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Abstract

Paraphrase identification involves identifying001
whether a pair of sentences express the same002
or similar meanings. While cross-encoders003
have achieved high performances across sev-004
eral benchmarks, bi-encoders such as SBERT005
have been widely applied to sentence pair006
tasks. They exhibit substantially lower com-007
putation complexity and are better suited to008
symmetric tasks. In this work, we adopt a bi-009
encoder approach to the paraphrase identifica-010
tion task, and investigate the impact of explic-011
itly incorporating predicate-argument informa-012
tion into SBERT through weighted aggrega-013
tion. Experiments on six paraphrase identifica-014
tion datasets demonstrate that, with a minimal015
increase in parameters, the proposed model is016
able to outperform SBERT/SRoBERTa signifi-017
cantly. Further, ablation studies reveal that the018
predicate-argument based component plays a019
significant role in the performance gain.020

1 Introduction021

Paraphrases are sentences that express the same or022

similar meanings with different wording (Bhagat023

and Hovy, 2013). Paraphrase pairs are either fully024

or largely semantically equivalent. For example:025

a) Marriage equality law passed in Rhode Island026

b) Rhode Island becomes the 10th state to enact027

marriage equality028

It is generally considered to be a symmetric task029

where the paraphrase relation holds in both direc-030

tions (Bhagat and Hovy, 2013; Yang et al., 2019).031

Since word order and sentence structure are cru-032

cial in determining sentence meaning, effective033

paraphrase models must be structure-aware and034

word order sensitive. In light of this, paraphrase035

datasets have been created that are specifically de-036

signed to encourage models to consider structural037

differences (Xu et al., 2015; Zhang et al., 2019b).038

For example, PIT2015 (Xu et al., 2015) consists039

of paraphrase pairs that are lexically diverse and 040

non-paraphrase pairs that are lexically similar but 041

semantically dissimilar. 042

There are generally two pre-trained based ap- 043

proaches for sentence pair tasks such as paraphrase 044

identification. The first is the cross-encoder ap- 045

proach, which involves concatenating the two input 046

sentences and performing full-attention over the in- 047

put. The second is the bi-encoder approach, which 048

adopts a siamese structure and maps each sentence 049

onto separate representations, which can then be 050

compared using similarity measures such as co- 051

sine. Though typical cross-encoders like BERT 052

(Devlin et al., 2019) and RoBERTa (Liu et al., 053

2019b) have set state-of-the-art performance on 054

various sentence pair tasks (Zhang et al., 2021; 055

Xia et al., 2021), they still face challenges from 056

both extreme computational overhead for many use 057

cases (Reimers and Gurevych, 2019; Thakur et al., 058

2021) and inconsistent predictions (ranging from 059

2.66% to 8.46% depending on specific datasets) 060

when dealing with symmetric tasks (Chen et al., 061

2020). 062

In contrast, a bi-encoder approach such as 063

Sentence-BERT (SBERT) (Reimers and Gurevych, 064

2019) encodes sentences separately and generates 065

high-quality embeddings for each of them. This 066

architecture enables sentence embeddings to be 067

pre-computed, supporting efficient indexing and 068

comparison between different sequences. Due to 069

the nature of bi-encoders, the symmetry property 070

will be preserved as long as no asymmetry is intro- 071

duced in subsequent layers. These properties make 072

bi-encoders appealing for the paraphrase identifi- 073

cation task. Accordingly, here, we focus on bi- 074

encoders rather than cross-encoders. 075

One downside of SBERT is that it only adopts a 076

very simple strategy, which is mean-pooling over 077

all tokens, to generate sentence embeddings. As 078

previously discussed, models should ideally be sen- 079

sitive to any structural differences between two 080
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sentences. Relational Graph Convolutional Net-081

works (RGCNs) (Schlichtkrull et al., 2018) have082

been used to introduce structural information (e.g.083

dependency/semantic parse trees) into SBERT and084

improvements have been reported on unsupervised085

similarity comparison tasks (Peng et al., 2021).086

One drawback of RGCNs is the size of the pa-087

rameter space. For example, a single-layer RGCN088

can involve more than 30 million parameters. Fur-089

thermore, as we will demonstrate, the performance090

gain on different paraphrase identification datasets091

is not consistent.092

An important aspect of sentence meaning con-093

cerns its predicate-argument structure. This has094

been utilised to generate paraphrases (Kozlowski095

et al., 2003) and to compare sentence meanings096

(Shan et al., 2009). Inspired by the Self-Explain097

model (Sun et al., 2020) which uses a span-based098

framework to generate sentence embeddings, we099

propose a method that effectively introduces sen-100

tence structure into SBERT via the aggregation101

of predicate-argument spans. This self-attention102

based aggregation allows us to gain benefits with103

minimal increased cost in terms of additional pa-104

rameters. Empirical results indicate that the pro-105

posed model yields improvements on six bench-106

marks for paraphrase identification. Upon closer107

investigation, we find the predicate-argument span108

(PAS) component plays a crucial role in the perfor-109

mance gains and can be easily generalised to other110

models.111

2 Related Work112

2.1 Paraphrase Identification113

The problem of paraphrase identification has been114

explored now for several decades (Mihalcea et al.,115

2006; Kozareva and Montoyo, 2006). Prior to the116

emergence of pre-trained models, bi-encoder struc-117

tures were widely used. For example, Mueller and118

Thyagarajan (2016) applied LSTM in a siamese119

architecture with tied weights and used Manhat-120

tan distance to give similarity. InferSent (Con-121

neau et al., 2017) exploited BiLSTM in a simi-122

lar siamese structure with a fully-connected layer123

for classification over interacted sentence embed-124

dings. Although their model was mainly proposed125

for transfer learning, experiments showed that it126

achieves good performance when directly trained127

on in-domain data.128

Some bi-encoders do not generate single-vector129

sentence embeddings and allow direct comparisons130

between the words in the two sentences. Pang et al. 131

(2016) proposed MatchPyramid where interaction 132

matrix is constructed, and convolutional networks 133

were used to extract features for final classifica- 134

tion. PMWI (He and Lin, 2016) introduced more 135

fine-grained comparisons between words to better 136

dissect the meaning difference. ESIM (Chen et al., 137

2017) further utilised BiLSTM to bring contextu- 138

alised token representations and allow rich inter- 139

actions between tokens. Researchers have further 140

improved these models by incorporating context 141

and structure information (Liu et al., 2019a), as 142

well as character-level information (Lan and Xu, 143

2018). 144

After the emergence of pre-trained models, 145

cross-encoders like BERT and RoBERTa have 146

achieved state-of-the-art performance on various 147

sentence pair tasks including paraphrase identifi- 148

cation. Zhang et al. (2019a) introduced pairwise 149

word interaction mechanism into BERT. Zhang 150

et al. (2021) improved BERT on paraphrase tasks 151

by using CNNs to gather local information and 152

an auxiliary task to further bring in semantic rela- 153

tion information. Xia et al. (2021) injected simi- 154

larity matrices into BERT’s attention mechanism. 155

Though improved performance can be obtained, 156

cross-encoders have known drawbacks. In partic- 157

ular, Reimers and Gurevych (2019) showed the 158

extreme computation overhead of cross-encoders, 159

and Chen et al. (2020) demonstrated that cross- 160

encoders often give inconsistent predictions when 161

reversing the input sentence order. Based on these 162

factors, bi-encoders are often preferred for the para- 163

phrase identification task. 164

2.2 Sentence Representation with Structures 165

Though pre-trained models like BERT are seen to 166

have encoded certain structures in their contextu- 167

alised representations, open questions remain about 168

how to better utilise such information (Hewitt and 169

Manning, 2019; Clark et al., 2019) and how useful 170

the hidden structure is compared to externally pro- 171

vided sentence structures (Glavaš and Vulić, 2021; 172

Dai et al., 2021). Recent improvements are also 173

observed on various natural language understand- 174

ing tasks by incorporating structural information 175

into pre-trained models. SentiBERT proposed by 176

Yin et al. (2020) incorporates constituency parse 177

tree into BERT for sentiment analysis. Xu and 178

Yang (2019) model each sentence as a directed 179

dependency graph by using RGCN, and achieve 180
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improvements on pronoun resolution. Zhang et al.181

(2020) propose a semantics-aware BERT (Sem-182

BERT) model by further encoding semantic labels183

with BERT using a GRU. RGCNs have also been184

used by Wu et al. (2021) to introduce semantic185

information into RoBERTa, and achieved consis-186

tent improvements when fine-tuned on problem-187

specific datasets. Peng et al. (2021) propose a188

SBERT-RGCN model where structural informa-189

tion is explicitly encoded into SBERT in a similar190

way, achieving improvements on unsupervised sen-191

tence similarity comparison tasks. Similar efforts192

can be seen where researchers try to provide syn-193

tax information via self-attention mechanism (Bai194

et al., 2021; Li et al., 2020). Self-Explain model195

proposed by Sun et al. (2020) focuses on continu-196

ous text spans. It generates sentence embeddings197

by taking the weighted sum over all possible con-198

tinuous text spans rather than individual tokens199

in the sentence. Though, Self-Explain achieves200

improvements over SentiBERT and SemBERT on201

sentiment analysis and language inference tasks,202

the continuous span strategy only captures linear203

structure and not differences in linguistic structure.204

In this paper, we draw inspiration from it, design-205

ing a similar span-based component to incorporate206

predicate-argument spans.207

3 Model208

Our proposed model adopts the same siamese archi-209

tecture as SBERT and turns focus to the predicate-210

argument structure of the given sentence. As de-211

picted in Figure 1, the model consists of different212

components:213

BERT: Each sentence is first fed into the pre-214

trained BERT-base model to produce both a sen-215

tence representation, by applying mean-pooling216

over all token representations, and an original con-217

textualised sequence-length token representation,218

which is used to derive predicate-argument span219

representations.220

Predicate Argument Spans (PAS): We use Al-221

lenNLP (Gardner et al., 2018) with its BERT-based222

semantic role labelling (SRL) tagger to obtain pred-223

icates and relevant arguments for all input sen-224

tences. We group the predicate and its arguments225

together to generate predicate-argument spans. The226

initial position in the sentence determines their po-227

sition in the span. An example of such spans is228

shown below:229

He slices tomatoes in the kitchen 230

From this sentence, the predicate is the verb slices, 231

and the three arguments are (he, tomatoes and in the 232

kitchen), involving the relations (ARG0, ARG1 and 233

ARGM-LOC), respectively. In this way, we form 234

three predicate-argument spans and split them into 235

individual words: (He, slices), (slices, tomatoes), 236

(slices, in, the, kitchen). One sentence is likely 237

to have multiple predicates, by adopting this strat- 238

egy, we are able to obtain all potential predicate- 239

argument spans in the given sentence. We further 240

utilise these extracted spans to form a span-based 241

sentence representation. 242

Aggregation: After obtaining all predicate- 243

argument spans, we derive corresponding span rep- 244

resentations by looking at BERT’s token representa- 245

tions. In BERT/RoBERTa, tokenization yields sub- 246

tokens, whereas in the created spans, we have an en- 247

tire word token. To properly align them, we use the 248

same tokenizer to break the original word into sub- 249

tokens and represent it as a sequence of sub-tokens 250

in the span if a sub-token exists. Given a predicate- 251

argument span sequence s = {s1, s2, ..., sN} in the 252

sentence, where N denotes the number of spans 253

and every span si consists of tokens {x1, ..., xl} 254

that make up the span. For each span si, we ob- 255

tain its dense vector representation hi by taking 256

mean-pooling over all tokens in it: 257

hi =MeanPooling(x1, .., xl) (1) 258

Therefore, the whole representation for span se- 259

quence s is represented as h = {h1, h2, ..., hN}, 260

where hi ∈ RD. 261

Then, we aggregate information from all spans 262

using a simple self-attentive mechanism. Following 263

Sun et al. (2020), this is achieved by first assigning 264

weights αi to each span hi and combining these 265

representations using weighted sum: 266

oi =W · hi + b

αi =
exp(oi)

N∑
j=1

exp(oj)

(2) 267

where W ∈ R1×D and b are learnable parameters. 268

The span-based sentence representation ĥ from the 269

aggregation component is the weighted average of 270

all predicate-argument span representations: 271

ĥ =
N∑
i=1

αi · hi (3) 272
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Figure 1: The proposed model in siamese structure. All parameters are shared between two encoders.

The weights are learned during training. This273

gives the model flexibility to decide the best combi-274

nation method on its own. The combination of self-275

attentive mechanism and predicate-argument spans276

allow us to construct structure-aware sentence em-277

beddings without introducing a large number of278

parameters.279

Connect BERT and Aggregation: The final280

sentence representation is the concatenation of both281

BERT mean-pooling based sentence representation282

and the span-based sentence representation. Sen-283

tence embeddings of the given sentence-pair are284

then combined using vector operations before pass-285

ing to the final classifier for training as shown in286

Figure 1. To combine the embeddings, we use the287

concatenation of the element-wise multiplication288

u ∗ v and the absolute element-wise difference289

|u− v|. This is different to the typical aggregation290

strategy used with SBERT/SRoBERTa (Reimers291

and Gurevych, 2019) which introduces asymmetry292

into the task by using (u, v, |u-v|). In initial ex-293

periments, we tested the prediction consistency of294

SBERT on paraphrase tasks and found that, across295

different datasets, between 2.78% and 9.16% of296

test predictions change when the sentence order is297

reversed. Furthermore, here, we find that SBERT298

performs worse on paraphrase tasks with (u, v, |u-299

v|) compared to (|u-v|, u ∗ v). Results are given in300

Table 5 and discussed in Section 5.1.301

Finally, we note that in this siamese structure, all302

parameters are shared and are updated accordingly.303

Cross-entropy loss is used for optimisation.304

4 Experiments 305

We compare our model with SBERT, SRoBERTa1 306

and the SBERT-RGCN (Peng et al., 2021) which 307

utilises RGCN to incorporate structures into 308

SBERT with an introduction of 32 million extra 309

parameters2. The original sentence-pair aggrega- 310

tion strategy of these models is (u, v, |u-v|). We 311

modify this to (|u-v|, u ∗ v) as discussed in Sec- 312

tion 3, but we retain the original notation. We 313

adopt their structures and directly fine-tune the 314

whole model on downstream tasks from the origi- 315

nal BERT/RoBERTa checkpoints. We considered 316

two strategies to apply SBERT on classification 317

inference. One involved finding the optimal sim- 318

ilarity threshold on development set and then ap- 319

plying it on the test set, while the other involved 320

directly using the trained classifier. In this paper, 321

we adopted to the latter approach since we find it 322

gave improved and more robust results. 323

4.1 Datasets 324

We evaluate our model on six binary paraphrase 325

identification benchmarks. The statistics of these 326

datasets are listed in Table 1. Below we give some 327

basic descriptions: 328

• Microsoft Research Paraphrase Corpus 329

(MSRP): A corpus of sentence pairs obtained 330

1https://github.com/UKPLab/sentence-transformers. Due
to limited computational resources, all pre-trained models are
of base size.

2SBERT-RGCN tried both dependency and semantic parse
trees. In the following experiments, we use semantic parse
trees that that capture predicate-argument structures.
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by clustering news articles with an SVM331

classifier and human annotations (Dolan and332

Brockett, 2005). It has 4,076 train data and333

1,725 test data. In this paper, we split 10% of334

training data as the validation set according to335

GLUE (Wang et al., 2019) standardised splits.336

• TwitterURL: To better study the realistic lan-337

guage usage, Lan et al. (2017) proposed the338

TwitterURL corpus where sentence pairs in339

the dataset are collected from tweets that share340

the same URL of news articles.341

• PIT2015: The corpus is derived from Twit-342

ter’s trending topic data, containing 18,763343

sentence pairs on more than 400 distinct top-344

ics (Xu et al., 2015). Given we are dealing345

with binary classification, we discard ques-346

tionable sentence pairs and obtain 16,510 sen-347

tence pairs in total. This dataset contains348

paraphrase pairs that are lexically diverse and349

non-paraphrase pairs that are lexically simi-350

lar, but semantically dissimilar. To capture351

these properties, models are assumed to be352

structure-aware.353

• Quora Question Pairs (QQP): The Quora354

Question Pairs dataset is a collection of po-355

tential duplicate question pairs from the QA356

website Quora.com (Iyer et al., 2017). In this357

paper, we adopt the same split strategy as in358

Wang et al. (2017).359

• PAWS_QQP: QQP is criticised for lacking360

negative examples with high lexical overlap-361

ping. Models trained on QQP tend to mark362

any sentence pairs with a high word overlap363

as paraphrases despite clear clashes in mean-364

ing. In light of these factors, Zhang et al.365

(2019b) proposed a new paraphrase identifi-366

cation dataset which has extremely high lexi-367

cal overlap by applying word scrambling and368

back translation to sentences in QQP.369

• PAWS_Wiki: Similar to PAWS_QQP, Zhang370

et al. (2019b) applied the same technique on371

sentences obtained from Wikipedia articles to372

construct sentence pairs. Both PAWS datasets373

aim to measure sensitivity of models on word374

order and sentence structure.375

Due to the lack of development set for376

PAWS_QQP, we use PAWS_Wiki’s development377

Datasets Train Dev Test

MSRP 3,668 408 1,725

TwitterURL 37,976 4,224 9,334

PIT2015 11,530 4,142 838

QQP 384,348 10,000 10,000

PAWS_QQP 11,986 8,000 677

PAWS_Wiki 49,401 8,000 8,000

Table 1: Statistics of all six benchmarks used in this
work.

set for early stopping since they are constructed in 378

the same way. 379

4.2 Training Details 380

Following the SBERT training protocol, we train 381

all models with a batch-size of 16. We tune the 382

learning rate in the range of (2e-5, 3e-5, 5e-5) with 383

Adam optimizer and a linear learning rate warm- 384

up over 10% of the training data. All models are 385

trained for four epochs and use the development 386

set for early stopping with a patience of 5. The 387

evaluation step depends on actual tasks but roughly 388

we evaluate them on development set twice each 389

epoch. The maximum sequence length is set to be 390

128. All experiments are conducted on NVIDIA 391

Titan V GPUs. 392

4.3 Evaluation 393

The main experiment results are summarised in Ta- 394

ble 2. We report the averaged F1 score of positive 395

class with standard error. In the table, we see that 396

the proposed model consistently outperforms its 397

SBERT and SRoBERTa versions on 5 paraphrase 398

identification tasks and show competitive, but not 399

statistically significantly different, results on QQP. 400

As also revealed by Zhang et al. (2019b), negative 401

examples in QQP often have low lexical overlap, 402

and models trained on it tend to mark any sentence 403

pairs with high word overlap as paraphrases. We 404

reason that the QQP task is relatively easy and 405

does not require much structural information to 406

achieve high scores. For tasks like PAWS_QQP and 407

PIT2015 where structures are more important, the 408

performance gap is more apparent. Furthermore, 409

despite bringing in more than 30 million param- 410

eters and explicitly encoding sentence structures 411

with a complex model, SBERT-RGCN does not 412

significantly outperform SBERT on most of these 413

tasks (excluding PIT2015) and underperforms our 414
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QQP TwitterURL MSRP PAWS_Wiki PAWS_QQP PIT2015

SBERT 90.78±0.09 70.85±0.28 81.67±0.46 81.57±0.53 66.01±0.45 52.03±1.44

SBERT-RGCN 90.41±0.09 70.40±0.22 81.70±0.17 81.14±0.81 66.22±0.75 59.11±0.93

PAS+SBERT 90.74±0.06 72.12±0.06 83.42±0.23 82.60±0.18 68.85±0.73 59.19±1.85

SRoBERTa 90.79±0.09 70.69±0.23 81.69±0.53 81.42±0.93 67.35±0.97 52.67±2.75

PAS+SRoBERTa 90.76±0.03 72.04±0.23 83.22±0.46 82.87±0.35 69.68±0.72 59.50±2.74

Table 2: Results on six paraphrase identification tasks, we calculate the F1 score of the positive class given most
of them are imbalanced datasets. We run 5 times with random seeds and report the mean with standard error. Cells
marked bold have the best performance in each column.

Params
SBERT-base 109M
PAS only +768
PAS+SBERT +3840
SBERT-RGCN + 32M

Table 3: The parameter comparison between different
models.

proposed model.415

In summary, the proposed model shows im-416

proved performances on five out of six paraphrase417

tasks, demonstrating the advantages of bringing in418

the predicate-argument structure. Moreover, when419

we combine PAS with SRoBERTa, we get similar420

performance gains, proving the generalisation abil-421

ity of our component. Similarly in Reimers and422

Gurevych (2019), we only observe minor differ-423

ences by replacing SBERT with SRoBERTa.424

The number of parameters for different ap-425

proaches are shown in Table 3. We note that com-426

pared to SBERT, our proposed model introduces427

3,840 additional parameters, and if we only con-428

sider the span-based component, only 768 addi-429

tional parameters are introduced. In comparison,430

SBERT-RGCN brings in more than 32 million pa-431

rameters.432

5 Analysis433

In order to better understand how the performance434

gain is achieved, we have carried out several ex-435

periments to investigate different aspects of the436

proposed model. The following experiments are437

conducted only with SBERT, since we would ex-438

pect similar results with SRoBERTa.439

5.1 Ablation Study440

Our proposed model is made of different compo-441

nents and so it is important to dissect the impact442

of each component so as to explain the improved 443

performance. Given that the final sentence repre- 444

sentation is the concatenation of both mean-pooling 445

based BERT representation and the weighted sum 446

of span representations, we first assess their perfor- 447

mances individually on six datasets. Furthermore, 448

it is necessary to assess the impact of adopting the 449

weighted sum strategy when we derive span-based 450

sentence representations. We experimented with 451

simple averaging over all spans and compared it 452

with the weighted sum where the model learns to 453

combine different spans. 454

The ablation experiment results are shown in Ta- 455

ble 4. The SBERT-only component appears to per- 456

form the poorest, and the complete model achieves 457

the highest performance on five out of six tasks. By 458

only using the span-based sentence representation, 459

we are able to achieve significant improvements 460

over SBERT on most of these tasks. The improve- 461

ments are more substantial when concatenating 462

with SBERT sentence representations. We observe 463

considerable performance decreases on most tasks 464

when switching from weighted sum to simple aver- 465

aging, which further verifies the benefits of adopt- 466

ing learnable weights. 467

The original asymmetric sentence aggregation 468

strategy (u, v, |u-v|) of SBERT assumes an ordering 469

of the sentences by concatenating two individual 470

sentence embeddings. u ∗ v has been widely used 471

elsewhere (Conneau et al., 2017; Cer et al., 2018) 472

and we found that concatenating this with |u-v| gave 473

the best performance on all tasks. The results are 474

summarised in Table 5. Therefore, we use (|u-v|, 475

u ∗ v) as our concatenation method for all of our 476

other experiments. 477

5.2 Span Strategy Analysis 478

The impact of incorporating predicate-argument 479

spans into SBERT in terms of the performance on 480
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QQP TwitterURL MSRP PAWS_Wiki PAWS_QQP PIT2015

PAS+SBERT 90.74±0.06 72.12±0.06 83.42±0.23 82.60±0.18 68.85±0.73 59.19±1.85

- SBERT-only 90.78±0.09 70.85±0.28 81.67±0.46 81.57±0.53 66.01±0.45 52.03±1.44

- PAS only 90.70±0.08 71.64±0.14 82.91±0.12 82.26±0.34 67.38±0.22 54.95±1.45
- PAS only
(simple average)

90.11±0.13 71.09±0.30 82.13±0.14 81.85±0.26 66.55±0.41 51.82±1.31

Table 4: Experimental results for ablation study. The second row gives the result for the complete model and
following rows for different components. We calculate F1 score of the positive class and report the mean with
standard error across 5 runs with random seeds. Cells marked bold perform the best among different components.

QQP TwitterURL MSRP PAWS_Wiki PAWS_QQP PIT2015
(u, v, |u-v|) 90.52±0.08 70.83±0.27 80.68±0.36 80.90±0.78 65.91±0.47 45.71±1.25

(|u-v|) 65.46±1.80 58.17±2.36 80.48±0.21 61.92±0.97 64.91±4.39 34.25±0.54
(|u-v|, u*v) 90.78±0.09 70.85±0.28 81.67±0.46 81.57±0.53 66.01±0.45 52.03±1.44

Table 5: Results on SBERT with different concatenation strategies. F1 score of the positive class with standard
error across 5 random runs is reported. Cells marked bold give the best performance.

various paraphrase identification tasks has been481

investigated in the above experiments. We now482

address the question of whether it is the use of483

specifically predicate-argument based spans that484

is critical, or whether this is simply a result of485

the fact that we are benefiting from the use of486

representations based on spans rather than all to-487

kens. To verify this, we further conduct experi-488

ments with different span strategies. We pick three489

paraphrase identification datasets for this purpose490

(MSRP, PAWS_QQP and PIT2015) since perfor-491

mance gaps between PAS+SBERT and SBERT are492

more apparent in previous experiments.493

Task Span Type Span only Self-Explain* SBERT

MSRP
PAS 82.91±0.12

81.23±0.27 81.67±0.46Continuous
Random Span

81.40±0.43

Random Span 81.86±0.47

PAWS_QQP
PAS 67.38±0.22

66.88±0.46 66.01±0.45Continuous
Random Span

65.45±0.44

Random Span 65.75±0.74

PIT2015
PAS 54.95±1.45

47.60±1.01 52.03±1.44Continuous
Random Span

51.62±1.92

Random Span 50.85±2.11

Table 6: Evaluation for different span strategies using
our span-only component on three datasets. We calcu-
late the F1 score of the positive class and report the
mean with standard error across 5 runs with random
seeds. Cells marked bold have the best performance in
the row. * denotes the Self-Explain based bi-encoder.

Here we experiment with two other span strate-494

gies. The first, inspired by the Self-Explain model495

(Sun et al., 2020), is the continuous random span,496

where instead of following the predicate-argument 497

structure, we randomly sample continuous word 498

sequences from the sentence to build a span. The 499

length of the sampled spans is arbitrary. To make 500

a fair comparison, the number of sampled spans is 501

the same as that of the predicate-argument spans in 502

the sentence. The other one is random span, where 503

we do not necessarily sample continuous words, 504

but allow word leaps from one to another. In this 505

strategy, we have the opportunity to get both con- 506

tinuous and discontinuous word sequences to form 507

spans, which better matches the scenario of PAS. 508

The only difference between these two strategies 509

and PAS is the words in the span. 510

We also experiment with a bi-encoder approach 511

more directly based on the Self-Explain cross- 512

encoder model (Sun et al., 2020). This model ex- 513

tracts all possible continuous text spans and obtains 514

span representations by taking the first and last to- 515

ken in the span, passing them through a complex 516

mapping function. Unlike our PAS model, this 517

model brings in 2.36 million more parameters com- 518

pared to SBERT. 519

Table 6 shows the results. In order to focus on 520

the impact of different span strategies, we only 521

use the PAS component and do not concatenate it 522

with SBERT sentence representations in this ex- 523

periment. As shown in the table, the PAS-based 524

model outperforms the Self-Explain inspired bi- 525

encoder model and achieves the best performance 526

among all other span-based models. The continu- 527

ous random span and the random span model have 528
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Figure 2: Performance of SBERT and our proposed model on six benchmarks with different training data size.
X-axis: Percent of supervised training data. Y-axis: F1 score of the positive class. The coloured bands indicate the
standard error across 5 random runs.

comparable performances with SBERT. This is ex-529

pected because they do not introduce linguistically-530

meaningful structures and the impact of contextu-531

alisation makes them similar to SBERT despite the532

absence of some tokens. Despite introducing 2.36533

million more parameters, the Self-Explain inspired534

bi-encoder model does not show consistent im-535

provements over SBERT on these datasets, which536

further suggests the importance of the predicate-537

argument structure in this paraphrase identification538

task.539

5.3 Training Size Analysis540

In order to examine the stability of our model541

and the impact of the predicate-argument structure542

when different sizes of training data are available,543

we conduct experiments with different training data544

scales. We randomly sample from 10% to 100%545

data (10%, 30%, 60%, 100%) from the training546

set as training data. We show the results in Fig-547

ure 2. In spite of limited increased parameters,548

the proposed model appears to yield consistent im-549

provements across different training scales. We550

also note that, whilst our proposed model performs551

comparably to SBERT on QQP when trained with552

the complete data-set, we can see that when only a553

small proportion of training data (e.g. 10%, 30%)554

is available, our model demonstrates improvements555

over SBERT. Thus the introduction of predicate-556

argument structures may be more beneficial with557

limited annotated training data.558

6 Conclusion 559

In this work, we propose a method which ef- 560

fectively introduces sentence structure to a sen- 561

tence embedding via the aggregation of predicate- 562

argument spans (PAS). Experiments with SBERT 563

and SRoBERTa show that such method brings im- 564

provements on six paraphrase identification tasks. 565

Compared to models based on RGCNs, our method 566

obtains more consistent benefits with minimal in- 567

creased cost in terms of numbers of parameters. 568

Upon closer investigation, we show that the PAS 569

component and its learnable weights play a sub- 570

stantial impact in the performance gain. This PAS 571

component, as demonstrated with SRoBERTa, can 572

be easily extended to other models that require the 573

generation of sentence embeddings. Our future 574

work will include enhancing the structural differ- 575

ence between sentences by taking use of the argu- 576

ment tag information. 577
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