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ABSTRACT

Sparse Mixture-of-Experts (SMoE) has gained increasing popularity as a promis-
ing framework for scaling up multilingual machine translation (MMT) models
with negligible extra computational overhead. However, current SMoE solutions
neglect the intrinsic structures of the MMT problem: (a) Linguistics Hierarchy.
Languages are naturally grouped according to their linguistic properties such as
language families, phonological features, etc; (b) Language Complexity. Learning
difficulties vary for different languages due to their available resources, grammar
complexity etc. Therefore, routing a fixed number of experts (e.g., 1 or 2 experts
in usual) only at the word level leads to inferior performance. To fill in the miss-
ing puzzle, we propose Lingual-SMoE by equipping the SMoE with adaptive
and linguistics-guided routing policies. Specifically, it (1) extracts language rep-
resentations to incorporate linguistic knowledge and uses them to allocate experts
into different groups; (2) determines the number of activated experts for each tar-
get language in an adaptive and automatic manner, according to their difficulty
level determined by data abundance, which aims to mitigate the potential over-
/under-fitting problems of learning easy/difficult translations. Sufficient experi-
mental studies on MMT benchmarks with {16, 50, 100} languages and various
network architectures, consistently validate the superior performance of our pro-
posals. For instance, Lingual-SMoE outperforms its dense counterpart by over
5% BLEU scores on the OPUS-100 dataset. 1

1 INTRODUCTION
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Figure 1: The MMT performance of {dense
model, vanilla SMoE, Lingual-SMoE
(Ours)} on OPUS-100with different amount
of languages pairs ∈ {16, 50, 100}.

Multilingual Machine Translation (MMT) aims to re-
solve multiple translation directions simultaneously in
one unified model and has attracted considerable at-
tention in both academia and industry. Aharoni et al.
(2019); Johnson et al. (2016); Aharoni et al. (2019) re-
veal that MMT models are capable of adapting to low-
resource scenarios, benefiting from the joint optimiza-
tion of multiple translations. Nevertheless, as the num-
ber of languages involved in MMT increases (e.g., >
50), the story starts to change. As illustrated by Conneau
et al. (2019); Sachan & Neubig (2018), the language in-
terference emerges and poses an obstacle to achieving
satisfactory performance, which is a troublesome conse-
quence of the competing gradients among different lan-
guages. Unfortunately, such a problem will be exacer-
bated by severe data imbalance, leading to over-fitting on low-resource translation directions or
catastrophic forgetting on previously trained samples (Lakew et al., 2018; Elbayad et al., 2023).

1Our code is provided at https://github.com/UNITES-Lab/Lingual-SMoE.
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A natural remedy is to scale up the model capacity, which has been demonstrated as an effective way
to improve multilingual machine translation (Shazeer et al., 2018; Radford & Narasimhan, 2018;
Devlin et al., 2019). However, these gigantic language models with massive parameter counts are
extremely computationally intensive. For example, training the popular GPT-based model (Brown
et al., 2020) with billions of parameters typically requires thousands of GPU days. To provide an ef-
ficient alternative, pioneering researchers introduce the Sparsely-gated Mixture-of-Experts (SMoE)
framework (Lepikhin et al., 2021; Fedus et al., 2021; Shazeer et al., 2017; Zoph et al., 2022), which
is designed with an input-dependent conditional computing fashion. Specifically, SMoE only acti-
vates the relevant model pieces given an input sample, and this dynamic sparse computing facilitates
the training of huge language models with feasible resource costs.

However, most existing practices adapt the SMoE algorithm in a straightforward way and overlook
intrinsic structures in the MMT problem, i.e., Linguistic Hierarchy and Heterogeneous Language
Complexity. ① Even incorporating linguistic knowledge in an exemplary way, it helps. For example,
Fan et al. (2021); Zhang et al. (2020) customize several language-specific components in the trans-
lation model and enjoy an enhanced performance. Kudugunta et al. (2021) takes one step further by
routing input samples to different experts in the SMoE based on translation language representations.
Although these initial efforts achieve great results, the exploitation of prior linguistic knowledge is
highly insufficient. Languages have their hierarchy. Specifically, different languages can be orga-
nized in a tree structure according to their language family, grammar, phonological features, etc.
How to leverage such linguistic priors for SMoE design in MMT, is a challenging yet rewarding
question. ② Another limitation of current SMoE approaches is the neglect of the heterogeneous
complexity of diverse language translations. Due to the variance of factors such as grammatical
complexity and available resources, the translation difficulties can vary significantly (Goyal et al.,
2021; Team et al., 2022; Heffernan et al., 2022). However, existing SMoEs use a fixed model size
(e.g., 1 or 2 experts) to handle all translation directions. It potentially compromises certain transla-
tions since excessive or insufficient model capacity could result in over-fitting or under-fitting issues,
respectively. In addition, manual adjustments of the expert capacity for each language are labori-
ous and suboptimal due to the interplay among multiple translation objectives. Then, how to take
the heterogeneity of language difficulty into consideration to adaptively determine the appropriate
network capacity, is a necessary yet beneficial step towards superior SMoE models.

To answer the aforementioned questions, we propose a novel Lingual-SMoE for MMT, by design-
ing language-guided routing policies. It allocates experts in a hierarchical manner and enables the
language-specific model capacity, which brings significant performance improvements as demon-
strated in Figure 1. The advantages of our effective strategy are multi-fold: (1) injecting rich linguis-
tic knowledge to the expert routing process via encouraging experts to specialize in certain language
families; (2) mitigating potential over-/under-fitting on translation directions with different difficulty
levels determined by data availability by dynamically adjusting the expert number based on training
performance. Our contributions can be summarized as follows:

⋆ We propose an innovative SMoE framework for multilingual machine translation, i.e.,
Lingual-SMoE, by considering two unique properties of linguistic hierarchy and het-
erogeneous language complexity in MMT problems.

⋆ We design a hierarchical routing policy in Lingual-SMoE that learns to route input sam-
ples with multi-granularity information of {language family, language, and token}.

⋆ We introduce a dynamic expert allocation mechanism to adaptively determine adequate
expert capacity for each language translation with distinctive difficulty levels. Training
dynamics are monitored to enable automatic adjustments.

⋆ Extensive experiments with different data resources and number of languages consistently
evidence the effectiveness of Lingual-SMoE. For example, our language-guided routing
proposals outperform its dense baseline by a clear performance margin 5% on OPUS-100.

2 RELATED WORKS

Multilingual Machine Translation (MMT). Multilingual machine translation extends neural ma-
chine translation to the scenario with multiple language pairs, which is a popular paradigm in natural
language processing (NLP). Bojar et al. (2018); Dabre et al. (2020) have demonstrated that training
with multilingual data enhances the translation of low-resource languages. Related MMT research
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can be roughly divided into two categories: (1) multi-way translation, which supports many-to-
many translation through parameter sharing, multilingual representation learning, and custom joint
training techniques (Aharoni et al., 2019; Yang et al., 2021; Pan et al., 2021; Tan et al., 2019); (2)
low-resource translation, enhancing MMT under limited parallel corpora, monolingual data, or even
unseen languages (Ranathunga et al., 2021; Neubig & Hu, 2018).

Language-Specific Designs in MMT. Among the rich literature on MMT, language-specific pa-
rameter sharing for multi-way translation is the most relevant one to our work. An effective
parameter-sharing algorithm needs to decide how many parameters to share and how to share (Dabre
et al., 2020). The typical manner is to share a fixed part and learn extra language-specific modules.
For instance, Pires et al. (2023) assumes language-specific decoders and applies architecture search
to determine the best composition of shared and language-specific encoder layers. Purason & Tättar
(2022) advocates that combining shared, language-specific, and language-group-specific encoding
layers benefits low-resource languages without harming high-resource languages. In contrast, an-
other group of studies shares most of the translation model with lightweight language-specific mod-
ules that adaptively inject linguistic knowledge. For example, Zhang et al. (2021) inserts conditional
language-specific (CLSR) layers in each encoder and decoder block, with a binary gate function that
collects hidden representations from the shared and specialized part. Lin et al. (2021) learns a sub-
network for each translation direction with shared parameters.

Sparse Mixture of Experts (SMoE). The concept of mixture-of-experts (MoE) can be traced back
several decades (Jacobs et al., 1991; Jordan & Jacobs, 1994). It contains a series of network sub-
modules that are utilized conditional on the input samples. The Sparsely-gated Mixture-of-Experts
(SMoE) is an efficient variant of MoE, which only activates a few expert networks for each input,
allowing a significant amount of increase in model parameter counts yet with minimal extra comput-
ing overheads (Shazeer et al., 2017). Numerous successes of plugging SMoE into transformer-based
language models have been demonstrated in diverse NLP and computer vision applications (Fedus
et al., 2022; Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al., 2021; Zuo et al., 2022; Jiang
et al., 2021; Zoph et al., 2022; Riquelme et al., 2021; Yang et al., 2019).

Routing Designs and Expert Capacity in SMoE. Routing policy is one of the major compo-
nents of SMoE, which plays an essential role in its achievable performance. Various design options
are introduced to pursue an improved allocation of experts for each input sample. The classic one
is a learnable router network that selects the top-k experts given an input token (Lepikhin et al.,
2021; Fedus et al., 2021). However, it suffers from the routing imbalance issue. Many techniques
are designed to promote balanced expert assignments: injecting Gaussian noise into router net-
works (Shazeer et al., 2017); adding an auxiliary balancing loss to regularize routing (Lepikhin
et al., 2021; Fedus et al., 2021); solving routing as a linear assignment problem (Lewis et al., 2021);
using reinforcement learners (Clark et al., 2022); routing top-k input tokens to each expert instead of
choosing top experts per token (Zhou et al., 2022); or directly replacing learnable gates with random
routing (Zuo et al., 2022; Chen et al., 2023b; Roller et al., 2021). A group of studies pioneer input-
specific routing. Some studies language-specific routing (Kudugunta et al., 2021), others investigate
routing with input domain information (Gururangan et al., 2022; Li et al., 2022). Linguistic charac-
teristics like its hierarchy remain underexplored. While most studies train SMoE model with a fixed
top-k experts, some recent designs propose to change the expert capacity during training to adapt to
multitask or lifelong learning scenarios (Chen et al., 2023c;a).

3 METHODOLOGY

3.1 PRELIMINARIES AND NOTATIONS

Multilingual Machine Translation. MMT is formulated as a sequence-to-sequence task, where a
source language sequence is fed into an encoder, and the target language sequence will be generated
from a decoder conditioned on the encoder output (Sutskever et al., 2014). The translation objective
LMT is adopted to maximize the probability of the generated sequence in the target language given
the source sequence. In our case, Transformer-Base (Vaswani et al., 2017) is used as our dense
baseline, and our approaches are established on top of it by inserting well-designed SMoE layers.

Sparse Mixture-of-Experts (SMoE). In our design, we replace every other transformer block
with an SMoE block for both the encoder and decoder, following the default configuration in Lep-
ikhin et al. (2021). The SMoE block consists of n experts {E1, · · · , En} that are feed-forward
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Figure 2: The overview of our proposed Lingual-SMoE. ( ) For the vanilla SMoE, routers take
each token as input and select top-k experts for the following execution. ( ) A hierarchical routing
design is adopted in Lingual-SMoE. The linguistic-guided router first selects a group of experts
for each target language. Note that the group size is varied based on the difficulty level of transla-
tion.Then, another token router allocates experts from the language-specific expert group.

networks. Given an input embedding x, it is fed into a router network G(·) and assigned to the most
relevant experts for further processing, as shown in Figure 2 ( ). The dominant design of router
networks in the literature is a fully connected layer, as described below:

G = top-k(softmax(Wgx)) (1)

where Wg are tunable parameters and top-k(·) is a selection function that outputs the largest k
values. The final output of an SMoE block will be a weight summarization of the features from
activated experts, i.e.,

∑|S|
i Gi · Ei(x). S denotes the index set of experts selected by the routing

policy. Usually, to encourage a more uniform routing decision, an auxiliary load balancing loss
Lg (Lepikhin et al., 2021; Shazeer et al., 2017) will be adopted for SMoE training.

3.2 LINGUAL-SMOE - EQUIPPING SMOE WITH LANGUAGE-GUIDED ROUTING

In this section, we detail our proposal, i.e., Lingual-SMoE. As shown in Figure 2 ( ), it consists
of two main components (1) linguistic-guided routing (LGR) and dynamic expert allocation (DEA).

Linguistics-Guided Routing (LGR). We start from a pilot investigation to see whether a vanilla
SMoE model naturally captures similar routing patterns for closely related languages, e.g., languages
from the same linguistic family. Specifically, we train a top-2 routing SMoE with the language-based
routing policy, following the default configurations in Kudugunta et al. (2021). A subset of 16 lan-
guages from OPUS-100 dataset is used for training and evaluation. From these translation pairs, we
choose 8 languages from three different language families, i.e., {{bg, sk, sl, hr}, {nb, de}, {as,
mr}}, for visualizations. The first four languages (bg∼hr) belong to the Slavic language group,
while nb and de are of Germanic origin, and as and mr fall into the Indo-Iranian category. To
measure the similarities between routing decisions, we compute the cosine distance among different
routing outputs of the corresponding en-xx (xx∈{bg∼mr}) translation directions, in the last de-
coder SMoE layer. Results in Figure 3 tell us that the routing choices show neither differentiability
across language groups nor similarity between languages within the same group. It implies that the
vanilla language-based routing cannot learn the desired linguistic knowledge.

To fill in the research gap, we design a hierarchical routing policy with two-level router networks,
guided by linguistic priors. In detail, for each input sequence: ① Extracting language embedding.
We feed the target language ID into one embedding layer and two fully connected layers to produce
a 512-dimensional language embedding. ② Language routing at the first level. In each SMoE layer,
a language router Gl takes the language embedding as input and outputs a language-dependent expert
vector. Then, top-kl(·) function is applied on top of it to narrow down all experts to language-
specific candidate experts as Sl. ③ Token routing at the second level. Lastly, we allocate experts
from Sl at the token level, to generate the final activated expert set S. In summary, our routing policy
is executed as

∑|Sl|
i

∑|S|
j Gl,i · Gj · Ei,j(x), where x is the input sample.
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Figure 3: Routing similarities of the last de-
coder layer through the language routing. Three
groups of target languages {bg, sk, sl, hr},
{nb, de}, {as, mr} are presented. Darker
blocks imply higher similarity.

20k 40k 60k 80k 100k
Training Steps

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rp

le
xi

ty Train
Valid (en-se)
Valid (en-zh)

Figure 4: Train and validation perplexity of different
language pairs in vanilla SMoE models. The over-
fitting issue is more pronounced in the low-resource
pair (en-se) than in the high-resource one (en-zh).

To promote similar routing decisions between closer languages, a 2-step language grouping is pro-
posed in our Lingual-SMoE. First, we train the embedding layer and two fully connected layers
that convert a target language ID to a embedding with all target language samples. We use a con-
trastive loss on the language families classes to maximize the margin of embeddings of different
families, 2. Second, at the follow-up training phase, a language grouping loss Ll is added to the
above translation, which encourages the expert allocation to be specialized in a particular language
family or group. In each forward process, we compute the contrastive loss using the language
routers’ output. The distance measure is a cosine similarity. More details about the language group-
ing are included in Appendix A1 and A9. The final objective function L is depicted below:

L = LMT + c1 × Lg + c2 × Ll, (2)

where c1 and c2 are the hyperparameters to control the regularization effects from the load balancing
loss Lg and language grouping loss Ll, respectively. In our experiments, c1 and c2 are set to 0.05,
which is determined by a grid search.

Algorithm 1 DEA in our proposed Lingual-SMoE.
1: Input: The language subset index j, a validation set
Dj

val of the subset j, the number of experts per language
kl, a metric function P , and a expert number growing
threshold λ, number of updates N , maximum updates
Nmax, the ratio of expert number exploring updates r.

2: for each language subset j do
3: Initial an indicator Improved as True;
4: Initial the current best metric Pj

val(best) ←∞;
5: while N ≤ r ×Nmax do
6: if Pj

val(best) − P
j
val < λ for△n iterations then

7: kl,j ← kl,j + 1; Improved← False
8: else
9: Pj

val(best) ← P
j
val; Improved← True;

10: end if
11: Continue training until the next validation.
12: end while
13: if not Improved then
14: kl,j ← kl,j − 1; rerun△n iterations.
15: end if
16: Fix kl,j ; train until Nmax iterations.
17: end for
18: Output: Lingual-SMoE with top-kl,j routing.

Dynamic Expert Allocation (DEA). If
SMoE translates multiple languages with
diverse complexities and a fixed model
size, potential over- or under-fitting hap-
pens due to excessive or insufficient model
capacity in simple or complicated scenar-
ios respectively. It will be amplified by
data imbalance. For example, as shown
in Elbayad et al. (2023), SMoE models
are prone to over-fitting on low-resource
tasks, i.e. languages, or translation direc-
tions with less training data in the case of
machine translation. To provide a clear
picture of this severe problem, we vi-
sualize the validation perplexity of high-
resource (en-zh) and low-resource (en-
se) language translation, as presented in
Figure 4. The results are collected from
a vanilla SMoE model for MMT. It shows
that the validation perplexity of the high-
resource direction decreases continuously,
but the low-resource translation direction
strongly overfits after 20K steps.

2Since Indo-European languages form a majority of the OPUS-100 (58 out of 100) dataset, we treat their
subfamilies as the class label for the calculation of contrastive training loss.
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To address the issue and avoid laborious manual tuning, Lingual-SMoE offers an adaptive algo-
rithm to decide the exact kl for the top-kl expert assignment in the language router, as illustrated in
Algorithm 1. We divides different languages into three difficulty level groups, according to the data
richness. In addition, we explore grouping languages considering both grammar complexity and data
availability, see Appendix A2 for more details, but decide not to include grammar complexity in the
difficulty metirc because of its subjectiveness. Specifically, we split the 94 validation language pairs
in OPUS-100 into three groups based on their training data size: high-resource (> 0.9M, 45 lan-
guages), low-resource (< 0.1M, 26 languages), and medium-resource (other, 28 languages) (Zhang
et al., 2020). At the validation step per n iterations on each subset, we compute the perplexity Pj

val.
If Pj

val does not decrease for a certain threshold, the number of candidate experts for the associated
language router will be increased by updating kl,j = kl,j + 1. After the exploration stage, if Pj

val
still does not decrease, we reset this iteration with kl,j = kl,j − 1 and fixed it in the rest training.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. We evaluate the proposed Lingual-SMoE on the representative multilingual neural
machine translation dataset, i.e., OPUS-100 (Zhang et al., 2020) that contains 100 languages and
94 validation and test language pairs. To testify our methodology across varying language quan-
tities, we extract datasets comprised of 16 and 50 languages from OPUS-100, respectively. This
results in two smaller datasets, namely OPUS-16 and OPUS-50, both of which have equivalent
ratios of high, medium, and low resource languages. The three datasets are further processed using
SentencePiece (Kudo & Richardson, 2018), which sets the vocabulary size to 32, 000 for OPUS-16
and OPUS-50 and 64, 000 for OPUS-100. We attach a target language ID with the source and
target language sentences to identify its translation direction. See Appendix A1 for more details.

Models and Baselines. We compare our method with the Transformer-Base model (as Dense)
and its SMoE variants that have 6 encoder and decoder layers, 32 experts. The input and hidden
dimensions of all feed-forward networks are 512 and 2048. Meanwhile, all considered SMoE mod-
els fall into three types. ① For the vanilla SMoE model, Switch Transformer (Fedus et al., 2021)
with a top-1 token-based routing (as ST-SMoE) and GShard (Lepikhin et al., 2021) with a top-2
token-based routing (as GS-SMoE) are adopted. ② We consider three improved SMoE models that
incorporate language information or parameter sharing: (1) Language-specific SMoE model with
fixed routing (as LS-SMoE) inspired by Pires et al. (2023), assigning 2 non-overlapping experts for
tokens according to their source language in the encoder and target language in the decoder; (2)
Hybrid SMoE model (as Hybrid-SMoE) from Kudugunta et al. (2021), with a top-2 token routing
in the encoder and a top-2 target language routing in the decoder side; (3) Residual SMoE model
(as Residual-SMoE) from Elbayad et al. (2023); Rajbhandari et al. (2022); Zhang et al. (2021) that
augments each SMoE layer with a shared feed-forward network through a binary gate function.
Note that the shared and SMoE branches are weighted accordingly for computing the final features.
③ The third group is our proposed Lingual-SMoE. LGR-SMoE stands for an SMoE model with
our linguistic-guided routing, where the first-level language router selects the top 8 experts and
the second-level token router activates the top 2 sequentially. In addition, to examine an interest-
ing combination between the residual expert (Elbayad et al., 2023; Rajbhandari et al., 2022) and
our linguistic-guided routing, we organically integrate them as LGR+res-SMoE. For consistency of
computational cost, in LGR+res-SMoE, the second-level top-2 token routing is replaced by a top-1
routing. Lingual-SMoE further adopts the dynamic expert allocation on top of LGR-SMoE.

Training and Evaluation Details. The training processes have 35K, 100K, and 200K iterations
for OPUS-16, OPUS-50, and OPUS-100, respectively. With a learning rate of 5 × 10−4, we
optimize models with Adam using (β1, β2, ϵ) = (0.9, 0.98, 10−8) (Kingma & Ba, 2015). The
learning rate schedule follows the Inverse Square Root with a specific number of warm-up steps
set to 4, 000. A temperature-based data sampling strategy is utilized to train our models (Aharoni
et al., 2019). The temperature is set to 1.5 for OPUS-16, and 5 for OPUS-50 and OPUS-100.
The dynamic expert allocation uses a value of △n equal to 5, 000 iterations for experiments on
OPUS-16, OPUS-50, and 10, 000 iterations for OPUS-100. In addition, the ratio of expert
number exploring updates is set to 0.8, and the threshold controlling expert capacity number λ
is 0.1 for OPUS-16, OPUS-50 and 0.01 for OPUS-100. For the memory efficiency purpose, we
employ the fp16 in training all models (Ott et al., 2018).
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Table 1: Multilingual machine translation performance on OPUS16 dataset. Average BLEU scores for
each translation direction and win-ratio are reported. We classify languages according to data amount into
three groups: high (> 0.9M), low (< 0.1M), and medium. We compare Lingual-SMoE and its variants{

LGR-SMoE, LGR+res-SMoE
}

with dense and SMoE baselines {Dense,GS-SMoE, ST-SMoE}, and modified
SMoE models {LS-SMoE,Hybrid-SMoE,Residual-SMoE}. The total number of experts for all SMoE mod-
els is 32. The number of activated experts for each token level router is 2 except ST-SMoE. The number of
language-dependent candidate experts is 8. The best two performances are bold and underlined.

Methods Avg. en-xx xx-en win-rate
Avg. high medium low Avg. high medium low

Dense 28.79 26.92 25.37 39.12 14.78 30.67 28.81 39.24 24.21 -

GS-SMoE 30.29 28.28 25.55 40.71 18.97 32.31 28.77 41.70 29.25 77%
ST-SMoE 31.79 29.68 26.55 43.04 20.23 33.89 29.94 44.00 30.94 100%
LS-SMoE 26.75 22.99 20.06 37.31 11.72 30.50 23.69 42.99 32.01 33%
Hybrid-SMoE 28.35 24.23 24.56 31.70 13.38 32.48 29.59 41.74 27.81 53%
Residual-SMoE 31.97 30.06 26.52 43.49 21.58 33.88 29.84 43.94 31.25 100%
LGR-SMoE 32.32 31.20 26.46 46.68 23.23 33.44 29.76 43.15 30.28 97%
LGRres-SMoE 32.61 31.42 27.06 46.25 23.29 33.79 29.70 43.52 31.74 100%
Lingual-SMoE 32.71 31.46 27.11 46.24 23.34 33.96 29.87 43.49 32.02 100%

To assess all algorithms, we calculate the BLEU scores on test sets via Sacre-BLEU3 (Post, 2018).
The scores encompass the average ratings across all language pairs, such as English-to-Any (en-
xx), and Any-to-English (xx-en) on the OPUS-100 dataset. Furthermore, we exhibit the win rate,
indicating the fraction of language pairs where a method outperforms its dense counterpart (Zhang
et al., 2020). Experiments are conducted using Fairseq (Ott et al., 2019) with 8 RTX A6000 GPUs.

4.2 LINGUAL-SMOE IMPROVES MULTI-LINGUAL MACHINE TRANSLATION

Comparisons with Previous State-of-the-art (SoTA) Approaches. We compare our proposed
Lingual-SMoE with baselines and existing SoTA SMoE algorithms for MMT. Specifically, all
models are trained and assessed on the OPUS-16 dataset with Transformer-Base as the backbone
architecture. The results are summarized in Table 1. Several observations can be drawn:

▷ ① Lingual-SMoE outperforms the Dense and vanilla SMoE multilingual machine transla-
tion baselines with a distinct advantage. Specifically, Linguistics-Guided Routing (LGR-SMoE)
alone achieves {3.53%, 4.28%, 2.77%}, {2.03%, 2.92%, 1.13%} improvements in BLEU scores for
{All (Avg.), English to Any (en-xx), Any to English (xx-en)} translation directions for Dense and
GS-SMoE, respectively. This clear advantage confirms the effectiveness of introducing linguistic
knowledge into the routing of SMoEs. Furthermore, the English-to-Any translation direction ex-
hibits a more notable improvement compared to the Any-to-English direction. Note that the former
has diverse target language options and the latter has a single target language option, i.e., English.
It implies that the language router performs a superior expert assignment when it receives diverse
target language representations. Similar observations can be found in the comparison between
LGR-SMoE and ST-SMoE. LGR-SMoE surpasses ST-SMoE by a clear performance margin in terms
of {Avg., en-xx} translation, while has a comparable result in the case of {xx-en}.

▷ ② Lingual-SMoE consistently surpasses other modified SMoE models (i.e., LS-SMoE, Hybrid-
SMoE, and Residual-SMoE), demonstrating the advantage of language-guided routing in balancing
the competition between shared and language-specific parameters and improving previous substan-
dard routing. More detailed analyses lie as follows. (1) The LS-SMoE model trains experts sepa-
rately with different language samples, resulting in nearly 2% lower average BLEU score than the
dense counterpart, especially when translating into languages besides English, which is about 4%
lower. A possible reason is that sentence pairs where English is the target language, are the ma-
jority in the datasets, which leads to a highly imbalanced training of LS-SMoE. In other words, the
English-specific parameters will receive much more attention compared to the rest languages. In
contrast, Lingual-SMoE approaches language-specific designs in a softer way by identifying and
pre-routing a set of experts for each language. The language-specific expert sets are allowed to be
overlapped among different languages. (2) Similarly, Hybrid-SMoE also suffers from imbalanced

3BLEU Signature: nrefs:1 | case:mixed | eff:no | tok:13a | smooth:exp | version:2.3.1
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Table 2: Multilingual machine translation performance on OPUS50 and OPUS-100 dataset. Average BLEU
scores for each translation direction and win-rate are reported. We compare Lingual-SMoE and its variants{

LGR-SMoE, LGR+res-SMoE
}

with {Dense,GS-SMoE}. The best two performances are bold and underlined.

Methods Datasets Avg. en-xx xx-en win-rate
Avg. high medium low Avg. high medium low

Dense

OPUS50

24.09 21.06 17.48 25.60 23.02 27.12 22.88 30.81 31.26 -
GS-SMoE 26.45 23.15 19.23 29.17 24.14 29.76 26.16 33.61 32.49 83%
LGR-SMoE 27.75 26.19 22.05 32.92 26.84 29.31 26.27 33.76 30.34 92%
LGRres-SMoE 27.31 25.38 21.59 32.14 25.30 29.25 25.71 33.27 31.69 94%
Lingual-SMoE 27.84 26.21 22.09 32.90 26.86 29.46 26.28 33.75 30.91 95%
Dense

OPUS100

22.21 19.03 16.51 22.01 20.68 25.39 22.83 27.82 27.76 -
GS-SMoE 24.82 20.85 16.88 24.66 23.99 28.78 26.73 32.11 28.81 79%
LGR-SMoE 27.50 25.58 22.88 30.66 24.80 29.42 27.99 32.45 28.59 94%
LGRres-SMoE 27.44 25.49 22.68 30.35 25.18 29.38 27.77 32.32 29.00 95%
Lingual-SMoE 27.67 25.70 22.93 30.66 25.10 29.65 28.23 32.47 29.05 97%

training even though it employs a routing mechanism since routing only by language imposes a rigid
constraint on expert selection, which is mitigated by our hierarchical routing from Lingual-SMoE.
(3) Residual-SMoE outperforms Dense and vanilla SMoE baseline, but its fixed routing is inferior
compared to the flexibility of our hierarchical routing in Lingual-SMoE.

▷ ③ Inspired by Residual-SMoE, we further combine a shared expert with top-1 linguistic-guided
routing (LGR+res-SMoE). On OPUS-16, it enhances the performance of LGR-SMoE by around
0.3% and increases the win-rate over the dense baseline to 100%. Extra validations about whether
the fixed shared expert is necessary are presented in Table 2.

▷ ④ With Dynamic Expert Allocation, Lingual-SMoE automatically adjusts the appropriate
network capacity to resolve language translations with varied complexity, by activating additional
amounts of model parameters. It improves average performance on BLEU score by about 0.4% over
fixed LGR-SMoE. We see that DEA is particularly helpful for low-resource scenarios, providing an
over 2% increase on low-resource xx-en directions, which is consistent with our intuition.
Evaluation across Different Number of Languages. To examine whether Lingual-SMoE re-
tains its advantage on datasets with more language pairs, we choose Dense, SMoE baselines, and
better-performing methods, and train them on OPUS-50 and OPUS-100. The results are recorded
in Table 2. ① We found that Lingual-SMoE continues to reach the best, outscoring the dense
baseline by ∼ 5% BLUE scores on OPUS-100. It further verifies the effectiveness of our adaptive
language-guided routing. ② Meantime, while the LGR+res-SMoE model outperforms linguistics-
guided routing in small datasets, as the number of languages increases, LGR-SMoE overtakes its
residual counterpart at most cases. A possible explanation is that a single shared residual expert
starts to be insufficient to capture increased common language knowledge when the number of
translation directions keeps boosting.

4.3 ABLATION STUDY AND EXTRA INVESTIGATION.

In this section, we further conduct an in-depth analysis of Lingual-SMoE, regarding: i) the con-
tributions of its various components, ii) language router designs, iii) the number of experts and their
specialization. All experiments are carried out on OPUS-16 with the same training configurations.

Table 3: Ablation on (1) language embed-
dings initialization (Emb) and (2) language
grouping loss (Loss) in Lingual-SMoE.

Emb Loss Avg. en-xx xx-en

% % 29.18 27.47 30.90

" % 30.13 29.35 30.91

% " 32.10 31.17 33.03

" " 32.32 31.20 33.44

Contribution of Different Components in Linguistics-
Guided Routing. Linguistics-guided routing is divided
into two steps: (1) training the language representation
module and (2) training the translation model with lan-
guage grouping loss and language representation initial-
ization. Therefore, we train and evaluate models without
both or without one of them, as shown in Table 3. We
see that language grouping loss (Loss) is more beneficial
than language representation learning (Emb). An organic
combination leads to the best performance. It again con-
firms that linguistic guidance helps SMoE to reach better translation performance.

Comparison among Language Router Designs. In addition to the linguistic-guided router
(learned), we testify two other routing designs of: (1) fixed, the first-level router always assigns
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8 fixed experts based on the target language for each input sample; (2) random, the first-level router
randomly selects 8 experts for each input sample. The results are recorded in Table 4. Our routing
policy achieves a superior performance, compared to its linguistic-agnostic counterparts. This high-
lights the need of appropriate sharing and specialization of model parameters for different languages
in the multilingual machine translation.

Table 4: Ablation studies on language
router designs of Lingual-SMoE. All use
fixed expert capacity Sl = 8.

Method Avg. en-xx xx-en

fixed 16.38 20.94 11.82
random 28.15 26.49 29.81

learned 32.32 31.20 33.44

Correlation between # Allocated Experts and Lin-
guistic Difficulty. To understand the working mecha-
nism of dynamic expert allocation, we track the num-
ber of selected experts for each complexity level ∈
{high,med, low} in training Lingual-SMoE, as col-
lected in Figure 5. We observe that along with the train-
ing, all levels gradually incorporate additional experts.
Notably, the high-resource group witnesses the most sig-
nificant surge in the number of experts, increasing from
8 to 11, while that of low-resource group allocated expert remains 8. It is within our expectations
since the high-resource case requires a larger network capacity to process more samples, whereas
the low-resource case needs a smaller number of experts. Dynamic Expert Allocation can be effec-
tive mainly because it expands the exploration space of SMoE by enlarging # expert candidates |Sl|
for each language l. Note that there is no additional computing cost since it still only activates two
experts at the second-level token routing.
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Figure 5: The dynamics of # expert.

Different Number of Language-Specific Experts. The
quantity of expert candidates at the first-level language routing
is a crucial hyper-parameter in our SMoE due to its significant
impact on the exploration scope of the routers. The ablation
results of Lingual-SMoE with {4, 8, 16, 32} expert capaci-
ties in the language router are presented in Table 5. If the value
of Sl is set to 32 (i.e., using full experts), it degrades to a clas-
sic top-2 routing. Lingual-SMoE with Sl = 8 seems to be
a “sweet point” for superior results.

Table 5: Ablation on # language-specific experts
(Sl) in Lingual-SMoE. The SMoE baseline Top-2 is
equivalent to the one of Lingual-SMoE with Sl = 32.

Method Avg. en-xx xx-en

Top-2 (w. Sl = 32) 30.29 28.28 32.31

LGR w. Sl = 16 30.21 28.87 31.55
LGR w. Sl = 8 32.32 31.20 33.44
LGR w. Sl = 4 30.24 29.03 31.45

Linguistics-Guided Routing Visualization.
To investigate whether our routing decisions are
grouped based on language similarity and vice
versa, we visualize the expert assignments for
different languages of the final encoder (Fig-
ure A7) and decoder (Figure A8) layers. We vi-
sualize routing decisions of three language fam-
ilies: Slavic languages {bg, sk, sl, hr},
Germanic languages {nb, de}, and Indo-
Iranian languages {as, mr}. As shown in the
visualizations, the expert distributions within each group, i.e., the heatmap color patterns, are similar
but not identical. For example, the Slavic language group ({bg ∼ hr} from the first to the fourth
row) prefers experts 9 and 10 in the encoder and experts 0, 10, and 11 in the decoder. It evidences
that our proposals indeed capture the linguistic hierarchy in the routing, where both language and
language family types affect each token’s final expert selection.

5 CONCLUSIONS

Sparse Mixture-of-Experts (SMoE) is a practical approach for multilingual machine translation as
it allows a significant model capacity scaling while minimizing the extra computational overhead.
Nevertheless, current practices overlook the linguistic characteristics that languages are hierarchi-
cally grouped and differ in complexity. In this work, we introduce a novel SMoE design for mul-
tilingual machine translation, named Lingual-SMoE. Our approach incorporates linguistic infor-
mation into the routing process using a hierarchical router at both language and token levels. Ad-
ditionally, we propose a flexible expert allocation mechanism that adjusts the number of candidate
experts based on training dynamics and conditional on the translation difficulty. Numerous stud-
ies on various dense and SMoE architectures consistently showcase the performance improvements
from our framework. Future plans include the extension to multiple modality scenarios.
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REPRODUCIBILITY STATEMENT

The authors have devoted a considerable amount of effort to ensure the methods and results in this
paper are reproductive. Section 4.1 and Appendix A1, A9 provide details about the datasets and
preprocessing. Section 4.1 guides the readers through the experimental procedure and evaluation
metrics. The implementation of Lingual-SMoE, along with the Dense and SMoE baselines are
presented in Section 4.1 as well. In addition, the codes to train and evaluate our methods are included
in supplementary materials.
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A1 MORE IMPLEMENTATION DETAILS

Table A6: The statistics of the OPUS-100 datasets and its sub-datasets.
Datasets Groups Languages Train Validation Test

All high med low

OPUS-16 9 16 8 4 4 17, 559, 950 30× 1000 30× 1000
OPUS-50 17 50 24 13 13 54, 444, 772 96× 1000 96× 1000
OPUS-100 26 100 45 28 21 107, 924, 846 188× 1000 188× 1000

Language Grouping Loss Details. Given the list of all language embeddings {xi} as input, each
has a corresponding language family label yi. The objective of the language grouping loss Ll is to
minimize the embedding distances for language embedding pairs of the same class, while maximiz-
ing those for pairs of different classes. The computation of Ll is illustrated below:

si,j =
xi · xj

∥xi∥2 ∥xj∥2
(3)

Ll(xi,xj , s) = 1 [yi = yj ] ∥1− si,j∥+ 1 [yi ̸= yj ] ∥si,j∥ (4)

For each pair of language embeddings xi and xj , their cosine similarity si,j is computed as a
measure of the embedding distance. Then the language grouping loss Ll of this embedding pair
is 1 − si,j if they belong to the same language family, and si,j if they are from different language
families.
Table A7: Comparison of the routing mechanism of SMoE baseline models and variants of Lingual-SMoE.
Routing Granularity: router input in encoder and decoder SMoE layer. Top-k: number of router activated
experts. Router: whether the router is learnable or fixed. LGR: whether to enable Language Guided Routing.
Shared: whether to enable a shared expert.

Model Routing Granularity Top-k Router LGR Shared
Encoder Decoder Language Token

GS-SMoE Token Token None 2 Learnable % %

ST-SMoE Token Token None 1 Learnable % %

LS-SMoE Source Target None 2 Fixed % %

Hybrid-SMoE Token Target None 2 Learnable % %

Residual-SMoE Token Token None 2 Learnable % "

LGR-SMoE Target Target 8 2 Learnable " %

LGRres-SMoE Target Target 8 2 Learnable " "

Lingual-SMoE Target Target Dynamic 2 Learnable " %

Model Efficiency Details. The model size and the number of tera floating point operations
(TFLOPs) are reported to measure the computational cost. The TFLOPs are evaluated on a set
of 128 identical samples in the OPUS dataset, with an input sequence length of 31 and a target
sequence length of 25. For inference efficiency, we report average tokens processed per second
(token/s) on the same test set. For training efficiency, we report the average second cost per step
(s/step). We report the model efficiency metrics in Table2 of our Lingual-SMoE on top of one of
the current SOTA SMoE models GS-SMoE. As shown in Table A8, Our design improves translation
performance with only marginal additional parameters.

Table A8: Model efficiency of Lingual-SMoE and GS-SMoE.
Model Model Size TFLOPs Inference token/s Training s/step

GS-SMoE 148.8M 1.05 469.84 1.208
Lingual-SMoE 149.48M 1.05 456.83 1.205

A2 MORE EXPERIMENT RESULTS

Extra Evaluations. We provide the ChrF, COMET, ROUGE-L, and METEOR scores of Dense,
GS-SMoE, and Lingual-SMoE trained on OPUS-50 datasets in Table A10, which show that the
advantages of our Lingual-SMoE across different metrics. The ChrF score is computed using Sacre-
BLEU. The COMET score is calculated using the COMET framework. The ROUGE-L, and ME-
TEOR scores are calculated with the HuggingFace evaluate library.

A15



Published as a conference paper at ICLR 2024

Table A9: All languages in OPUS-100 and their corresponding abbreviations (abbr.) and language
groups.

Language abbr. Group Language abbr. Group

Hebrew he afroasiatic Portuguese pt indo-european romance
Arabic ar afroasiatic Romanian ro indo-european romance
Maltese mt afroasiatic Spanish es indo-european romance
Hausa ha afroasiatic French fr indo-european romance
Amharic am afroasiatic Italian it indo-european romance
Vietnamese vi austroasiatic Catalan ca indo-european romance
Khmer km austroasiatic Galician gl indo-european romance
Malay ms austroasiatic Walloon wa indo-european romance
Indonesian id austroasiatic Occitan oc indo-european romance
Malagasy mg austroasiatic Aragonese an indo-european romance
Mongolian mn mongolic Bulgarian bg indo-european slavic
Sinhala si dravidian Slovak sk indo-european slavic
Malayalam ml dravidian Slovenian sl indo-european slavic
Tamil ta dravidian Croatian hr indo-european slavic
Telugu te dravidian Polish pl indo-european slavic
Kannada kn dravidian Ukrainian uk indo-european slavic
Lithuanian lt indo-european baltic Russian ru indo-european slavic
Latvian lv indo-european baltic Bosnian bs indo-european slavic
Irish ga indo-european celtic Serbian sr indo-european slavic
Welsh cy indo-european celtic Czech cs indo-european slavic
Breton br indo-european celtic Macedonian mk indo-european slavic
Scottish Gaelic gd indo-european celtic Serbo-Croatian sh indo-european slavic
German de indo-european germanic Belarusian be indo-european slavic
Danish da indo-european germanic Basque eu isolate
Dutch nl indo-european germanic Japanese ja japonic
English en indo-european germanic Georgian ka kartvelian
Swedish sv indo-european germanic Korean ko koreanic
Icelandic is indo-european germanic Kinyarwanda rw niger-congo
Norwegian no indo-european germanic Xhosa xh niger-congo
Norwegian Bokmal nb indo-european germanic Igbo ig niger-congo
Afrikaans af indo-european germanic Zulu zu niger-congo
Norwegian Nynorsk nn indo-european germanic Yoruba yo niger-congo
Western Frisian fy indo-european germanic Chinese zh sino-tibetan
Yiddish yi indo-european germanic Burmese my sino-tibetan
Limburgish li indo-european germanic Thai th tai-kadai
Dzongkha dz nilo-saharan Turkish tr turkic
Persian fa indo-european indo-iranian Azerbaijani az turkic
Bangla bn indo-european indo-iranian Uzbek uz turkic
Assamese as indo-european indo-iranian Uyghur ug turkic
Gujarati gu indo-european indo-iranian Kyrgyz ky turkic
Tajik tg indo-european indo-iranian Kazakh kk turkic
Nepali ne indo-european indo-iranian Tatar tt turkic
Punjabi pa indo-european indo-iranian Turkmen tk turkic
Urdu ur indo-european indo-iranian Hungarian hu uralic
Hindi hi indo-european indo-iranian Estonian et uralic
Marathi mr indo-european indo-iranian Finnish fi uralic
Pashto ps indo-european indo-iranian Northern Sami se uralic
Kurdish ku indo-european indo-iranian Esperanto eo constructed
Odia or indo-european indo-iranian Greek el indo-european hellenic
Armenian hy indo-european armenian Albanian sq indo-european albanian

Table A10: Multilingual machine translation performance on OPUS50 dataset.
Model ChrF COMET ROUGE-L METEOR

Dense 43.14 72.82 40.99 41.47
GS-SMoE 45.36 74.46 42.38 43.15

Lingual-SMoE 46.56 75.52 43.06 43.96

Dynamic Expert Allocation with Grammar Complexity and Data Abundance. As outlined in
the introduction, our study examines language difficulty from two perspectives: grammatical com-
plexity and resource availability, which are combined by assigning corresponding scores. (1) In
terms of available data, following (Zhang et al., 2020), languages with sample sizes exceeding 0.9
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Table A11: Performance comparisons of Lingual-SMoEextra with dynamic routing according to language
difficulty defined by grammar complexity and data abundance, compared to Dense and vanilla SMoE GS-SMoE.
Average BLEU scores for each direction are reported.

Methods Avg. en-xx xx-en

Avg. high medium low Avg. high medium low

Dense 28.79 26.92 25.37 39.12 14.78 30.67 28.81 39.24 24.21
GS-SMoE 30.29 28.28 25.55 40.71 18.97 32.31 28.77 41.70 29.25
Lingual-SMoEextra 32.55 31.36 27.05 45.82 23.59 33.73 29.95 43.61 30.66

million samples are categorized as high-resource languages, while those with less than 0.1 million
samples are considered low-resource languages. Languages falling between the two thresholds are
classified as medium-resource languages. Scores of 0, 1, and 2 are assigned to low, medium, and
high resource languages, respectively, with higher scores indicating greater data scarcity. (2) Re-
garding grammatical complexity, each language is rated on a scale of 1 to 5 using GPT-4, reflecting
the level of difficulty from easy to hard. (3) Then the language difficulty metric is computed by
summing the scores derived from resource availability and grammatical complexity. During train-
ing, languages are categorized as easy, medium, and hard based on their language difficulty scores,
maintaining the same distribution of high, medium, and low resource languages. Next, we train
Lingual-SMoEextra with the language difficulty groups in the OPUS-16 settings and compare it
to the dense and SMoE baselines. As shown in Table S1, Lingual-SMoEextra consistently out-
performs the baseline models due to the incorporation of both grammar and data information. The
reason why we exclude language difficulty when combining the grammar complexity score and the
data availability score is twofold. First, the amount of data is an objective metric, but grammar com-
plexity is relatively subjective for people with different first languages and education levels. Also,
the definition of grammar complexity varies from GPT to human, and even from case to case within
GPT. So we decide not to include grammar complexity in our Lingual-SMoE.
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(a) Encoder Routing Decision Similarity.
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(b) Decoder Routing Decision Similarity.

Figure A6: Routing decision similarities of the last encoder and decoder SMoE layer of Lingual-SMoE
trained on OPUS-100 for en-xx language pairs. Three groups of target languages {bg, sk, sl, hr},
{nb, de}, {as, mr} are presented. Darker blocks imply higher similarity.
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