
Under review as submission to TMLR

Generalizable Spectral Embedding with an Application to
UMAP

Anonymous authors
Paper under double-blind review

Abstract

Spectral Embedding (SE) is a popular method for dimensionality reduction, applicable
across diverse domains. Nevertheless, its current implementations face three prominent
drawbacks which curtail its broader applicability: generalizability (i.e., out-of-sample exten-
sion), scalability, and eigenvectors separation. In this paper, we introduce GrEASE : Gen-
eralizable and Efficient Approximate Spectral Embedding, a novel deep-learning approach
designed to address these limitations. GrEASE incorporates an efficient post-processing
step to achieve eigenvectors separation, while ensuring both generalizability and scalability,
allowing for the computation of the Laplacian’s eigenvectors on unseen data. This method
expands the applicability of SE to a wider range of tasks and can enhance its performance in
existing applications. We empirically demonstrate GrEASE’s ability to consistently approx-
imate and generalize SE, while ensuring scalability. Additionally, we show how GrEASE
can be leveraged to enhance existing methods. Specifically, we focus on UMAP, a leading
visualization technique, and introduce NUMAP, a generalizable version of UMAP powered
by GrEASE. Our code will be publicly available upon acceptance.

1 Introduction

Spectral Embedding (SE) is a popular non-linear dimensionality reduction method (Belkin & Niyogi, 2003;
Coifman & Lafon, 2006b), finding extensive utilization across diverse domains in recent literature. Notable
applications include UMAP (McInnes et al., 2018) (the current state-of-the-art visualization method), Graph
Neural Networks (GNNs) (Zhang et al., 2021; Beaini et al., 2021) and Graph Convolutional Neural Networks
(GCNs) (Defferrard et al., 2016), positional encoding for Graph Transformers (Dwivedi & Bresson, 2020;
Kreuzer et al., 2021) and analysis of proteins (Campbell et al., 2015; Kundu et al., 2004; Shepherd et al.,
2007; Zhu & Schlick, 2021). The core of SE involves a projection of the samples into the space spanned by the
leading eigenvectors of the Laplacian matrix (i.e., those corresponding to the smallest eigenvalues), derived
from the pairwise similarities between the samples. It is an expressive method which is able to preserve the
global structure of high-dimensional input data, underpinned by robust mathematical foundations (Belkin
& Niyogi, 2003; Katz et al., 2019; Lederman & Talmon, 2018; Ortega et al., 2018).

Despite the popularity and significance of SE, current implementations suffer from three main drawbacks: (1)
Generalizability - the ability to directly embed a new set of test points after completing the computation on
a training set (i.e., out-of-sample extension); (2) Scalability - the ability to handle a large number of samples
within a reasonable timeframe; (3) Eigenvectors separation - the ability to output the basis of the leading
eigenvectors (v2, . . . , vk+1), rather than only the space spanned by them. These three properties are crucial
for modern applications of SE in machine learning. Notably, the last property has attracted considerable
attention in recent years (Pfau et al., 2018; Gemp et al., 2020; Deng et al., 2022; Lim et al., 2022). While
most SE implementations address two of these three limitations, they often fall short in addressing the
remaining one (see Tab. 1 Sec. 2).

This paper extends the work by Shaham et al. (2018), known as SpectralNet. SpectralNet tackles the scal-
ability and generalizability limitations of Spectral Clustering (SC), a key application of SE. However, we
prove that due to a rotation and reflection ambiguity in its loss function, SpectralNet cannot directly be
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Method Generalizability Scalability Eigenvector Separation

LOBPCG ✗ ✓ ✓

SpectralNet ✓ ✓ ✗

DiffusionNet ✓ ✗ ✓

GrEASE (ours) ✓ ✓ ✓

Table 1: GrEASE is the only method to have the three desired properties of SE implementation.
Comparison between key SE methods via their ability to generalize to unsee samples, scale to large datasets
and separate the eigenvectors.

adapted for SE (i.e., it cannot separate the eigenvectors). In this paper, we first present a post-processing
procedure to resolve the eigenvectors separation issue in SpectralNet, thereby, creating a scalable and gen-
eralizable implementation of SE, which we call GrEASE : Generalizable and Efficient Approximate Spectral
Embedding.

GrEASE’s ability to separate the eigenvectors, while maintaining generalizability and scalability offers a
pathway to enhance numerous existing applications of SE and provides a foundation for developing new
applications. A notable example is UMAP (McInnes et al., 2018), the current state-of-the-art visualization
method. A recent work by Sainburg et al. (2021) proposed Parametric UMAP (P. UMAP) to address UMAP’s
lack of generalizability. However, UMAP’s global structure preservation and consistency largely stem from
the use of SE for initialization (Kobak & Linderman, 2021), a step absent in P. UMAP. Consequently,
P. UMAP lacks a crucial component to fully replicate the performance of UMAP, especially in terms of
global structure preservation. Nonetheless, a series of studies have incorporated P. UMAP, underscoring the
significant impact of a generalizable version of UMAP (Xu & Zhang, 2023; Eckelt et al., 2023; Leon-Medina
et al., 2021; Xie et al., 2023; Yoo et al., 2022).

In this paper, we also introduce a novel application of GrEASE for generalizable UMAP, which we term
NUMAP. NUMAP integrates the UMAP loss with SE initialization, similar to the original non-parametric
UMAP. As a result, NUMAP achieves comparable results to UMAP, while also offering generalization ca-
pabilities. This extends UMAP applicability, for instance, to the online learning regime and visualization of
time-serieses.

Our contributions can be summarized as follows: (1) We introduce GrEASE, a novel approach for general-
izable approximate SE; (2) We establish a foundation for a range of new SE applications and enhancements
to existing methods; (3) We present NUMAP: a novel application of GrEASE for generalizable UMAP; (4)
We propose a new evaluation method for dimensionality reduction methods, which enables quantification of
global structure preservation.

2 Related Work

Current SE implementations typically address two out of its three primary limitations: generalizability,
scalability, and eigenvector separation (Tab. 1). Below, we outline key implementations that tackle each
pair of these challenges. Following this, we discuss recent works related to eigenvectors separation and
generalizable visualizations techniques.

Scalable with eigenvectors separation. Popular implementations of SE are mostly based on sparse ma-
trix decomposition techniques (e.g., ARPACK (Lehoucq et al., 1998), AMG (Brandt et al., 1984), LOBPCG
(Benner & Mach, 2011)). These methods are relatively scalable, as they are almost linear in the number of
samples. Nevertheless, their out-of-sample extension is far from trivial. Usually, it is done by out-of-sample
extension (OOSE) methods such as Nyström (Nyström, 1930) or Geometric Harmonics (Coifman & Lafon,
2006a; Lafon et al., 2006). However, these methods provide only local extension (i.e., near existing training
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points), and are both computationally and memory restrictive, as they rely on computing the distances
between every new test point and all training points.

Scalable and generalizable. Several approaches to SC approximate the space spanned by the first eigen-
vectors of the Laplacian matrix, which is sufficient for clustering purposes, and can also benefit other specific
applications. For example, SpectralNet (Shaham et al., 2018) leverages deep neural networks to approxi-
mate the first eigenfunctions of the Laplace-Beltrami operator in a scalable manner, thus also enabling fast
inference of new unseen samples. BASiS (Streicher et al., 2023) achieves these goals using affine registration
techniques to align batches. However, these methods’ inability to separate the eigenvectors prevents their
use in many modern applications.

Generalizable with eigenvectors separation. Another proposed approach to SE is DiffusionNet
(Mishne et al., 2019), a deep-learning framework for generalizable Diffusion Maps embedding (Coifman
& Lafon, 2006b), which is similar to SE. However, the training procedure of the network is computationally
expensive, therefore restricting its usage for large datasets.

In contrast, we introduce GrEASE, which generalizes the separated eigenvectors to unseen points with a
single feed-forward operation, while maintaining scalability.

Eigenvectors separation. Extensive research has been conducted on the eigenvectors separation prob-
lem, both within and beyond the spectral domain (Lim et al., 2022; Ma et al., 2024). However, recent
suggestions are constrained computationally, both by extensive run-time and memory consumption. For
example, Pfau et al. (2018) proposed a solution to this issue by masking the gradient information from
the loss function. However, this approach necessitates the computation of full Jacobians at each time step,
which is highly computationally intensive. Gemp et al. (2020) employs an iterative method to learn each
eigenvector sequentially. Namely, they learn an eigenvector while keeping the others frozen. This process
has to be repeated k times (where k is the embedding dimension), which makes this approach also computa-
tionally expensive. Deng et al. (2022) proposed an improvement of the latter, by parallel training of k NNs.
However, as discussed in their paper, this approach becomes costly for large values of k. Furthermore, it
necessitates retaining k trained networks in memory, which leads to significant memory consumption. Chen
et al. (2022) proposed a post-processing solution to this problem using the Rayleigh-Ritz method. However,
this approach involves the storage and multiplication of very large dense matrices, rendering it impractical for
large datasets. In contrast, GrEASE offers an efficient one-shot post-processing solution to the eigenvectors
separation problem.

Generalizable visualization. Several works have attempted to develop parametric approximations for
non-parametric visualization methods, in addition to Parametric UMAP (P. UMAP) (Sainburg et al., 2021).
Notable examples include (Van Der Maaten, 2009) and (Kawase et al., 2022), which use NNs to make t-SNE
generalizable, and (Schofield & Lensen, 2021), which aims to make UMAP more interpretable. However, P.
UMAP has demonstrated superior performance. NUMAP presents a method to surpass P. UMAP in terms
of global structure preservation.

3 Preliminaries

In this section, we begin by providing the fundamental definitions that will be used throughout this work.
Additionally, we briefly outline the key components of UMAP and P. UMAP.

3.1 Spectral Embedding

Let X = {x1, . . . , xn} ⊆ Rd denote a collection of unlabeled data points drawn from some unknown distri-
bution D. Let W ∈ Rn×n be a positive symmetric graph affinity matrix, with nodes corresponding to X ,
and let D be the corresponding diagonal degree matrix (i.e. Dii =

∑n
j=1 Wij). The Unnormalized Graph

Laplacian is defined as L = D − W . Other normalized Laplacian versions are the Symmetric Laplacian
Lsym = D− 1

2 LD− 1
2 and the Random-Walk (RW) Laplacian Lrw = D−1L. GrEASE is applicable to all
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of these Laplacian versions. The eigenvalues of L can be sorted to satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ λn with
corresponding eigenvectors v1, . . . , vn (Von Luxburg, 2007). It is important to note that the first pair (i.e.,
λ1, v1) is trivial - for every Laplacian matrix λ1 = 0, and for the unnormalized and RW Laplacians v1 = 1√

n
1⃗,

namely the constant vector.

For a given target dimension k, the first non-trivial k eigenvectors provide a natural non-linear low-
dimensional embedding of the graph which is known as Spectral Embedding (SE). In practice, we denote
by V ∈ Rn×k the matrix containing the first non-trivial k eigenvectors of the Laplacian matrix as its
columns (i.e., v2, . . . , vk+1). The SE representation of each sample xi ∈ Rd is the ith row of V , i.e.,
yi = (v2(i), . . . , vk+1(i)).

3.2 SpectralNet

A prominent method for addressing scalability and generalizability in Spectral Clustering (SC) is using deep
neural networks, for example SpectralNet (Shaham et al., 2018). SpectralNet follows a common methodology
for transferring the problem of matrix decomposition to its smallest eigenvectors to an optimization problem,
through minimization of the Rayleigh Quotient (RQ).
Definition 1. The Rayleigh quotient (RQ) of a Laplacian matrix L ∈ Rn×n is a function RL : Rn×k → R
defined by

RL(A) = Tr(AT LA)

SpectralNet first minimizes the RQ on small batches, while enforcing orthogonality. Namely, it approximates
θ∗ which minimizes

Lspectralnet(θ) = 1
m2 RL

(
fθ(X)

)
s.t.

1
m

fθ(X)T fθ(X) = Ik×k (1)

Thereby, it learns a map f : Rd → Rk (where d is the input dimension) which approximates the space
spanned by the first k eigenfunctions of the Laplace-Beltrami operator on the underlying manifold D (Belkin
& Niyogi, 2006; Shi, 2015). Following this, it clusters the representations via KMeans. These eigenfunctions
are a natural generalization of the SE to unseen points, enabling both scalable and generalizable spectral
clustering.

3.3 UMAP and Parametric UMAP

UMAP (McInnes et al., 2018) is the current state-of-the-art visualization method. It presented a significant
advancement over previous methods, primarily due to its enhanced scalability and superior ability to preserve
global structure. This approach involves the construction of a graph from the input high-dimensional data
and the learning of a low-dimensional representation. The objective is to minimize the KL-divergence between
the input data graph and the representations graph.

However, as discussed in (Kobak & Linderman, 2021), UMAP primarily derives its global preservation abili-
ties, as well as its consistency, from initializing the representations using SE. Therefore, the SE initialization
serves as a critical step for UMAP to uphold the global structure (see demonstration in Fig. 1a). Global
preservation, in this context, refers to the separation of different classes, and avoiding the separation of
existing classes. We refer the reader to (Kobak & Linderman, 2021) for a more comprehensive discussion
about the effects of informative initialization on UMAP’s performance.

UMAP method can be divided into three components (summarized in Fig. 3): (1) constructing a graph
which best captures the global structure of the input data; (2) initializing the representations via SE; (3)
Learning the representations, via SGD, which best capture the original graph. This setup does not facilitate
generalization, as both steps (2) and (3) lack generalizability.

Recently, a generalizable version of UMAP, known as Parametric UMAP (P. UMAP), was introduced (Sain-
burg et al., 2021). P. UMAP replaces step (3) with the training of a neural network. Importantly, it overlooks
step (2), the SE initialization. Consequently, P. UMAP struggles to preserve global structure, particularly
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Figure 1: NUMAP preserves global structure while enabling generalizability. (a) A comparison
between non-parametric UMAP (with SE or PCA initialization), P. UMAP and NUMAP on three non-linear
yet simple 3-dimensional toy datasets. NUMAP global structure abilities over P. UMAP are evident. (b)
Banknote’s test set visualization by P. UMAP, NUMAP-SN and NUMAP. A better separation between
classes is observed in NUMAP.

when dealing with non-linear structures. Fig. 1a illustrates this phenomenon with several non-linear yet
simple structures. Noticeably, P. UMAP fails to preserve global structure (e.g., it does not separate different
clusters).

4 Method

4.1 Motivation

It is well known that the matrix V ∈ Rn×k, containing the first k eigenvectors of L (i.e., those corresponding
to the k smallest eigenvalues) as its columns, minimizes RL(A) under orthogonality constraint (i.e. AT A = I)
(Li, 2015).

However, a rotation and reflection ambiguity of the RQ prohibits a trivial adaptation of this concept to
SE. Basic properties of trace imply that for any orthogonal matrix Q ∈ Rk×k the matrix U := V Q satisfies
RL(U) = RL(V ). Thus, every such U also minimizes RL under the orthogonality constraint, and therefore
this kind of minimization solely is missing eigenvectors separation, which is crucial for many applications.

In fact, as stated in Lemma 1, the aforementioned form V Q is the only form of a minimizer of RL under the
orthogonality constraint. For conciseness, we provide our proof to the lemma in App. A.
Lemma 1. Every minimizer of RL under the orthogonality constraint, is of the form V Q, where V is the
first k eigenvectors matrix of L and Q is an arbitrary squared orthogonal matrix.

An immediate result of Lemma 1 is that SpectralNet’s method, using a deep neural network for RQ minimiza-
tion (while enforcing orthogonality), does not lead to the SE. However, it only leads to the space spanned by
the constant vector and the leading k − 1 eigenvectors of L, with different rotations and reflections for each
run. Therefore, each time the RQ is minimized, it results in a different linear combination of the smallest
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eigenvectors. Although this is sufficient for clustering purposes, as we search for reproducibility, consistency,
and separation of the eigenvectors, the RQ cannot solely provide the SE, necessitating the development of
new techniques in GrEASE.

4.2 GrEASE

Setup. Here we present the two key components of GrEASE, a scalable and generalizable SE method. We
consider the following setup: Given a training set X ⊆ Rd and a target dimension k, we construct an affinity
matrix W , and compute an approximation of the leading eigenvectors of its corresponding Laplacian. In
practice, we first utilize SpectralNet (Shaham et al., 2018) to approximate the space spanned by the first
k + 1 eigenfunctions of the corresponding Laplace-Beltrami operator, and then find each of the k leading
eigenfunctions within this space (i.e. the SE). Namely, GrEASE computes a map Fθ : Rd → Rk, which
approximates the map f̄ = (f2, . . . , fk+1), where fi is the ith eigenfunction of the Laplace-Beltrami operator
on the underlying manifold D.

Eigenspace approximation. As empirically showed in (Shaham et al., 2018), and motivated from Lemma
1, SpectralNet loss is minimized when Fθ = T ◦ (f1, . . . , fk+1), where T : Rk+1 → Rk+1 is an arbitrary
isometry. That is, Fθ approximates the space spanned by the first k + 1 eigenfunctions. However, the
SE (i.e. each of the leading eigenfunctions) is poorly approximated. Each time the RQ is minimized, the
eigenfunctions are approximated up to a different isometry T . Fig. 2a demonstrates this phenomenon on
the toy moon dataset - a noisy half circle linearly embedded into 10-dimension input space (see Sec. 5.1).
Employing SpectralNet approach indeed enables us to consistently achieve a perfect approximation of the
space (i.e., the errors at the left histograms are accumulated around 0). However, when comparing vector to
vector, it becomes apparent that the SE was seldom attained. That is, the distances are spread across the
entire range from 0 to 1.

SE approximation. To get the SE consistently (i.e., to separate the eigenvectors), we suggest a simple use
of Lemma 1. Notice that based on Lemma 1 we can compute a rotated version of the diagonal eigenvalues
matrix. Namely,

(V Q)T L(V Q) = QT V T LV Q = QT ΛQ =: Λ̃

Where Λ is the diagonal eigenvalues matrix. Due to the uniqueness of eigendecomposition, the eigenvectors
and eigenvalues of the small matrix Λ̃ ∈ Rk+1×k+1 are QT and diag(Λ), respectively. Hence, by diagonalizing
Λ̃ we get the eigenvalues and are also able to separate the eigenvectors (i.e., approximate the SE).

In practice, as Q is a property of SpectralNet optimization (manifested by the parameters), we compute the
matrix Λ̃ by averaging over a few random minibatches and diagonalize it. Thereby, making this addition very
cheap computationally. The eigenvectors matrix of Λ̃ is the inverse of the orthogonal matrix Q, and hence
by multiplying the output of the learned map Fθ by this matrix, the SE is retained. Also, the eigenvalues of
Λ̃ are the eigenvalues of L.

The effect of this intentional rotation is represented in the Fig. 2a. GrEASE was not only able to consistently
approximate the space, but also approximate each eigenvector. While SpectralNet errors are distributed over
a large range of values, GrEASE errors are small, capturing only the smallest error bin in the figure.

Algorithms Layout. Our end-to-end training approach is summarized in Algorithms 1 and 2 in Appendix
B. We run them consecutively: First, we train Fθ to approximate the first eigenfunctions up to isometry
(Algorithm 1) (Shaham et al., 2018). Second, we find the matrices QT and Λ to separate the eigenvectors and
retrieve the SE and its corresponding eigenvalues (Algorithm 2). App. C details additional considerations
about the implementation.

Once we have Fθ and QT , computing the embeddings of the train set or of new test points (i.e., out-of-sample
extension) is straightforward: we simply propagate each test point xi through the network Fθ to obtain their
embeddings ỹi, and use QT to get the SE embeddings yi = ỹiQ

T .
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(a) (b)

Figure 2: (a) GrEASE separates the eigenvectors. Approximation of the 2-dimensional SE of the
moon dataset using SpectralNet (in blue) and GrEASE (in green) over 100 runs, on train (top row) and test
(bottom row). Left column: distribution of the Grassmann distance between the output and true subspace.
Second to Fourth columns: distribution of the sin2 distance between each output and true eigenvector
separately. Evidently, GrEASE is able to separate the eigenvectors. (b) GrEASE is scalable. Running
times of SE using GrEASE vs. other methods on the Moon dataset (a 2D moon linearly embedded into 10D
input space), relative to the number of samples, and with standard deviation confidence intervals. Evidently,
GrEASE is the fastest asymptotically.

Time and Space complexity. As the network iterates over small batches, and the post-processing oper-
ation is much cheaper, GrEASE’s time complexity is approximately linear in the number of samples. This is
also demonstrated in Fig. 2b, where the continuous red line, representing linear regression, aligns with our
empirical results. App. C provides a discussion about the complexity of GrEASE. Note also that GrEASE
is much more memory-efficient than existing methods, as it does not require storing the full graph, or any
large matrix, in the memory, but rather one small graph or matrix (of a minibatch) at a time.

4.3 NUMAP

We focus on GrEASE application to UMAP, one of many methods which can benefit from a generalizable
SE. As discussed in Sec. 3.3, the SE initialization is crucial for the global preservation abilities of UMAP.
Therefore, we seek a method to incorporate SE into a generalizable version of UMAP. It is important
to note that a naive approach would be to fine-tune GrEASE using UMAP loss. However, during this
implementation, we encountered the phenomenon of catastrophic forgetting (see App. F).

The core of our idea is illustrated in Fig. 3. Initially, we use GrEASE to learn a parametric representation
of the k-dimensional SE of the input data. Subsequently, we train an NN to map from the SE to the
UMAP embedding space, utilizing UMAP contrastive loss. The objective of the second NN is to identify
representations that best capture the local structure of the input data graph. SE transforms complex
non-linear structures into simpler linear structures, allowing the second NN to preserve both local and
global structures effectively. To enhance this capability, we incorporate residual connections from the first
to the last layer of the second NN. Specifically, the objective is to minimize the residual between the ℓ-
dimensional UMAP embedding and the ℓ-dimensional SE. Note that this could not have been made possible
without GrEASE’s ability to separate the eigenvectors (and would not be practical without its inherent
generalizability and scalability). Fig. 1a demonstrates this capability with several simple structures.

4.4 Additional Applications

In this section we seek to highlight GrEASE’s potential impact on important tasks and applications (besides
UMAP), as it integrates generalizability, scalability and eigenvectors separation. As discussed in Sec. 1,
SE is applied across various domains, many of which can benefit generalizability capabilities by simply
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Figure 3: Incorporating GrEASE for generalizable UMAP. UMAP vs. NUMAP vs. P. UMAP
overview. A green arrow represents a non-parametric step. NUMAP integrates SE, as in UMAP, while
enabling generalization.

replacing the current SE implementation with GrEASE. We therefore elaborate herein the significance of SE
in selected applications, and discuss how GrEASE, as a generalizable approximation of it, can enhance their
effectiveness and applicability.

Fiedler vector and value. A special case of SE is the Fiedler vector and value (Fiedler, 1973; 1975).
The Fiedler value, also known as algebraic connectivity, refers to the second eigenvalue of the Laplacian
matrix, while the Fiedler vector refers to the associated eigenvector. This value quantifies the connectivity
of a graph, increasing as the graph becomes more connected. Specifically, if a graph is not connected, its
Fiedler value is 0. The Fiedler vector and value are a main topic of many works (Andersen et al., 2006;
Barnard et al., 1993; Kundu et al., 2004; Shepherd et al., 2007; Cai et al., 2018; Zhu & Schlick, 2021; Tam
& Dunson, 2020).

As GrEASE is able to distinguish between the eigenvectors and approximate the eigenvalues, it has the
capability to approximate both the Fiedler vector and value, while also generalizing the vector to unseen
samples (see Sec. 5.1).

Diffusion Maps. A popular method which incorporates SE, alongside the eigenvalues of the Laplacian
matrix, is Diffusion Maps (Coifman & Lafon, 2006b). Diffusion Maps embeds a graph (or a manifold) into a
space where the pairwise Euclidean distances are equivalent to the pairwise Diffusion distances on the graph.

In practice, for an k-dimensional embedding space and a given t ∈ N, Diffusion Maps maps the points to the
leading eigenvectors of the RW-Laplacian matrix of the data as follows:

X →
(
(1− λ2)tv2 · · · (1− λk+1)tvk+1

)
= Y

Where X ∈ Rn×d is a matrix containing each input point as a row, and Y ∈ Rn×k is a matrix containing each
of the representations as a row. As GrEASE is able to approximate both the eigenvectors and eigenvalues
of the Laplacian matrix, it is able to make Diffusion Maps generalizable and efficient (Sec. 5.1).

4.5 Evaluating UMAP embedding - Grassmann Score

Common evaluation methods for dimensionality reduction, particularly for visualization, are predominantly
focused on local structures. For instance, McInnes et al. (2018); Kawase et al. (2022) use kNN accuracy
and Trustworthiness, which only account for the local neighborhoods of each point while overlooking global
structures such as cluster separation. One global evaluation method is the Silhouette score, which measures
the clustering quality of the classes within the embedding space. However, this score does not capture the
preservation of the overall global structure.
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Figure 4: Grassmann Score (GS) captures global structure preservation. A demonstration of the
alignment between the intuitive expectation and the GS results on a toy dataset of two 3-dimensional tangent
spheres. Four possible 2-dimensional embeddings of this dataset are provided, along with their corresponding
GS, kNN accuracy and Silhouette score. Unlike kNN and Silhouette, GS effectively captures the preservation
of global structure.

To address this gap, we propose a new evaluation method, specifically appropriate for assessing global
structure preservation in graph-based dimensionality reduction methods (e.g., UMAP, t-SNE). The leading
eigenvectors of the Laplacian matrix are known to encode crucial global information about the graph (Belkin
& Niyogi, 2003). Thus, we measure the distance between the global structures of the original and embedding
manifolds using the Grassmann distance between the first eigenvectors of their respective Laplacian matrices.
We refer to this method as the Grassmann Score (GS).

It is important to note that GS includes a hyper-parameter - the number of eigenvectors considered. Increas-
ing the number of eigenvectors incorporates more local structure into the evaluation. A natural choice for
this hyperparameter is 2, which corresponds to comparing the Fiedler vectors (i.e., the second eigenvectors of
the Laplacian). The Fiedler vector is well known for encapsulating the global information of a graph (Fiedler,
1973; 1975). Unless stated otherwise, we use two eigenvectors for computing the GS. Fig. 4 demonstrates
GS (alongside Silhouette and kNN scores for comparison) on a few embeddings of two tangent spheres, in-
dependently to the embedding methods. Notably, the embedding on the right appears to best preserve the
global structure, as indicated by the smallest GS value. In contrast, the kNN scores are comparable across
all embeddings (e.g., kNN ignores separation of an existing class), and the Silhouette score even favors other
embeddings. In App. D we mathematically formalize GS and provide additional examples of embeddings
and their corresponding GS. These examples further support the intuition that GS effectively captures global
structure preservation better than previous measures.

5 Experiments

5.1 Eigenvectors Separation - Generalizable SE

In this section, we demonstrate GrEASE’s ability to approximate and generalize the SE using four real-
world datasets: CIFAR10 (via their CLIP embedding); Appliances Energy Prediction dataset (Candanedo,
2017); Kuzushiji-MNIST (KMNIST) dataset (Clanuwat et al., 2018); Parkinsons Telemonitoring dataset
(Tsanas & Little, 2009). Particularly, we compare our results with SpectralNet, which has been empirically
shown to approximate the SE space. However, as our results demonstrate, SpectralNet is insufficient for
accurately approximating SE. For additional technical details regarding the datasets, architectures and
training procedures, we refer the reader to Appendix G.

Evaluation Metrics. To assess the approximation of each eigenvector (i.e., the SE), we compute the sin2

of the angle between each predicted and ground truth vector. This can be viewed as the 1-dimensional
case of the Grassmann distance, a well-known metric for comparing equidimensional linear subspaces (see
formalization in App. D). Concerning the eigenvalues approximation evaluation, we measure the Pearson
Correlation between the predicted and true eigenvalues (computed via SVD).

Fig. 5 presents our results on the real-world datasets. GrEASE’s output is used directly, while SpectralNet’s
predicted eigenvectors are resorted to minimize the mean sin2 distance. The results clearly show that
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Figure 5: GrEASE successfully approximates the SE of real-world datasets. A comparison between
GrEASE and SpectralNet SE and Fiedler Vector (FV) approximation on real-world datasets. The values
are the mean and standard deviation of the sin2 distance between the predicted and true eigenvector of the
test set, over 10 runs. Lower is better. GrEASE ability to separate the eigenvectors is evident.

GrEASE consistently produces significantly more accurate SE approximations compared to SpectralNet,
due to the improved separation of the eigenvectors.

Additionaly, note the GrEASE approximates the eigenvalues as well. When concerning a series of Laplacian
eigenvalues, the most important property is the relative increase of the eigenvalues (Coifman & Lafon, 2006b).
GrEASE demonstrates a strong ability to approximate this property. To see this, we repeated GrEASE’s
eigenvalue approximation (10 times) and calculated the Pearson correlation between the predicted and accu-
rate eigenvalues vector. We compared the first 10 eigenvalues. The resulting mean correlation and standard
deviation are: Parkinsons Telemonitoring: 0.917±0.0381; Appliances Energy Prediction: 0.839±0.0342;

5.2 Scalability

Noteworthy, GrEASE not only generalizes effectively but also does so more quickly than the most scalable
(yet non-generalizable) existing methods. Fig. 2b demonstrates this point on the toy moon dataset - a 2D
moon linearly embedded into 10D input space. To evaluate scalability, we measured the computation time
required for SE approximation, for an increasing number of samples. We compared the results with the three
most popular methods for sparse matrix decomposition, which are currently the fastest implementations:
ARPACK (Lehoucq et al., 1998), LOBPCG (Benner & Mach, 2011), and AMG (Brandt et al., 1984). For
each number of samples, we calculated the Laplacian matrix that is 99% sparse. Each method was executed
five times, initialized with different seeds. As discussed in Sec. 4, GrEASE demonstrates approximately
linear time complexity, and indeed, for higher numbers of samples, GrEASE converges significantly faster.

5.3 NUMAP - generalizable UMAP

In this section, we demonstrate NUMAP’s ability to preserve global structure, while enabling fast inference
of test points, and it’s ability to enable time-series UMAP visualization. We compare our results with P.
UMAP and NUMAP-SN (NUMAP architecture using SpectralNet instead of GrEASE). We consider four
real-world datasets: CIFAR10 (via their CLIP embedding); Appliances Energy Prediction dataset; Wine
(Aeberhard & Forina, 1992); and Banknote Authentication (Lohweg, 2012). For additional technical details
regarding the datasets, architectures and training procedures, we refer the reader to Appendix G.

Evaluation Metrics. To evaluate and compare the embeddings, we employed both local and global eval-
uation metrics. For local evaluation, we used the well-established accuracy of a kNN classifier on the
embeddings (McInnes et al., 2018; Sainburg et al., 2021), which is applicable only on classed data. For
global evaluation, we use GS (see discussion in Sec. 4.5).

Tab. 2 presents our results on the real-world datasets. The local (i.e., kNN) results are comparable across
the three methods. However, NUMAP consistently better captures the global structure (based on the lower
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Metric Method Cifar10 Appliances Wine Banknote

kNN ↑
P. UMAP 0.886±0.043 - 0.922±0.027 0.927±0.031
NUMAP-SN 0.862±0.008 - 0.956±0.028 0.975±0.022
NUMAP (ours) 0.874±0.023 - 0.956±0.033 0.988±0.002

GS ↓
P. UMAP 0.102±0.043 0.769±0.262 0.502±0.146 0.685±0.035
NUMAP-SN 0.460±0.267 0.255±0.044 0.617±0.193 0.815±0.168
NUMAP (ours) 0.089±0.042 0.244±0.015 0.461±0.161 0.570±0.122

Table 2: NUMAP preserves global structure of real-world datasets. A comparison between NUMAP
and P. UMAP visualization on real-world datasets. The values are the mean and standard deviation of the
measures on the test set, over 5 runs. NUMAP is superior in preserving global structure.

GS). In other words, NUMAP achieves comparable local preservation results with P. UMAP, while possessing
more global structure expressivity. Also, the table shows that GrEASE is necessary to achieve these results,
which are not reproduced with SpectralNet.

In Fig. 1, we supplement the empirical results with qualitative examples. Fig. 1a presents three sim-
ple non-linear synthetic 3-dimensional structures and their 2-dimensional visualizations using UMAP (non-
parametric), P. UMAP and NUMAP. UMAP (using its default configuration, SE initialization) accurately
preserves the global structure in its 2-dimensional representations, but lack the ability to generalize to un-
seen points. Among the generalizable methods (i.e., P. UMAP and NUMAP), P. UMAP fails to preserve the
global structure: in the top two rows, it does not separate the clusters, while in the bottom row, it introduces
undesired color overlaps. In contrast, NUMAP effectively preserves these separations and avoids the unnec-
essary overlapping. These examples are particularly insightful, as P. UMAP fails to visualize correctly even
these simple datasets. Fig. 1b further demonstrates NUMAP’s superior ability to preserve global structure,
as evidenced by the improved class separation in the Banknote dataset.

Time-series visualization. Fig. 6 shows a simulation time-series data, which can be viewed as a sim-
ulation of cellular differentiation. Specifically, we may consider differentiation of hematopoietic stem cells
(also known as blood stem cells), which are known to differentiate into many types of blood cells, to T-cells.
The process involves two kinds of cells (represented by their gene expressions; red and blue samples in the
figure). One represents stem cells, while the other T-cells. A group of cells (colored in pink in the figure)
then gradually transitions from stem cells to T-cells. At the top row we use UMAP to visualize each time
step, while at the bottom we train NUMAP on the first two time-steps and only inference the rest. UMAP
is inconsistent over time-steps, which makes it impractical for understanding change and progression. It
also has to train the embeddings each time-step separately. In contrast, NUMAP only trains on the first
two time-steps and the embeddings of the later time-steps are immediate from inference. This also enables
consistency over time, and makes the trend and process visible and understandable.

6 Conclusions

We first introduced GrEASE, a deep-learning approach for approximate SE. GrEASE addresses the three
primary drawbacks of current SE implementation: generalizability, scalability and eigenvectors separation.
By incorporating a post-processing diagonalization step, GrEASE enables eigenvectors separation without
compromising generalizability or scalability. Remarkably, this one-shoot post-processing operation lays the
groundwork for a wide range of new applications of SE, which would not have been possible without its scal-
able and generalizable implementation. It also presents a promising pathway to enhance current applications
of SE.

In particular, we presented NUMAP, a novel application of GrEASE for generalizable UMAP visualization.
We believe the integration of SE with deep learning can have a significant impact on unsupervised learning
methods. Further research should delve into exploring the applications of SE across various fields.

11



Under review as submission to TMLR

Figure 6: Time-series visualization using NUMAP. Visualization of a dynamical system using UMAP
and NUMAP. NUMAP is both consistent and does not require training after the first two time-steps.
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A Proof of Lemma 1

First, we remind an important property of the Rayleigh Quotient.
Remark 1. The Rayleigh Quotient of a positive semi-definite matrix L ∈ Rn×n with eigenvectors v1, . . . , vn

corrisponding to the eigenvalues λ1 ≤ · · · ≤ λn, RL satisfies arg min||v||=1 RL(v) = v1 and for each i > 1
arg min||v||=1 RL(v) = vi for v ⊥ v1, . . . , vi−1 (Li, 2015).

Lemma 1. Let L ∈ Rn×n be an Unnormalized Laplacian matrix and RL : O(n, k) → R its corresponding
RQ, and Let A be a minimizer of RL. Denote V ∈ Rn×k as the matrix containing the first k eigenvectors
of L as its columns, and Λ the corresponding diagonal eigenvalues matrix. Then, there exists an orthogonal
matrix Q ∈ Rk×k such that A = V Q.

Proof. As V minimizes RL, we get that minU RL(U) = RL(V ) =
∑k

i=1 λi, where 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

are the eigenvalues of L. This yields

RL(A) = Tr(AT LA) =
k∑

i=1
λi

AT LA is symmetric, and hence orthogonally diagonalizable, which means there exists an orthogonal matrix
Q ∈ Rk×k and a diagonal matrix D ∈ Rk×k s.t.

AT LA = QT DQ

Which can be written as
(AQT )T L(AQT ) = D

Denoting by d1, . . . , dk the diagonal values of D, the last equation yields

k∑
i=1

di = RL(AQT ) = RL(A) =
k∑

i=1
λi

Note that based on Remark 1 λi ≤ di for each i, as AQT ∈ O(n, k). Hence, di = λi, i.e.,

(AQT )T L(AQT ) = Λ

As the eigendecomposition of a matrix is unique, this yields AQT = V , which means A = V Q.
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B Algorithm Layouts

Algorithm 1: SpectralNet training (Shaham et al., 2018)
Input: X ⊆ Rd, number of dimensions k, batch size m
Output: Trained Fθ which approximates the first k + 1 eigenfunctions up to isometry

1 Randomly initialize the network weights θ
2 while L(θ) not converged do
3 Orthogonalization step:
4 Sample a random minibatch X of size m

5 Forward propagate X and compute inputs to orthogonalization layer Ỹ

6 Compute the QR factorization QR = Ỹ
7 Set the weights of the orthogonalization layer to be

√
mR−1

8 Gradient step:
9 Sample a random minibatch x1, . . . , xm

10 Compute the m×m affinity matrix W
11 Forward propagate x1, . . . , xm to get y1, . . . , ym

12 Compute the loss L(θ)(Sec. 3.2)
13 Use the gradient of L(θ) to tune all Fθ weights, except those of the output layer;

Algorithm 2: Eigenvectors separation
Input: X ⊆ Rd, batch size m, Trained Fθ which approximates the first k + 1 eigenfunctions

up to isometry
Output: Fθ which approximates the leading eigenfunctions

1 T ← ⌊ |X |
m ⌋

2 sample T minibatches Xi ∈ Rm×d

3 Forward propogate all Xi and obtain Fθ outputs Yi ∈ Rm×k+1

4 Compute the m×m affinity matrices Wi

5 compute all corresponding RW-Laplacians Li

6 Λ̃← 1
T

∑
i Y T

i LiYi

7 Diagonalize Λ̃ to get Q̃T and the leading eigenvalues
8 Sort the leading eigenvalues, and the columns of Q̃T correspondingly
9 QT ← last k columns of Q̃T

10 To obtain the representation of a new test sample xi, compute yi = Fθ(xi)QT

C Implementation’s Additional Considerations

C.1 Time and Space Complexity

Specifying the exact complexity of the method is difficult, As this is a non-convex optimization problem,
However, we can discuss the following approximate complexity analysis. Assuming constant input and output
dimensions and a given network architecture, we can take a general view on the complexity of each iteration
by the batch size m. The heaviest computational operations at each iteration are the nearest-neighbors
search, the QR decomposition and the loss computation (i.e., computation of the Rayleigh Quotient). For
the nearest-neighbor search, we can use approximation techniques (e.g, LSH Gionis et al. (1999)) which
work in almost linear complexity by m. A naive implementation of the QR decomposition would lead to
an O(m2) time complexity. The loss computation also takes O(m2) due to the required matrix multipli-
cation. Thereby, the complexity of each iteration is quadratic by the batch size. This is comparable to
other approximation techniques such as LOBPCG Benner & Mach (2011) (which also utilizes sparse matrix
operations techniques for faster implementation). However, GrEASE leverages stochastic training, allowing
each iteration to consider only a batch of the data, rather than the entire dataset.
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Assessing the complexity of each epoch is now straightforward, and results a time complexity of O(nm),
where n, the number of samples, satisfies n≫ m. This indicates an almost-linear complexity.

C.2 Graph Construction

To best capture the structure of the input manifold D, given by a finite number of samples X , we use a
similar graph construction method used by Gomez et al. in UMAP (McInnes et al., 2018), proven to capture
the local topology of the manifold at each point. However, as opposed to the method in (McInnes et al.,
2018), GrEASE does not compute the graph of all points, which can lead to scalability hurdles and impose
significant memory demands. Instead, GrEASE either computes small graphs on each batch, or can be
provided by the user with an affinity matrix W corresponding to X . Our practical construction of the graph
affinity matrix W is as follows:

Given a distance measure δ between points, we first compute the k-nearest neighbors of each point xi under
δ, {xi1 , . . . , xik

}, and denote

ρi = min
j

δ(xi, xij ), σi = median{δ(xi, xij )|1 ≤ j ≤ k}

Second, we compute the affinity matrix using the Laplace kernel

Wij =
{

exp
( ρi−δ(xi,xj)

σi

)
xj ∈ {xi1 , . . . , xik

}
0 otherwise

Third, we symmetries W simply by taking W +W T

2 .

We refer the reader to McInnes et al. (2018) for further discussion about the graph construction.

D Grassmann Score

In this section, we provide the formulation for the Grassmann Score (GS) evaluation method, and present
simple examples to visualize its meaning.

D.1 Formalization of GS

First, we remind Grassmann distance (see Def. 1). Grassmann distance is a metric function between
equidimensional linear subspaces, where each is represented by an orthogonal matrix containing the basis
as its columns. In other words, this is a metric which is invariant under multiplication by an orthogonal
matrix.
Definition 1. Given two orthogonal matrices A, B ∈ Rn×k, the Grassmann Distance between them is defined
as:

dGr(A, B) =
k∑

i=1
sin2θi

where θi = arccos σi(AT B) is the ith principal angle between A and B, and σi is the ith smallest singular
value of AT B.

Assuming we are given a dataset X = {x1, . . . , xn} ⊆ Rd and a corresponding low-dimensional representation
Y = {y1, . . . , yn} ⊆ Rk. We want to evaluate the dissimilarity between the global structures of X and Y.
We build graphs from X and Y, saved as affinity matrices WX and WY , respectively. We construct the
corresponding Unnormalized Laplacians (see Sec. 3.1) LX and LY . We define the matrices VX , VY ∈ Rn×t

so that their columns are the first t eigenvectors of LX , LY , respectively.

Finally, we define the GS of Y (w.r.t X ) as follows:
Definition 2. GSX (Y) = dGr(VX , VY)
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t is a hyper-parameter of GS. A reasonable choice would be to take t = 2, which is equivalent to measure
the Grassmann distance between the Fiedler vectors of the Laplacians. The Fiedler vector is known for its
hold of the most important global properties. The larger t, the more complicated structures are taken into
consideration in the GS computation (which is not necceray desired).

Note that for the construction of the affinity matrices WX , WY we use the same construction scheme detailed
in App. C.2. This construction method is similar to the one presented by McInnes et al. (2018), and proved
to capture the local topology of the underlying manifold.

It is important to note that GS might ignore the local structures, while concentrating on the global structures
(especially for smaller values of t). The ultimate goal in visualization is to find a balance between the global
and local structure.

D.2 Additional GS examples

(a)

(b)

Figure 7: Additional demonstrations of the alignment between the intuitive expectation and the GS results
on two toy dataset. Four possible 2-dimensional embeddings of these dataset are provided, along with their
corresponding GS, kNN accuracy and Silhouette score. Unlike kNN and Silhouette, GS effectively captures
the preservation of global structure.

Fig. 7 depicts two additional demonstrations of the alignment between the intuitive expectation and the
GS results on two toy dataset. The basic global structure of both of these datasets is two distinct clusters.
This structure is indeed captured by GS. However, kNN gives perfect score also when the one of the clusters
is separated. Silhouette score favourites the 2-points embedding. Namely, it trade-offs local structure (i.e.,
giving lower score for preserving local structure, even when the global properties are the same).

E Additional results

The full results of Fig. 5 are summarized in Tab. 3.

F Fine-Tuning GrEASE with UMAP loss

One way to get a generalizable version of UMAP may be an extension of GrEASE by fine-tuning the network
with UMAP loss. We tried that idea, but were forced to stop this direction, as we stumbled upon the well-
known catastrophic forgetting case.
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Table 3: A comparison between GrEASE and SpectralNet dimensional SE and Fiedler Vector (FV) ap-
proximation on real-world datasets. The values are the mean and standard deviation of the sin2 distance
between the predicted and true eigenvector, over 10 runs. Lower is better. GrEASE ability to separate the
eigenvectors is evident.

Dataset Method v2 v3 v4 v5

Cifar10 GrEASE 0.016±0.004 0.052±0.008 0.069±0.034 0.106±0.037
SpectralNet 0.449±0.199 0.325±0.148 0.399±0.194 0.414±0.17

Appliances GrEASE 0.063±0.002 0.094±0.007 0.109±0.001 -
SpectralNet 0.307±0.047 0.530±0.114 0.401±0.106 -

KMNIST GrEASE 0.0.044±0.002 0.101±0.010 - -
SpectralNet 0.372±0.174 0.396±0.137 - -

Parkinsons GrEASE 0.056±0.006 - - -
SpectralNet 0.229±0.138 - - -

Figure 8 presents an experiment on the simple 2circles dataset. Each row is represented the same experiment,
run with a different seed. We trained GrEASE to output the 2D SE of the 2circles dataset, as shown in
the left column. Then, we initialized a new network, with the same architecture, with the pre-trained
weights from GrEASE. This network was trained with UMAP loss, as in (Sainburg et al., 2021). We tried
different learning-rates for fine-tuning, to best match the desired UMAP embedding (i.e. retaining the local
structure), without losing the global structure (e.g., separation of the two clusters). Unfortunatly, there was
no learning-rate that matched our goals.

Figure 8: The catastrophic forgetting phenomenon when fine-tuning GrEASE to much UMAP performance
on the 2circles dataset. Each column represents a fine-tuning using a different learning-rate. Each row is a
repetition, initialized with a different seed.

G Technical Details

To compute the ground truth SE on the train set and its corresponding eigenvalues, we constructed an
affinity matrix W from the train set (as detailed in Appendix C.2), with a number of neighbors detailed in
Table 5. After constructing W , we computed the leading k eigenvectors of its corresponding Unnormalized
Laplacian L = D −W via Python’s Numpy SVD or SciPy LOBPCG SVD (depending on the size). To get
the generalization ground truth, we constructed an affinity matrix W from the train and test sets combined,
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Table 4: Technical details of the real-world datasets used for GrEASE and NUMAP experiments.

Cifar10 Appliances KMNIST Parkinsons Wine Banknote
#samples 60,000 19735 70,000 5875 178 1372
#features 500 28 784 19 13 4

Table 5: Technical details in the GrEASE experiments for all datasets.

Moon Cifar10 Appliances KMNIST Parkinsons
Batch size 2048 2048 2048 2048 512

n_neighbors 20 20 20 20 5
Initial LR 10−2 10−2 10−3 10−3 10−2

Optimizer ADAM ADAM ADAM ADAM ADAM

computed the leading k eigenvectors of its corresponding Unnormalized Laplacian L = D−W , and extracted
the representations corresponding to the test samples. We used a train-test split of 80-20 for all datasets.

For the SE implementation via sparse matrix decomposition techniques, we used Python’s
sklearn.manifold.SpectralEmbedding, using a default configuration (in particular, 10 jobs, 1% neighbors).

The architectures of GrEASE’s and SpectralNet’s networks in all of the experiments were as follows: size
= 128; ReLU, size = 256; ReLU, size = 512; ReLU, size = k + 1; orthonorm. NUMAP’s second NN and
PUMAP’s NN architectures for all datasets was: size = 200; ReLU, size = 200; ReLU, size = 200; ReLU,
size = 2; The SE dimensions for NUMAP were: Cifar10 - 20; Appliances - 10; Wine - 10; Banknote - 3.

The learning rate policy for GrEASE and SpectralNet is determined by monitoring the loss on a validation
set (a random subset of the training set); once the validation loss did not improve for a specified number
of epochs, we divided the learning rate by 10. Training stopped once the learning rate reached 10−7. In
particular, we used the following approximation to determine the patience epochs, where n is the number of
samples and m is the batch size: if n

m ≤ 25, we chose the patience to be 10; otherwise, the patience decreases
as max (1, 250m

n ) (i.e., the number of iterations is the deciding feature).

To run UMAP, we used Python’s umap-learn implementation (UMAP’s formal implementation). We used
the built-in initialization option "spectral" (i.e., SE), and initialized contumely with PCA (implemented via
Python’s sklearn.decomposition.PCA) and GrEASE. For Parametric UMAP we used the Pytorch implemen-
taion (Liu, 2024). For all methods we used a default choice of 10 neighbors.

As for the evaluation methods, we used a default choice of 5 neighbors to compute the kNN accuracy. The
graph construction for GS is as detailed in App. C.2, using 50 neighbors to ensure connectivity.

Time-series simulation. We simulated two complex distributions in a 10-dimensional space. At each of
the ten time steps, we sample a total of 5000 data points, 25% of which belong to the dynamic distribution
(visualized by the pink dots in Fig. 6), while the other two distributions are kept the same. The dynamic
distribution starts at the first (red) distribution, and linearly transitions into the other (blue). We used
UMAP default parameters settings to visualize each time-step separately. As for NUMAP, we trained only
on the first two time-steps, and obtained the others using a simple feed-forward operation.

We ran the experiments using GPU: NVIDIA A100 80GB PCIe; CPU: Intel(R) Xeon(R) Gold 6338 CPU @
2.00GHz;
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