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Distinct hydrologic response patterns and
trends worldwide revealed by physics-
embedded learning

Haoyu Ji1, Yalan Song1, Tadd Bindas1, Chaopeng Shen 1 , Yuan Yang2,
Ming Pan2, Jiangtao Liu 1, Farshid Rahmani 1, Ather Abbas3, Hylke Beck 3,
Kathryn Lawson 1 & Yoshihide Wada 4

To track rapid changes within our water sector, Global Water Models (GWMs)
need to realistically represent hydrologic systems’ response patterns— such as
the baseflow fraction of streamflow — but are hindered by their limited ability
to learn from data. Here we introduce a high-resolution, physics-embedded,
big-data-trained model to reliably capture characteristic hydrologic response
patterns (signatures) and their shifts. By realistically representing the long-
term water balance, the model revealed widespread shifts — in some cases,
more than 20% over 20 years — in fundamental green-blue-water partitioning
and baseflow ratios worldwide. Shifts in these previously-assumed-static
response patterns contributed to increasing flood risks in northern mid-lati-
tudes, heightening water supply stresses in southern subtropical regions, and
declining freshwater inputs to many European estuaries, all with ecological
implications. With substantially more accurate simulations at monthly and
daily scales than current operational systems, this next-generation model
resolves large, nonlinear, seasonal runoff responses to rainfall (elasticity) and
streamflow flashiness in semi-arid and arid regions. Our results highlight
regions with management challenges due to large water supply variability and
high climate sensitivity, and demonstrate an advanced tool to forecast sea-
sonal water availability. This capability enables global-scale models to deliver
reliable and locally-relevant insights for water management.

While extremes in precipitation and temperature are becoming more
frequent1, the terrestrial hydrologic system does not respond uni-
formly. Instead, the landscapemodulates the impacts and feedbacksof
these changes through complex and highly heterogeneous processes
across space and time2. The landscape partitions precipitated water
into evapotranspiration (ET) and runoff via surface and groundwater
pathways, and releases these fluxes at basin-specific rates. Because of
strong storage thresholds, memory, and nonlinear effects3–5, the

landscape can translate the same amount of warming or changes in
precipitation into either muted or disproportionately large changes in
floods and droughts with high spatial heterogeneity6,7. To account for
such nonlinear effects, Global Water Models (GWMs) such as
WaterGAP8, DBH9, H0810, LPJml11, MATSIRO12, and PCR-GLOBWB13 were
developed with integrated rainfall-runoff, river routing, and human
water use processes to describe the terrestrial water cycle. GWMs are
important tools referred to by organizations like the
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Intergovernmental Panel on Climate Change (IPCC) to project future
changes in flood hazards, water availability, and societal resilience14. In
a series of high-impact analyses, GWMs have been employed to
improve our understanding of climate change effects15 and provide
assessments of water resources16.

The characteristic response patterns of a hydrologic system
(often called hydrologic signatures) are interpretable, actionable, yet
challenging-to-model summaries that help stakeholders anticipate
changes, identify challenges, and manage risks17,18. Some signatures,
including evaporation-precipitation ratio, baseflow-streamflow ratio,
autocorrelation, runoff sensitivity to rainfall, and flashiness of the flow
duration curve, have strong implications for water management and
aquatic ecosystem health18. These signatures control the quantity,
timing, variability, temperature, and quality of freshwater exported
downstream, which, in turn, exert first-order controls on the ecosys-
tem composition of the subsequent water bodies. For example,
drought-induced reductions in freshwater inputs to estuaries, con-
trolled by precipitation-streamflow elasticity (discussed more below),
can increase salinity for open estuaries and reduce salinity for inter-
mittent ones19. The signatures can be highly valuable for decision
makers. For example, understanding the ET-runoff partitioning of a
basin enables rapid assessment of water availability, while quantifying
seasonal runoff sensitivity to rainfall readily allows estimation of how
forecasted multi-month droughts will impact summertime stream-
flows. Similarly, understanding the baseflow ratio improves predic-
tions of water quality and temperature20. However, a model that
estimates thesemetrics needs to account for the hydrologic processes
in all the (sometimes very large) upstream catchments, and must
resolve systems’ responses to inputs and recession behaviors at small
timescales with high spatiotemporal precision. As we will show later,
established GWMs can be challenged in these regards due to inade-
quate resolution and parameterization strategies.

Stakeholders worldwide have substantial urgent and unmet water
prediction needs that current GWMs were not designed to address,
due to the inherent tradeoffs between global coverage and high-
quality local predictions, e.g., computational requirements. GWMs
have so far mainly been tasked with describing large-scale, long-term
change trends for entire climate zones, e.g., long-term-average runoff
on continental-scale large rivers21,22. It is not clear if these tasks have
been fulfilled to the extent permitted by data, as GWMs have shown
divergent behaviors in projecting future extremes15 and precipitation-
recharge responses23. Moreover, coarse-resolution and loosely-
calibrated GWMs are not intended to be practical water manage-
ment tools at local scales, due to known complications from location-
specific, scale-dependent hydrologic processes24,25. For short-term
tasks like flood and drought forecasting, GWMaccuracy is often below
operational requirements for daily or sub-seasonal forecasts, e.g.,
having daily Nash-Sutcliffe model efficiency coefficient (NSE) values
lower than 0.526. Until recently, stakeholders have either relied on
detailed and costly area-specific models developed and calibrated for
local applications, or their needs have been left unfulfilled, especially
in developing nations. Thus, advancing global hydrological modeling
to provide communities around the world with locally-accurate pre-
dictions should be a core concern of the scientific community.

With traditional modeling approaches, large observational data-
sets such as streamflow and soil moisture cannot readily benefit global
predictions and communities. There are relatively few avenues for
such data to inform GWMs besides basic parameter calibration (e.g.,
with GloFAS27) and post-simulation bias correction (e.g., with
WaterGAP8 or GRFR28), which hinders the closure of the water balance.
Even a rough calibration is hindered by the large computational
demands of modeling at the global scale, and also suffers from the
infamous issue of parameter nonuniqueness (equifinality)29. Parameter
regionalization, or generalizing parameters in space, remains a large
and persistent challenge despite myriad proposed schemes30. Such

methods cannot take advantage of the synergistic effects of large
datasets, in which observations from diverse sites can jointly inform
one model to increase its robustness31.

Recently, deep neural networks (NNs) have shown a formidable
ability to learn from data and generate hydrological predictions, but
have not yet benefited terrestrial water cycle assessment tasks. Purely
data-driven algorithms like long short-term memory (LSTM)32,
transformer33, and diffusion34 networks have demonstrated success at
simulating different hydrologic variables35,36 and especially
streamflow37–40 at lumped, small- to meso- basin scales. Nevertheless,
their interpretability remains unsatisfactory: purely data-driven NNs
do not have physical concepts like ET and baseflow when trained only
on streamflow data andmay not support the calculation of hydrologic
signatures. Furthermore, it is uncertain whether NNmodels optimized
for daily NSE or Kling-Gupta Efficiency (KGE) can satisfactorily repro-
duce long-term trends in large rivers or fill the gaps in data-scarce
regions.

An opportunity has emerged to realistically describe the terres-
trial water cycle, leveraging the advantages of both process-based and
deep learningmodels. Physics-embeddedmachine learning (especially
“differentiable”) models41 contain connected NNs and process-based
equations which learn parameters ormissing processes from data and
are trained in a single step, enabling the complete tracing of inputs to
outputs (see Supplementary Fig. S1). Such models have shown com-
parable performance to LSTM while maintaining process interpret-
ability and diagnostic capability for untrained variables such as
snowmelt, groundwater recharge, baseflow, and ET42–46. Due to the
process-based components of the model, differentiable models gen-
eralize better than LSTM in data-scarce regions47 and in representing
extremes48. However, applying them for terrestrial water cycle
assessment requires a performant andefficient river routing scheme to
simulate major rivers, which necessitated improvements to our exist-
ing differentiable routing model49. It remained uncertain whether the
newer learnablemodels or establishedGWMsnot trained on large data
could accurately represent the spatial variability of hydrologic sig-
natures and their temporal changes for continental-scale rivers.

Here we demonstrate that by effectively learning from data at
different scales, a physics-embedded differentiable hydrologic model
can advance the representation of global hydrologic response pat-
terns, revealing previously-unrecognized hydrologic shifts occurring
over the last 20 years. We investigated multiple questions:
(1) How much has basic hydrologic partitioning (including

evapotranspiration-to-precipitation and baseflow-to-runoff
ratios) shifted worldwide in the past two decades according to
data-trained models, and what are the implications for some
important estuaries?

(2) How does winter and summer runoff worldwide respond to
accumulated precipitation in the previous months, as char-
acterized by seasonal runoff elasticity?

(3) Canbig-datamodel training lead to the long-sought step change
in GWM performance—improving reliability for continental-
scale impact assessments while also increasing relevance to
local stakeholders?

Differentiable HBV with Muskingum-Cunge routing (full version
name δHBV2δMC2-Globe2-hydroDL, referred to as δHBV2 for brevity)
is a hybrid,multiscalemodel that can learn from thousands of sites and
output hydrologic fluxes and states at high spatial resolution. As it was
only recently introduced in Song et al.50, it has not yet been used to
generate global hydrologic insights, nor has it been compared with
GWMs. In short, a neural network generates physical parameters for a
differentiable implementation of the conceptual hydrological model
Hydrologiska Byråns Vattenbalansavdelning (HBV)51. Rainfall-runoff
processes are simulated with HBV’s equations at small unit basins
(MERIT network, median catchment size ~37 km2) and then routed
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downstream by a differentiable Muskingum-Cunge (MC) model
(Methods). A total of 4746 basins with catchment areas less than
50,000 km2 are used for model training and testing. Evaluations are
carried out on (1) 33 large global rivers with mixed anthropogenic
influences (called mixed-anthropogenic-impact rivers or mixed-
impact rivers for short) previously used in intercomparisons52 of six
models (GWM0-GWM5) in ISIMIP2a53; (2) 28 other large rivers with less
human impacts and a relatively minimal catchment area of
500,000 km2 (natural rivers); and (3) >5000 smaller basins with rela-
tively continuous streamflow records.

Results and discussion
In the following, we examine how basic hydrologic partitioning has
changed between 2001 and 2020 and give practical examples of the
implications for a number of US and European estuaries. To support
the analysis in each case, we provide a benchmark against established
GWMs in terms of matching various aspects of observations on large
global rivers as well as smaller rivers. Using simulation benchmarks
from both large and small global rivers, we explain how the differ-
entiable model can better capture changes that are challenging for
established GWMs.

Green-blue-water and baseflow-surface runoff partitioning
Our assessment of terrestrial water partitioning relies on high-
resolution simulations that can accurately capture water balances
and their change trends. δHBV2 offers minimal bias for the long-term
mean annual runoff (MAR)—it has a mean absolute bias of 32.4mm/yr
for large natural rivers and 42.0mm/yr for large mixed-impact rivers
(Fig. 1a, b, detailed values in Supplementary Tables S1 and S2). These
values are more than 20% lower than the biases of GWM4 (62.4 and
52.2mm/yr for natural and mixed-impact rivers, respectively) and 55%
lower than thoseofGWM5 (75.4 and93.1mm/yr).δHBV2hasonly 3 out
of the 61 major-river basins (Congo, Xingu, Paraguai) with absolute
biases over 100mm/yr, which is much fewer than GWM4 (13), GWM5
(17), and GWM1 (42). δHBV2’s high spatial R2 values between MAR
simulations and observations for mixed-impact (0.92) and natural
(0.97) basins meansmost of the spatial variability in large-river MAR is
explained by the model (Fig. 1d, e). The interannual variability in
streamflow is also captured well by δHBV2, which achieves the lowest
median annual-scale root-mean-square error (RMSE) values of
34.5mm/yr and 39.8mm/yr for mixed-impact and natural basins—
around 40% lower than GWM4 (Fig. 1a, b). Importantly, δHBV2 is also
the only model that achieved R2 > 0.4 in describing the spatial varia-
bility of the temporal trends of the streamflow-to-precipitation ratio
(Q/P, Fig. 1c, with detailed performance information in Supplementary
Fig. S2) for the natural rivers. Themost challenging trends are those in
Africa, e.g., the Niger (GRDC 1834101) and Congo (GRDC 1147010)
rivers, where the model could not capture the rising trend in Q/P due
to a paucity of training data. Established GWMs tend to have R2 values
lower than0.13 and exhibit large scattering in the estimatedQ/P trends
around the observed value, since such spatial heterogeneity in
response patterns is challenging to grasp. Because these 61 large river
stations were not used in training the model, δHBV2’s high perfor-
mance is due to the collective knowledge gained from the numerous
small basins used for big-data training.

With refreshingly high accuracy and resolution, δHBV2 reveals
significant trends in annual green-blue-water partitioning for many
regions over the last 20 years (trends in Fig. 1d; long-term averages in
Supplementary Fig. S3). Here we demonstrate the partitioning using
evapotranspiration-to-precipitation ratio (ET/P) with local runoff-to-
precipitation ratioQ’/Pprovided in Supplementary Fig. S4. It shouldbe
noted that local Q’/P and ET/P may not sum to one each year due to
storage effects. Blue water returns to the ocean in rivers, while green
water is tied to plant water use and carbon/energy/nutrient cycles and
exits as ET. Thus, ET/P reflects the most fundamental partitioning of

the terrestrial water cycle. In general, midlatitudes in North America
andAsia and tropical areas likeCentral America andPapuaNewGuinea
have seen decreasing green water fluxes while Central Europe and
subtropical and midlatitude regions in South America have seen them
increasing. Some of these shifts are substantial—with a 1% change in
this ratio per year, some regions have thus shifted 20% over the course
of 20 years. These changes are correlated with trends in precipitation
(Supplementary Fig. S5): where precipitation increases, blue water
tends to increase, and vice versa, although the patterns do not fully
match. This suggests that large-scale climate shifts affect water parti-
tioning, and increasing rainfall can overflow storage thresholds to
increase blue water4.

The shifts in local baseflow-to-runoff ratio (baseflow/Q’; trends in
Fig. 1e, long-term averages in Supplementary Fig. S6, basin-scale data
in Supplementary Fig. S7) have overlaps with the blue-green-water
shifts, but are significantlymorewidespread. Due to the important role
of groundwater discussed previously, these shifts imply pervasive
changes in stream temperature and water quality characteristics at the
decadal scale. Thus, the baseflow ratio should not be treated as static,
which is currently the standard practice54. This ratio also exhibits
regional clustering that has not been noted before—basins within a
large region tend to have similar shifts, presumably reflecting decadal-
scale trends in the regional climate. The two ratios move corre-
spondingly because both reflect increases in runoff and decreases in
infiltrated or land-retained water. The processes of groundwater
recharge and ET then compete for infiltratedwater, aswater exceeding
the soil’s water-holding capacity moves to replenish deeper moisture
and groundwater, which later becomes baseflow. ET/P changes are
more muted than those of baseflow/Q’, e.g., regions like India show
noticeably rising baseflow/Q’ but little change in ET/P. It can be
explained that changes in precipitation and infiltration leave large
imprints on recharge and thus baseflow, while the magnitude of ET
responses may be limited by the soil’s ability to hold water. On a side
note, the baseflow ratios in Supplementary Fig. S6 are noticeably
higher than those from gage-based separation methods55 due to con-
ceptual and scale differences, and our simulated baseflow behavior is
very similar to the observations if the same analysis method is applied
(Supplementary Text S1 and Supplementary Fig. S7).

These shifts contribute to water excess and scarcity. Where blue-
water fraction increases and baseflow ratio decreases in tandem
(Fig. 1d, e, also see Supplementary Fig. S8), e.g., northeastern China,
mid-latitude North America, and Papua New Guinea, there is a higher
flooding potential, which has been documented in some studies56,57.
Where model-diagnosed MERIT-basin-scale ET/P increases sub-
stantially, it often results from precipitation declines. In fact, we find
a negative correlation between changes in ET/P and precipitation in
space and time (Supplementary Fig. S8). When annual precipitation
declines, there is less excess water that can overcome the storage
thresholds to become runoff, so more precipitated water exits as
green-water fluxes, and blue water drops disproportionately. The
prominent shifts toward green-water fluxes which occur in Germany,
central Siberia, southern Brazil, central Chile, the Congo basin, and
northern Australia are due to declining precipitation as discussed
above (Supplementary Fig. S5) and suggest a disproportionate
decrease in streamflowavailable for humanuse in these regions. These
depicted shifts are mainly climate-driven, because while land use and
humanwater use could have contributed to the shifts in water balance,
these two processes are not explicitly simulated by the current version
of the model (see “Limitations”). Because the baseflow process and
hydrologic processes are scale-dependent, these fine-grained insights
about baseflow and runoff need to be obtained from a data-trained
high-resolution model like this one.

As a direct consequence of the shifts, we witness statistically sig-
nificant trends in freshwater inputs to estuaries over the last two
decades, with significant implications for ecosystems. Thedata-trained
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δHBV2model identifies 10 stations flowing into estuaries out of the 55
analyzed as having significant declining trends in mean annual fresh-
water inflows from 2001 to 2020, mostly along the North Sea coast of
Germany and France (Fig. 2b), which overlap with the increasing ET/P
and baseflow/Q’ ratios. The declining trends are substantial—a few
German sites decline more than 1.5% per year, amounting to a 30%
decline in 20 years. The changes in ET/P ratio (Fig. 1d) in Europe con-
tributed to this decline. In contrast, US Mid-Atlantic estuaries have an
increasing trend from 2001 to 2020. The trends for some of themildly
increasing/decreasing stations in the USA and France are not statisti-
cally significant (shown with thin marker borders in Fig. 2b), but the
regional clustering of such trends is clear. Freshwater declines can

increase salinity and turbidity, which can drastically alter macrofaunal
communities including fish as well as invertebrates like crustaceans,
insects, and bivalves58,59. Combined with global sea level rise60, large
changes in estuarine salinity andmacrofauna are expected. Consistent
with this expectation, it was reported that macrofauna abundance in
German estuaries decreased by around 31% and the total biomass
decreased by around 45% for approximately this same period61. In that
study, the changes were attributed entirely to sea level rise, but the
decreasing freshwater inputs revealed here could have also played an
important yet unacknowledged role.

Perhaps partly attributable to model limitations, the above-
mentioned declines in freshwater inputs to European estuaries

Fig. 1 | Global trends in water partitioning. Simulated versus observed mean
annual runoff (MAR) for large rivers with natural (a) and mixed (b) anthropogenic
influences from 1981–2000. Insets report R2, bias, and root-mean-square error
(RMSE, calculated by taking the median of each river’s interannual RMSE) for each
model. All models conserve mass and apply no post-simulation bias correction.
c Simulated vs. observed trends in annual runoff-to-precipitation ratio (Q/P) for
natural rivers, with each symbol representing one river simulation fromonemodel.
d, e Spatial trends in annual evapotranspiration-to-precipitation (ET/P) and local

baseflow-to-runoff (baseflow/Q’) ratios from 2001–2020, shown as percent change
per year in basins with statistically significant trends (Mann–Kendall test, p <0.05
colored). Some well-simulated basins, e.g., Ganges and Orinoco, were not repre-
sented in (c) as their records are too short (<10 years) to estimate the trend, and
they are expected to elevate the R2 if data were available. While δHBV2 was trained
and validated against observations up to 2015, it was used to simulate water
components through 2020. We removed parts of Siberia from the simulation due
to having no training data there.
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(Fig. 2c) have not previously been reported. δHBV2 describes notice-
ably different trends than established GWMs for these estuaries, as
shown at sites where a comparison is possible (Fig. 2a). We found a
stronger match of δHBV2 predictions with observed trends (reaching
R2 values around0.68) compared to the GWMs (GWM0: −0.05, GWM4:
0.46, with other models ranging between them). GWM4, for example,
overestimated the freshwater declines of European sites in 2001–2010
while not showing any trend for the US sites. Freshwater inputs show
clear decadal-scale oscillations, as US Atlantic estuaries have notable
declines from 2001 to 2010 and overall rising trends from 2001 to
2020 (Fig. 2a, top row), but GWM0 largelymisses the downward swing
(Fig. 2a, bottom row). Since δHBV2’s conceptual model backbone is
not fundamentally different from other models, the parameterization
through big-data training appears to have greatly improved the sen-
sitivity to decadal-scale changes, allowing us to identify and predict
these trends.

Seasonal streamflow response patterns
To support assessing models’ seasonal rainfall-runoff responses
(called elasticity), we evaluate GWMs’ abilities to capturemonthly flow
fluctuations (Fig. 3a), monthly runoff autocorrelation (Fig. 3b) which
relates to the recession behavior, and elasticity itself (Fig. 3c). For the
natural rivers, δHBV2 ranks first among all models with a median
correlation of 0.89 at the monthly scale (Fig. 3a), showing success at
capturing the hydrological seasonality, although GWM0, which is
enhanced by post-processing, achieves a slightly higher NSE. Unlike
GMW0, δHBV2 does not impose a post-simulation bias correction and
can thus ensure consistency for the internal hydrologic fluxes like ET,
baseflow, and recharge, meaning these variables are also indirectly
informed by the learning process and consistent with alternative
estimates. The strong representation for autocorrelation (Fig. 3b for
large natural rivers) suggests the model releases storage-dependent
baseflow with the correct timing after conditioning by data, which is
challenging for established GWMs. The established GWMs show sub-
stantial scattering in the arid regions for major rivers (high range of
elasticity in Fig. 3c), while the data-trained model stays closer to the 1-
to-1 line. Overall, in all categories of the evaluated hydrologic

signatures (one value per basin) related to rainfall responses, δHBV2
scores the highest except in ACF(1) (autocorrelation function with
1 month lag), where it places third with a margin of 0.01 (Supple-
mentary Table S3). The difference in winter elasticity is smaller than in
summer, presumably because the response in the wetter regime is
faster and more linear.

When examined regionally, δHBV2 tends to performwell in boreal
or northern midlatitude rivers but tends to be challenged in river
basins where human water use is significant, e.g., Rio Grande de San-
tiago in the “northern dry” category, Cooper Creek in “southern dry”
and the Columbia River, for which a large fraction of the catchment is
arid (Fig. 4). Other rivers with significant reservoirs, e.g., Danube and
Missouri, can also be challenging. Among the 33 mixed-impact rivers,
19 rivers have at least one GWM (excluding GWM0—see discussion
above) with a monthly NSE of 0.2 or above, and are regarded as
meaningful for benchmarking (Fig. 4a). Excluding GWM0, δHBV2 has
the highest monthly NSE (median ~0.77) for 15 of these 19 riv-
ers (Fig. 4a).

The high resolution of δHBV2 enables the diagnosis of seasonal
local runoff sensitivity to precipitation inputs (elasticity, ε), showing
contrasting summer andwinter ε values that mostly complement each
other (Fig. 3d, e), with large summer ε values in arid and semi-arid
regions62. The precipitation that generates the highest seasonal ε has
an aggregation length of 6 months for summer and 3 months for
winter. With the exception of central-western North America where
there is some overlap, the high values for summer andwinter ε tend to
be staggered (clustered in different regions), identifying these regions
as being “summer responsive” or “winter responsive”. Summer ε is the
largest in arid and semi-arid regions, e.g., Sahel, central and south
Africa, central and southern South America, central Asia, and northern
China and Siberia (Fig. 3d). In these regions, summer ε is high due to a
low runoff baseline caused by high evapotranspiration and the dom-
inance of storage-dependent groundwater releases driven by pre-
cipitation accumulated in previous months. Winter ε has a smaller
range in values than summer ε, likely due to more linear hydrological
responses once key thresholds—such as land abstraction—are excee-
ded, resulting in more proportional runoff responses to precipitation.

Fig. 2 | Estuary inflow trends and simulations by global water models (GWMs).
a Simulated estuary inflow trends from δHBV2 and GWM0 compared to observed
decadal-scale trends over the period of 2001 to 2010. b Simulated estuary inflow
trends for δHBV2 from 2001 to 2020. c Scatter maps of observed estuary inflow

trends and simulated trends from δHBV2 andGWMs from 2001 to 2010. Each point
represents a station flowing into one estuary, with the symbol shape and color
indicating the corresponding model (we only show GWM0 and GWM4 as exam-
ples). The R2 value for each model is indicated in the legend.
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In addition, snow storage and gradual snowmelt could also reduce the
runoff response to precipitation. Summer ε is highest in central Asia
and the northern Middle East, western Australia, the northern and
easternAfrican coasts, eastern Brazil, and southern Patagonia (Fig. 3e).
In these regions, there is amore direct and immediate runoff response
to winter rainfall. Such a refined understanding, to our knowledge, has
not been offered before by a GWM.

For low-flow-dependent aquatic or riparian ecosystems, local
seasonal ε is arguably more ecologically impactful than annual ε. High
summer ε regions are vulnerable to precipitation changes, as reduc-
tion of seasonal precipitation there could have an outsized impact on
summer low flows. Hydrologically, this is because the reduced rainfall
would notbe sufficient to exceed somestorage thresholds, resulting in
disproportionate reductions in streamflows (blue water). Low-flow-
dependent aquatic ecosystems in these regions could thus be sensitive
to long-term changes in the precipitation regime or season-long
droughts. However, high summer ε also means stakeholders can use

seasonal outlooks of precipitation to reliably predict streamflow (and
inflow to the downstream water bodies) in the coming summer and
prepare to intervene if possible. The ε patterns appear noticeably
different from some previous work that employed the Budyko curve
for crude analysis63, partly because here we analyze seasonal ε rather
than annual ε, and partly because a data-trained, high-resolution
hydrologic model is now available.

Daily streamflow variability and trends
To further validate the relevance of high-resolution δHBV2 for local
water management, we compare its daily streamflow simulations in
small-to-mediumbasins (<50,000 km²) with LSTM, lumped δHBV, and
a widely-used operational global-scale product, GloFAS, as previous
GWMs lack sufficient spatial resolution for this scale. We use several
datasets (ds0-ds2, see “Methods”) where comparisons are reasonable
between different models. In a test spanning both training and testing
basins, δHBV2 performs well, with a median daily NSE of 0.63 for all

Fig. 3 | Monthly evaluations of GWMs and δHBV2-inferred seasonal elasticity.
a Monthly performance metrics—Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Effi-
ciency (KGE), correlation (corr), bias, and root-mean-square error (RMSE)—for
GWMs over large natural rivers. The top, center line, and bottom of each box plot
indicate the 75thpercentile (Q3), themedian, and the25th percentile (Q1),while the
top and bottom whiskers indicate maximum and minimum values within 1.5 times
the interquartile range (Q3–Q1) from the upper and lower quartiles, respectively.

Boxes are arranged from left to right in the same order as the legend. b Simulated
vs. observed autocorrelation at a 2-month lag (ACF(2)) from 1981–2000.
c Simulated vs. observed summer streamflow elasticity to 6-month precipitation
(1981–2010). Each point in b, c represents a model–observation pair for one river.
d, e Spatial patterns of local runoff elasticity to precipitation in summer and winter
(2001–2020). Only regions with available data are shown.
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basins and 0.53 for ungauged basins, which is more than double Glo-
FAS’s median NSE of ~0.26 (Fig. 5a). On another set of basins where
comparison with GWMs is possible, δHBV2 noticeably leads GloFAS
which, in turn, leads GWM0 (Supplementary Fig. S9). The strong per-
formance of δHBV2 stems from its big-data training for para-
meterization and generalization, which allows it to leverage data
synergy31. Distributed model δHBV2 shows a clear improvement
compared to the original lumped model δHBV1.0 with its ability to
resolve high-resolution heterogeneity; it even edges out LSTM in terms
of KGE,with amedian of 0.74 vs. 0.73 for the higher-performing basins
(Fig. 5b). This advantage against δHBV1.0 is more pronounced in data-
rich regions, e.g., North America, where the subbasin-scale simulations
can be better constrained by small training basins (Supplementary
Table S4). There is still a slight gap between LSTM and δHBV2 in the
lower half for daily KGE values (bottom left-hand side of Fig. 5b), likely
due to systematic forcing biases and unrepresented heavy water uses
in somebasins48. Both δHBV2 and LSTM thus represent the state of the
art for smaller basins, allowing them to accurately capture the flow
variability. However, LSTM cannot simulate diagnostic variables like
ET, baseflow, recharge, soil moisture, and snowmelt for providing
narratives to stakeholders, and can suffer more when extrapolating to
data-scarce regions and unseen extreme events48. Regardless, these
results suggest that models with global coverage can finally be locally
relevant for tasks such as flood forecasting and short-term water
management.

The data-trained δHBV2 model showed large high-flow flashiness
for arid and semi-arid regions and rather low flashiness for tropical
rainforests with latitudes above 45 degrees (Fig. 5c). High-flow flashi-
ness is quantified by the slopes of the flow duration curve between the
1st and 33rd exceedance percentiles (SFDC) that are below −5 on the log
scale, which corresponds to more than a 50 times difference between
the 33rd and 1st percentile flows. Arid regions have the most negative
slopes due to very low baseflows and prevalent quick, heavy storms.
The eastern US, western and central Europe, and southern China have
moderate SFDC values of −3 to −1, as baseflow can be substantial. The

tropical rainforests, including the Amazon, Congo, and those
throughout Pacific Asia, have the smallest SFDC, since even during the
dry season, streamflow in these regions can be significant. While these
results are not surprising, they had not been shown at the global scale
using a high-resolution model.

Examining the changes inflashiness over time,wefindwidespread
and statistically-significant but spatially-mixed trends that do not
easily match other spatial patterns studied here (Fig. 5d). SFDC promi-
nently increases and becomes less negative in Mexico, western South
America, and northern India, indicating a less variable distribution of
streamflows in the last 20 years. However, central-western USA,
southernAfrica, the south fringe of the SaharaDesert, central Asia, and
Ethiopia have seen large declining and thusmore negative SFDC values,
highlighting increasing streamflow variability. These changes are
regional but can be substantial; we believe they may be caused by
changes in precipitation intensities. Increasing flashiness poses the
need for a greater storage capacity to ensurewater supply resilience as
well as control floods, although ecological consequences must also be
considered. High resolution GWMs consistent with daily data are
crucial for these applications.

Limitations
Besides water withdrawals and very cold or very dry climates, certain
downstream riverine and hydrological processes including large nat-
ural inland lakes, wetlands, and major reservoirs pose challenges for
δHBV2. Large inland lakes and wetlands can store water, attenuate
peak flows, sustain base flows, and induce floodplain water losses.
They are not well simulated by the Muskingum-Cunge formulation.
Examples include the Neva (Lake Ladoga), Paraguai (the Pantanal
wetlands), Amazon (floodplains), Winnipeg (LakeWinnipeg), and Saint
Lawrence (the Great Lakes) rivers. Due to the sizes of such storages,
their impacts can even be noticeable at the monthly time scale. Addi-
tionally, flood-control dams, hydroelectric dams, and dams for other
purposes such as irrigation and recreation each operate with distinct
objectives, further contributing to the complexity of their impacts64.

Fig. 4 | GWM performance across large global rivers. Monthly Nash-Sutcliffe
Efficiency (NSE) scores (1981–2000) for global watermodels (GWMs) over amixed-
anthropogenic-impact and b natural basins. Rivers are arranged clockwise by
δHBV2 performance (highest NSE on the outer ring, lowest at center) to show the
best model over each basin. Marker shape and color represent different GWMs;

river name color denotes biome type. The figure format and basin selection follow
conventions from previous studies. GWM0 includes post-simulation bias correc-
tion; others do not. Amur, Columbia, Danube, Irtysh, Missouri, Madera, OB’,
Orange, Tocantins, and Yenisey are repeated, as the points in the right panel are
taken from more upstream, natural gages of these rivers.
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Combined with significant water withdrawals, it is challenging for the
model to accurately capture such flow behaviors, which is only exa-
cerbated in places with relatively few gages like Africa, e.g., the Niger
andCongo rivers. Overall, due to structural limitations in both theHBV
and Muskingum-Cunge models, δHBV2 has a limited capacity to
represent anthropogenic impacts such as reservoirs, land use changes,
and human water uses, although physical parameters learned from
observational data can partially compensate for some of the resulting
errors.

It is noteworthy that in our training and forward simulations, land-
use inputs are regarded as static, so the model’s long-term output
shiftsmainly reflect changes in the climate inputs. It is possible that the
dynamic parameters produced by the NNs jointly trained on stream-
flow data can capture some interannual covariation of vegetation-
related characteristics due to climate shifts, but we do not expect this
to be a major effect. The impacts of land use change, e.g., in central
Asia and Ethiopia, are not explicitly simulated, which should be con-
sidered in future efforts.

While we do not have an ensemble of models to produce a formal
uncertainty estimate, we present maps of large basin and upstream-
catchment evaluations (Supplementary Fig. S2) as a gauge of model
reliability in different regions at different scales. Some large basins, e.g.,
Ganges, Siberian, and southern Brazilian ones, are well simulated in
terms of both NSE and long-term trends, despite not having any training
basins. This suggests the model does possess some ability to generalize
in space. Nevertheless, somepoor-performing basins still tend to be due
to a lack of training stations, especially African and north-central Asian
ones, where hydrologic dynamics may also be systematically different
from the training basins. These regions are expected to improve when

we learn fromadditional data, including expanded training stations, new
streamflow estimates from the Surface Water and Ocean Topography
(SWOT) mission65, and non-streamflow observations such as soil
moisture. Future efforts can also leverage an ensemble based on dif-
ferent training data to assess uncertainty.

Summary
Driven by climatic shifts, the terrestrial water cycle is undergoing sig-
nificant changes in quantity, timing, and hydrologic responsepatterns.
Using our high-resolution, high-accuracy, physics-embedded model,
we identified coherent and widespread shifts between 2001 and 2020
in fundamental water partitioning—between evapotranspiration and
runoff as well as between surface and subsurface runoff. These chan-
ges are primarily nonlinear responses to precipitation variations. For
example, North America and parts of Asia have seen increased blue-
water and surface runoff fractions leading to higher flood risks, while
the Southern Hemisphere, tropical rainforests, and parts of Europe
have experienced increases in green-water fluxes (i.e., evapo-
transpiration) and baseflow fractions leading to reduced river flows.
Consequently, freshwater inputs into some European estuaries have
declined markedly, with associated ecological impacts. Arid and semi-
arid regions already show high flow variability and runoff elasticity,
making them especially vulnerable to future shifts in seasonal pre-
cipitation patterns. Some arid regions also see precipitation pattern
changes leading to even higher flow variability. We provide a high-
resolutionmapof the response patterns and changes to identify future
challenges in water supplies and aquatic ecosystems.

While understanding hydrologic response patterns is helpful for
water management, analyzing them and their changes requires a

Fig. 5 | Flow duration curve (FDC) slopes and GWMperformance comparisons.
a Cumulative distribution function (CDF) plots comparing δHBV2 with a widely-
used operational global-scale product, GloFAS, on 5558 basins (ds2) as well as for
prediction in ungauged basins (PUB) on 2509 basins not used in model training
(ds1). b CDF plots for temporal test results from δHBV1.0, δHBV2, and long short-
termmemory (LSTM, a purely data-drivenmodel) on 4746 gages (ds0). ds0-ds2 are

different sets of basins for comparingmodels, as explained in the “Global datasets”
section of the “Methods”. c Global distribution map of Flow Duration Curve slope
between 1% and 33% exceedance flow (SFDC), used to indicate flashiness or the
prevalence of sudden, heavy streamflows—a more negative slope indicates a high
flashiness. d Global distribution map of the temporal change rate (slope) of SFDC.
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model that can accurately diagnose hydrologic fluxes with high spa-
tiotemporal resolution. Traditional models often struggle to extract
information from large datasets to characterize the landscape’s
hydrologic responses, manifesting in the difficulty to describe the
spatial distributions of hydrologic signatures and their trends. Mean-
while, purely data-drivenmethods do not provide diagnostic variables
or respect physical laws like mass conservation. Our approach—dif-
ferentiable, physics-embedded learning—addresses both limitations. It
offers a globally-consistent, high-resolution, physically-coherent pic-
ture of how hydrologic response patterns are shifting in response to
the climate, enabling local-scale fine-grained analyses and decision-
making while revealing many previously unrecognized changes
described above. This modeling capability is essential for under-
standing and managing future water availability, aquatic ecosystem
risks, and hydrologic resilience in a changing climate.

Methods
Global datasets
Differentiable models in this work were trained on daily streamflow
observations from a recently-compiled global dataset by Abbas et al.66,
composed of various published resources as well as global and
national databases indicated in Supplementary Table S5. The initial
dataset, composed of approximately 34,000 catchments, was nar-
rowed down to 4746 catchments under 50,000 km² with at least 95%
of the observations available from 1980 to 2020. The data availability
criterion was relaxed for data-sparse regions such as Africa, however.
The catchment area selection was to ensure effective model training
and was also partly due to limited computational resources. The
meteorological forcings dataset includes the daily precipitation from
Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.867 and
maximum and minimum daily temperatures from Multi-Source
Weather (MSWX) V168; details are provided in Supplementary
Table S6. Static attributes including topography, climate patterns, land
cover, and soil and geological characteristics were derived from
diverse sources and are also listed in Supplementary Table S6.

We used MERIT-Basins69 as our hydrological simulation unit to
build the distributed model and discretize the global river flow. This
product delineates global flowlines into discrete reaches and associ-
ates each reach with its predefined drainage area based on the 90-m
MERIT-Hydro70 digital elevation model (DEM) dataset. The resolution
of MERIT basins is much finer than the ~0.5 degree grid resolution of
GWMs provided in the Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP). As a result, there is a discrepancy in the catchment
area represented in the models, with MERIT having better topological
correctness. Due to the relatively lower spatial resolution, GWMswere
only benchmarked on large rivers at monthly or annual temporal
scales to ensure a fair comparison. The first set of comparisons thus
focus on annual and monthly evaluations on 33 large rivers bench-
marked in the literature52, which have major human influences
including reservoirs and water withdrawals. To evaluate the models
under more natural conditions, we further added 28 large rivers
(sometimes using upstream gages of rivers among the first 33) as a
second comparison set.

To benchmark δHBV2 against δHBV1.0, LSTM, and GloFAS, we
compiled a third comparison set of thousands of smaller gages. Glo-
FAS may still have catchment-area discrepancy with our data-driven
models, so we restricted the comparison with GloFAS to gages where
the catchment-area discrepancy between all models and the gage-
registered area was less than 20%. To separately demonstrate the
models’ temporal, spatial, and overall generalizability, we used three
small-gage datasets (ds0-ds2). ds0 contains 4746 training basins which
were also used for the temporal test. ds1 contains 2509 basins used to
test prediction in ungauged basins (PUB); none of these basins were
used in the training ofδHBV2or the calibrationof GloFAS. ds2 contains
all 5558 small basins from ds0 and ds1, excluding those with a large

area discrepancy to enable a fair comparison between δHBV2 and
GloFAS.

Models
As an overview, we used two differentiable models for global stream-
flow prediction in this work. Both models used neural networks (NNs)
to generate physical parameters for the process-based Hydrologiska
Byråns Vattenbalansavdelning (HBV) models51 for hydrologic simula-
tion. The first differentiable model is a basin-lumpedmodel (δHBV1.0)
with inputs and parameters defined for the entire catchment upstream
of each prediction gage42,47. The second model is a high-resolution
model defined on MERIT unit basins, with a differentiable imple-
mentation of Muskingum-Cunge (δMC) as the routing method. This
model is called δHBV2δMC2-Globe2-hydroDL, orδHBV2 for short. The
lumpedδHBV1.0canonlyprovide a point prediction at a basin’s outlet,
while the high-resolution δHBV2 can provide hydrologic predictions
across the entire seamlessMERIT river network. δHBV2 is compared to
δHBV1.0, a pure machine learning model (LSTM), and other GWMs.

Basin-lumped differentiable model (δHBV1.0)
The differentiable model, δHBV1.0, uses basin-averaged (lumped)
inputs to predict streamflow at the catchment outlet. An LSTM net-
work is used to support regionalized parameterization of the HBV
model. δHBV1.0 can be described succinctly as:

θb =LSTMðx1:tb ,AbÞ ð1Þ

q1:tb =HBVðθb, x
1:t
b Þ ð2Þ

where θb represents the physical parameters of HBV. Ab represents the
static attributes for each basin, while xb represents themeteorological
forcings used to drive the HBV model, including precipitation, mean
temperature, and potential evaporation. Components of Ab and xb are
listed in Supplementary Table S6. qb is the simulated streamflow in
units of mm/day and can be converted to Qb in units of m3/s using the
basin area. Subscript b denotes the lumped inputs and outputs for the
particular basin, b.

The structure and hyperparameters of LSTM can be found in
Supplementary Text S2 and S3. It is a sequence-to-sequence neural
network capable of processing input time series and capturing both
long-term and short-term tendencies through its memory cell states32,
then producing the target time series (e.g., physical parameters of
HBV).Whilemany other architectures have been attempted, so far it is
still challenging to surpass LSTM for deterministic prediction tasks in
hydrology71. It can generate either static or dynamic parameters—i.e.,
the whole time series can be used as daily-varying parameters or one
day’s specific value can be selected as a static parameter. In our work,
we trained our model with a sequence of 365 days following a 365-day
warmup period, and static parameters were derived from the last day
of LSTM outputs.

The structure and physical parameters of the HBV model are
provided in Supplementary Table S7. HBV can simulate snow accu-
mulation and melt, soil moisture, evapotranspiration, and runoff
generation. BothNNs andphysical components ofδHBV1.0 andδHBV2
are implemented on PyTorch72, a Python library that supports auto-
matic differentiation and highly parallel execution on Graphical Pro-
cessing Units. The NN for parameterization and the re-implemented
HBV equations are trained within a single pipeline to allow gradient
calculation throughout the entire workflow as well as optimization via
gradient descent (Eq. (3)). The overall framework can be trained in
parallel over many basins to obtain a regionalized and generalized
mapping from inputs to HBV parameters. Once trained, it can easily
generate parameters for untrained basins. The goal of the training
process is to minimize the loss function, which is based on the root-
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mean-square error calculated between streamflow simulations and
observations:

LossRMSE = ð1:0� αÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where B (100) is the total number of gage basins in a training batch,
and T (365) is the number of the evaluated simulation days for the
batch. The mean square error of the log-transformed streamflow is
included in the loss function to better consider the low flows. α is a
weight used to balance the performance trade-off between high and
low flows, where a large α will emphasize low flows (Eq. (3)). We
adopted the same weight as used in Feng et al.42, which was 0.25.

High-resolution, multiscale differentiable model (δHBV2)
δHBV2 is a high-resolution, multiscale differentiable model which has
been developed50 to better capture the heterogeneity of large basins
and address hydrologic scale discrepancies. The connected NNs take
the inputs at the resolution of small MERIT unit basins (median basin
area is 37 km²) to estimate HBV parameters and HBV runs hydrologic
simulations at the same resolution. The unit-basin-level runoff is
aggregated and routed to the gage basin outlet for comparison with
observations. To summarize, an LSTM network and a multilayer per-
ceptron (MLP) are used to generate dynamic (daily time-variant) and
static HBV parameters, respectively:

θ1:t
d,m =LSTM x1:tm ,Am

� � ð4Þ

θs,m =MLP Am

� � ð5Þ

wherexm andAm are the samemeteorological forcings andgeographic
attributes used as inputs in δHBV1.0, where subscript m denotes the
basin-averaged variable for MERIT unit basins, and subscripts s or d
respectively denote static or daily-varying parameters. The daily-
varying parameters, θt

d,m, are to compensate formissing processes like
vegetation dynamics, deepwater storage, and return flow.To suppress
overfitting, we only chose three parameters from HBV as daily-varying
parameters: the shape coefficient of effective flow (βt), the shape
coefficient evapotranspiration (ηt), and a dynamic recession coeffi-
cient of fastflow (kt

0). The definitions of these variables can be found in
Supplementary Table S7. All other parameters,θs,m, in HBV are
assumed to be static in time. An MLP is employed to generate static
parameters separately to reduce the computational utilization of the
model, and its structure can be found in Supplementary Text S4.
Because MERIT basins already have high spatial resolution, only 4
parallel HBV components were used in δHBV2—that is, each MERIT
basin has 4 subbasin-scale components.

The HBV model is used to predict runoff for MERIT unit basins
using dynamic and static parameters along with forcing inputs:

q1:t
m =HBV θ1:td,m,θs,m, x

1:t
m

� �

ð6Þ

where qt
m represents the runoff of MERIT unit basinm at time step t.

The runoff of all MERIT unit basins upstreamof the target training
gage are summed to obtain the total amount of runoff, q0t

b, generated
in the gage basin (Eq. (7)), which is further routed to the gage basin
outlet by an intrinsic unit hydrograph formula (Eqs. (8) and (9)):

q0tb =
X

M

m= 1

qt
m ð7Þ

qt
b =

Z t

0
ξðsÞq0s

bðt � sÞds ð8Þ

ξðsÞ= 1

Γ ðθraÞθrb
θra

sθra�1e
� 1

θrb ð9Þ

whereM is the number ofMERITunitbasinswithin thedrainage areaof
the gage. ξðsÞ is the gamma distribution-based unit hydrograph. θra
and θrb are the static routing parameters that describe the shape of the
hydrograph, which is also predicted by the MLP network.

Following Song et al.50, we employ a loss function based on nor-
malized mean square error:

LossNMSE =
1
B

X

B

b= 1

PT
t = 1ðqtb � q*

t
bÞ

2

ðσðq*t
bÞ+ ϵÞ

ð10Þ

where σðq*t
b Þ is the standard deviation of the observed runoff of basin b

in the whole training time span, which can avoid overweighting large
and/or wet basins in the training. ϵ is a small value used to avoid a zero
denominator.

This model is multiscale, trained at a finer resolution (MERIT unit
basin) and constrained at a coarser resolution (gage basin outlet). This
design allowsδHBV2 to resolve both spatial heterogeneity and rainfall-
runoff nonlinearity in the forcings and attributes at the MERIT-basin
resolution. Such a scale also allows nonlinear and threshold behaviors
to better manifest. For example, concentrated rainfall in a small
mountainous region can lead to substantial saturation and runoff, but
if the same rainfall is spread across a large basin, then very little runoff
would occur. Once trained, δHBV2 can simulate runoff for around 2.94
millionMERITunit basinsworldwide and then routes the runoff using a
differentiable Muskingum-Cunge model (δMC) described in the next
section. Our highly efficient system completes a 10-year global
rainfall–runoff simulation and routing in 7 hours and 10 days sepa-
rately on a single NVIDIA A100 GPU, which are reduced to 2 hours and
2.5 days when using 4 GPUs.

Since the NNs in δHBV2 only provide the parameters, a mass
balance between all hydrologic fluxes and states is strictly enforced
throughout the model at the MERIT-level basins by the HBV modules
and the routing scheme. Training the aggregated model’s behavior on
streamflow data at the gages will indirectly condition the model’s
behavior at the smallerMERIT basins. In addition, since there are gages
of varying catchment sizes, with some basins <100 km2, but a median
area of around 600 km2 and a maximum area of around 50,000 km2,
we can constrain the model’s behavior at different spatial scales. We
also emphasize that we neither need nor have ground truth data to
directly supervise the neural network’s outputs, i.e., the physical
parameters. Gradient information is propagated backward from the
loss function defined between simulated and observed streamflow,
through the process-based model, to update the neural networks in
this end-to-end framework.

Based on our earlier benchmarks, a model with the simple HBV
structure and NN-based differentiable parameter learning can roughly
equal the performance of locally-calibrated operational hydrologic
models42, achieving around a median NSE of 0.64 on the CAMELS
dataset. However, its regionalized parameterization offers benefits in
applications to ungauged basins and lowers parameter equifinality73.
Adding multiple hydrologic response units to implicitly represent
heterogeneity within each basin largely elevates the performance to
around 0.71. Setting two or three parameters as dynamic and adding a
capillary flux further elevates it to 0.7548, which is nearly equivalent to
state-of-the-art LSTM on small basins while performing better for
extremes. The recent addition ofmultiscale learning and differentiable
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Muskingum-Cunge routing further elevates performance in arid
regions and major rivers.

Differentiable Muskingum-Cunge routing (δMC)
Both lumped- andhigh-resolutionmodelsmentioned above inherently
use a unit hydrograph formula for channel routing during the training
process. However, this approach can be cumbersome for producing
streamflow at every river reach, as it requires basin delineation at each
prediction point, which also introduces inaccuracies for large global
rivers. To provide a streamflow product that seamlessly covers all river
reaches in the MERIT network, we use an explicit routing model, dif-
ferentiable Muskingum-Cunge (δMC), applied to the MERIT
flowlines49. The Muskingum-Cunge (MC) scheme solves a continuity
equation for a mass balance and a simplified form of the momentum
equation by assuming a prismatic channel shape, and conveys the flow
from upstream to downstream in the river network.

Similar to δHBV, δMC incorporates a Kolmogorov-Arnold Net-
work (KAN)74 to learnhydraulic parameters and channel characteristics
used in MC. The model can be summarized as:

nm,pm,qm =KANhðArÞ ð11Þ

where nm is Manning’s n, and pm and qm are channel geometric
parameters of the river flowline corresponding to themth MERIT basin.
Ar are static attribute inputs of KANh listed in Supplementary Table S8.
The KAN’s structure can be found in Supplementary Text S5.

With the parameters from Eq. (11), we solve a discretized MC
equation with a finite difference scheme:

Qt+1 = c1It+1 + c2It + c3Qt + c4q0 ð12Þ

where I andQ respectively denote the inflow and outflow of a flowline
with the units of m3/s. q0 is the incremental inflow from theMERIT unit
basin of the flowline, converted from qt + 1

m from the δHBV2 simulation.
c1, c2, c3, and c4 are theMuskingum-Cunge coefficients calculated from
the hydraulic parameters49,75. The Qt + 1 for all flowlines in the river
network is computed using a matrix composed of their Muskingum-
Cunge coefficients. The training objective is tominimize the same loss
function as inEq. (10). Thus theparameters from the trainedNNshould
be interpreted as effective values to maximize routing accuracy and
are not necessarily the ground truth, although future work can
incorporate additional datasets and constraints to improve physical
realism, as in Chang et al.76 and Al Mehedi et al.77.

Pure machine learning model, LSTM
An LSTM network can be trained alongside process-based models to
generate physical parameters in differentiable models, or trained
independently to directly predict streamflow, in which case it is con-
sidered a pure machine learning model. The structure and hyper-
parameters of the LSTM for streamflow are the same as those of the
LSTM used for parameter generation in Eqs. (1) and (4) (Supplemen-
tary Text S2 and S3). However, without the physical components
between the LSTM and the loss function, the network is trained solely
for streamflow prediction:

Q1:t
b = LSTMð x1:t

b ,AbÞ ð13Þ

where the inputs xb and Ab are the same lumped inputs used in
δHBV1.0. Qb is the streamflow simulation at the gage, b.

The training of the LSTM is directly guided by the requirement to
minimize errors between its outputs and streamflow observations,
calculated using the loss function in Eq. (10). This model has demon-
strated superior performance over traditional hydrological models in
many studies35,38,78 but still lacks interpretability of the simulated

processes and cannot provide internal variables. Here we used it as a
high-performance benchmark model to test against differentiable
models.

Model training and evaluation
We used 4746 small-gage basins (ds0), having areas ranging from
21 km2 to 49,821 km2 with a median area of 583 km2, to train
both versions of the differentiable models from 1980 to 2000.
The distribution of the global training basins is shown in Supplemen-
tary Fig. S10. The hyperparameters and optimization configurations of
the embedded NNs in the differentiable models are provided along
with their structures in Supplementary Text S2–S5. The high-
resolution δHBV2 is comprehensively evaluated to demonstrate its
performance in major rivers and smaller basins through a fair com-
parison with GWMs, δHBV1.0, and LSTM. We first evaluated the per-
formance of δHBV2 in capturing the water balance for both long-term
and seasonal periods over 61 global large rivers (first and second
comparison sets) from 1981 to 2000, in comparison with previous
GWMs fromphase 2a of ISIMIP2a53. The locations of the large rivers are
provided in Supplementary Fig. S10. We further evaluated δHBV2
performance with small gages using ds0-ds2 from the third compar-
ison set, by comparing it with δHBV1.0, LSTM, and GloFAS27 (a GWM
from ECMWF’s operational system). The evaluation on small gages
includes temporal, spatial, and overall tests using ds0, ds1, and ds2,
respectively. In the temporal test, δHBV2 is evaluated on its training
basins, ds0, but tested over a different time span (from 2001 to 2015).
In the spatial test, it is evaluated on basins it did not see in training, ds1,
from 1980 to 2010. In the overall test, it is evaluated on all the basins in
ds2, from 1980 to 2015.

Metrics like NSE and KGE that are commonly used by the com-
munity are used to evaluate model performance. Metric definitions
can be found in Supplementary Table S9. To assess the impacts of past
changes in precipitation, temperature, and water partitioning, we also
identified estuaries in North America and Europe from a global estuary
database developed by the Sea Around Us project79. The identified
estuaries have at least one streamflow station upstream. We then
evaluated the changes in freshwater inflow through the main stem
river into these estuaries.

Global water models
Global water models (GWMs)—including global hydrological models,
land surface models, and dynamic global vegetation models—simulate
the terrestrial water cycle at the global scale. In this study, we compared
our results with six established GWMs: WaterGAP2, DBH, H08, LPJmL,
MATSIRO, and PCR-GLOBWB. The 0.5° simulations, forced by GSWP3
atmospheric data, were obtained from the ISMIP2a protocol. Readers
are referred toMüller Schmied et al.80 formore information about these
models. Due to the resolution discrepancy, we only compared GWMs
at major river outlets whose catchments are distinctly larger than the
grid size of GWMs, and at monthly, annual, or decadal scales.

Among these models, GWM0 is unique in its calibration and two-
stage bias-correction strategies. First, an area-based correction coef-
ficient is uniformly applied to all grid cells within a basin to adjust
runoff, aiming tomatchobserved streamflowat the annual scalewithin
a 1%margin. If this adjustment is insufficient, a second-stage correction
is applied directly to the simulated streamflow at target gages, without
further modifying the runoff. A more detailed description can be
found in Supplementary Text S6.

Hydrologic signatures
Hydrologic signatures are importantmetrics or indices to describe the
statistical and dynamical properties of hydrologic data, e.g., stream-
flow. In our work, we analyzed models’ abilities to capture different
hydrologic signatures including elasticity, slope of the flow duration
curve, and auto-correlation function.
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Elasticity
Following Zhang et al.62, we suppose that the variability of streamflow
at each time interval i is mainly influenced by the variability of pre-
cipitation, and thus the streamflow variability can be estimated using
the equation:

dQi =
∂Q
∂P

dPi ð14Þ

and can be further written as:

dQi

Q
=
∂Q
∂P

P
Q
dPi

P
=
∂Q=Q
∂P=P

dPi

P
= εPi

dPi

P
ð15Þ

The above equation assumes that precipitation influences runoff
generation at its corresponding period, which is more appropriate for
small-to-medium-size basins and does not account for the significant
lag effect observed in large rivers.

In this work, we define the interval for precipitation as i and
interval for streamflow as j, so the equation can be written as:

dQj

Q
=
∂Q
∂P

P
Q
dPi

P
=
∂Q=Q
∂P=P

dPi

P
= εPi

dPi

P
ð16Þ

where Pi and Qj are the summed precipitation and streamflow data at
the predefined aggregation intervals i and j. For winter elasticity, we
consider December, January, and February as the precipitation and
streamflow intervals for the Northern Hemisphere and June, July, and
August for rivers located in the Southern Hemisphere. As the summer
season retains more water compared to winter, we consider the lag
effect of precipitation, and define March–August (6 months) as the
precipitation interval and June–August as the streamflow response
interval for theNorthernHemisphere, anduse theoppositemonths for
the Southern Hemisphere. We tested different window lengths, and
6 months gave the highest elasticity for summertime discharge. P and
Q in the equation are the mean values for the cumulative precipitation
and streamflow over all time intervals. εPi

can be interpreted as the
sensitivity of streamflow to the variability of precipitation, and can be
regarded as the slope of a linear regression line. In this regression, the
x-axis represents the precipitation deviations from the mean (dPi),
normalized by the mean precipitation (P), while the y-axis represents
the corresponding calculation for streamflow. To ensure the reliability
and fairness of the elasticity calculation, we uniformly used GSWP3 as
the precipitation dataset and applied the F-test, retaining only results
with p values below 0.1 as in Zhang et al.62. To better understand the
physical meaning of εPi

, we can assume that if the εPi
of one river is

equal to 2, it means that a 1% increase in precipitation would lead to
approximately a 2% increase in streamflow.

Slope of FDC
Flow duration curves (FDCs) are widely used to characterize stream-
flowvariability. They are constructedby ranking the streamflowdata in
descending order and calculating the exceedance probability for each
value. The slope of an FDC is normally computed over a specific per-
centile range (e.g., 1%–33%) to quantify the flow variability. In ourwork,
the slope for daily simulation is defined as:

slope=
Log10 Q33

� �� Log10 Q1

� �

P33 � P1
ð17Þ

where P33 � P1 indicates the difference between exceedance prob-
abilities at two points on the FDC, and is roughly equal to 0.32 when
there is enough data. P represents the exceedance probability and can

be calculated as:

Pi =
r

N + 1
ð18Þ

where r is the rank of streamflow value (starting from 1 for the highest
flow) and N is the total number of observations. For the monthly FDC
comparison (in Supplementary Table S3), the log-transformation was
not adopted due to the more evenly-distributed monthly time series.

Auto-correlation function
The auto-correlation function (ACF) is normally used to describe the
correlation between a time series and its lagged values acrossmultiple
timescales, and is expressed as:

ACFðkÞ=
Pnt�k

t=1 Xt � �X
� �

Xt + k � �X
� �

Pnt�k
t=1 Xt � �X

� �2 ð19Þ

where Xt is the streamflow value at time t, �X is the mean streamflow
value, and k is the lag time.

Data availability
A model simulation data repository is available at https://doi.org/10.
5281/zenodo.17042358. All input data used in this work are publicly
available. The estuary datasets were fromGlobal Estuary Database and
can be downloaded at https://www.pigma.org. The MERIT-Basins
datasets can be downloaded at https://www.reachhydro.org/home/
params/merit-basins. Simulations for other GWMs are available at
https://www.isimip.org. Static geographic attributes were derived
fromdiverse sources and are listed in SupplementaryTable S5.MSWEP
and MSWX forcing can be downloaded from www.gloh2o.org. The
streamflow dataset was compiled and provided by Ather et al.66, with
the GRDC data being described by Abbas et al.66 but downloaded
directly from the GRDC at https://grdc.bafg.de/data/data_portal, as
they do not permit redistribution of their data.

Code availability
The codes ofδHBV1.0 and themultiscaleδHBV2 (δHBV2δMC2-Globe2-
hydroDL) are available at the repository https://doi.org/10.5281/
zenodo.14827983.
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