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Abstract

Neurally-parameterized Structural Causal Models in the Pearlian notion to causality, re-
ferred to as NCM, were recently introduced as a step towards next-generation learning
systems. However, said NCM are only concerned with the learning aspect of causal infer-
ence and totally miss out on the architecture aspect. That is, actual causal inference within
NCM is intractable in that the NCM won’t return an answer to a query in polynomial
time. This insight follows as corollary to the more general statement on the intractability
of arbitrary structural causal model (SCM) parameterizations, which we prove in this work
through classical 3-SAT reduction. Since future learning algorithms will be required to deal
with both high dimensional data and highly complex mechanisms governing the data, we
ultimately believe work on tractable inference for causality to be decisive. We also show
that not all “causal” models are created equal. More specifically, there are models capable
of answering causal queries that are not SCM, which we refer to as partially causal models
(PCM). We provide a tabular taxonomy in terms of tractability properties for all of the dif-
ferent model families, namely correlation-based, PCM and SCM. To conclude our work, we
also provide some initial ideas on how to overcome parts of the intractability of causal infer-
ence with SCM by showing an example of how parameterizing an SCM with SPN modules
can at least allow for tractable mechanisms.

With this work we hope that our insights can raise awareness for this novel research direction
since achieving success with causality in real world downstream tasks will not only depend
on learning correct models but also require having the practical ability to gain access to
model inferences.

1 Introduction

Causal interactions stand at the center of human cognition thus being of high value to science, engineering,
business, and law (Penn & Povinelli, 2007). Questions like “What if?” and “Why?” were discovered
to be central to how children perform exploration, as recent strides in developmental psychology suggest
(Gopnik, 2012} Buchsbaum et al., 2012; Pearl & Mackenzie, |2018), and similar to the scientific method.
Whereas artificial intelligence research dreams of an automatation to the scientist’s manner (McCarthy,
1998; [McCarthy & Hayes|, 1981} |Steinruecken et al.l |2019)). Deep learning’s advance brought universality
in approximation i.e., for any function there will exist a neural network that is close in approximation to
arbitrary precision (Cybenko, |1989; [Hornik, [1991). The field has seen tremendous progress ever since, see
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for instance (Krizhevsky et al.| |2012; |Mnih et al.; 2013} [Vaswani et al., [2017)). Thereby, the integration of
causality with deep learning is crucial for achieving human-level intelligence. Preliminary attempts, for the
so-called neural-causal models (Xia et al., |2021; [Pawlowski et al.l 2020} [Zecevi¢ et al., [2021a) suggest to be
a promising step in this direction.

While causality has been thoroughly formalized within the last decade (Pearl, [2009; |[Peters et al.l |2017)), and
deep learning has advanced at a breakneck speed, the issue of tractability of inference (Cooper}, [1990; [Roth),
1996; (Choi et al.l 2020)) has been left relatively unscathed. It is generally known that semantic graphs like
Bayesian Networks (BNs; [Pearl (1995))) scale exponentially for marginal inference, while computation graphs
(or probabilistic circuits) like sum-product networks (SPNs; |Poon & Domingos| (2011))) scale in polynomial (if
not linear) time. A conversion method developed by |Zhao et al.[(2015]) showed how to compile back and forth
between SPNs and BNs. Yet, diverging views on tractable causal inference were reported, as discussed in
Papantonis & Belle (2020]) and |Zecevié et al.[(2021a). The former argues using the aforementioned conversion
scheme, which leads to a degenerate BN with no causal semantics, while the latter proposes a partial neural-
causal model that leverages existing interventional data to perform tractable causal inferences. Motivated
by these discrepancies and the resulting lack of clarity, this work focuses on investigating systematically if,
when, how and also under what cost the different types of causal inference occur in tractable manner. Our
investigation of causal models reveals a tabular taxonomy to summarize recent research efforts and clarifies
what should be subject of further research. Going a step further we also reveal a newly proposed model,
Linear Time Neural Causal Model (LTNCM) as an initial step towards the said goal.

We make the following contributions: (1) We prove the general impossibility result of tractable inference
within parameterized SCM, (2) we identify the differences in existing causal models out of which we arrive
at and define the new class of partially causal models, (3) we provide a comprehensive view onto the different
trade-offs between model expressivity and inference tractability, classifying our models along with their
properties within a tabular taxonomy, and finally (4) based on our taxonomy we propose a new model called
LTNCM that can perform linear time mechanism inference opposed to polynomiality of a standard NCM.

We make our code repository for reproducing the empirical part with the LTNCM and visualizations publicly
available at: https://github.com/zecevic-matej/Not-All-Causal-Inference-is-the-Same

2 Brief Overview on Background and Related Work

Let us briefly review the background on both key concepts from causality and the main tractable model class
of concern, sum-product networks (SPNs). Because SPNs will play a central role in the discussion of this
paper, since they take a singular role in model families that are truly tractable, we refer readers unfamiliar
with the model family to the overview provided by |Paris et al.| (2020)).

Causal Inference. Following the Pearlian notion of Causality (Pearl, 2009)), an SCM is defined as a 4-tuple
M :={U,V F P(U)) where the so-called structural equations

v < fi(pa;,u;) € F (1)

assign values (denoted by lowercase letters) to the respective endogenous/system variables V; € V based on
the values of their parents Pa; € V\V; and the values of their respective exogenous/noise/nature variables
U; € U, and P(U) denotes the probability function defined over U. An intervention do(W), WcV on
an SCM M occurs when (multiple) structural equations are being replaced through new non-parametric
functions thus effectively creating an alternate SCM. Interventions are referred to as imperfect if the parental
relation is kept intact, as perfect if not, and even atomic when additionally the intervened values are being
kept constant. It is important to realize that interventions are of fundamentally local nature, and the
structural equations (variables and their causes) dictate this locality. This further suggests that mechanisms
remain invariant to changes in other mechanisms. An important consequence of said autonomic principles
is the truncated factorization

M) =T 201 p2) @

derived by [Pearl (2009), which suggests that an intervention do(W) introduces an independence of a set of in-
tervened nodes W to its causal parents. For completion we mention more interesting properties of any SCM,
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they induce a causal graph G as directed acyclic graph (DAG), they induce an observational /associational
distribution denoted p™, and they can generate infinitely many interventional and counterfactual distribu-
tions using the do-operator which “overwrites” structural equations. Note that, opposed to the Markovian
SCM discussed in for instance (Peters et al.; |2017)), the definition of M is semi-Markovian thus allowing for
shared U between the different V;. Such a U is also called hidden confounder since it is a common cause of
at least two Vi, V(i # j). Opposite to that, a “common” confounder would be a common cause from within
V. The SCM’s applicability to machine learning has been shown in marketing (Hair Jr & Sarstedt}, [2021)),
healthcare (Bica et al.l |2020) and education (Hoiles & Schaar, |2016). As suggested by the Causal Hierarchy
Theorem (CHT) (Bareinboim et al., 2020), the properties of an SCM form the Pearl Causal Hierarchy (PCH)
consisting of different levels of distributions being £; associational, Lo interventional and L3 counterfactual.
The PCH suggests that causal quantities (£;,7 € {2,3}) are in fact richer in information than statistical
quantities (£1), and the necessity of causal information (e.g. structural knowledge) for inference based on
lower rungs e.g. £1 - L5. Finally, to query for samples of a given SCM, the structural equations are be-
ing simulated sequentially following the underlying causal structure starting from independent, exogenous
variables U; and then moving along the causal hierarchy of endogenous variables V.

Sum-Product Networks. To readers unfamiliar with SPN literature, the present paragraph should serve
as a general, high-level introduction to the topic. Note however that this paragraph should not be considered
as an in-depth dive/tutorial into the topic, for further consideration please do consider the provided survey
and original references. We cover the basics only up to the point that they are relevant for this present
manuscript. Wile some other details like the definition of a ‘scope’ or ‘indicator variables’ are integral for
actually implementing SPNs and SPN-based causal models, the reader is safe to ignore those since they
won’t be relevant for the (technical) arguments given in this paper. We follow suit with existing literature
and the recent strides on tractable causal inference—mainly revolving around sum-product networks (SPN)
as introduced by [Poon & Domingos| (2011). SPNs generalized the notion of network polynomials based
on indicator variables Ax—.(x) € {0,1} for (finite-state) RVs X from (Darwiche, [2003). The indicator
variable (IV) A simply denotes whether a certain state x is present for a random variable (RV) X that
is part of a collection of RVs denoted X and if so, then Ax_,(x) = 1. Sum-product networks (SPN)
represent a special type of probabilistic model that allows for a variety of exact and efficient inference
routines. SPNs are considered as DAG consisting of product, sum and leaf (or distribution) nodes whose
structure and parameterization can be efficiently learned from data to allow for efficient modelling of joint
probability distributions p(X). Formally a SPN § = (G, w) consists of non-negative parameters w and a
DAG G = (V, E) with a multivariate indicator variable A leaf nodes and exclusively internal sum (denoted
S) and product nodes (denoted P) given by,

SA) = Y wscCA) P = [] <o, (3)

Cech(S) Cech(S)

where S(A) and P(A) denote the evaluation of sum and product nodes using the leaf node () propagation
respectively, and each of these nodes is being computed recursively based on their children denoted by
ch(-), and ws ¢ denotes the summation weights (as convex combination, so >, w = 1) for any parent-child
pair. C is simply a placeholder to denote a child node and C must be either a leaf, sum or product node
itself. Regarding the SPN output S, it is computed at the root node (that is, the evaluation of x is the
post-propagation result at the root of the DAG and we have S(A) = S(x)) and the probability density for

x is then given by p(x) = % They are members of the family of probabilistic circuits (Van den
x/ex

Broeck et all [2019]). A special class, to be precise, that satisfies properties known as completeness and
decomposability. Let N simply denote a node in SPN S, then

{X} if N is an indicator node

sc(N) =
UCGCh(N) sc(C) else

is called the scope of N and

VSe S (VCq, Cqo € ch(S) : sc(Cq) = sc(Cy)) (5)
VPeS: (VCy,Caech(S): Cy # Cy = sc(Cy) nse(Ce) = &) (6)
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are the completeness (i) and decomposability (ii) properties respectively. While the two properties are crucial
for what is meant by a SPN, they are not of interest for any further consideration in this work. Nonetheless,
to briefly mention the intuition: (i) is a property on the sum nodes which enforces that any children pair for
any given sum node needs to have the same scope and (ii) is a property on product nodes which enforces
that any children pair for any given product node must have disjoint scopes (unless we consider duplicate
nodes). Both conditions (i) and (ii) together make an SPN have the well-known tractability properties, for
example if one were to consider marginal inference, that is, computing the integral {p(x)dx, then (i) will
allow to “push down” integrals onto children ({p(x)dx = >, w; { pi(x)dx for each child ), whereas (ii) will
allow to decompose complicated integrals into more manageable ones (§{ p(x, y)dxdy = {p(x)dx {p(y)dy).
Since their introduction, SPNs have been heavily studied such as by (Trapp et al., [2019)) that present a way
to learn SPNs in a Bayesian realm whereas (Kalra et all |2018)) learn SPNs in an online setting. Several
different types of SPNs have also been studied such as Random SPN (Peharz et all |2020b), Credal SPNs
(Levray & Bellel 2020) and Sum-Product-Quotient Networks (Sharir & Shashual, [2018])) to name a few. More
recently, on the intersection of machine learning and causality, |Zecevié et al.| (2021al) proposed an extension
to the conditional SPN (CSPN;, [Shao et al.| (2019))) capable of adhering to interventional queries. Formally,
an iSPN is being defined as

Z:=(f,8) st. ¥=f(Gnm) and Dom(S) =V (7)

for some SCM M, that need not be known (ounly its graph and arbitrary many interventional data sets),
where V q are M’s endogenous variables (all variables with ‘names’) and G o4 is the causal graph implied by
M. Meaning that ¥ provides parameters to the SPN S by knowing which causal graph to consider, whereas
S generates distributions for variables V 54 based on parameters ¥ (note: we drop the notation for both f
and S to reduce clutter, f := fp,S := Sy i.e., communication between the two sub models of Z happens via
9). In this sense, the iSPN is a special case to the standard CSPN formulation proposed by (Shao et al.,
2019) where the neural net parameterizer f and the generative SPN S are chosen in a particular way to
correspond to some SCM M. That is, consider the general formulation of a CSPN C = (f,S) modelling a
conditional distribution p(Y | X) with feed-forward neural network f : X — ¥ and SPN §:Y — [0,1]. By
realizing that an intervention do(x) comes with the mutilation of the causal graph G = (V, E) such that new
graph is G’ = (V,{(4,4) : (i,7) € E A i ¢ Pa;}, the iSPN is able to formulate an intervention for SPN natural
to the occurrence of interventions in structural causal model. The neural net parameterizer (sometimes also
referred to as gate model) f orchestrates the do-queries such that the density estimator (SPN) can easily
switch between different interventional distributions. An alternate approach to causality but also through
the lens of tractability was recently considered by (Darwiche, 2021)).

These computational models (SPN) oppose the classical notion of semantic models (e.g. BNs, see Fig[2),
they trade off interpretability with efficiency. That is, an SPN might be difficult to decipher, similar to other
neural methods like the multi-layer perceptron (MLP), but offer even linear time inference—while the BN
(like the Pearlian SCM) directly reasons about qualitative relationships, similar to a finger-pointing child,
but at exponential cost.

3 Are There Even Different Types of Causal Models?

Before we can realize our discussion of the important matter around tractability of inference, we need to take
a step back and look at causal model (families) themselves. That is, it is important for us to understand that
causal models themselves are not a matter of choosing between black or white (metaphorically, for being
causal or not) but rather live on a continuous spectrum that defines different extents to which a causal model
can be considered ‘causal! Only if we start differentiating between these different models, it will become
apparent how they naturally exhibit different inference procedures and help making the case as suggested
by the title that “not all causal inference is the same.”

If we consider the literature in AI/ML research before the introduction of SCMs by |[Pearl (2009), we typically
only find tangential references to causality through concepts such as ‘invariance’ or ‘manipulation. Many
concepts such as counterfactuals have been used in robotics and planning literature prior to Pearl without
the actual naming or any direct reference to the idea of causality (even in a broader sense beyond Pearl’s
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Figure 1: Classifying Causal Models based on PCH Expressivity. Legend (top left): £; denote the
PCH levels, mid-point denotes £(model) c £;, whereas outer-point denotes £(model) = £;. Partial Causal
Models are those models that span an area that is neither minimal (Associational) nor maximal (SCM).
Note how the classical CBN falls into the category of PCM. (Best viewed in color.)

formalism). Fortunately, the AI/ML literature has been free of stigmata regarding the ‘C-word‘, opposed
to the long controversies in the medical sciences and econometrics (see [Hernan| (2018)), lending itself to a
rather quick adaption. Nonetheless, most of the literature ever since the introduction of SCMs has treated
the property of a model being ‘causal’ as binary, cf. [Kaddour et al.| (2022) which discuss various new models
that lie at the intersection of causality and classical ML approaches. In our first contribution with this paper
we propose to think of causal models in a more diverse manner. Not just the inference processes are different
(as we will see in subsequent sections), but the models themselves. Actually, the former is a necessary
consequence of the latter. Similar to the analysis of various intricacies of the SCM family by |Bongers et al.
(2021) (cf. Fig.7 giving an overview on “causal graphical models”), we make the suggestion that one can
classify different types of causal models using their expressivity with respect to the PCH levels. We illustrate
this classification in Fig by visualizing the three levels (associational, interventional and counterfactual)
on a simplex and then drawing areas, for the different models, within these simplices to illustrate their
expressivity. Since Lo, L3 are uncountably infinite, the outer-point of those levels are reserved to generative
models like the SCM that can generate infinitely many such distributions. The mid-point naturally illustrates
that a given model only partially expresses this level, thus we give it the the name of partially causal models
(PCM). We see that the SCM spans the maximal area (the full simplex), whereas any associational model
(which includes classical models like variational autoencoder) will simply form a line to £1. Thus, we propose
that PCM are indeed all those models that lie in between. Interestingly, this class of models is richer than
one would initially suspect, we examine this now.

Arguably the most interesting case is the historic one i.e., the Causal Bayesian Network. The CBN was
introduced before the SCM and is also a ‘causal’ model, however, it never stood on the same rung as the
SCM since it is incapable of defining and therefore expressing counterfactual quantities. This further gives
justification to the synonym of SCM, namely Functional BNs since they expose the structural equations
which make possible counterfactuals (and also a formal notion of hidden confounders). Next, is the class of
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finite PCMs, that is, models that can provide interventional and/or counterfactual distributions but never
generate infinitely many (thus finite). Recent models that fall into this class include the Causal VAE (Yang
et al.,[2020)) or the interventional SPN (Zecevi¢ et al., [2021a)) (why we think this should be the case and how
our definition captures this will be presented in the following). Finally, we recognize a third class of hybrid
models (denoted “PCM-SCM Hybrid” in Fig which generate both a finite and infinite set of distributions
for the causal levels of the PCH but never for both simultaneously (like SCM). For this third class, to the
best of our knowledge no models have been proposed yet. Whether such models can be constructed remains
to be investigated/proven, however, in the conceptualization presented they take a clear position.

While a proper formal coverage of the idea presented in this section deserves attention in a separate line of
work, we want to close off this discussion by providing a more formal, first definition of PCM based on the
model classification in terms of PCH levels:

Definition 1 (Partially Causal Model). Let M be a model capable of generating distributions that fall into
the distinct levels of the PCH (L; for i € {1,2,3}) and let L£;(M) denote said set of level i distributions.
Further, let M* denote the ground truth (or reference) SCM with L;(M*) like before. If the conditions (i)
L1(M) # &, (i) Lo(M) x L3(M) S Lo(M*) x L3(M*), and (iii) at most one causal level |L;(M)] = oo
are met, then M is called partially causal (w.r.t. M* ).

Let us briefly consider each of the formal aspects presented in the above definition.

Meaning of £ operator: First off the Pearlian causal hierarchy and its Levels. As before, the operator
L; : M — X is a mapping from generative models (e.g. neural net, sum-product net etc. are all examples of
potential choices M € M) to their generated distributions (e.g. a latent space capable of producing images
of cats and dogs X € X). Therefore, L(M) is a set of distributions generated by some model M and this set
is possibly infinite. Finally, the 7 in £; brings in the knowledge on causality by labelling all the distributions
within said set according to some level on the causal hierarchy being associational (i = 1), interventional
(i = 2) and counterfactual (¢ = 3). To answer the question where this ‘label’ comes from, it is basically
an implicit assumption that there exists some SCM Mgcnm which is our underlying data generating process
(therefore, we often times just omit to mention this underlying ground truth model i.e., we simply define
Li_5:= L1_35(Mscm)). Since L£1_3(Mgcm) are well defined, we simply check whether the corresponding
Li(Mrpeamed) for some model of interest Mpeameda match. Unfortunately, since Mgcom is generally (or
typically) unknown, there is no way to check this correspondence in practice. However, with consideration
of the existence of such ground truth model Mgcm (which is reasonable and standard practice in causality
research), we can state a sensible definition as done above.

Meaning of bound on cardinality of £-1(:): The presented definition should capture models that lie
between ‘non-causal’ and structural causal models which requires two conditions (a) that they can generate
some causal quantities (as measured by some ground truth SCM Mgcwm ), therefore either Lo(Mipearned) OF
L3(MLearned) must be defined /non-empty since only interventional/counterfactual distributions are consid-
ered causal (this part (a) therefore corresponds to (ii) in the definition and the following part (b) then to (iii)),
and (b) either one of the levels is not allowed to be infinite because we can prove by contradiction that if there
was a PCM that was not an SCM but has both |L£o(Mrearned)| = 00 and |£3(Mpearned)| = 0, then there ex-
ists some SCM M’ which matches both levels, that is, L2(Miyearned) = L2(M’) and L3(Mrpearned) = L3(M’),
therefore being indistinguishable from the given SCM, which is a contradiction to the premise that My earned
is not an SCM. Put differently, this proof by contradiction also gives meaning to what we mean by ‘partial’
from the other end of the spectrum i.e., while (a) lower bounded our ‘causalness’ to be non-zero, (b) upper
bounded it to not be fully causal like SCM, thus being right in-between somewhere as a partially causal
model.

While we will not make any further use of this definition subsequently, it is still worth pointing out how
the PCMs in Sec[f all abide by the above definition. To revisit our PCM examples from earlier, both the
CausalVAE and the iSPN can be considered as PCM following our definition. If we trust our definition to
capture the essence of what it means to be ‘partially’ causal, which we made sure is the case through the
thorough discussion in the previous paragraphs, then satisfying the criteria in our definition is both necessary
and sufficient for a model to be considered a PCM. Next, we will exemplify this with the iSPN model. The
iSPN, further denoted as V), is a generative model based on a neural net parameterizer and a generative
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SPN that jointly allow for modelling both observational and interventional distributions (as suggested by
the i in the name of iSPN). Therefore, any iSPN V models £1(V) and L5(V) with |£L2(V)] = N where N
is the number of experimental distributions available for training, according to the regime discussed in the
original paper. Since counterfactuals cannot be covered, L£3(V) is undefined. Thus V satisfies conditions
(i-iii) and is considered a PCM. An analogue analysis can be performed for the CausalVAE, as it is also
capable of generating interventional distributions but not counterfactual ones, therefore, it could never be an
SCM since L3 distributions are a necessary condition. Hypothetically speaking, however, if the CausalVAE
on the other hand were able to generate L3 distributions, then it might be considered as an SCM. This
would not be the case if one allowed the same for the iSPN (i.e., to generate L3 distributions) since the
iSPN can only produce causal distributions up to the training data available, whereas any model that can
identify causal distributions from observational data and other assumptions like the causal graph (like the
CausalVAE) would automatically fall out of the PCM into the SCM class of models.

To briefly mention the following structure of the paper. In this section we answered the question whether
different causal model existed in the first place affirmatively by providing a first classification in visual terms
and then a formal definition of PCM. In the next three sections (Secs we will discuss the three key
causal model families (non-causal, partially causal and structurally causal) in terms of inference. Then we
summarize our insights in terms of a taxonomy in Sec and subsequently use it to propose a new model (as
addenum to the main discussion) in Sec[7.1]

4 Inference in Non-Causal (or Correlation-Based) Models

To expand further on the boundaries of the integration between causality and machine learning, we first
perform an inspection on how causal inference can occur with correlation-based models. Fig]2] schematizes
the basic, “naive” approach to classical causal inference that we investigate in this section. One takes the do-
calculus to perform the actual “causal” inference, and then takes the available observational data and a model
of choice (e.g. NN/MLP, SPN, BN) to acquire the actual estimate of the query of interest. More specifically,
we will focus on SPN from the previous section, since they come with guarantees regarding probabilistic
reasoning (opposed to e.g. MLPs) and guarantees regarding their inference tractability (opposed to e.g.
BNs). This investigation is important since assuming the wrong causal structure or ignoring it altogether
could be fatal w.r.t. any form of generalization out of data support as suggested in (Peters et al., |2017)).
Central to said (assumed) causality is the concept of intervention. Although being a wrong statement as
suggested by results on identifiability, the famous motto of Peter Holland and Don Rubin “No causation
without manipulation” (Holland, [1986) phrases interventions as the core concept in causality. In agreement
with this view that distributional changes present in the data due to experimental circumstances need be
accounted for, we focus our analysis on queries @ = p(y| do(x)) with (x,y) € Val(X) x Val(Y),X, Y ¢ 'V
respectively. @ lies on the second (interventional) level Lo of the PCH (Pearl & Mackenzie, |2018; [Bareinboim
et al., 2020).

We first define the concept of a statistical estimand (£1) for SPN as the application of the rules of probability
theory (and Bayes Theorem) to the induced joint distribution.

Definition 2. An SPN-estimand is any aggregation in terms of sums or products of conditionals, p(x|y),
and marginals, p(x), where p(v) € L1 is the joint distribution of SPN S and X,Y < 'V respectively.

Before continuing with our insights on SPN-estimands, a short detour on an important assumption. In the
most general case, we require a positive support assumption to ensure that an arbitrary SPN-estimand will
actually be estimable from data. This is a simple consequence of computing probabilistic ratios F/@ where
P, Q represent probabilities and the operation /o generally being undefined. More formally, the assumption
is given as:

Assumption 1 (Support). Let p(v) represent an SPN’s modelled joint distribution. Then for any proba-
bilistic quantity p(x | y) (with Y possibly empty) derivable via the laws of probability and Bayes’ rule from
p(v) it holds that p(x | y) > 0.

While the above assumption is arguably a standard assumption of probabilistic modelling, it is nonetheless
of practical relevance since we might not always be able to ensure that it holds i.e., often times we might



Published in Transactions on Machine Learning Research (09/2023)

only be given data that covers a subset and not the full set of possible instantiations of the covariates. This
certainly amounts to a drawback of purely ‘correlation-based’ considerations for estimating causal quantities
and will become apparent in the subsequent section. On a comparitive note, this assumption is closely
aligned with the common ‘positivity’ assumption in causal inference. That is, in causal inference we are
often times interested in the causal effect of a given treatment on some outcome of interest (e.g. a drug on a
patient’s disease) and one critical assumption commonly employed for estimating this effect is said ‘positivity’
assumption where we require that all treatments of interest be observed in every patient subgroup (which
is similar to Assumption . Returning to SPN-estimands, our first insight guarantees us that we can do
causal inference with SPN-estimands as depicted in Fig[2]

Proposition 1. Let Q € Ly be an identifiable query (that is, Q can be purely written in L1 terms). There
exists an SPN-estimand that answers Q. |

Proof. Under Assumption |1} trivially follows from SPN being universal density approximators (Poon &
Domingos, 2011)) and @ being identifiable. O

Since SPN will act as our estimation model, it turns out that any interventional query derived from a
Markovian SCM can be modelled in terms of statistical terms represented by the SCM. Due to hidden
confounding, this guarantee does not hold in semi-Markovian models. Propl[I] ultimately suggests that inter-
layer inference from £ to L5 remains intact when choosing SPN as means of parameterization. A simple but
important realization thereof is that the do-calculus (Pearl, [2009) can be used as the identification tool for
SPN-based causal inference. While unsurprising from a causal viewpoint, from the perspective of tractable
models research the result in Prop[I] provides a new incentive for research on the integration of both fields.
A possible explanation for this surprising observation is the skeptical view by [Papantonis & Belle (2020)).
They considered the usage of the SPN-BN compilation method from (Zhao et al., [2015) for causal inference
within SPN that failed due to the resulting BN being a bipartite graph in which the variables of interest were
not connected (connectivity being crucial to non-trivial causal inference). Before investigating this issue of
(in)tractability of causal inference, let’s define formally what we mean by tractable inference.

Definition 3. Let R denote the variable in which the model’s runtime scales (e.g. the number of edges in
the DAG for an SPN, the number of variables in the DAG for a BN). A scaling of O(poly(R)) of polynomial
time is called tractable.

Note that poly includes high-degree polynomials (e.g. 23°°4) and that for SPN we usually have poly := z,

that is, linear time complexity. It is also important to note that R is different for different models, but
interestingly, the number of edges for SPNs does not “explode” exponentially—so indeed, SPNs are far more
efficient computation-wise even in practice. To reap initial rewards, we now prove that causal inference with
SPN is in fact tractable.

Corollary 1. Let Q € Lo be an identifiable query, |Q| be its number of aggregating terms in L1 and R be
the number of edges in the DAG of SPN S. If |Q| < R, then @ is tractable. |

Proof. From (Poon & Domingos| 2011]) we have that S does a single term, bottom-up computation linearly
in R. Through Prop[l]and |Q| < R it follows that O(R). O

Opposed to (Causal) BN where inference is generally intractable (#P complexity), Cor suggests that any
estimand can be computed efficiently using SPN even if the estimand identifies an interventional quantity,
thereby transferring tractability of inference also to causal inference.

5 Inference in Partially Causal Models

An important restriction of SPN-based causal inference is that the joint distribution p(v) of SPN § optimizes
all possibly derivable distributions, thereby diminishing single distribution expressivity. That is, how “easily”
and how precisely S can in fact approximate our underlying distribution with p(v). Returning to causal
inference, we observe that any causal inference will hold but actual estimation from data will suffer in quality
as a consequence thereof. In addition, violations of the positive support assumption might render some
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Figure 2: “Naive” Causal Inference Schematic. For any causal query we could use the do-calculus
(Pearl, 2009)) to identify a statistical estimand (grey), for which there exists a model-based estimate (purple).
Various model choices are available e.g. a NN, an SPN or a BN. (Best viewed in color.)

practical inference undefined. Therefore, in the following we extend our analysis to partially causal models,
models that actually extend the SPN model class with capabilities from causal inference. More specifically,
we consider interventional SPN (iSPN) firstly introduced by (Zecevié et al.l [2021a). Our first observation is
that the iSPN allows for a compressed model description over the SCM, while trading in expressivity since
the iISPN has no means of computing the highest level of the PCH L3 being counterfactuals. The iSPN
(Eq is more “powerful” than the SPN by construction, we state formally.

Proposition 2. Let E' denote an SPN-estimand (Def@. There exists a graph G for which the SPN-estimand
of iISPN evaluated at G is E.

Proof. There exist always an SCM M with induced graph G such that the observational distribution of M
and SPN-estimand FE correspond accordingly. Since iSPN extend regular SPN via arbitrary causal graphs,
simply select G as the graph of choice. O

Prop[2] further suggests that iSPN are also joint density estimators, although being defined as a special case
of conditional estimators (CSPN), and that any SPN will be covered by the observational distribution (£;)
of a corresponding iSPN. In the following, assuming corresponding data D; ~ p;eLs, we prove that iSPN
allow for direct causal estimation of the interventional query (L2). This sets iSPN apart from the setting in
the previous section with regular SPN that were dependent on a “causal inference engine” such as Pearl’s
do-calculus. To illustrate the difference between the approaches, consider the following example,

M= {fx(Z,Ux), fy(X,Z,Uy), fz(Uz)},p(U)),
and we try inferring the query @ defined as

p(yl do(x)) = 32, p(ylz, 2)p(2),

where the identification equality is given by the backdoor-adjustment formula on M (Pearl, |2009; [Peters
et al., 2017). The Lh.s. will be modelled by an iSPN, while the r.h.s. consisting of multiple terms will be
modelled by the SPN and required the backdoor-adjusment formula.

An important consequence of modelling the L.h.s. is that the shortcomings of single distribution expressivity
and positive support are being resolved. To elaborate: the l.h.s. expresses a single distribution, whereas
the r.h.s. expresses a combination (through means of products, quotients, sums etc.) of distributions, and
although they are equal in terms of the content they describe (i.e., the actual values / probability) they
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are unequal in terms of implementation. An SPN models a joint distribution and thereby any derivable
‘sub’-distribution, thus in consequence, modelling a single distribution like on the Lh.s. is more difficult for
an SPN than for e.g. an iSPN. Furthermore, since there are no ratios involved in computing the 1.h.s. which
could otherwise render the computation undefined, Assumption [I] from the previous section does not apply
to partially causal models like e.g. the iSPN. What might come as a surprise is that, although we overcome
previous shortcomings and dependencies, we do not loose tractability. We observe:

Proposition 3. (TCI with iSPN.) Let {Q;} € L5 be a set of queries with i € I = N and R (as in Cor[])
for iSPN I. Any {Qg}x with k€ K < I is tractable.

Proof. There is two cases to consider (1) any fixed @; and (2) when we switch between different {Q;}; for
1 € N. For (1), since any iSPN reduces to an SPN upon parameter-evaluation, we can apply Cor and
thereby have that O(R). For (2), we know the iSPN (ZecCevié et al., 2021a) uses a neural net, therefore we
have O(poly(R)). O

Prop[3]seems to suggest that iSPN should always be the first choice as they don’t seem to compromise while
being superior to the the non-causal models that rely on causal inference engines, however, the iSPN from
(Zecevic et al., [2021a)) comes with strict assumptions. Specifically, we don’t assume a causal inference engine
but we require interventional data—which in a lot of practical settings is too restrictive. Also, in the case
of semi-Markovian models, the iSPN falls short. Further, we observe a “switching” restriction, which the
non-causal models did not have. That is, when we have to consider multiple interventional distributions the
cost will scale w.r.t. to the size of the gate model (either quadratically or cubically for standard feed-forward
neural networks).

6 Inference in (Parameterized) Structural Causal Models

In the previous sections we discussed non-causal and partially causal models (based on SPN), showing that
they are tractable—mostly trading on certain aspects such as assumptions on the data and how many
queries we ask for. Although they have tractable causal inference, these methods actually lack in terms of
causal expressivity. All our previous observations were restricted to queries from Lo, that is, interventional
distributions. Why not counterfactuals? Since these models are not Structural Causal Models. The Pearlian
SCM extended historically the notion of Causal BNs (CBN) by providing both modelling capabilities for
counterfactuals but also hidden confounders.

Now, in the following, we will move onto this more general class of models that is fully expressive in terms of
the PCH. For this, consider a recent stride in neural-causal based methods ignited by the theoretical findings
in (Xia et al.,|2021)), where the authors introduced a parameterized SCM. Since this term was never coined
in the general sense, we provide it here for convenience.

Definition 4. Let M=(U,V,F, P(U)) be an SCM. We call M parameterized if for any f € F we have
that f(-,0) where 6 are model parameters.

In the case of (Xia et al., 2021), the f were chosen to be neural nets. Note that Def actually allows for
different function approximators (e.g. a combination of neural nets and other models), however, so far in
the literature we usually have the model class F be only of one such model choice (e.g. F being the class
of MLP, therefore, each f is simply a standard feed-forward net). It is further important to note that any
parameterized SCM is in fact an SCM—so, an NCM is a valid SCM, furthermore, it implies the complete
PCH.

Since SCMs extended CBNs, and since CBNs are not computation graphs (like an SPN is) but rather
semantic graphs, we might conclude that SCMs inherit properties of the CBNs when it comes to inference.
Unfortunately, it turns out, this heritage of a parameterized SCM is valid and leads to their intractability
for causal (marginal) inference.

Theorem 1. Causal (marginal) inference in parameterized SCM is NP-hard.

10



Published in Transactions on Machine Learning Research (09/2023)

Proof. The herein presented proof can be considered as a natural (maybe even simple) consequence of long
standing results in computation theory by means of (Cooper} |1990). It has been long understood that exact
inference in BNs is computationally hard and since SCM historically derive from BN, the presented result
might not come as a surprise. Nevertheless, we present a more concrete proof in the following and try to
stress that this result is important after all since there has been arguably a disconnect between computation
theory and research around causality. Put differently, the importance of SCM for causality opposed to BN
is what makes the Theorem important in the view of the authors of this manuscript. As a foreword to
the conceptual portion of the proof and especially readers unfamiliar with computational complexity theory,
Cooper made use of a proof technique referred to as reduction. That is, problem A is being reduced to
problem B by showing that a solution to B will solve A. Naturally, this transfers the complexity i.e., if
B is a difficult problem, then successfully reducing A to B shows that A is also a difficult problem. The
phrase “A is at least as hard as B” is often times used to convey said idea. More specifically for this result,
we will use a 3-SAT reduction where 3-SAT is the problem of evaluating whether the Boolean expression
of multiple clauses with 3 literals (a clause, typically written in paranthesis, consists of multiple literals
connected by Boolean operators, an example is shown in the following) is satisfiabile or not, for example, is
there a combination of 1. g s.t. B := (21 v 2 v 23) A (24 v x5 v 2g) evalutes to true (B = 1)? Since it
has been established by |Cook| (1971) that 3-SAT (satisfiability of 3-literal-clause expressions) is NP-hard, we
can deduce that our problem A is also NP-hard if we can reduce it to 3-SAT s.t. solving A requires solving
3-SAT. This is being done in the following. The simple proof might only involve reasoning that SCM extend
BN such that any inferred solution for any given causal query holds in a corresponding BN if and only if it
holds in the SCM because then we simply apply (Cooper} [1990) which showed that BN inference is NP-hard,
thus also SCM inference. To write down the full argument, we apply the same technique of 3-SAT reduction.
In the first step, we require a mapping between clauses from 3-SAT and SCM. As a reminder, in 3-SAT we
talk of literals Q1, ..., @, for n € N with Q; € {0,1} and clauses of 3 literals each C1,...,C,, for m € N with
Ci(Qk,Qj, Q) for k,j,1 € {1,...,n}. The goal is then to find a configuration of literals (g, ..., ¢,) such that
each clause in the set of all clauses C = {C;}7, evaluates to 1 (read, “true”). We know since (Cook| [1971)
that 3-SAT is NP-hard. So it suffices to show a reduction from 3-SAT to SCM inference i.e., that SCM
inference is “at least as hard” as 3-SAT or that an oracle of the latter would subsequently solve the former.
Let M={U,V,F, P(U)) be our SCM. We do the following mapping: (1) each literal ); will be in V and only
depend on its “nature” term in U, so for each Q; < fo,(Ug,) = U; where the U; = B(3) are random coin
flips (2) each clause C; will be an effect of its causes @, so for each C; — fc,(Qk, Q;, @i, Uc,) such that fc,
is an indicator function of the clause. Since all clauses in C' need be satisfied, we create a reversed, binary tree
denoted by A; < fa,(Paa,,Uy,) (where at the leaves we have Pay, = {C,, Cp} for arbitrary two clauses and
for internal nodes Pay, = {A4;_1,C.} for some arbitrary clause C.). Finally, we have X «— fx(An—2,Ux)
(note m — 2 since we had m clauses). This completes the mapping, the second step is to show equivalence
of p(X = 1) to the satisfaction of C. Our construction implies p(X = 1) = p(X = 1|Cs)p(Cs|Us)p(Us),
where U denotes “true” for variables in U satisfying every clause in C' and C§ correspondingly, and we have
p(X =1|Cy) = 1, p(Cs|Uy), p(Us) = (3)™ so p(X = 1) > 0 when C is satisfiable. If C is not satisfiable, then
there must be a term p(X = 1|C,) for some g € {1, ..., m} such that p(X = 1|C,) = 0. We have p(X = 1) iff.
C is satisfiable. Since 3-SAT is NP-hard, we have that marginal inference in SCMs, that is computing queries
of the type p(X = x) for any X < V, is NP-hard as well. Since a causal query involves an intervention (e.g.
via Pearl’s do-operator such as p(X = x | do(Y =y)) for some SCM M) but amounts to a regular marginal
query in the modified SCM M () where the structural equations of Y have been replaced to evaluate to y,
we subsequently also have that causal marginal inference in SCMs is NP-hard. Finally, since parameterized
SCMs are all instances of the general class of SCM, where the structural equations F and the exogenous
distribution P(U) are simply parameterized for sake of implementation on general purpose computers, that
is F 2 F5 and P(U) £ P4(U) with 8 representing free parameters (e.g. the weights of a neural network), we
also have that causal marginal inference in parameterized SCMs is NP-hard which concludes our proof. [

From a computational perspective, the result in Thm/[I]is a protest against the original formulation of the
SCM in terms of long-term suitability for next generation learning systems. Although being an arguably
simple consequence of the BN-heritage of the SCM, still, Thm[I] strongly advises against any efforts of using
parameterized SCM for real-world impact. Even if the parameterization comes from powerful approximators
like neural nets—causal inference remains notoriously intractable. However, for both the sake of completion
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Figure 3: Tractable Causal Inference Models. (a) The unobserved SCM M implies a causal graph G
and generates the data to be used for estimation, (b) shows an iSPN (Zecevic et al. [2021a)) that uses a gate
model to estimate causal effects, whereas (c) is a LTNCM (Def—a partially tractable approximation to
M. (Best viewed in color.)
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and the interest of establishing the theoretical connection in the scope of this systematic investigation, we
present for the first time a new parameterization of the NCM using SPN. In spite of Thm/[I] this idea is indeed
sensible since any partial inference within the parameterized SCM might still be efficient. Effectively, the
SPN could thereby still offer a more pragmatic alternative to e.g. a neural net since it would not necessarily
compromise in terms of predictive performance (model capacity). We believe this to be true since often
times the structural equations of an SCM describe reasonably simple mechanisms because of their local and
thereby somehow restricted nature. Another argument to the same point would be that of causal abstraction
(as discussed by for instance (Rubenstein et al,|2017))), which simply means that if our structural equation is
not simple, then we can still abstract further into a more fine-grained SCM. That is, an SCM as a collective
might be complex, but not its single components—similar to how a neuron in mammalian cortex shows
simple activity, but human cognition in total is capable of highly complex decisions. Therefore, we now
present the Linear Time Neural Causal Model (LTNCM) formally.

Definition 5 (LTNCM). Let M=(U,V,F, P(U)) be a parameterized SCM. If F exclusively defines SPN,
then M is a Linear Time (Mechanism Inference) Neural Causal Model.

An alternate definition of LTNCM invovles the “General NCM” definition given by Xia et al. (2021)), by
which the LTNCM is indeed an NCM but with SPN modules instead of classical feed-forward nets. While
(General) NCM are still tractable in terms of mechanism inference, they are polynomial because of the neural
net modules and as we will see simply using SPN modules allows for linear time mechanism inference (thus
the naming). We also stick the name neural over structural since SPN can (a) be viewed as a special type
of neural/deep model (see [Vergari et al.| (2019))), and (b) the term “structural” so far seems exclusive to the
general formalism of SCM and not to specific (ML) estimators.

Fig provides a schematic comparison of the two causal models based on SPN units i.e., the iSPN (Zecevi¢
et al.| |2021a)) from the section on partially causal models and the LTNCM (Def. Evidently, the LTNCM is
concerned with a more complex model description (put simply, it requires more models), yet because of that
it becomes a causal model fully expressive in terms of the PCH as it poses a subset of the set of all SCMs.
On a different note, in Fig[] we show a visual schematic on the different inference processes that additionally
features NCM (Xia et al., |2021). We now state the simple consequence of defining an SCM with SPN units
instead of neural nets, which will further reveal one more advantage for preferring SPN over neural nets for
parameterized SCM.

Corollary 2 (NCM versus LTNCM, informal). Ewvaluating any structural equation for some SCM M is
non-linear in NCM (Xia et al),|2021) and linear in LTNCM. ]

Proof. The forward pass for the neural nets (as used by the classic NCM) has polynomial runtime com-
plexity and the concrete polynomial expression will depend on the concrete architecture given. We take
this observation as a fact based on results also reported by (Bienstock et al. [2018), where the authors
make use of a polyhedral representation to obtain new and better computational complexity results for
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Figure 4: Schematic Overview of the Inference Processes for Selected Causal Models. From left
to right: LTNCM (Def[f]), iSPN (Zedevi¢ et al), [2021a)), and NCM (Xia et al) 2021)). White circles denote
SPN, purple quadrangles are NN. (Best viewed in color.)

training problems of well-known neural network architectures with the polyhedron being an encoding
scheme for capturing the different neural network training problems that can be considered/parameterized
through architecture, activation functions, loss function, and sample-size. An arguably more easily di-
gestible (or casual) reference is following scientific online post by Luna Lux (https://lunalux.io/
computational-complexity-of-neural-networks/) that describes exactly the forward pass scenario of
standard MLP. For regular MLP architectures, the polynomial term is generally lower bounded by a quadratic
term. For SPN, as previously established, exact inference time will be linear in the size of the network. [

Cor. [2| suggests that restricted causal inference (e.g. not general marginal inference) even with NCM is
tractable but inefficient when compared to LTNCM since the former has at least quadratic runtime com-
plexity opposed to linear for the latter. Said comparison behaves the same for the iSPN, since Prop[f]
suggests that (for a fixed iSPN state) any inference will also be linear. Further extending the comparison to
other neural-causal models as suggested by (Zecevi¢ et al.l [2021b)), namely NCM-Type 2 and iVGAE. For
the NCM-Type 2 we observe (as expected) worse, cubic runtime complexity since modelling occurs on edge-
opposed to structural equation level. For the iVGAE (which is a partially causal model), which is compa-
rable to the iSPN in terms of model description, the time complexity is as bad as for the NCM. Therefore,
iSPN (Eq offer a clear advantage over other neural-causal models in terms of inference efficiency since any
causal query will be answered in linear time, whereas NCM-variants and CBNs have worse time complexities.
However, it is important to note that NCM-variants might offer for more expressivity in terms of the PCH.

7 Summarizing the Key Differences for Causal Inferences

Conclusively, a researcher might choose one model over the other based on the specific application of interest
(e.g. efficacy versus expressivity). Upon investigating these various scenarios for tractable causal inference,
we offer a conclusive overview of our tabular taxonomy for inferences in different model families in Tabl]
including neural-causal inferences. Legend: OLS = Ordinary Least Squares, CNN = Convolutional Neu-
ral Networks, GAN = Generative Adversarial Networks, FBN = Functional Bayesian Network, iVGAE =
interventional Variational Graph Autoencoder (Zecevié et al., 2021bf), “Causal Circuits” (Darwiche] [2021)),
CausalGAN (Kocaoglu et al.l 2017), NCM (Xia et all 2021)), Deep SCM (Pawlowski et al., [2020)).

7.1 ‘Bonus:” An Easy Solution to Speeding Up Mechanism Inference in SCM

After evaluating the taxonomy from Tab. [I} we arrive at the realization that mechanism inference in SCM,
while tractable, is still non-linear. Looking closely, we realize that this is due to the neural networks
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Model Family PCH Identification Mechanism Inference Marginal Inference
OLS, CNN, GAN L1 X - polynomial
SPN L1 X - linear (Cor
CausalVAE , iVGAE , CausalGAN , CT Lo X - polynomial
iSPN Lo X - linear (Prop
CFQP DiffSCM Ls X - polynomial
NCM , DeepSCM , CAREFL Ls polynomial (Cor intractable (Thm]1)
NCM L3 linear (Cor intractable (Thm/I)

Table 1: Taxonomy of Inference in Causal Model Families. Top: the three classes perspective of
non-causal, partially causal and structural causal models with known models (non-exhaustive list). Bot-
tom: Summarizing tractability properties discussed throughout the paper. PCH layer £; with ¢ being the
upper bound on causal quantities expressible (e.g. ¢ = 3 means any causal quantity according to Pearl
can be generated). Identification suggests that cross-layer inferences can be performed (e.g. no external
identification engine like do-calculus is necessary). A dash (-) denotes that the structural equations of a
corresponding SCM can not even be defined in the given model family. Marginal inference refers to whether
the general computation scheme p(z) = 1.\, p(z, V) is computable tractably. Mechanism inference refers to
the tractability of the computation of any single sub-module (i.e., structural equation). The original paper
references as labelled within the “Model Family” column of the table above: [1] (Goodfellow et al.| 2015]),
[2] (Poon & Domingos, 2011)), [3] (Yang et al., [2020), [4] (Zecevié et al.l [2021b), [5] (Kocaoglu et al.l 2017)),
[6] (Zecevi¢ et al., [2021al), [7] (Xia et al. [2021)), [8] (Pawlowski et al., |2020)), [9] (Melnychuk et al., 2022]),
[10] (De Brouwer], [2022)), [11] (Sanchez & Tsaftaris, 2022)), [12] (Khemakhem et al., 2021)).

parameterizing the mechanisms. If we look at SPN as base £, models, then we see how marginal inference is
linear. A simple solution we arrive at by having this quick look at the taxonomy is that SCM parameterized
by SPN should lead to linear-time mechanism inference. Indeed, this is the case as we show in this quick
empirical illustration.

Training and Estimation with LTNCM. Since LTNCM are a special case of SCM with SPN as param-
eterizing units, we can apply inference in the same way. That is, we make use of the truncated factorization
formula (Pearl, [2009) by choosing a sample (or Monte Carlo) based approximation thereof,

PV =] do(X = x)) ~ - 5" Ty f(v,6), ®)

where m is the number of samples for the unmodelled/noise terms U; and f as in Def The intuition
behind this formula is that an intervention will mutilate the original causal graph deleting dependence on
X’s parents. To perform training, one can simply resort to the maximization of the probability in terms of
the negative log-likelihood to account for numerical stability, that is 6* = argmingee —= > log(p(v| do(x)))
where n is the number of data points. The consistency criterion refers to the assumption that a query like
p(y =1,z = 1| do(z = 0)) should automatically evaluate to zero since it would be inconsistent to observe x
as opposing the intervention.

We investigate the newly-introduced LTNCM (Def specifically. We first “sanity check” the model by
checking for causal effect and general density estimation. Then we conduct two experiments regarding
tractability of causal inference. More specifically, we answer the following questions:

Q1. To which degree are causal effects being captured on qualitatively different structures?
Q2. How is the estimation quality for interventional distribution modelling?

Q3. How does time complexity scale when increasing the SCM'’s size, that is, number of modelling units
(Nu)?

Q4. How does time complexity scale when increasing the size of each unit per SCM structural equation

(Sv)?
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estimating causal effects. (Best viewed in color.)

Questions Q1-2 serve to validate that the presented model is indeed causal, whereas questions Q3-4 serve
to show the intended speed up in terms of mechanism inference. For details regarding our synthetic data
sets (that is, the used SCM families), the overall protocol and hyperparameters—we point to appendix

TL;DR. The questions Q1-2 are both answered in favor of LTNCM (see Fig and Tab, that is, both
causal effect estimation as well as general density estimation are competitive with standard NCM, while Q3-
4 confirm our previous discussions in terms of general inference being intractable and mechanism inference
being linear for the LTNCM (see Fig@.

Q1. Causal Effect Estimation. We observe adequate modelling of the ATEs in both neural-causal models.
The worst score on ATE for this binary setting would be 2, while the observed values are in the range [0, 0.09]
thus significantly less. The confounded cases (Ms/4) are indeed inferred correctly. LTNCM with chosen
hyperparameters achieves sligthly worse score than the NCM but with the tendency of reduced variance in
the estimates. We argue that the observed variances stem from the choice of SCM parameterizations.

Q2. Density Estimation. We observe adequate modelling of the different densities (the actual plots for NCM
are provided [CLICK HERE, NCM Plots]|and for LTNCM are provided [CLICK HERE, LTNCM Plots]) since
error rates lie mostly in the low single digit domain. Most notably is the increased variance of the do(X = 1)
distribution for LTNCM on Mj. Observing closely, we see that even the other distributions already show
less-optimal performance. Since all experiments are conducted with the same, simple architectures, we argue
that this non-optimization is explanatory.

Q3. Increasing Ny. Consider Figl] Left. We increase the size of the system which is arguably the most
common form of scaling and relevant to the development of e.g. complex social networks or for biomedical
analysis of complex proteins. As predicted by our intractability result in Thm both NCM (Xia et al., 2021))
and LTNCM (Def scale exponentially, since they are both parameterized SCM that do not represent
computational but rather semantic relations of the variables. The offset difference stems from the specifics
of our experimental setup and is negligible.

Q4. Increasing Sy. Consider Fig@, Right. We increase the size of each of the system’s models (each
structural equation) with the reasoning that in nature it might occur for a causal relation to be notoriously
complex, for instance again in the medical domain the causal mechanism that revolves around risks of
smoking as long-standing example (Pearl & Mackenzie, 2018)-although one might argue that at a more
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Figure 6: Experiments Showing Different “Dimensions” of Tractability. (a) log-scale plot of NCM
(Xia et all,[2021)) versus LTNCM (Def[5)) inference runtime (in seconds) when increasing the size of the SCM
i.e., the number of causal variables and thereby both the number of structural equations and subsequent
models to be trained. We observe intractability as predicted by Thm (b) regular-scale plot of runtimes
for LTNCM and NCM when increasing the capacity of the models to be learned for each of the structural
equation. We observe linear tractability only for LTNCM. (Best viewed in color.)

fine-grained view of the mechanisms they might again become simple. As suggested by our simple corollary
(Cor[2)), only the LTNCM (Def[f)) is linear tractable.

“What the LTNCM can and cannot do.” The LTNCM provides tractable mechanism inference. That
is, if one wants to evaluate any specific causal effect on a direct link between two variables, then this can
be done in linear time. However, arguably most of the time in practice we are interested in general causal
effect paths (where we do not know whether the pair we are considering are indeed a cause-effect pair).
While one can consider the LTNCM as a clear winner over the classic NCM, it needs to be noted that a
further evaluation for use in practice with more demanding benchmarks needs to be consulted before making
a definite statement, however, theoretically LTNCM gain the advantage at least on mechanism level. As
noted in the beginning parts of this manuscript, however, direct link mechanisms might often times not be
too complex to begin with, thus rendering the importance of these gain possibly negligible.

Concluding Remarks to LTINCM. As suggested by the title of this subsection, we’ve considered the
presentation of this new LTNCM model as a ‘Bonus.” The purpose of the presented experimental primer was
to provide a proof of concept for both capturing the differences in causal model inferences as well as actually
implementing such different models. Further study of specifically the LTNCM model and its derivatives is
purposefully left for study in future work.

8 Concluding Discussion and Future Directions

To establish our discussion of causal inference and tractability, we first identified the necessary distinctions
between existing models. Our proposed ‘spectrum’ of causal models, which was classified in terms of expres-
sivity on the PCH, was comprised of “non-causal”, “partially causal” and “structural causal” models. Since
the middle class has never been discussed in the literature prior to this work, we provided a first technical
definition as a foundation for further investigation. We then delved into each of these model families with
our discussion of tractable causal inference. We highlighted the importance of tractability for long-term
development of practical, next-generation learning systems while providing a broad, comprehensive overview
of the discriminative properties for the existing ‘zoo’ of models (see our summary section). Establishing this
overview involved, among other things, that we proved the general intractability result for parameterized
SCM (see Thmfwhich we did using the classical techniques previously used for belief networks. As a
‘bonus,” we also showed ways of coping with existing intractability as revealed by our tabular taxonomy. We
did so by demonstrating a new model, called LTNCM, which is a NCM that uses SPN-modules to boost
mechanism inference to linear time (opposed to polynomials in standard NCM).

We believe that future models will fall into the defined spectrum of causal models and with them their
tractability properties. Since future models will require both number-wise more interactions and also more
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complex interactions, research at the integration of causality and AI/ML will inevitably encounter the
tractability question. Causal inference engines like the do-calculus are a tremendously powerful tool, yet
ultimately, complete automation is what Al seems to aim for. As suggested in Tabll] making partially
causal models like iISPN (Zecevi¢ et al., |2021a)) “less partial” or structural causal models like NCM (Xia
et al., 2021) “more tractable” both aim at the same end result—tractable causal models. Coming from the
tractability perspective, the original introduction of SPNs from ACs (Darwiche, |2003; |[Poon & Domingos),
2011)—that allowed for replacing semantic relations through computational ones—might provide hints for a
tractable view onto the Pearlian notion of causality. Also, providing a large-scale example akin to ImageNet
(Krizhevsky et al., [2012)), might be beneficial for future investment into tractable causal inference research.

Final Remarks. We hope that our definition of partially causal models, the impossibility result for param-
eterized SCM, alongside the taxonomy for tractability in causal models and its initial model (the LTNCM)
can raise awareness for this novel research direction. We dearly hope so since achieving success with causality
in real world downstream tasks will not only depend on learning correct models as we also require having
the practical ability to gain access in finite resources to model inferences, ideally as efficiently as possible.
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A Further Details
We make use of this appendix following the main paper to provide some additional material.

A.1 Details for the ‘Bonus’ Experiments on Speeding Up Mechanism Inference in NCM

Data Sets. Since we are interested in qualitative behavior in light of the theoretical results established
previously, we consider custom SCM simulations. For instance consider the following four families: the
collider SCM given by

X (W Ux) =W A Ux

M, = Y fy (Uy) =Uy
Z — f4(X,Y,Uz) =X v (Y A Uy)
W — Jw(Uw) =Uw

and a simple chain SCM which has no confounding given by

X [x(Ux) =Ux

)
M2 Y « fy(X,in XAUY
)

7 — fz(Y,UZ Y/\UZ
W« fw(Z,UW Z/\Uw,

and the confounded SCM is given by
X <« fx(Z Ux) Z \Y UX

M‘ _ Y « fy(X Z Uy) (X AN Uy) @ (Z VAN Uy)
’ Z — fz(Uz) =Uz
W« (X Uw) =X A Uw,

and the backdoor SCM given by

X  fx(ZUx)=Z®Ux

Y « fy(WX Uy) =X A (W A Uy)
Z «— fz(Uz) =Ug

W fw(Z,Uw)=2Z A Uw,

where @, v, A denote logical XOR, OR, and AND. Note that (for simplicity of analysis) we consider binary
variables, however, (LT)NCM naturally extend to the categorical and continuous variables. Note that the
collider is an unconfounded structure, thereby conditioning amounts to intervening, p(y|z) = p(y| do(x)),
while for the backdoor this equality does not hold—thus the causal effect from X on Y is confounded via
the backdoor X « ... over nodes Z, W. We choose U ~ Unif(a, b) to be uniform random variables each, and
we randomize parameters a, b.

Protocol and Parameters. To account for reproducibility and stability of the presented results, we used
learned models for four different random seeds and for each parameterization of any given underlying SCM.
For the NCM’s neural networks, we deploy simple MLP with three hidden layers of 10 neurons each, and the
input-/output-layers are | Pa; | + 1 and 1 respectively. For the LTNCM’s SPNs, we deploy simple two-layer
SPNs (following the layerwise principle introduced in [Peharz et al| (2020a))) where the first layer consists
of leaf nodes, the second layer of product nodes, the third layer of sum nodes and a final product node
aggregation. The number of channels is set to 30. We use ADAM (Kingma & Bal [2014) optimization, and
train up to three passes of 10k data points sampled from the observational distribution of any SCM. For
experiments in which the size of the SCM is being increased, we use a simple chain and extend it iteratively.
For experiments in which the capacity of the mechanism (or units) of the parameterized SCM are being
increased, we use a fixed chain SCM structure and scale the model capacity linearly. I.e., the MLPs increase
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their hidden layers neurons number while SPNs increase their layer channel. For causal effect estimation, we
focus on the average treatment effect given by ATE(T, E) := E[E| do(T = 1)] —E[E| do(T = 1)] that for the
binary setting reduces to probabilistic difference p(Y = 1] do(X =1)) — p(Y =1|do(X =0)) = ATE(T, E).
For measuring density estimation quality, we resort to the Jensen-Shannon-Divergence (JSD) with base 2
that is bounded in [0, 1] where 0 indicates identical probability density functions i.e., an optimal match in
terms of JSD.

A.2 Code Repository and Details of Technical Setup

This brief section provides anchor points for any further relevant information.

Code Repo. Our code repository alongside visualizations is publically available at: https://github.
com/zecevic-matej/Not-All-Causal-Inference-is-the-Same

Technical Details. All experiments are being performed on a MacBook Pro (13-inch, 2020, Four Thun-

derbolt 3 ports) laptop running a 2,3 GHz Quad-Core Intel Core i7 CPU with a 16 GB 3733 MHz LPDDR4X
RAM on time scales ranging from a few seconds up to an hour for the longest experiment setting.
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