uσi

(
P

π′
−i

h,s,ai

)PVi,h+1

]
− Eai∼π′

i(s)

[
inf

P∈Uσi

(
P

π′
−i

h,s,ai

)PVi,h+1

]∣∣∣∣
(i)

≤ Eai∼πi(s)

[
max

α∈[mins Vi,h+1(s),maxs Vi,h+1(s)]

∣∣∣∣Eπ−i(a−i | s)

[
P 0
h,s,(ai,a−i)

]
[Vi,h+1]α

− Eπ′
−i(a−i | s)

[
P 0
h,s,(ai,a−i)

]
[Vi,h+1]α

∣∣∣∣]+ ∑
ai∈Ai

∣∣π′
i(ai | s)− πi(ai | s)

∣∣ inf
P∈Uσi

(
P

π′
−i

h,s,ai

)PVi,h+1

(ii)

≤
∑

a−i∈Ai

∣∣∣∣∏
j ̸=i

πj(aj | s)−
∏
j ̸=i

π′
j(aj | s)

∣∣∣∣H +HAi∆(ϵ)

(iii)

≤ H
∏

j ̸=i,j∈[n]

Aj(2
n−1 − 1)δ(ϵ) +HAi∆(ϵ) ≤ 2H

∏
i∈[n]

Ai(2
n − 1) · δ(ϵ), (66)

where the first inequality holds by the triangle inequality, and (i) follows from applying the dual
form of TV distance

inf
P∈Uσi (P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α − σi

(
α−min

s′
[V ]α (s′)

)}
, (67)

and the maximum operator is 1-Lipschitz, (ii) arises from the fact that ∥Vi,h+1∥∞ ≤ H , and (iii)
can be verified by following the same pipeline of (64). Combining (65) and (66), one has∣∣fi,s(πi(s), π−i(s);Vi,h+1)− fi,s(π

′
i(s), π

′
−i(s);Vi,h+1)

∣∣ ≤ 3H
∏
i∈[n]

Ai(2
n − 1) · δ(ε). (68)

Consequently, letting δ1(ϵ) =
min{ϵ,1}

3H
∏

i∈[n] Ai(2n−1) , we have when d(π, π′) < δ1(ϵ),∣∣fi,s(πi(s), π−i(s);Vi,h+1)− fi,s(π
′
i(s), π

′
−i(s);Vi,h+1)

∣∣ < ϵ.

C.2.3 PROOF OF LEMMA 3

Without loss of generality, we consider any i ∈ [n]. Consider x−i : S 7→
∏

j ̸=i,j∈[n] ∆(Aj) and
y−i : S 7→

∏
j ̸=i,j∈[n] ∆(Aj). Before continuing, for all s ∈ S, we denote

u⋆
i,s := argmaxπ′

i∈∆(S) fi,s(π
′
i(s), x−i(s);Vi,h+1),

v⋆i,s := argmaxπ′
i∈∆(S) fi,s(π

′
i(s), y−i(s);Vi,h+1). (69)

Then we have for any s ∈ S,

gi,s(x−i(s), Vi,h+1)− gi,s(y−i(s), Vi,h+1)

= maxπ′
i∈∆(S) fi,s(π

′
i(s), x−i(s);Vi,h+1)−maxπ′

i∈∆(S) fi,s(π
′
i(s), y−i(s);Vi,h+1)

= fi,s(u
⋆
i,s, x−i(s);Vi,h+1)− fi,s(v

⋆
i,s, y−i(s);Vi,h+1)

≤ fi,s(u
⋆
i,s, x−i(s);Vi,h+1)− fi,s(u

⋆
i,s, y−i(s);Vi,h+1) → 0 as y−i(s)→ x−i(s), (70)

where the last line holds by Lemma (2) which shows that the function fi,s is continuous. Similarly,
one has

gi,s(x−i(s), Vi,h+1)− gi,s(y−i(s), Vi,h+1)

≥ fi,s(v
⋆
i,s, x−i(s);Vi,h+1)− fi,s(u

⋆
i,s, y−i(s);Vi,h+1) → 0 as y−i(s)→ x−i(s). (71)

We complete the proof by showing that

|gi,s(x−i(s), Vi,h+1)− gi,s(y−i(s), Vi,h+1)| → 0 as y−i(s)→ x−i(s). (72)

D PROOF OF THEOREM 2

We will present the proof of Theorem 2 by first outlining the proof structure, followed by a step-
by-step explanation of the key components. Auxiliary proofs will be provided at the end of this
section.
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D.1 PROOF PIPELINE

To proof Theorem 2, recall the goal is to show that

∀(i, s) ∈ [n]× S : Eπ∼ξ̂

[
V

⋆,π−i,σi

i,1 (s)
]
− Eπ∼ξ̂

[
V π,σi

i,1 (s)
]
≤ ε, (73)

where ξ̂ = {ξ̂h}h∈[H] is the output distribution over the set of policies {πk
h = (πk

1,h × · · · ×
πk
n,h)}k∈[K],h∈[H] from Algorithm 2. Namely, π ∼ ξ̂ means

∀h ∈ [H] : πh ∼ ξ̂h, where ξ̂h(π
k
h) = αK

k . (74)

We first introduce the best-response policy for player i:

π̃⋆
i = [π̃⋆

i,h]h∈[H] := arg max
π′
i:S×[H]→∆(Ai)

Eπ∼ξ̂

[
V

π′
i,π−i

i,1

]
.

Recall that value function Eπ∼ξ̂

[
V π,σi

i,h

]
satisfies the following Bellman equation for all (i, s, h) ∈

[n]× S × [H]:

Eπ∼ξ̂

[
V π,σi

i,H+1(s)
]
= 0,

Eπ∼ξ̂

[
V π,σi

i,h (s)
]

= Eπ∼ξ̂

∑
a∈A

πh(a | s)ri,h(s,a) + Eai∼πi,h

 inf
P∈Uσi

i

(
P

π−i
h,s,ai

)PEπ∼ξ̂

[
V π,σi

i,h+1

] ,

=

K∑
k=1

∑
a∈A

αK
k πk

h(a | s)ri,h(s,a) +
K∑

k=1

αK
k Eai∼πk

i,h

 inf

P∈Uσi
i

(
P

πk
−i

h,s,ai

)PEπ∼ξ̂

[
V π,σi

i,h+1

] ,

where P
πk
−i

h,s,ai
is defined as:

P
πk
−i

h,s,ai
= Ea−i∼πk

−i,h(·|s)

[
P 0
h,s,(ai,a−i)

]
=

∑
a−i∈A−i

πk
−i,h(a−i | s)

[
P 0
h,s,(ai,a−i)

]
.

We decompose the error in the value functions as follows:

Eπ∼ξ̂

[
V

⋆,π−i

i,h

]
− Eπ∼ξ̂

[
V π
i,h

]
≤ Eπ∼ξ̂

[
V

⋆,π−i

i,h

]
− Eπ∼ξ̂

[
V

π̃⋆
i ,π−i

i,h

]
︸ ︷︷ ︸

A

+Eπ∼ξ̂

[
V

⋆,π−i

i,h

]
− Eπ∼ξ̂

[
V

π

i,h

]
︸ ︷︷ ︸

B

+ Eπ∼ξ̂

[
V

π

i,h

]
− Eπ∼ξ̂

[
V π
i,h

]
︸ ︷︷ ︸

C

.

(75)

We define the following auxiliary value functions for all s ∈ S:

Eπ∼ξ̂

[
V

π

i,h(s)
]

=

K∑
k=1

αK
k Eai∼πk

i,h(s)

[
rki,h(s, ai)

]
+

K∑
k=1

αK
k Eai∼πk

i,h(s)

 inf
P∈Uσi

(
Pk

i,h,s,ai

)PEπ∼ξ̂

[
V

π

i,h+1

] ,

(76a)

Eπ∼ξ̂

[
V

π̃⋆
i ,π−i

i,h (s)
]

=

K∑
k=1

αK
k Eai∼π̃⋆

i,h(s)

[
rki,h(s, ai)

]
+

K∑
k=1

αK
k Eai∼π̃⋆

i,h(s)

 inf
P∈Uσi

(
Pk

i,h,s,ai

)PEπ∼ξ̂

[
V

π̃⋆
i ,π−i

i,h+1

] ,

(76b)
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Eπ∼ξ̂

[
V

⋆,π−i

i,h (s)
]
= max

ai∈Ai

K∑
k=1

αK
k

rki,h(s, ai) +
 inf

P∈Uσi

(
Pk

i,h,s,ai

)PEπ∼ξ̂

[
V

⋆,π−i

i,h+1

] ,

(76c)

where for all s ∈ S, we also have

Eπ∼ξ̂

[
V

π

i,H+1(s)
]
= Eπ∼ξ̂

[
V

π̃⋆
i ,π−i

i,H+1 (s)
]
= Eπ∼ξ̂

[
V

⋆,π−i

i,H+1(s)
]
= 0

Here, we use the fact that Eπ∼ξ̂

[
V

⋆,π−i

i,h

]
≥ Eπ∼ξ̂

[
V

π̃⋆
i ,π−i

i,h (s)
]
. Using the error decomposition in

(75), we will now individually bound the three terms, A, B, and C, in the following sections.

D.2 CONTROLLING B: ADVERSARIAL ONLINE LEARNING

D.2.1 STEP 1: SHOWING THAT V̂i,h IS AN ENTRY-WISE UPPER BOUND ON Eπ∼ξ̂

[
V

⋆,π−i

i,h

]
The following lemma demonstrates that the value estimate V̂i,h for the ith player serves as an opti-

mistic estimate of the auxiliary value Eπ∼ξ̂

[
V

⋆,π−i

i,h

]
, as defined in (76).

Lemma 4. With probability at least 1− δ, it holds that

V̂i,h ≥ Eπ∼ξ̂

[
V

⋆,π−i

i,h

]
, for all (i, h) ∈ [n]× [H].

Proof. See Appendix D.4.1

The following lemma demonstrates that the value estimate V̂i,h for the ith player serves as an opti-

mistic estimate of the auxiliary value Eπ∼ξ̂

[
V

⋆,π−i

i,h

]
, as defined in (76).

Lemma 5. For value vector V̂i,h and Eπ∼ξ̂

[
V

π

i,h

]
, it holds that

V̂i,h ≥ Eπ∼ξ̂

[
V

π

i,h

]
, for all (i, h) ∈ [n]× [H].

Proof. See Appendix D.4.2

D.2.2 STEP 2: CONSTRUCTING RECURSION

To begin with, according to the definition of V̂i,h(s) and Eπ∼ξ̂

[
V

π

i,h(s)
]
, we have

V̂i,h(s)− Eπ∼ξ̂

[
V

π

i,h(s)
]

= min


K∑

k=1

αK
k Eai∼πk

i,h

rki,h(s, ai) + inf
P∈Uσi

(
Pk

i,h,s,ai

)PV̂i,h+1

+ βi,h(s), H − h+ 1


−

K∑
k=1

αK
k Eai∼πk

i,h

rki,h(s, ai) + inf
P∈Uσi

(
Pk

i,h,s,ai

)PEπ∼ξ̂

[
V

π

i,h+1

]
≤

K∑
k=1

αK
k Eai∼πk

i,h

rki,h(s, ai) + inf
P∈Uσi

(
Pk

i,h,s,ai

)PV̂i,h+1

+ βi,h(s)

−
K∑

k=1

αK
k Eai∼πk

i,h

rki,h(s, ai) + inf
P∈Uσi

(
Pk

i,h,s,ai

)PEπ∼ξ̂

[
V

π

i,h+1

]
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=

K∑
k=1

αK
k Eai∼πk

i,h

 inf
P∈Uσi

(
Pk

i,h,s,ai

)PV̂i,h+1

+ βi,h(s)

−
K∑

k=1

αK
k Eai∼πk

i,h

 inf
P∈Uσi

(
Pk

i,h,s,ai

)PEπ∼ξ̂

[
V

π

i,h+1

] (77)

To simplify the notations, we define transition kernel associated estimated value function similarly
as (23). For all k ∈ [K], we define matrix notations P̂πk,V̂

i,h and P̂ π̂k,V
i,h as:

P̂πk,V̂
i,h := P̂

πk
−i,V̂i,h+1

i,h ,

P̂πk,V̂
i,h,s,ai

:= P̂
πk
−i,V̂i,h+1

i,h,s,ai
= argmin

P∈Uσi
ρ

(
P̂

πk
−i

i,h,s,ai

)PV̂i,h+1,

P̂πk,V
i,h := P̂

πk
−i,Eπ∼ξ̂[V

π
i,h+1]

i,h

P̂πk,V
i,h,s,ai

:= P̂
πk
−i,Eπ∼ξ̂[V

π
i,h+1]

i,h,s,ai
= argmin

P∈Uσi
ρ

(
P̂

πk
−i

i,h,s,ai

)PEπ∼ξ̂

[
V

π

i,h+1

]
.

Additionally, we define square matrices P̂
πk,V

i,h ∈ RS×S and P̂
πk,V̂

i,h ∈ RS×S as: P̂
πk,V

i,h :=

Π
πk
i

h P̂
πk
−i,V

i,h and P̂
πk,V̂

i,h := Π
πk
i

h P̂
πk
−i,V̂

i,h . We rewrite the result of (77) in a vector form, we can
obtain that

V̂i,h − Eπ∼ξ̂

[
V

π

i,h

]
≤

K∑
k=1

αK
k Ππi

h

 inf

P∈Uσi

(
P̂

πk
−i

i,h,s,ai

)PV̂i,h+1

+ βi,h −
K∑

k=1

αK
k Ππi

h

 inf

P∈Uσi

(
P̂

πk
−i

i,h,s,ai

)PV π

i,h+1


=

K∑
k=1

αK
k P̂

πk,V̂

i,h V̂i,h+1 + βi,h −
K∑

k=1

αK
k P̂

πk,V

i,h Eπ∼ξ̂

[
V

π

i,h+1

]
≤

K∑
k=1

αK
k P̂

πk,V

i,h

(
V̂i,h+1 − Eπ∼ξ̂

[
V

π

i,h+1

])
+ βi,h.

To continue, we first introduce an lemma of the upper bound for bonus vector βi,h.
Lemma 6. The bonus vector βi,h is bounded by the following inequality:

βi,h ≤ 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

(
H · 1 +

K∑
k=1

αK
k Var

P̂
πk,V̂

i,h

V̂i,h+1

)

Proof. See Appendix D.4.3

To proceed, we introduce some notations for convenience. Let es denote the S-dimensional standard
basis vector, with support on the s-th element. Additionally, we define:

bhh = es and bjh = e⊤s

[
j−1∏
r=h

(
K∑

k=1

αK
k P̂

πk,V

i,r

)]
, ∀j = h+ 1, . . . ,H. (78)

Armed with above notations and fact, for any s ∈ S, we have

V̂i,h(s)− Eπ∼ξ̂

[
V

π

i,h(s)
]
=
〈
es, V̂i,h − Eπ∼ξ̂

[
V

π

i,h

]〉
=

H∑
j=h

〈
bjh, βi,j

〉
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≤
H∑

j=h

〈
bjh, 3cbH

√
log3(

KS
∑n

i=1 Ai

δ )

KH
1

〉

+

H∑
j=h

K∑
k=1

αK
k

〈
bjh, 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH
Var

P̂
πk,V̂

i,j

V̂i,j+1

〉

= 3cb

√
H3 log3(

KS
∑n

i=1 Ai

δ )

K
+ 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

H∑
j=h

K∑
k=1

αK
k

〈
bjh,VarP̂πk,V̂

i,j

V̂i,j+1

〉
.

(79)

With elementary inequality
√

VarP (V + V ′) ≤
√
VarP (V )+

√
VarP (V ′) for any transition kernel

P ∈ RS and vector V, V ′ ∈ RS , we further decompose (79) as

V̂i,h(s)− Eπ∼ξ̂

[
V

π

i,h(s)
]

≤ 3cb

√
H3 log3(

KS
∑n

i=1 Ai

δ )

K
+ 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

H∑
j=h

K∑
k=1

αK
k

〈
bjh,VarP̂πk,V̂

i,j

V̂i,j+1

〉

≤ 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

K∑
k=1

αK
k

H∑
j=h

〈
bjh,VarP̂πk,V̂

i,j

(
V̂i,j+1 − Eπ∼ξ̂

[
V

π

i,j+1

])〉

+ 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

 K∑
k=1

αK
k

H∑
j=h

〈
bjh,VarP̂πk,V̂

i,j

(
Eπ∼ξ̂

[
V

π

i,j+1

])〉
+H2


≤ D1 +D2 +D3 + 3cb

√
H3 log3(

KS
∑n

i=1 Ai

δ )

K
,

where we define the three terms D1,D2,D3 as:

D1 = 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

H∑
j=h

K∑
k=1

αK
k

〈
bjh,VarP̂πk,V̂

i,j

(
V̂i,j+1 − Eπ∼ξ̂

[
V

π

i,j+1

])〉

D2 = 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

H∑
j=h

K∑
k=1

αK
k

〈
bjh,VarP̂πk,V̂

i,j

(
Eπ∼ξ̂

[
V

π

i,j+1

])〉

− 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

H∑
j=h

K∑
k=1

αK
k

〈
bjh,VarP̂πk,V

i,j

(
Eπ∼ξ̂

[
V

π

i,j+1

])〉

D3 = 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

H∑
j=h

K∑
k=1

αK
k

〈
bjh,VarP̂πk,V

i,j

(
Eπ∼ξ̂

[
V

π

i,j+1

])〉
(80)

We now control the three terms D1,D2,D3 separately.

Controlling D1. We can directly obtain the following upper bound on D1:

D1 = 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

H∑
j=h

K∑
k=1

αK
k

〈
bjh,VarP̂πk,V̂

i,h

(
V̂i,j+1 − Eπ∼ξ̂

[
V

π

i,j+1

])〉

≤ 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

H∑
j=h

K∑
k=1

αK
k

〈
bjh,

∥∥∥∥VarP̂πk,V̂

i,h

(
V̂i,j+1 − Eπ∼ξ̂

[
V

π

i,j+1

])∥∥∥∥
∞
· 1
〉

≤ 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

H∑
j=h

K∑
k=1

αK
k

〈
bjh,
∥∥∥V̂i,j+1 − Eπ∼ξ̂

[
V

π

i,j+1

]∥∥∥2
∞
· 1
〉
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(i)

≤ 3cb

√
H log3(

KS
∑n

i=1 Ai

δ )

K

H∑
j=h

K∑
k=1

αK
k

〈
bjh,
∥∥∥V̂i,j+1 − Eπ∼ξ̂

[
V

π

i,j+1

]∥∥∥
∞
· 1
〉

≤ 3cb

√
H3 log3(

KS
∑n

i=1 Ai

δ )

K
max

h≤j≤H

∥∥∥V̂i,j+1 − Eπ∼ξ̂

[
V

π

i,j+1

]∥∥∥
∞

(81)

where (i) follows from the elementary upper bound
∥∥∥V̂i,j+1

∥∥∥
∞
≤ H ,

∥∥∥Eπ∼ξ̂

[
V

π

i,j+1

]∥∥∥
∞
≤ H for

all h ≤ j ≤ H .

Before deriving the upper bounds for the termsD2 andD3, we first introduce the following auxiliary
lemmas, which will be instrumental in the subsequent derivation.

Lemma 7. For all (i, h) ∈ [n]× [H], the estimated robust value function Eπ∼ξ̂

[
V

π

i,h

]
satisfies the

following inequality:

max
s∈S

Eπ∼ξ̂

[
V

π

i,h(s)
]
−min

s∈S
Eπ∼ξ̂

[
V

π

i,h(s)
]
≤ min

{
1

σi
, H − h+ 1

}
.

Proof. See Appendix D.4.4.

With Lemma 7, we have the following lemma on variance base on different transition probability in
the same uncertainty set, and we leave the proof to Appendix D.4.5.

Lemma 8. For a transition kernel P ′ ∈ RS and any P̃ ∈ RS such that P̃ ∈ Uσi(P ′), the following
bound holds for all (i, h, ) ∈ [n]× [H]:∣∣∣VarP ′

(
Eπ∼ξ̂

[
V

π

i,h

])
− VarP̃

(
Eπ∼ξ̂

[
V

π

i,h

])∣∣∣ ≤ min

{
1

σi
, H − h+ 1

}
. (82a)

Controlling D2. We can directly apply Lemma 8 and arrive at∣∣∣∣VarP̂πk,V̂

i,h

(
Eπ∼ξ̂

[
V

π

i,h+1

])
− Var

P̂
πk,V

i,h

(
Eπ∼ξ̂

[
V

π

i,h+1

])∣∣∣∣
≤
∣∣∣∣VarP̂πk,V̂

i,h

(
Eπ∼ξ̂

[
V

π

i,h+1

])
− Var
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πk

i,h

(
Eπ∼ξ̂

[
V

π

i,h+1

])∣∣∣∣
+

∣∣∣∣VarP̂πk

i,h

(
Eπ∼ξ̂

[
V

π

i,h+1

])
− Var

P̂
πk,V

i,h

(
Eπ∼ξ̂

[
V

π
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≤ 2min

{
1

σi
, H

}
.

We insert (83) back to the expression of D2, and we can obtain that

D2 = 3cb

√
log3(
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δ )
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H∑
j=h
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k=1
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(
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V
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− 3cb
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log3(
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i,j

(
Eπ∼ξ̂

[
V

π
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≤ 3cb

√
log3(
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1
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〉
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√
H log3(
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1
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. (83)
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Controlling D3. We first apply Lemma 12, and we can directly deduce that

D3 = 3cb

√
log3(
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δ )

KH
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j=h

K∑
k=1

αK
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(
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≤ 3cb

√
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i,j

(
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[
V

π
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])〉

We now introduce the following lemma on
∑H

j=h

〈
bjh,Var∑K

k=1 αK
k P̂

πk,V

i,j

Eπ∼ξ̂

[
V

π

i,j+1

]〉
, which

is an empirical-transition version of Lemma 16.
Lemma 9. Let δ ∈ (0, 1). With probability at least 1 − δ, the following condition holds for all
(h, i) ∈ [H]× [n]:

H∑
j=h

〈
bjh,Var∑K

k=1 αK
k P̂

πk,V

i,j

(
Eπ∼ξ̂

[
V

π
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])〉

≤ 3H

(
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[
V

π

i,h(s)
]
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s∈S
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[
V

π

i,h(s)
])

. (84)

Proof. See Appendix D.4.6.

Therefore, we can further achieve the following upper bound of D3 by applying Lemma 9:

D3 ≤ 3cb

√
log3(
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∑n

i=1 Ai

δ )

KH

H∑
j=h

〈
bjh,Var∑K
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≤ 9cb

√
H log3(
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K
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{
1

σi
, H

}
(85)

where (i) holds due to Lemma 8.

D.2.3 STEP 3: SUMMING UP THE RESULT

We combine the result of (81), (83), (85), yielding

V̂i,h − Eπ∼ξ̂

[
V

π

i,h

]
≤ 3cb

√
H3 log3(
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∑n
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δ )

K
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δ )
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(
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∞

1.

Moreover, Lemma 5 implies that V̂i,h−Eπ∼ξ̂

[
V

π

i,h

]
=
∣∣∣V̂i,h − Eπ∼ξ̂

[
V

π

i,h

]∣∣∣, which indicates that
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+ 3cb
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where (i) holds by taking K ≥ 12c2bH
3 log3(

KS
∑n

i=1 Ai

δ ), and involving the basic facts that

V̂i,H+1 = Eπ∼ξ̂

[
V

π

i,H+1

]
= 0. Eventually, we can achieve the following upper bound of term

B:

Eπ∼ξ̂

[
V

⋆,π−i

i,h

]
− Eπ∼ξ̂

[
V

π

i,h

]
≤ 36cb

√
H3 log3(

KS
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i=1 Ai

δ )

K
1. (86)

D.3 CONTROLLING TERMS A AND C

In this section, we derive an upper bound for the difference between the true value function and
the estimated value function. We consider a more general case involving a given set of policies{
π̂k
h

}
(h,k)∈[H]×[K]

, where either π̂k
h = πk

h for all (h, k) ∈ [H] × [K], or π̂k
h = π̃⋆

i × πk
−i,h for all

(h, k) ∈ [H] × [K]. Additionally, we define a distribution over the set of policies ζ := {ζh}h∈[H],
with ζh : [H] 7→ ∆(S 7→

∏
i∈[n] ∆(Ai)), where ζh

(
π̂k
h

)
= αK

k for all (h, k) ∈ [H] × [K]. Our

objective is to derive an upper bound for
∣∣∣Eπ∼ζ

[
V π
i,h(s)

]
− Eπ∼ζ

[
V

π

i,h(s)
]∣∣∣ , where for all s ∈ S ,

Eπ∼ζ

[
V

π

i,h(s)
]

is defined as

Eπ∼ζ

[
V

π

i,h(s)
]

=

K∑
k=1

αK
k Eai∼π̂k

i,h(s)
[rki,h(s, ai)] +

K∑
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αK
k Eai∼π̂k

i,h(s)

 inf

P∈Uσi

(
P̂

π̂k
−i

i,h,s,ai

)PEπ∼ζ

[
V

π

i,h+1

] ,

with Eπ∼ζ

[
V

π

i,H+1(s)
]
= 0. Here, rki,h(s, ai) represents the empirical estimation of r

π̂k
−i

i,h (s, ai),

and P̂
π̂k
−i

i,h,s,ai
denotes the empirical estimation of P

π̂k
−i

h,s,ai
for all (h, s, ai, k) ∈ [H] × S × Ai ×

[K]. For notational clarity, we define the empirical reward vector rπ̂
k

i,h ∈ RS , such that rπ̂
k

i,h(s) =

Eai∼π̂k
i,h(s)

[rki,h(s, ai)] for all s ∈ S.

We first introduce the following two lemmas in terms of estimation error of transition model and
reward function:
Lemma 10. Let δ ∈ (0, 1) and consider any (h, i, k) ∈ [H] × [n] × [K]. With a probability of at
least 1 − δ, for any fixed value vector V ∈ RS , where 0 ≤ V (s) ≤ H for all s ∈ S , the following
inequality holds:∣∣∣∣P π̂k

−i,V

i,h V − P̂
π̂k
−i,V

i,h V

∣∣∣∣
≤ 2
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log
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)
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1

≤ 3

√√√√H2 log
(
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∑n
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δ

)
N

1,

where Var
P

π̂k
−i

h

(·) is as defined in (25).
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Proof. See Appendix D.4.7.

Lemma 11. There exists a constant cr such that for any fixed pair (h, i) ∈ [H]×[n], with probability
at least 1− δ, the following inequality holds:∣∣∣∣∣

K∑
k=1

αK
k rπ̂

k

i,h −
K∑

k=1

αK
k rπ̂

k

i,h

∣∣∣∣∣ ≤ cr

√
log
(
KS
δ

)
K

1.

Proof. See Appendix D.4.8.

For clarity of presentation, we extend the definitions in (23) and introduce additional notations re-
lated to transitions associated with the estimated value function. With a slight abuse of notation, we
define the matrix notations P̂ π̂k,V̂

i,h and P̂ π̂k,V
i,h as follows for all (i, h, k) ∈ [n]× [H]× [K]:

P π̂k,V
i,h := P

π̂k
−i,Eπ∼ζ[V

π
i,h+1]

i,h ,

P π̂k,V
i,h,s,ai

:= P
π̂k
−i,Eπ∼ζ[V

π
i,h+1]

i,h,s,ai
= argmin

P∈Uσi
ρ

(
P

π̂k
−i

h,s,ai

)PEπ∼ζ

[
V

π

i,h+1

]
,

P̂ π̂k,V
i,h := P̂

π̂k
−i,Eπ∼ζ[V

π
i,h+1]

i,h ,

P̂ π̂k,V
i,h,s,ai

:= P̂
π̂k
−i,Eπ∼ζ[V

π
i,h+1]

i,h,s,ai
= argmin

P∈Uσi
ρ

(
P̂

π̂k
−i

i,h,s,ai

)PEπ∼ζ

[
V

π

i,h+1

]
.

Additionally, we define the square matrices P̂
π̂k,V

i,h ∈ RS×S and P π̂k,V
i,h ∈ RS×S as:

P̂
π̂k,V

i,h := Π
π̂k
i

h P̂
π̂k
−i,V

i,h , P π̂k,V
i,h := Π

π̂k
i

h P
π̂k
−i,V

i,h .

At any time step h ∈ [H], we have

Eπ∼ζ

[
V π
i,h

]
− Eπ∼ζ

[
V

π

i,h

]
(i)
=

K∑
k=1

αK
k rπ̂

k

i,h +

K∑
k=1

αK
k Π

π̂k
i,h

h

 inf

P∈Uσi

(
P

π̂k
−i

h,s,ai

)PEπ∼ζ

[
V π
i,h+1

]

−
K∑

k=1

αK
k rπ̂

k

i,h −
K∑

k=1

αK
k Π

π̂k
i,h

h

 inf

P∈Uσi

(
P̂

π̂k
−i

h,s,ai

)PEπ∼ζ

[
V

π

i,h+1

]
(ii)
=

K∑
k=1

αK
k rπ̂

k

i,h +

K∑
k=1

αK
k P π̂k,V

i,h Eπ∼ζ

[
V π
i,h+1

]
−

K∑
k=1

αK
k rπ̂

k

i,h −
K∑

k=1

αK
k P̂

π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
(87)

where (i) holds by the robust Bellman equation in (26) with matrix notation in (23), (ii)
arises from the definition in (76). Moreover, through simple observation, we directly have
P π̂k,V

i,h Eπ∼ζ

[
V π
i,h+1

]
≤ P π̂k,V

i,h Eπ∼ζ

[
V π
i,h+1

]
for all (h, k) ∈ [H]× [K]. Thus, we further control

(87) as

Eπ∼ζ

[
V π
i,h

]
− Eπ∼ζ

[
V

π

i,h

]
=

K∑
k=1

αK
k rπ̂

k

i,h +

K∑
k=1

αK
k P π̂k,V

i,h Eπ∼ζ

[
V π
i,h+1

]
−

K∑
k=1

αK
k rπ̂

k

i,h −
K∑

k=1

αK
k P̂

π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
=

K∑
k=1

αK
k

[(
rπ̂

k

i,h − rπ̂
k

i,h

)
+
(
P π̂k,V

i,h Eπ∼ζ [V
π
i,h+1]− P π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

])
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+

(
P π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
− P̂

π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

])]
≤

K∑
k=1

αK
k

(
P π̂k,V

i,h Eπ∼ζ

[
V π
i,h+1

]
− P π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

])
+

K∑
k=1

αK
k

[∣∣∣rπ̂k

i,h − rπ̂
k

i,h

∣∣∣+ ∣∣∣∣P π̂k,V
i,h Eπ∼ζ

[
V

π

i,h+1

]
− P̂

π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]∣∣∣∣]︸ ︷︷ ︸
:=aζ

i,h

. (88)

Applying (88) recursively leads to

Eπ∼ζ

[
V π
i,h

]
− Eπ∼ζ

[
V

π

i,h

]
≤

H∑
j=h

[
j−1∏
r=h

(
K∑

k=1

αK
k P π̂k,V

i,r

)]
aζi,j , (89)

where the inequality holds by adopting the following notations:[
h−1∏
r=h

(
K∑

k=1

αK
k P π̂k,V

i,r

)]
= I,[

j−1∏
r=h

(
K∑

k=1

αK
k P π̂k,V

i,r

)]
=

(
K∑

k=1

αK
k P π̂k,V

i,h

)
·

(
K∑

k=1

αK
k P π̂k,V

i,h+1

)
· · ·

(
K∑

k=1

αK
k P π̂k,V

i,j−1

)
.

Next, similar to (88), we can achieve that

Eπ∼ζ

[
V

π

i,h

]
− Eπ∼ζ

[
V π
i,h

]
(i)
=

K∑
k=1

αK
k rπ̂

k

i,h +

K∑
k=1

αK
k P̂

π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
−

K∑
k=1

αK
k rπ̂

k

i,h −
K∑

k=1

αK
k P π̂k,V

i,h Eπ∼ζ

[
V π
i,h+1

]
=

K∑
k=1

αK
k

[(
rπ̂

k

i,h − rπ̂
k

i,h

)
+

(
P̂

π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
− P π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

])

+
(
P π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
− P π̂k,V

i,h Eπ∼ζ

[
V π
i,h+1

]) ]
(ii)

≤
K∑

k=1

αK
k

(
P π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
− P π̂k,V

i,h Eπ∼ζ

[
V π
i,h+1

])
+

K∑
k=1

αK
k

[∣∣∣rπ̂k

i,h − rπ̂
k

i,h

∣∣∣+ ∣∣∣∣P π̂k,V
i,h Eπ∼ζ

[
V

π

i,h+1

]
− P̂

π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]∣∣∣∣] ,
where (i) holds due to robust Bellman equation, and (ii) holds due to the direct observation that
P π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
≤ P π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
. Then following the routine of achieving (89), we

can obtain that

Eπ∼ζ

[
V

π

i,h

]
− Eπ∼ζ

[
V π
i,h

]
≤

H∑
j=h

[
j−1∏
r=h

(
K∑

k=1

αK
k P π̂k,V

i,r

)]
aζi,j . (90)

Summing up (90) and (89), one has∣∣∣Eπ∼ζ

[
V

π

i,h

]
− Eπ∼ζ

[
V π
i,h

]∣∣∣
≤ max

{
Eπ∼ζ

[
V π
i,h

]
− Eπ∼ζ

[
V

π

i,h

]
,Eπ∼ζ

[
V

π

i,h

]
− Eπ∼ζ

[
V π
i,h

]}
≤ max


H∑

j=h

[
j−1∏
r=h

(
K∑

k=1

αK
k P π̂k,V

i,r

)]
aζi,j ,

H∑
j=h

[
j−1∏
r=h

(
K∑

k=1

αK
k P π̂k,V

i,r

)]
aζi,j .

 , (91)
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where the max operator is taken entry-wise for vectors. To continue, we apply Lemma 10 and
Lemma 11, and we can obtain the following upper bound on aζi,j for all (i, j) ∈ [n]× [H]:

aζi,h =

K∑
k=1

αK
k

[∣∣∣rπ̂k

i,h − rπ̂
k

i,h

∣∣∣+ ∣∣∣∣P π̂k,V
i,h Eπ∼ζ

[
V

π

i,h+1

]
− P̂

π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]∣∣∣∣]

≤ 2

K∑
k=1

αK
k

√√√√ log
(

18S
∑n

i=1 AiKNnH

δ

)
N

√
Var

P π̂k

h

(
Eπ∼ζ

[
V

π

i,h+1

])

+
log
(

18S
∑n

i=1 AiKNnH

δ

)
N

1 + cr

√
log(KSnH

δ )

K
1,

holds with probability at least 1− δ.

D.3.1 CONTROLLING THE FIRST TERM IN (91)

To simplify notation, let us introduce some additional symbols. Recall that es represents the standard
basis vector in S-dimensional space associated with the s-th component. We define

dhh = es and djh = e⊤s

[
j−1∏
r=h

(
K∑

k=1

αK
k P π̂k,V

i,r

)]
for j = h+ 1, . . . ,H. (92)

With these notations in place, for any s ∈ S, we consider

Eπ∼ζ

[
V π
i,h(s)

]
− Eπ∼ζ

[
V

π

i,h(s)
]
=
〈
es,Eπ∼ζ

[
V π
i,h

]
− Eπ∼ζ

[
V

π

i,h

]〉
=

H∑
j=h

〈
djh, a

ζ
i,j

〉
.

Applying Lemma 10, we obtain

Eπ∼ζ

[
V π
i,h(s)

]
− Eπ∼ζ

[
V

π

i,h(s)
]

≤
H∑

j=h

〈
djh, 2

K∑
k=1

αK
k

√√√√ log
(

18S
∑n

i=1 AiKNH

δ

)
N

√
Var

P π̂k
j

(
Eπ∼ζ

[
V

π

i,j+1

])〉

+
log
(

18S
∑n

i=1 AiKNH

δ

)
N

+ cr

√
log
(
KSnH

δ

)
K

≤
H log

(
18S

∑n
i=1 AiKNH

δ

)
N

+ cr

√
H2 log

(
KSnH

δ

)
K

+

H∑
j=h

〈
djh, 2

K∑
k=1

αK
k

√√√√ log
(

18S
∑n

i=1 AiKNH

δ

)
N

√
Var

P π̂k
j

(
Eπ∼ζ

[
V

π

i,j+1

])〉
. (93)

By applying the triangle inequality, we can further decompose the term of interest as follows:

Eπ∼ζ

[
V π
i,h(s)

]
− Eπ∼ζ

[
V

π

i,h(s)
]

≤
H log

(
18S

∑n
i=1 AiKNH

δ

)
N

+ cr

√
H2 log

(
KSnH

δ

)
K

+ B1 + B2, (94)

where we define term B1 and B2 as:

B1 =

H∑
j=h

〈
djh, 2

K∑
k=1

αK
k

√√√√ log
(

18S
∑n

i=1 AiKNH

δ

)
N

√
Var

P π̂k,V
i,j

(
Eπ∼ζ

[
V

π

i,j+1

])〉
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B2 =

H∑
j=h

2

K∑
k=1

αK
k

〈
djh,

√∣∣∣∣VarP π̂k,V
i,j

(
Eπ∼ζ

[
V

π

i,j+1

])
− Var

P π̂k
j

(
Eπ∼ζ

[
V

π

i,j+1

])∣∣∣∣
〉

·
√

log (18S
∑n

i=1 AiKNH/δ)

N

We then analyze the bounds for the terms B1 and B2 separately.

Controlling B1. First, we introduce the following lemma and corresponding inequality to establish

control over the term
∑K

k=1 α
K
k

√
Var

P π̂k,V
i,j

(
Eπ∼ζ

[
V

π

i,j+1

])
:

Lemma 12. For any transition kernels P1, . . . , Pm ∈ RS , and any weight a1, . . . , am ∈ [0, 1] with
a1 + . . .+ am = 1, one has

m∑
i=1

ai
√

VarPi
(V ) ≤

√
Var∑m

i=1 aiPi
(V ),

where V denote any fixed value vector V ∈ RS with 0 ≤ V (s) ≤ H for all s ∈ S.

Proof. Initially, since f(x) =
√
x is a concave function, we have

m∑
i=1

ai
√
VarPi(V ) =

√√√√ m∑
i=1

aiVarPi(V ).

Moreover, according to the definition of variance in (24), we obtain that
m∑
i=1

aiVarPi
(V ) =

m∑
i=1

ai (EPi
(V ◦ V )− (EPi

V ◦ EPi
V ))

≤
m∑
i=1

aiEPi
(V ◦ V )−

(
m∑
i=1

aiEPi
V

)
◦

(
m∑
i=1

aiEPi
V

)
,

where the last inequality holds due to the elementary fact that f(x) = x2 is a convex function.
Therefore, we have proven the result of the lemma.

With Lemma 12, we can further control B1 with

B1 =
H∑

j=h

〈
djh, 2

K∑
k=1

αK
k

√√√√ log
(

18S
∑n

i=1 AiKNnH

δ

)
N

√
Var

P π̂k,V
i,j

(
Eπ∼ζ

[
V

π

i,j+1

])〉

≤ 2

√√√√ log
(

18S
∑n

i=1 AiKNnH

δ

)
N

H∑
j=h

〈
djh,

√
Var∑K

k=1 αK
k P π̂k,V

i,j

(
Eπ∼ζ

[
V

π

i,j+1

])〉

≤ 2

√√√√ log
(

18S
∑n

i=1 AiKNnH

δ

)
N

√√√√H

H∑
j=h

〈
djh,Var∑K

k=1 αK
k P π̂k,V

i,j

(
Eπ∼ζ

[
V

π

i,j+1

])〉
. (95)

The last inequality holds due to Cauchy-Schwartz inequality. To further achieve the upper bound of

B1, we introduce the following lemma of
∑H

j=h

〈
djh,Var∑K

k=1 αK
k P π̂k,V

i,j

(
Eπ∼ζ

[
V

π

i,j+1

])〉
:

Lemma 13. Consider any δ ∈ (0, 1). With probability at least 1 − δ, one has for all (h, i) ∈
[H]× [n] :

H∑
j=h

〈
djh,Var∑K

k=1 αK
k P π̂k,V

i,j

(
Eπ∼ζ

[
V

π

i,j+1

])〉
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≤3H
(
max
s∈S

Eπ∼ζ

[
V

π

i,h+1(s)
]
−min

s∈S
Eπ∼ζ

[
V

π

i,h+1(s)
])1 + 2H

√
log(

18S
∑n

i=1 AinKNH

δ )

N

 .

(96)

Proof. See Appendix D.4.9.

Lemma 14. For all (i, h) ∈ [n] × [H], the estimated robust value function Eπ∼ζ

[
V

π

i,h

]
satisfies

the following inequality:

max
s∈S

Eπ∼ζ

[
V

π

i,h(s)
]
−min

s∈S
Eπ∼ζ

[
V

π

i,h(s)
]
≤ min

{
1

σi
, H − h+ 1

}
.

Proof. The proof of Lemma 14 closely parallels that of Lemma 7. Therefore, we omit the details
here for brevity and clarity.

Apply Lemma 13 to (95), we arrive at

B1 ≤ 2

√√√√ log
(

18S
∑n

i=1 AiKNnH

δ

)
N

√√√√H

H∑
j=h

〈
djh,Var∑K

k=1 αK
k P π̂k,V

i,j

(
Eπ∼ζ

[
V

π

i,j+1

])〉

≤

√
3H2

(
max
s∈S

Eπ∼ζ

[
V

π

i,h+1(s)
]
−min

s∈S
Eπ∼ζ

[
V

π

i,h+1(s)
])

· 2

√√√√√ log
(

18S
∑n

i=1 AiKNnH

δ

)
N

·

1 + 2H

√
log(

18S
∑n

i=1 AinKNH

δ )

N


(i)

≤ 2

√√√√√3H2 min

{
1

σi
, H − h+ 1

}1 + 2H

√
log(

18S
∑n

i=1 AinKNH

δ )

N



·

√√√√ log
(

18S
∑n

i=1 AinKNnH

δ

)
N

≤ 6

√√√√H2 min{1/σi, H} log
(

18S
∑n

i=1 AiKNnH

δ

)
N

, (97)

where (i) holds by applying Lemma 7 and Lemma 14, and the final inequality follows by taking
N ≥ 4H2 log

(
18S

∑n
i=1 AiKnNH

δ

)
.

Controlling B2. Initially, with similar analysis as Lemma 8, we have the following lemma:

Lemma 15. For transition kernel P ′ ∈ RS and any P̃ ∈ RS such that P̃ ∈ Uσi (P ′), the following
bounds are established for all (i, h) ∈ [n]× [H]:∣∣∣VarP ′

(
Eπ∼ζ

[
V

π

i,h

])
− VarP̃

(
Eπ∼ζ

[
V

π

i,h

])∣∣∣ ≤ min

{
1

σi
, H − h+ 1

}
.

With Lemma 15, we observe that∣∣∣∣VarP π̂k
j

(
Eπ∼ζ

[
V

π

i,j+1

])
− Var

P π̂k,V
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(ii)
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1, (98)

where (i) and (ii) follows from the definition of matrix notations Ππ
j (cf B.1) and P π̂k

j , P π̂k,V
i,j

(cf B.1), and the last inequality holds by applying Lemma 15 with P ′ = P
πk
−i

j,s,ai
, P̃ = P π̂k,V

i,j,s,ai

for all (s, ai) ∈ S ×Ai.

Plugging back (98) to (94), it can be verified that
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Consequently, combining (97) and (99), (94) can be bounded by

Eπ∼ζ

[
V π
i,h(s)

]
− Eπ∼ζ

[
V

π

i,h(s)
]

≤
H log

(
18S

∑n
i=1 AiKNnH

δ

)
N

+ cr

√
H2 log(KSnH

δ )

K
+ B1 + B2

≤
H log

(
18S

∑n
i=1 AiKNnH

δ

)
N

+ cr

√
H2 log(KSnH

δ )

K
(100)

+ 8

√√√√H2 min
{

1
σi
, H
}
log
(

18S
∑n

i=1 AiKNnH

δ

)
N

≤ cr

√
H2 log(KSnH

δ )

K
+ 12

√√√√H2 min
{

1
σi
, H
}
log
(

18S
∑n

i=1 AiKNnH

δ

)
N

, (101)

where the last inequality holds by taking N ≥ 4H2 log
(

18S
∑n

i=1 AiKNnH

δ

)
.

D.3.2 CONTROLLING THE SECOND TERM IN (91)

To do so, similar to (92), we define

wh
h = es and wj
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[
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(
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With the above notations in mind, following the routine of (93) gives: for any s ∈ S,
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Furthermore, following the routine established in (94), we can decompose the expression as follows:
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where (i) holds due to the triangle inequality and the fundamental inequality
√
VarP (V + V ′) ≤√

VarP (V )+
√
VarP (V ′) for any transition kernel P ∈ RS and vectors V, V ′ ∈ RS , and we define

the three terms B3, B4 and B5 as
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Next, we will control the three main terms B3,B4,B5 in (104) separately as outlined below:

Controlling B3. Initially, we apply Lemma 12, and we can obtain the following upper bound of B3:
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We further apply Cauchy-Schwartz inequality, and we can obtain that

B3 ≤ 2

√√√√ log
(

18S
∑n

i=1 AiKNnH

δ

)
N

H∑
j=h

〈
wj

h,

√
Var∑K

k=1 αK
k P π̂k,V

i,j

(
Eπ∼ζ

[
V π
i,j+1

])〉

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025
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In addition, to further bound the term of interest, we introduce the following lemma and inequalities
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.

Lemma 16. For any joint policy π, we have for all (h, i) ∈ [H]× [n]:
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Proof. See Appendix D.4.10.

Lemma 17. For all (i, h) ∈ [n]× [H], the estimated robust value function Eπ∼ζ

[
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i,h

]
satisfies the

following inequality:
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Proof. The proof of Lemma 17 closely parallels that of Lemma 7. Therefore, we omit the details
here for brevity and clarity.

Then applying Lemma 16 and Lemma 17 yields
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where the last inequality follows from Lemma 17.

Controlling B4 and B5 With similar analysis as Lemma 8, we have the following lemma:

Lemma 18. For any joint policy π, transition kernel P ′ ∈ RS , and any P̃ ∈ RS such that P̃ ∈
Uσi (P ′), the following bounds are established for all (i, h) ∈ [n]× [H]:∣∣VarP ′
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We apply Lemma 18, and we can directly obtain the following upper bound of B4:
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= s
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Then the remainder of the proof shall focus on B5. Recalling the definition in (104), one has
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Summing up (106), (107), and (108) and inserting back to (104), we conclude
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D.3.3 SUMMING UP THE RESULTS: UPPER BOUND FOR TERM A AND C

Inserting (101) and (109) back into (91), we observe that∣∣∣Eπ∼ζ
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which indicates that
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where (i) holds when N ≥ 4H2 log
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D.3.4 SUMMING UP THE RESULTS

Summing up the results in (111), (86), (112), we can achieve the upper bound of our target:
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Therefore, there exists a constant C, such that when N and K satisfies:

N ≥ CH2 min

{
1

min1≤i≤n σi
, H

}
log

(
18S

∑n
i=1 AiKNnH

δ

)
1

ϵ2
,

K ≥ CH3 log3
(
KS

∑n
i=1 AiH

δ

)
1

ϵ2

we achieve maxi∈[n] Eπ∼ξ̂

[
V

⋆,π−i

i,1

]
−Eπ∼ξ̂

[
V π
i,1

]
≤ ϵ ·1 with probability at least 1−δ. Therefore,

the total number of samples we need is at least

Nall = HS

n∑
i=1

KN = Õ
(
Smax1≤i≤n AiH

6

ϵ4
min

{
1

min1≤i≤n σi
, H

})
.

Thus, we finish the proof of Theorem 2.

D.4 PROOF OF AUXILIARY LEMMAS

D.4.1 PROOF OF LEMMA 4

Before proving Lemma 4, we first introduce the following lemma regarding the properties of the
learning rate.
Lemma 19 (Li et al. (2023, Lemma 1)). For any k ≥ 1, one has

α1 = 1,

k∑
i=1

αk
i = 1, max

1≤i≤k
αk
i ≤

2cα logK

k
. (113a)

In addition, if k ≥ cα logK + 1 and cα ≥ 24, then one has

max
1≤i≤k/2

αk
i ≤

1

K6
. (113b)

We will now prove the lemma with induction argument. Initially, the base step H +1 trivially holds
true, since we have

V̂i,H+1 = Eπ∼ξ̂

[
V

⋆,π−i

i,H+1

]
= 0.

Next, we assume that the lemma holds for step h+ 1, namely

V̂i,h+1 ≥ Eπ∼ξ̂

[
V

⋆,π−i

i,h+1

]
and attempt to justify the validity of Lemma 4 for step h. Let lk denote lk = −qki,h(s, ·),∀k ≥ 1,
then the update rule of Algorithm 2 can be viewed as the FTRL algorithm applied to the loss vectors
{lk}k∈[K]. According to the definition of {ηk}k∈[K] and {αk}k∈[K], we have(

ηk
ηk+1

)2

=
αk

αk−1
=

k − 2 + cα logK

k − 1 + cα logK
≥ k − 1

k − 1 + cα logK
= 1− αk > (1− αk)

2. (114)

This property (114) permits us to invoke Theorem 3 to obtain

max
ai∈Ai

K∑
k=1

αK
k qki,h(s, ai)−

K∑
k=1

αK
k

〈
πk
i,h, q

k
i,h(s, ·)

〉
= max

ai∈Ai

{
K∑

k=1

αK
k

〈
πk
i,h(s), lk

〉
−

K∑
k=1

αK
k lk(ai)

}

≤ 5

3

K∑
k=2

αK
k

ηkαk

1− αk
Varπk

i,h(s)

(
qki,h(s, ·)

)
+

logAi

ηK+1
+ τi,h

where τi,h is defined as

τi,h
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:=
5

3
αK
1 η2

∥∥q1i,h∥∥2∞ +

{
3

K∑
k=2

αK
k

η2kα
2
k

(1− αk)2
∥∥qki,h∥∥3∞1

(
ηkαk

1− αk

∥∥qki,h∥∥∞ >
1

3

)}
+ 3αK

1 η22
∥∥q1i,h∥∥3∞.

According to the definition of {αk}Kk=1 and {ηk}Kk=1, we have the following fact:

1− αk = 1− cα logK

k − 1 + cα logK
≥

{
1− cα logK

1+cα logK = 1
1+cα logK ≥

1
2cα logK , if k ≥ 2,

1− cα logK
K/2+cα logK = K

K+2cα logK ≥
1
2 , if k ≥ K/2 + 1,

(115a)

ηkαk =

√
logK

αk−1H
· αk ≤

√
logK

αkH
· αk =

√
αk logK

H
≤

√
2cα log2 K

kH
. (115b)

Therefore, we can re-control maxai∈Ai

∑K
k=1 α

K
k qki,h(s, ai)−

∑K
k=1 α

K
k

〈
πk
i,h, q

k
i,h(s, ·)

〉
with

max
ai∈Ai

K∑
k=1

αK
k qki,h(s, ai)−

K∑
k=1

αK
k

〈
πk
i,h, q

k
i,h(s, ·)

〉
(116)

≤ 5

3

K∑
k=2

αK
k

ηkαk

1− αk
Varπk

i,h(s)

(
qki,h(s, ·)

)
+

logAi

ηK+1
+ τi,h

(i)

≤ 5

3

K/2∑
k=2

(
2cα
)1.5

log2 K
√
kH

αK
k Varπk

i,h(s)

(
qki,h(s, ·)

)
︸ ︷︷ ︸

C1

+
20

3

K∑
k=K/2+1

αK
k

√
cα log2 K

KH
Varπk

i,h(s)

(
qki,h(s, ·)

)
+

logAi

ηK+1︸ ︷︷ ︸
C2

+ τi,h︸︷︷︸
C3

, (117)

Now we separately control the four terms C1, C2, C3 in (117).

• For term C1, we have
K/2∑
k=2

αK
k log2 K√

kH
Varπk

i,h(s)

(
qki,h(s, ·)

)
≤

K/2∑
k=2

log2 K

K6
√
kH

Varπk
i,h(s)

(
qki,h(s, ·)

)

≤
K/2∑
k=2

log2 K

K6
√
kH

∥∥qki,h(s, ·)∥∥2∞ ≤ H3/2 log2 K

K6

K/2∑
k=2

1√
k

≤ 2H3/2 log2 K

K6
·
√
K/2 ≤ 2H3/2 log2 K

K5
, (118)

where the third inequality holds due to the elementary bound
∥∥qki,h(s, ·)∥∥∞ ≤ H .

• For term C2, we have

logAi

ηK+1
= logAi

√
αKH

logK
≤

√
2cαH log2 Ai

K
, (119)

where the first equality holds due to the definition of ηK+1.
• For term C3, we initially have

ηkαk

1− αk

∥∥qki,h∥∥∞ ≤
√

2cα log2 K
kH

1
2cα logK

·H =

√
8c3αH log4 K

k
. (120)

Clearly, the right-hand side of (120) is upper bounded by 1/3 for all k obeying k ≥ c9H
2 log4 K

δ
for some large enough constant c9 > 0. Consequently, one can derive

τi,h
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=

{
3

K∑
k=2

αK
k

η2kα
2
k

(1− αk)2
∥∥qki,h∥∥3∞1

(
ηkαk

1− αk

∥∥qki,h∥∥∞ >
1

3

)}

+
5

3
αK
1 η2

∥∥q1i,h∥∥2∞ + 3αK
1 η22

∥∥q1i,h∥∥3∞
≤ 5

3K6

√
logK

H

∥∥q1i,h∥∥2∞ +

(
2cα logK

)2
K6

3

c9H
2 log4 K

δ∑
k=2

η2kα
2
k

∥∥qki,h∥∥3∞
+

3

K6

logK

H

∥∥q1i,h∥∥3∞
≤ 24c3α log4 K

K6H

{
K∑

k=1

1

k
H3

}

≤ 24c3αH
3 log5 K

K6
≤ 1

K4
, (121)

where the second line comes from (115) and the fact that K/2 > c9H log4 K
δ .

Combining previous three items, we can obtain that

max
ai∈Ai

K∑
k=1

αK
k qki,h(s, ai)−

K∑
k=1

αK
k

〈
πk
i,h, q

k
i,h(s, ·)

〉
≤ 5(2cα)

1.5

3
· 2H

3/2 log2 K

K5
+

20

3

√
cα log2 K

KH

K∑
k=K/2+1

αK
k Varπk

i,h(s)

(
qki,h(s, ·)

)

+

√
2cαH log2 Ai

K
+

1

K4

≤ 10

√
cα log3(KAi)

KH

K∑
k=1

αK
k Varπk

i,h(s)

(
qki,h(s, ·)

)
+ 2

√
cαH log3(KAi)

K
, (122)

According to the definition of qki,h(s, ai) in the update rule of Algorithm 2, we have

max
ai∈Ai

K∑
k=1

αK
k

[
rki,h(s, ai) + inf

P∈Uσi (Pk
i,h,s,ai

)
PV̂i,h+1

]

−
K∑

k=1

αK
k Eai∼πk

i,h(s)

[
rki,h(s, ai) + inf

P∈Uσi (Pk
i,h,s,ai

)
PV̂i,h+1

]

= max
ai∈Ai

K∑
k=1

αK
k qki,h(s, ai)−

K∑
k=1

αK
k

〈
πk
i,h, q

k
i,h(s, ·)

〉
≤ 10

√
cα log3(KAi)

KH

K∑
k=1

αK
k Varπk

i,h(s)

(
qki,h(s, ·)

)
+ 2

√
cαH log3(KAi)

K
= βi,h(s)

Moreover, according to the induction hypothesis, we have for all s ∈ S

Eπ∼ξ̂

[
V

⋆,π−i

i,h (s)
]
= max

ai∈Ai

K∑
k=1

αK
k

[
rki,h(s, ai) + inf

P∈Uσi (Pk
i,h,s,ai

)
PEπ∼ξ̂

[
V

⋆,π−i

i,h+1

]]

≤ max
ai∈Ai

K∑
k=1

αK
k

[
rki,h(s, ai) + inf

P∈Uσi (Pk
i,h,s,ai

)
PV̂i,h+1

]

≤
K∑

k=1

αK
k Eai∼πk

i,h(s)

[
rki,h(s, ai) + inf

P∈Uσi (Pk
i,h,s,ai

)
PV̂i,h+1

]
+ βi,h(s)

≤ V̂i,h(s).

Thus, we finished the proof of the lemma.
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D.4.2 PROOF OF LEMMA 5

We will prove the lemma with induction argument. Initially, the base step H +1 trivially holds true,
since we have

V̂i,H+1 = Eπ∼ξ̂

[
V

π

i,H+1

]
= 0.

Next, we assume that the lemma holds for step h+ 1, namely

V̂i,h+1 ≥ Eπ∼ξ̂

[
V

π

i,h+1

]
.

According to the definition of V̂i,h and Eπ∼ξ̂

[
V

π

i,h

]
, we have

Eπ∼ξ̂

[
V

π

i,h(s)
]
=

K∑
k=1

αK
k Eai∼πk

i,h(s)

[
rki,h(s, ai) + inf

P∈Uσi (Pk
i,h,s,ai

)
PEπ∼ξ̂

[
V

π

i,h+1

]]

≤
K∑

k=1

αK
k Eai∼πk

i,h(s)

[
rki,h(s, ai) + inf

P∈Uσi (Pk
i,h,s,ai

)
PV̂i,h+1

]

≤
K∑

k=1

αK
k Eai∼πk

i,h(s)

[
rki,h(s, ai) + inf

P∈Uσi (Pk
i,h,s,ai

)
PV̂i,h+1

]
+ βi,h(s).

Since, we also trivially have Eπ∼ξ̂

[
V

π

i,h(s)
]
≤ H − h+ 1, we can deduce that for all s ∈ S

Eπ∼ξ̂

[
V

π

i,h(s)
]

≤ min

{
K∑

k=1

αK
k Eai∼πk

i,h(s)

[
rki,h(s, ai) + inf

P∈Uσi (Pk
i,h,s,ai

)
PV̂i,h+1

]
+ βi,h(s), H − h+ 1

}
= V̂i,h(s).

Thus, we finished the proof of the lemma.

D.4.3 PROOF OF LEMMA 6

Recall that for all s ∈ S, bonus term βi,h(s) is defined as

βi,h(s) = cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

K∑
k=1

αK
k

{
Varπk

i,h(·|s)
(
qki,h(s, ·)

)
+H

}
. (123)

For any k ∈ [K], we have the following inequality for Varπk
i,h(·|s)

(
qki,h(s, ·)

)
:

Varπk
i,h(·|s)

(
qki,h(s, ·)

)
≤ 2Varπk

i,h(·|s)
(
rki,h(s, ·)

)
+ 2Varπk

i,h(·|s)

(∑
s′

P̂
πk
−i,V̂

i,h (s′ | s, ·)V̂i,h+1(s
′)

)
(i)

≤ 2 + 2
∑

ai∈Ai

πk
i,h(ai | s)P̂

πk
−i,V̂

i,h (· | s, ai)
(
V̂i,h+1 ◦ V̂i,h+1

)

−

( ∑
ai∈Ai

πk
i,h(ai | s)P̂

πk
−i,V̂

i,h (· | s, ai)V̂i,h+1

)2

= 2 + 2

〈
es,Var

P̂
πk,V̂

i,h

V̂i,h+1

〉
. (124)

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

where es denotes an S-dimensional standard basis supported on the s-th element, and (i) holds due

to the elementary fact that
∣∣∣rki,h(s, ai)∣∣∣ ≤ 1 and

∣∣∣∣P̂πk
−i,V̂

i,h (s′ | s, ai)
∣∣∣∣ ≤ 1 for all s, s′ ∈ S, ai ∈ Ai.

We insert the result of (124) back to (123), and rewrite the result in vector form, we can achieve that

βi,h ≤ 3cb

√
log3(

KS
∑n

i=1 Ai

δ )

KH

(
H · 1 + Var

P̂
πk,V̂

i,h

V̂i,h+1

)
D.4.4 PROOF OF LEMMA 7

To prove Lemma 7, we start by analyzing the value function of policy π under uncertainty set σi.
We first establish bounds on mins∈S Eπ∼ξ̂

[
V

π

i,h(s)
]
:

min
s∈S

Eπ∼ξ̂

[
V

π

i,h(s)
]

= min
s∈S

K∑
k=1

αK
k

Eai∼πk
i,h(s)

[
rki,h(s, ai)

]
+ Eai∼πk

i,h(s)

 inf
P∈Uσi

(
Pk

i,h,s,ai

)PEπ∼ξ̂

[
V

π

i,h+1(s)
]

≥ min
s∈S

Eπ∼ξ̂

[
V

π

i,h+1(s)
]
.

This follows from the robust Bellman equation (26).

Next, we examine maxs∈S Eπ∼ξ̂

[
V

π

i,h(s)
]
:

max
s∈S

Eπ∼ξ̂

[
V

π

i,h(s)
]

= max
s∈S

K∑
k=1

αK
k

Eai∼πk
i,h(s)

[
rki,h(s, ai)

]
+ Eai∼πk

i,h(s)

 inf
P∈Uσi

(
Pk

i,h,s,ai

)PEπ∼ξ̂

[
V

π

i,h+1(s)
]

≤ 1 +

K∑
k=1

αK
k max

(s,ai)∈S×Ai

 inf
P∈Uσi

(
P

π−i
h,s,ai

)PEπ∼ξ̂

[
V

π

i,h+1(s)
] . (125)

We now construct an auxiliary distribution vector P ′
h,s,ai

∈ RS by strictly reducing some elements
of Pπ−i

h,s,ai
such that:

0 ≤ P ′
h,s,ai

≤ P k
i,h,s,ai

and
∑
s′∈S

P k
i,h,s,ai

(s′)− P ′
h,s,ai

(s′) =
∥∥P ′

h,s,ai
− P k

i,h,s,ai

∥∥
1
= σi.

(126)
Let es⋆i,h denote the standard basis vector supported on s⋆i,h. We can show:

1

2

∥∥∥∥P ′
h,s,ai

+ σi

[
es⋆i,h

]⊤
− P k

i,h,s,ai

∥∥∥∥
1

≤ 1

2

∥∥P ′
h,s,ai

− P k
i,h,s,ai

∥∥
1
+

1

2

∥∥∥∥σi

[
es⋆i,h

]⊤∥∥∥∥
1

≤ σi,

(127)

where the first inequality follows from the triangle inequality of the total variation distance.

From (127), we conclude that:

inf
P∈Uσi

(
Pk

i,h,s,ai

)PEπ∼ξ̂

[
V

π

i,h+1

]
≤
(
P ′
h,s,ai

+ σi

[
es⋆i,h

]⊤)
Eπ∼ξ̂

[
V

π

i,h+1

]
≤
∥∥P ′

h,s,ai

∥∥
1

∥∥∥Eπ∼ξ̂

[
V

π

i,h+1

]∥∥∥
∞

+ σiEπ∼ξ̂

[
V

π

i,h+1(s
⋆
i,h+1)

]
≤ (1− σi)max

s∈S
Eπ∼ξ̂

[
V

π

i,h+1(s)
]
+ σi min

s∈S
Eπ∼ξ̂

[
V

π

i,h+1(s)
]
.

(128)

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Substituting (128) into (125) yields:

max
s∈S

Eπ∼ξ̂

[
V

π

i,h(s)
]
≤ 1 + (1− σi)max

s∈S
Eπ∼ξ̂

[
V

π

i,h+1(s)
]
+ σi min

s∈S
Eπ∼ξ̂

[
V

π

i,h+1(s)
]
. (129)

Combining (125) and (129) gives:

max
s∈S

Eπ∼ξ̂

[
V

π

i,h(s)
]
−min

s∈S
Eπ∼ξ̂

[
V

π

i,h(s)
]

≤ 1 + (1− σi)

(
max
s∈S

Eπ∼ξ̂

[
V

π

i,h+1(s)
]
−min

s∈S
Eπ∼ξ̂

[
V

π

i,h+1(s)
])

≤ 1 + (1− σi)

[
1 + (1− σi)

(
max
s∈S

Eπ∼ξ̂

[
V

π

i,h+2(s)
]
−min

s∈S
Eπ∼ξ̂

[
V

π

i,h+2(s)
])]

≤ · · · ≤ 1− (1− σi)
H−h

σi
≤ 1

σi
. (130)

Combining this with the basic fact that maxs∈S Eπ∼ξ̂

[
V

π

i,h(s)
]
−mins∈S Eπ∼ξ̂

[
V

π

i,h(s)
]
≤ H −

h+ 1, we complete the proof.

D.4.5 PROOF FOR LEMMA 8

We introduce the following notation for the value function at time h:

∀h ∈ [H], V
span
i,h := Eπ∼ξ̂

[
V

π

i,h(s)
]
− min

s′∈S
Eπ∼ξ̂

[
V

π

i,h(s
′)
]
, (131)

which normalizes the value function V
π

i,h. This definition leads to the following bound:∥∥∥V span
i,h

∥∥∥
∞
≤ min

{
1

σi
, H − h+ 1

}
, (132)

a result derived using Lemma 7. With this notation established, we now consider any transition
kernel P ′ ∈ RS and any P̃ ∈ RS such that P̃ ∈ Uσi(P ′). For all (i, h) ∈ [n]× [H], we analyze the
variance difference between the value functions under these kernels:∣∣∣VarP ′

(
Eπ∼ξ̂

[
V

π

i,h

])
− VarP̃

(
Eπ∼ξ̂

[
V

π

i,h

])∣∣∣
=
∣∣VarP ′

(
V

span
i,h

)
− VarP̃

(
V

span
i,h

) ∣∣
≤
∥∥P̃ − P ′∥∥

1

∥∥∥V span
i,h

∥∥∥
∞

≤ σi

(
min

{
1

σi
, H − h+ 1

})2

≤ min

{
1

σi
, H − h+ 1

}
. (133)

D.4.6 PROOF OF LEMMA 9

Analogous to Appendix D.4.9, we introduce some auxiliary values and reward functions to control
H∑

j=h

〈
bjh,Var∑K

k=1 αK
k P̂

πk,V

i,j

(
Eπ∼ξ̂

[
V

π

i,j+1

])〉
as below for any time step h and agent i.

Definition 3. For any time step h ∈ [H] and the i-th agent, we denote V
min

h :=

mins∈S Eπ∼ξ̂

[
V

π

i,h(s)
]

as the minimum value of all the entries in vector Eπ∼ξ̂

[
V

π

i,h

]
. We fur-

ther define V
′
h := Eπ∼ξ̂

[
V

π

i,h

]
− V

min

h 1 as the truncated value function. Eventually for reward

function, we define rmin
i,h =

∑K
k=1 α

K
k Eai∼πk

i,h
rki,h(·, ai) +

(
V

min

h+1 − V
min

h

)
1 as the truncated re-

ward function..
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Then applying the robust Bellman’s consistency equation in (26) gives

V
′
h = Eπ∼ξ̂

[
V

π

i,h

]
− V

min

h 1

=

K∑
k=1

αK
k Eai∼πk

i,h
rki,h(·, ai) +

K∑
k=1

αK
k P̂

πk,V

i,h Eπ∼ξ̂

[
V

π

i,h+1

]
− V

min

h 1

=

K∑
k=1

αK
k Eai∼πk

i,h
rki,h(·, ai) +

(
V

min

h+1 − V
min

h

)
1 +

K∑
k=1

αK
k P̂

πk,V

i,h V
′
h+1

= rmin
i,h +

K∑
k=1

αK
k P̂

πk,V

i,h V
′
h+1. (134)

The above fact leads to

Var∑K
k=1 αK

k P̂
πk,V

i,h

(
Eπ∼ξ̂

[
V

π

i,h+1

])
(i)
= Var∑K

k=1 αK
k P̂

πk,V

i,h

(
V

′
h+1

)
=

K∑
k=1

αK
k P̂

πk,V

i,h

(
V

′
h+1 ◦ V

′
h+1

)
−
( K∑
k=1

αK
k P̂

πk,V

i,h V
′
h+1

)
◦
( K∑
k=1

αK
k P̂

πk,V

i,h V
′
h+1

)
where (i) follows from the fact that Var∑K

k=1 αK
k P̂

πk,V

i,h

(V − b1) = Var∑K
k=1 αK

k P̂
πk,V

i,h

(V ) for any

value vector V ∈ RS and scalar b. According to (134) and (26), we have

Var∑K
k=1 αK

k P̂
πk,V

i,h

(
Eπ∼ξ̂

[
V

π

i,h+1

])
=

K∑
k=1

αK
k P̂

πk,V

i,h

(
V

′
h+1 ◦ V

′
h+1

)
−
(
V

′
h − rmin

i,h

)◦2
=

K∑
k=1

αK
k P̂

πk,V

i,h

(
V

′
h+1 ◦ V

′
h+1

)
− V

′
h ◦ V

′
h + 2V

′
h ◦ rmin

i,h − rmin
i,h ◦ rmin

i,h

≤
K∑

k=1

αK
k P̂

πk,V

i,h

(
V

′
h+1 ◦ V

′
h+1

)
− V

′
h ◦ V

′
h + 2∥V ′

h∥∞1,

where the last inequality arises from rmin
i,h ≤

∑K
k=1 α

K
k Eai∼πkrki,h(·, ai) ≤ 1 since V

min

h+1−V
min

h ≤
0 by definition.

Consequently, combining (145) and the definition of bjh in (92), we arrive at

H∑
j=h

〈
bjh,Var∑K

k=1 αK
k P̂

πk,V

i,h

(
Eπ∼ξ̂

[
V

π

i,j+1

])〉

=

H∑
j=h

(
bjh

)⊤( K∑
k=1

αK
k P̂

πk,V

i,h

(
V

′
j+1 ◦ V

′
j+1

)
− V

′
j ◦ V

′
j + 2∥V ′

h∥∞1

)
(i)

≤
H∑

j=h

[(
bjh

)⊤( K∑
k=1

αK
k P̂

πk,V

i,h

(
V

′
j+1 ◦ V

′
j+1

)
− V

′
j ◦ V

′
j

)]
+ 2H

∥∥∥V ′
h

∥∥∥
∞

where (i) and the last inequality hold by the fact
∥∥∥V ′

h

∥∥∥
∞
≥
∥∥∥V ′

h+1

∥∥∥
∞
≥ · · · ≥

∥∥∥V ′
H

∥∥∥
∞

. Further
according to basic calculus, we have

H∑
j=h

〈
bjh,Var∑K

k=1 αK
k P̂

πk,V

i,h

(
Eπ∼ξ̂

[
V

π

i,j+1

])〉
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=

H∑
j=h

[(
bj+1
h

)⊤ (
V

′
j+1 ◦ V

′
j+1

)
− (bjh)

⊤
(
V

′
j ◦ V

′
j

)]
+ 2H

∥∥∥V ′
h

∥∥∥
∞

≤
∥∥bH+1

h

∥∥
1

∥∥∥V ′
H+1 ◦ V

′
H+1

∥∥∥
∞

+ 2H
∥∥∥V ′

h

∥∥∥
∞

≤ 3H
∥∥∥V ′

h

∥∥∥
∞

. (135)

D.4.7 PROOF OF LEMMA 10

To prove the inequality involving P
π̂k
−i,V

i,h V and P̂
π̂k
−i,V

i,h V , we start by analyzing the absolute differ-
ence between these terms:∣∣∣∣P π̂k

−i,V

i,h,s,ai
V − P̂

π̂k
−i,V

i,h,s,ai
V

∣∣∣∣
=

∣∣∣∣∣∣∣ inf

P∈Uσi

(
P

π̂k
−i

h,s,ai

)PV − inf

P∈Uσi

(
P̂

π̂k
−i

i,h,s,ai

)PV
∣∣∣∣∣∣∣

(i)
=

∣∣∣∣Eai∼π̂k
i,h

max
α∈[mins V (s),maxs V (s)]

[
P

π̂k
−i

h,s,ai
[V ]α − σi

(
α−min

s′
[V ]α(s

′)
)]

− Eai∼π̂k
i,h

max
α∈[mins V (s),maxs V (s)]

[
P̂

π̂k
−i

i,h,s,ai
[V ]α − σi

(
α−min

s′
[V ]α(s

′)
)]∣∣∣∣

≤ Eai∼π̂k
i,h

max
α∈[mins V (s),maxs V (s)]

∣∣∣∣P π̂k
−i

h,s,ai
[V ]α − P̂

π̂k
−i

i,h,s,ai
[V ]α

∣∣∣∣ , (136)

where (i) follows from applying the robust Bellman equation (26), and the last inequality uses the
fact that the maximum operator is 1-Lipschitz.

Next, we apply Bernstein’s inequality to bound the difference between P
π̂k
−i

h,s,ai
[V ]α and P̂

π̂k
−i

i,h,s,ai
[V ]α

for fixed α, k, and (s, ai). With probability at least 1− δ, we have:∣∣∣∣P π̂k
−i

h,s,ai
[V ]α − P̂

π̂k
−i

i,h,s,ai
[V ]α

∣∣∣∣ ≤
√

2 log
(
2
δ

)
N

√
Var

P
π̂k
−i

h,s,ai

([V ]α) +
2H log

(
2
δ

)
3N

. (137)

To extend this bound to all (s, ai), we use a uniform bound over an ε1-net for α. The net size
|Nε1 | ≤ 3H

ε1
allows us to apply the union bound:∣∣∣∣P π̂k

−i

h,s,ai
[V ]α − P̂

π̂k
−i

i,h,s,ai
[V ]α

∣∣∣∣
≤ max

α∈Nε1

∣∣∣∣P π̂k
−i

h,s,ai
[V ]α − P̂

π̂k
−i

i,h,s,ai
[V ]α

∣∣∣∣+ ε1

≤

√√√√2 log
(

2S
∑n

i=1 Ai|Nε1
|Kn

δ

)
N

√
Var

P
π̂k
−i

h,s,ai

(V ) +
2H log

(
2S

∑n
i=1 Ai|Nε1

|Kn

δ

)
3N

+ ε1

≤

√√√√2 log
(

2S
∑n

i=1 AiNKn

δ

)
N

√
Var

P
π̂k
−i

h,s,ai

(V ) +
H log

(
2S

∑n
i=1 AiNKn

δ

)
N

, (138)

where the last steps use that ε1 =
H log

(
2S

∑n
i=1 AiNKn

δ

)
3N and |Nε1 | ≤ 9N .

Inserting this back into (136) gives:∣∣∣∣P π̂k
−i,V

i,h V − P̂
π̂k
−i,V

i,h V

∣∣∣∣
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≤

√√√√2 log
(

2S
∑n

i=1 AiNKn

δ

)
N

√
Var

P
π̂k
−i

h

(V ) +
H log

(
2S

∑n
i=1 AiNKn

δ

)
N

1

≤ 3

√√√√H2 log
(

2S
∑n

i=1 AiNKn

δ

)
N

1.

This completes the proof by showing that the bound holds uniformly over all (s, ai) ∈ S ×Ai.

D.4.8 PROOF OF LEMMA 11

Before proving Lemma 11, we first state a modified version of the Freedman inequality for martin-
gales, which is crucial for our analysis.
Theorem 5. Suppose Yn =

∑n
k=1 Xk ∈ R, where {Xk} is a real-valued scalar sequence such that

|Xk| ≤ R and E [Xk | {Xj}j<k] = 0 for all k ≥ 1

for some constant R > 0. Define

Wn :=

n∑
k=1

Ek−1[X
2
k ],

where Ek−1 denotes the conditional expectation given {Xj}j<k. For any κ > 0, with probability at
least 1− δ, the following holds:

|Yn| ≤
√

8Wn log
3n

δ
+ 5R log

3n

δ
≤ κWn +

(
2

κ
+ 5R

)
log

3n

δ
. (139)

Proof. Suppose deterministically that Wn ≤ σ2 for some σ2. According to Li et al. (2024), with
probability at least 1− δ, we have

|Yn| ≤

√
8max

{
Wn,

σ2

2K

}
log

2K

δ
+

4

3
R log

2K

δ
.

for any positive integer K ≥ 1. Utilizing the trivial bound Wn ≤ nR2, set σ2 = nR2 and K =
log2 n. Then:

|Yn| ≤
√

8max {Wn, R2} log 4 log2 n

δ
+

4

3
R log

4 log2 n

δ

≤
√
8Wn log

3n

δ
+

√
8R2 log

3n

δ
+

4

3
R log

3n

δ

≤
√
8Wn log

3n

δ
+ 5R log

3n

δ
,

where we used 4 log2 n ≤ 3n for any integer n ≥ 1. This establishes the first inequality in (139).
The second inequality follows from the elementary inequality 2ab ≤ a2 + b2.

To prove Lemma 11, we apply Lemma 5. Define

R := max
k∈[K]

∣∣αK
k

〈
π̂k
i,h(s), r

k
i,h(s, ·)

〉∣∣ ≤ {max
k∈[K]

αK
k

}{
max
k∈[K]

∥π̂k
i,h(s)∥1∥rki,h∥∞

}
≤ 2cα logK

K
,

where the first line uses Lemma 19. We further define

WK =

K∑
k=1

(αK
k )2Varh,k−1

(〈
π̂k
i,h(s), r

k
i,h(s, ·)

〉)
≤
{
max
k∈[K]

αK
k

}{ K∑
k=1

αK
k Varh,k−1

(〈
π̂k
i,h(s), r

k
i,h(s, ·)

〉)}
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≤ 2cα logK

K

K∑
k=1

αK
k Varh,k−1(r

k
i,h(s)),

where we use variance operator Varh,k−1[·] to denote the variance conditional on what happens
before the beginning of the k-th round of data collection for step h. Applying Freedman’s inequality
(Lemma 5) with κ1 =

√
K log(K/δ), we obtain∣∣∣∣∣

K∑
k=1

αK
k Eai∼π̂k

i,h
rki,h(s, ai)−

K∑
k=1

αK
k Eai∼π̂k

i,h
r
π̂k
−i

i,h (s, ai)

∣∣∣∣∣
≤ κ1WK +

(
2

κ1
+ 5R1

)
log

(
3K

δ

)

≤ 2cα

√
log3

(
K
δ

)
K

K∑
k=1

αK
k Varh,k−1

(
rki,h(s)

)
+

(
2

√
1

K log
(
K
δ

) + 10cα logK

K

)
log

(
3K

δ

)

≤ 2cα

√
log3

(
K
δ

)
K

K∑
k=1

αK
k Varh,k−1

(
rki,h(s)

)
+ 4

√
log
(
3K
δ

)
K

,

with probability at least 1−δ. Taking a union bound over all s ∈ S, there exists an absolute constant
cr such that

K∑
k=1

αK
k

∣∣∣rπ̂k

i,h − rπ̂
k

i,h

∣∣∣ ≤ cr

√
log(KS/δ)

K
1.

D.4.9 PROOF OF LEMMA 13

In this section, we want to take the accessible range of the robust value function Eπ∼ζ

[
V

π

i,j+1

]
into

consideration when controlling
∑H

j=h

〈
djh,Var∑K

k=1 αK
k P π̂k,V

i,j

(
Eπ∼ζ

[
V

π

i,j+1

])〉
. Towards this,

we introduce some auxiliary values and reward functions as below.

Definition 4. For any time step h ∈ [H] and the i-th agent, we denote V
min

h :=

mins∈S Eπ∼ζ

[
V

π

i,h(s)
]

as the minimum value of all the entries in vector Eπ∼ζ

[
V

π

i,h

]
. We fur-

ther define V
′
h := Eπ∼ζ

[
V

π

i,h

]
− V

min

h 1 as the truncated value function. Eventually for reward

function, we define rmin
i,h =

∑K
k=1 α

K
k Eai∼π̂k

i,h
rki,h(·, ai) +

(
V

min

h+1 − V
min

h

)
1 as the truncated re-

ward function..

With above notation, we introduce the following fact of V
′
h:

V
′
h = Eπ∼ζ

[
V

π

i,h

]
− V

min

h 1

(i)
=

K∑
k=1

αK
k Eai∼π̂k

i,h
rki,h(·, ai) +

K∑
k=1

αK
k P̂

π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
− V

min

h 1

=

K∑
k=1

αK
k Eai∼π̂k

i,h
rki,h(·, ai) +

K∑
k=1

αK
k P π̂k,V

i,h Eπ∼ζ

[
V

π

i,h+1

]
+
( K∑

k=1

αK
k P̂

π̂k,V

i,h −
K∑

k=1

αK
k P π̂k,V

i,h

)
Eπ∼ζ

[
V

π

i,h+1

]
− V

min

h 1

=

K∑
k=1

αK
k Eai∼π̂k

i,h
rki,h(·, ai) +

(
V

min

h+1 − V
min

h

)
1
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+

K∑
k=1

αK
k P π̂k,V

i,h V
′
h+1 +

( K∑
k=1

αK
k P̂

π̂k,V

i,h −
K∑

k=1

αK
k P π̂k,V

i,h

)
Eπ∼ζ

[
V

π

i,h+1

]
= rmin

i,h +

K∑
k=1

αK
k P π̂k,V

i,h V
′
h+1 +

( K∑
k=1

αK
k P̂

π̂k,V

i,h −
K∑

k=1

αK
k P π̂k,V

i,h

)
Eπ∼ζ

[
V

π

i,h+1

]
, (140)

where (i) holds by the robust Bellman’s consistency equation of Eπ∼ζ

[
V

π

i,h

]
. With the above fact

in hand, we control Var∑K
k=1 αK

k P π̂k,V
i,h

(
Eπ∼ζ

[
V

π

i,h+1

])
as follows:

Var∑K
k=1 αK

k P π̂k,V
i,h

(
Eπ∼ζ

[
V

π

i,h+1

])
(i)
= Var∑K

k=1 αK
k P π̂k,V

i,h

(
V

′
h+1

)
=

K∑
k=1

αK
k P π̂k,V

i,h

(
V

′
h+1 ◦ V

′
h+1

)
−
( K∑
k=1

αK
k P π̂k,V

i,h V
′
h+1

)
◦
( K∑
k=1

αK
k P π̂k,V

i,h V
′
h+1

)
,

where (i) follows from the fact that Var∑K
k=1 αK

k P π̂k,V
i,h

(V − b1) = Var∑K
k=1 αK

k P π̂k,V
i,h

(V ) for any

value vector V ∈ RS and scalar b, Additionally according to (140), we have

Var∑K
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k P π̂k,V
i,h

(
Eπ∼ζ

[
V

π

i,h+1
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=

K∑
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αK
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(
V

′
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)
−
(
V

′
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K∑
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αK
k P π̂k,V
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)
Eπ∼ζ

[
V

π

i,h+1

] )◦2
= −V ′

h ◦ V
′
h + 2V

′
h ◦
(
rmin
i,h +

( K∑
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αK
k P̂

π̂k,V

i,h −
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k P π̂k,V
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−
(
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( K∑
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i,h −
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)
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[
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] )◦2
+
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k P π̂k,V

i,h

(
V

′
h+1 ◦ V

′
h+1

)
Furthermore, we have

Var∑K
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k P π̂k,V
i,h

(
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[
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π

i,h+1
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=

K∑
k=1

αK
k P π̂k,V

i,h

(
V

′
h+1 ◦ V

′
h+1

)
+ 2V

′
h ◦
(
rmin
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( K∑
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αK
k P̂
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i,h −
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k P π̂k,V

i,h
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π
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−
(
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( K∑
k=1

αK
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π̂k,V

i,h −
K∑
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k P π̂k,V

i,h
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Eπ∼ζ

[
V

π

i,h+1

] )◦2
− V

′
h ◦ V

′
h

(i)

≤
K∑

k=1

αK
k P π̂k,V

i,h

(
V

′
h+1 ◦ V

′
h+1

)
− V

′
h ◦ V

′
h

+ 2
∥∥V ′

h

∥∥
∞

(
1 +

∣∣∣( K∑
k=1

αK
k P̂

π̂k,V

i,h −
K∑

k=1

αK
k P π̂k,V

i,h

)
Eπ∼ζ

[
V

π
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] ∣∣∣) (141)
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≤
K∑

k=1

αK
k P π̂k,V

i,h

(
V

′
h+1 ◦ V

′
h+1

)
− V

′
h ◦ V

′
h + 2

∥∥V ′
h

∥∥
∞1

+ 6∥V ′
h∥∞

√√√√H2 log
(

18S
∑n

i=1 AinHNK

δ

)
N

1, (142)

holds with probability at least 1− δ, where (i) arises from rmin
i,h ≤

∑K
k=1 α

K
k Eai∼π̂k

i,h
rki,h(·, ai) ≤ 1

since V min
h+1−V min

h ≤ 0 by definition, and the last inequality holds by Lemma 10. Finally, combining
(142) and the definition of djh in (92), the term of interest can be controlled as

H∑
j=h

〈
djh,Var∑K

k=1 αK
k P π̂k,V

i,j

(
Eπ∼ζ

[
V

π

i,j+1

])〉

=

H∑
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⊤
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(
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′
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′
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+

H∑
j=h

(djh)
⊤

6∥V ′
j∥∞

√√√√H2 log
(
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δ

)
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1


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(
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′
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′
j ◦ V

′
j
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h∥∞
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√√√√ log
(

18S
∑n

i=1 AinHNK

δ

)
N

where (i) holds by the fact ∥V ′
h∥∞ ≥ ∥V

′
h+1∥∞ ≥ · · · ≥ ∥V

′
H∥∞. With further basic calculus, we

can finally obtain that

H∑
j=h

〈
djh,Var∑K

k=1 αK
k P π̂k,V

i,j

(
Eπ∼ζ

[
V

π
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=

H∑
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(
V

′
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⊤
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j
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δ

)
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≤
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h
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1
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∞
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√√√√ log
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(
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D.4.10 PROOF OF LEMMA 16

Analogous to Appendix D.4.9, we introduce some auxiliary values and reward functions to control
H∑

j=h

〈
wj

h,Var∑K
k=1 αK

k P π̂k,V
i,j

(
Eπ∼ζ

[
V π
i,j+1

])〉
as below: for any time step h and the i-th agent
Definition 5. For any time step h ∈ [H] and the i-th agent, we denote V min

h :=

mins∈S Eπ∼ζ

[
V π
i,h(s)

]
as the minimum value of all the entries in vector Eπ∼ζ

[
V π
i,h

]
. We fur-

ther define V ′
h := Cπ

i,h− V min
h 1 as the truncated value function. Eventually for reward function, we

define rmin
i,h =

∑K
k=1 α

K
k Eai∼πk

i,h
r
π̂k
−i

i,h (·, ai) +
(
V min
h+1 − V min

h

)
1 as the truncated reward function..

Then applying the robust Bellman’s consistency equation in (26) gives

V ′
h = Eπ∼ζ

[
V π,σi

i,h

]
− V min
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K∑
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)
1 +
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αK
k P π̂k,V

i,h V ′
h+1 (143)

= rmin
i,h +

K∑
k=1

αK
k P π̂k,V

i,h V ′
h+1. (144)

The above fact leads to

Var∑K
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where (i) follows from the fact that Var∑K
k=1 αK

k P π̂k,V
i,h

(V − b1) = Var∑K
k=1 αK

k P π̂k,V
i,h

(V ) for any

value vector V ∈ RS and scalar b, (ii) holds by (144) and (26), and the last inequality arises from
rmin
i,h ≤ rπi,h ≤ 1 since V min

h+1 − V min
h ≤ 0 by definition.

Consequently, combining (145) and the definition of wj
h in (102), we arrive at
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=

H∑
j=h

[
(wj+1

h )⊤
(
V ′
j+1 ◦ V ′

j+1

)
− (wj

h)
⊤ (V ′

j ◦ V ′
j

)]
+ 2H∥V ′

h∥∞

≤ ∥wH+1
h ∥1

∥∥V ′
H+1 ◦ V ′

H+1

∥∥
∞ + 2H∥V ′

h∥∞
≤ 3H∥V ′

h∥∞, (146)

where (i) and the last inequality hold by the fact ∥V ′
h∥∞ ≥ ∥V ′

h+1∥∞ ≥ · · · ≥ ∥V ′
H∥∞ and basic

calculus.
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