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ABSTRACT

Quantum Error Correction (QEC) decoding faces a fundamental accuracy-
efficiency tradeoff. Classical methods like Minimum Weight Perfect Matching
(MWPM) exhibit variable performance across noise models and suffer from poly-
nomial complexity, while tensor network decoders achieve high accuracy but
at prohibitively high computational cost. Recent neural decoders reduce com-
plexity but lack the accuracy needed to compete with computationally expensive
classical methods. We introduce SAQ-Decoder, a unified framework combining
transformer-based learning with constraint aware post-processing that achieves
both near Maximum Likelihood (ML) accuracy and linear computational scala-
bility with respect to the syndrome size. Our approach combines a dual-stream
transformer architecture that processes syndromes and logical information with
asymmetric attention patterns, and a novel differentiable logical loss that directly
optimizes Logical Error Rates (LER) through smooth approximations over finite
fields. SAQ-Decoder achieves high accuracy decoding, with error thresholds of
10.99% (independent noise) and 18.6% (depolarizing noise) on toric codes that
closely approach the theoretical ML bounds of 11.0% and 18.9% while outper-
forming existing neural and classical baselines in accuracy, complexity, and pa-
rameter efficiency. Our findings establish that learned decoders can simultane-
ously achieve competitive decoding accuracy and computational efficiency, ad-
dressing key requirements for practical fault-tolerant quantum computing systems.

1 INTRODUCTION

Since Feynman’s 1982 vision of quantum computation Feynman (2018), significant progress has
demonstrated that quantum computers can leverage quantum mechanical principles to achieve fun-
damental computational advantages over classical methods (Steane, 1998; Ladd et al., 2010; Preskill,
2012; deMarti iOlius et al., 2024). Landmark quantum algorithms have demonstrated computational
advantages, including exponential speedup for factoring (Shor, 1994) and quadratic search improve-
ment (Grover, 1996). Recent experimental demonstrations of quantum supremacy have further vali-
dated quantum computing’s potential across diverse domains (Arute et al., 2019; Zhong et al., 2020;
Wu et al., 2021; Huang et al., 2022; Madsen et al., 2022; Bao et al., 2023; Bluvstein et al., 2024;
Aghaee Rad et al., 2025). These advances promise to revolutionize cryptography (Ekert, 1991; Ben-
nett & Brassard, 2014), optimization (Kadowaki & Nishimori, 1998; Bharti et al., 2022), materials
science (Lloyd, 1996), and machine learning (Huang et al., 2022; Cerezo et al., 2022).

Yet, for practical quantum computation to become a reality, errors on the physical level must be
corrected with high confidence. Despite recent advances, quantum noise remains a major obstacle
to practical quantum computing (goo, 2023). These errors arise through numerous mechanisms:
quantum gates cause unwanted errors due to imprecise implementation (Fowler et al., 2012a), while
additional errors stem from imperfections in the equipment (Preskill, 2018), interaction with the sur-
rounding environment (Burnett et al., 2019; Etxezarreta Martinez et al., 2021), or measuring quan-
tum systems (Fowler et al., 2012a). While fault-tolerant quantum computation can theoretically be
achieved through redundancy by combining multiple physical qubits into one logical qubit (Shor,
1995; Nielsen & Chuang, 2010), this approach creates a critical computational bottleneck: QEC
requires real-time decoding algorithms that must process syndrome measurements and determine
corrections within microsecond timescales while maintaining near-optimal accuracy (Terhal, 2015;
Higgott, 2022). Current decoding methods face a fundamental trade-off between computational effi-
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ciency and error-correction performance, methods like MWPM (Fowler, 2013), Belief Propagation
with Ordered Statistics Decoding (BP-OSD) (Roffe et al., 2020) and tensor network decoder (Bravyi
et al., 2014) scaling prohibitively with code distance while faster heuristics sacrifice the accuracy
essential for fault-tolerant operation (deMarti iOlius et al., 2024). The field of QEC has advanced
significantly, with several families of QEC codes proposed, including topological codes (Kitaev,
2003; Bombin & Martin-Delgado, 2006; Fowler et al., 2012a; Chamberland et al., 2020), Quantum
Low-Density Parity Check (QLDPC) codes (MacKay et al., 2004; Panteleev & Kalachev, 2021;
Breuckmann & Eberhardt, 2021), and quantum turbo codes (Poulin et al., 2009). Recently, there
has been significant growth in machine learning techniques applied to quantum decoding (Wang &
Tang, 2024; Klusch et al., 2024). However, existing neural decoders typically fail to achieve near-
optimal error thresholds, creating a gap between the theoretical potential of learned approaches and
the performance requirements of fault-tolerant quantum computing. We address this challenge by
introducing a unified framework that combines transformer-based neural decoding with specialized
architectural innovations. Our approach leverages neural networks to learn syndrome-to-error map-
pings while employing dual-stream processing and logical-centric loss design to directly optimize
logical error suppression. To achieve this, our framework introduces several key innovations:

• A novel dual-stream transformer architecture (Vaswani et al., 2017) that simultaneously
processes syndrome and logical information streams with specialized attention mecha-
nisms, featuring global tokens (Zaheer et al., 2020) and structured masking patterns that
capture the geometric constraints and local correlations inherent in stabilizer codes.

• A novel logical-centric multi objective loss, including differentiable minimum entropy loss
that directly optimizes LER through smooth approximations of discrete GF(2) constraints,
enabling end-to-end training that circumvents the non-differentiability challenges in QEC.

• Constraint-Projected Nullspace Descent (CPND), a novel deterministic post processing al-
gorithm that leverages transformer probabilities as reliability weights to construct recovery
operators with exact syndrome consistency.

• Near-optimal error thresholds of 10.99% and 18.6% for toric codes under independent and
depolarizing noise, approaching ML bounds 11.0% and 18.9%, with linear scalability in
syndrome size and general applicability across stabilizer code families, contrasting favor-
ably with polynomial-scaling classical methods.

Our results significantly outperform existing neural decoders like QEC Transformer (QECCT)
(Choukroun & Wolf, 2024) and classical methods like MWPM, while matching the performance
of computationally expensive approaches across both toric and rotated surface codes.

The remainder of this paper is organized as follows. Section 2 surveys related work in QEC. Sec-
tion 3 provides essential background on the quantum decoding problem. Our unified framework
is presented in Section 4, where we detail the transformer architecture and dual-stream design and
our loss formulation. Section 5 presents comprehensive experimental evaluation. Finally, Section 6
summarizes our contributions and discusses implications for fault-tolerant quantum computing.

2 RELATED WORKS

A broad suite of QEC codes has been devised to protect quantum information from decoherence,
noise, and gate imperfections. Extracting the underlying logical state from these codes requires
dedicated decoders that infer the likely errors from the measured syndromes and prescribe correc-
tions (Dennis et al., 2002). However, ML decoding for quantum codes is NP-hard (Kuo & Lu,
2020), prompting the adoption of approximate methods that trade optimality for computational
tractability (deMarti iOlius et al., 2024). Classical quantum decoding approaches include MWPM,
which achieves near-optimal thresholds under independent noise but suffers from poor scaling even
with practical approximations (Edmonds, 1965; Fowler et al., 2012b; Meinerz et al., 2022); belief
propagation, effective for sparse parity-check codes but impeded by quantum degeneracy (Pearl,
2022; Panteleev & Kalachev, 2021; Wang & Tang, 2024); union-find decoders that map syndromes
to graph problems but achieve lower thresholds than MWPM (Delfosse & Nickerson, 2021); and
tensor-network decoders that attain the highest accuracy at steep computational cost (Bravyi et al.,
2014; goo, 2023). Despite their foundational role, these conventional approaches exhibit inherent
limitations that impede practical deployment in large-scale, fault-tolerant quantum systems (Krenn
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et al., 2023; deMarti iOlius et al., 2024). Machine learning has emerged as a compelling alternative,
with various architectures that demonstrate accuracy and speed gains over classical baselines while
allowing adaptation to device-specific, correlated noise processes that challenge traditional decoders
(Wang & Tang, 2024; deMarti iOlius et al., 2024; Varsamopoulos et al., 2017; 2019; Harper et al.,
2020; Magesan & Gambetta, 2020; Liu & Poulin, 2019). Specifically, these architectures are em-
ployed in reinforcement learning, (Colomer et al., 2020; Sweke et al., 2020; Fitzek et al., 2020;
Çelikkanat et al., 2022; Veeresh et al., 2024), and supervised learning (Bishop & Nasrabadi, 2006;
Goodfellow et al., 2016), where models are trained on labeled datasets to map measured syndromes
to recovery operations (deMarti iOlius et al., 2024; Wang & Tang, 2024). Early approaches included
feedforward networks (Torlai & Melko, 2017), neural decoders learning error distributions (Kras-
tanov & Jiang, 2017), and quantum autoencoders (Locher et al., 2023), demonstrating generalization
while reducing complexity and adapting to noise. CNN-based decoders achieve strong performance
on topological codes via spatial correlations (Maskara et al., 2019; Meinerz et al., 2022). More re-
cently, transformer-based architectures have been explored, most notably the QECCT (Choukroun
& Wolf, 2024), outperforming MWPM across topological codes. Another innovative AI-based de-
coder is AlphaQubit (Bausch et al., 2024), which represents a major milestone in QEC decoding
but employs a recurrent structure and processes analog measurement data, unlike our feed-forward
architecture which utilizes discrete binary syndrome inputs.

3 BACKGROUND

A binary linear code C ⊆ GF (2)n is defined as the nullspace of a parity-check matrix H ∈
GF (2)(n−k)×n, where n ∈ N physical bits encode k ∈ N logical (message) bits. For an error
vector e ∈ GF (2)n, the syndrome s = HeT serves as a sufficient statistic for ML decoding. The
transition to QEC introduces fundamental complications absent in classical settings. Unlike clas-
sical bits that exist in definite states {0, 1}, quantum information is encoded in qubits—two-level
quantum systems that exist in coherent superpositions:

|ψ⟩ = α|0⟩+ β|1⟩, where α, β ∈ C, |α|2 + |β|2 = 1 (1)

This quantum nature creates fundamental challenges: quantum errors form a continuous group, and
the no-cloning theorem eliminates classical redundancy. Fortunately, the Pauli channel provides a
tractable error model. Any single-qubit error can be decomposed in the Pauli basis {I,X, Y, Z}:
I|ψ⟩ = α|0⟩+ β|1⟩; X|ψ⟩ = α|1⟩+ β|0⟩; Y |ψ⟩ = −iα|1⟩+ iβ|0⟩; Z|ψ⟩ = α|0⟩ − β|1⟩ (2)

A general single-qubit Pauli channel applies error P ∈ {I,X, Y, Z} with probability ϕP , where∑
ϕ ϕP = 1. For n qubits, errors are tensor productsE = P1⊗· · ·⊗Pn, leading to 4n possible error

patterns. The exponential growth in error patterns (4n vs. 2n classically) creates a rich combinatorial
optimization problem well which suited to neural approaches.

Stabilizer Formalism. The stabilizer framework, (Gottesman, 1997), addresses QEC challenges
by discretizing the error space while preserving quantum coherence. This formalism exploits the
algebraic structure of the Pauli group to construct quantum codes syndrome extraction. The Pauli
group foundation. The n-qubit Pauli group captures all local quantum errors:

Pn =
{
ω P1 ⊗ · · · ⊗ Pn : ω ∈ {±1,±i}, Pj ∈ {I,X, Y, Z} for j = 1, . . . , n

}
(3)

The global phases ω leave syndrome measurements invariant and can be quotiented out.

A stabilizer group S forms an abelian subgroup of Pn with −I /∈ S. The abelian structure guar-
antees that all stabilizer elements commute, enabling simultaneous measurability. An [[n, k, Lcode]]
stabilizer code with distance Lcode uses m = n− k independent generators {Si}mi=1 whose joint +1
eigenspace defines the codespace:

CS = {|ψ⟩ ∈ Hn
2 : Si|ψ⟩ = |ψ⟩, for i = 1, . . . ,m} (4)

For an error E ∈ Pn, the syndrome s(Si, E) indicates whether stabilizer Si commutes (0) or an-
ticommutes (1) with E. The full syndrome vector s(E) = (s(S1, E), . . . , s(Sm, E)) ∈ {0, 1}m
provides a classical signature of the quantum error. Crucially, measuring these stabilizers is non de-
molition, i.e., extracting error information without disturbing the encoded quantum state. Quantum
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degeneracy occurs when multiple distinct errors produce identical syndromes because they differ by
logical operators that commute with all stabilizers yet act nontrivially on the codespace.

Quantum degeneracy creates a prediction problem: given syndrome s, determine which logical
coset contains the true error. This presents formidable computational challenges with exponential
syndrome spaces (2O(L2

code) for surface codes), making neural approaches particularly attractive for
learning optimal syndrome-to-coset mappings. Surface codes possess inherent geometric structure
ideal for neural learning, with local syndrome correlations and hierarchical error patterns that align
perfectly with attention mechanisms capable of capturing both local and global correlations.

4 SAQ DECODER

We address QEC problem: given syndrome measurements, predict recovery operations that restore
correct logical states. Due to degeneracy, multiple errors yield identical syndromes, requiring de-
coders that find logically equivalent recovery operations. To tackle this challenge, we propose a
novel architecture consists of three sequential stages: (i) dual-stream representation construction,
(ii) Syndrome-Logical Transformer Decoder (SLTD), (iii) the post-processing CPND stage and (iv)
novel differentiable logical centric loss.

The dual-stream representation construction stage takes syndrome measurements as input and gener-
ates initial logical class estimates. These estimates, along with the original syndrome measurements,
are then transformed into two token streams that serve as input to the SLTD. Using shared trans-
former weights, the SLTD processes these streams with distinct attention patterns tailored for QEC:
syndrome tokens capture local correlations between neighboring stabilizer measurements, while log-
ical tokens integrate information globally to determine error classes. The dual-stream architecture
explicitly models the asymmetric information flow in quantum decoding, from local syndrome vio-
lations to global logical error determination. This dual-stream approach, shares high-level similarity
with architectures used for classical codes, such as CrossMPT (Park et al., 2024). The SLTD outputs
logical class predictions and qubit flip predictions, which are trained using differentiable logical cen-
tric losses that approximate discrete GF(2), before being fed to the CPND stage. Subsequently, the
CPND enforces syndrome consistency while preserving the transformer’s learned representations,
ensuring valid QEC.

4.1 STAGE 1: DUAL-STREAM REPRESENTATION CONSTRUCTION.

Given a syndrome vector s ∈ {−1,+1}m, we first obtain an initial logical class estimate ℓ̃ ∈ R4k

through a shallow MLP bϕ : {−1,+1}m → R4k , expressed as

ℓ̃ = bϕ(s) (5)

where 4k represents the total number of logical equivalence classes for k logical qubits. The shallow
MLP bϕ(s) provides informed priors about the most likely logical class, enabling the SLTD to refine
these estimates rather than exploring the entire logical space from scratch. Such a mapping, where a
syndrome input is processed by a shallow feed-forward network, appeared in earlier works, notably
the FFN layer in (Meinerz et al., 2022) and the initial noise estimator in QECCT (Choukroun &
Wolf, 2024). Crucially, in our work, bϕ performs a global estimation of the logical class (ℓ̃), serving
as a global prior input to the Logical Stream (TL). This contrasts with related approaches that
utilize these initial layers primarily for generating local physical error probabilities or extracting an
initial prediction of the recovery operator. The design choice aligns with the stabilizer formalism,
where error correction decisions are made purely based on syndrome information, independent of
the protected quantum information. With both syndrome measurements s and initial logical class
estimates ℓ̃ available, we construct two complementary token streams that capture different aspects
of the quantum decoding problem:

Syndrome Stream Construction. Each syndrome measurement si ∈ {−1, 1} for i = 1 . . .m is
mapped to a learned embedding t

[0]
i,S = siw

S
i ∈ Rd using learnable positional embeddings wS

i ∈ Rd

(where d is the embedding dimension), which collectively form the learnable syndrome embedding
matrix WS = [wS

1 ; . . . ;w
S
m] ∈ Rm×d. A learnable global token g ∈ Rd is then prepended

to enable cross-syndrome information exchange, forming the complete syndrome stream: T
[0]
S =

4
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Figure 1: Architecture of SAQ-Decoder.

[g; t
[0]
1,S ; . . . ; t

[0]
m,S ] ∈ R(m+1)×d. The global token enables efficient information aggregation across

distant syndrome regions—essential for handling correlated noise and large error clusters.

Logical Stream Construction. Predicted logical class logits are embedded as t
[0]
j,L = ℓ̃jw

L
j ∈

Rd for j = 1 . . . 4k using learnable class-specific representations wL
j ∈ Rd. These embeddings

form the matrix WL = [wL
1 ; . . . ;w

L
4k ] ∈ R4k×d and yield the logical token sequence T

[0]
L =

[t
[0]
1,L; . . . ; t

[0]

4k,L
] ∈ R4k×d. The dual-stream design reflects that syndrome measurements encode

local constraint violations while logical estimates capture global degeneracy patterns.

4.2 STAGE 2: SYNDROME-LOGICAL TRANSFORMER DECODER (SLTD)

Having constructed dual token streams, T
[0]
S and T

[0]
L , the SLTD refines these representations

through N transformer layers with asymmetric attention. We detail each computational step for
an arbitrary layer l. Both token streams first undergo layer normalization (Ba et al., 2016) before
attention computation. The normalized tokens are processed using an asymmetric attention mecha-
nism that captures the fundamental information flow in QEC: syndrome measurements reflect local
physical constraints, while logical error determination requires global integration. This design re-
stricts syndrome attention to topological neighborhoods while allowing logical tokens global access,
enabling efficient local-global information processing. Syndrome self-attention processes syndrome
tokens through:

Q
[l−1]
S = T̃

[l−1]
S W

[l]
Q ; K

[l−1]
S = T̃

[l−1]
S W

[l]
K ; V

[l−1]
S = T̃

[l−1]
S W

[l]
V (6)

A
[l]
S = Softmax

(
d−1/2

(
Q

[l−1]
S K

[l−1]
S

T
+MS

))
V

[l−1]
S (7)

We introduce a novel syndrome attention maskMS that enforces topological constraints:

MS [i, j] =

{
0 if (HHT + Im)i,j > 0 or i = 0 or j = 0

−∞ otherwise
(8)

where H ∈ {0, 1}m×n is the parity-check matrix and Im is the identity matrix. The mask permits
attention between: (i) each syndrome and itself (Im), (ii) syndrome pairs that share physical qubits
(HHT > 0), and (iii) all syndromes with the global aggregation token (corresponding to i, j =
0). For the logical stream, logical cross-attention enables logical tokens to attend to the updated
syndrome representations.

Q
[l−1]
L = T̃

[l−1]
L W

[l]
Q ; K

[l]
S = T

[l]
S W

[l]
K ; V

[l]
S = T

[l]
S W

[l]
V (9)

A
[l]
L = Softmax

(
d−1/2

(
Q

[l−1]
L K

[l]
S

T
))

V
[l]
S (10)
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Logical tokens employ unrestricted attention patterns, enabling global syndrome integration. Fol-
lowing attention computation, residual connections combine the attention outputs with input tokens.
Both streams pass through standard FFNs with 4× expansion and GELU activation (Hendrycks &
Gimpel, 2016). Finally, a second residual connection yields the layer outputs. This process trans-
forms initial token representations into refined syndrome and logical embeddings that capture both
local correlations and global quantum code structure.

Output Generation. Final token representations are normalized and projected to outputs, where
syndrome tokens (excluding the global token) produce physical error predictions ê = Wout,S ·
(T̃

[N ]
S,no-global ·wpool,S) and logical tokens generate class ℓ̂ = Wout,L · (T̃[N ]

L ·wpool,L).

4.3 STAGE 3: CONSTRAINT-PROJECTED NULLSPACE DESCENT (CPND)

Neural decoders face a constraint challenge: networks learn correlations but cannot guarantee recov-
ery operators satisfy syndrome consistency over GF(2). CPND bridges this gap through constraint
enforcement preserving learned representations. It operates via (i) exact projection ensuring syn-
drome consistency, and (ii) greedy descent using transformer probabilities to guide optimization
toward lower-weight solutions. A complete derivation and description of the method is provided in
Appendix B. The raw prediction ê (its hard decision, epred) is not guaranteed to satisfy the input
syndrome constraint. Furthermore, the direct logical class prediction ℓ̂ provides a slightly superior
estimate of the logical class than the class implied by the raw error prediction. The definitive out-
put, e(s), is therefore produced by the CPND stage, which enforces two critical constraints (i) the
syndrome constraint s = He(s) and (ii) the target logical class ℓ̂ = Le(s), where L ∈ {0, 1}2k×n

encodes the logical operators. This stage uses the transformer outputs ê as informative priors.

4.4 LOGICAL-CENTRIC LOSS DESIGN

Our training objective combines three loss terms addressing quantum degeneracy by minimizing
LER via informed priors, direct classification, and differentiable constraint approximation.

Informed logical priors loss trains the auxiliary MLP bϕ(s) to map syndromes to logical classes:

LLP = CE(ℓ̃, yclass) (11)

where yclass encodes the true logical syndrome as a class index, providing informed priors to guide
transformer processing.

Logical class prediction loss supervises the transformer’s refined logical output:

LLC = CE(ℓ̂, yclass) (12)

ensuring accurate logical classification after cross-attention processing.

Logical-minimum entropy loss. A key challenge in neural quantum decoding is enforcing the
discrete constraint that recovery operators must preserve logical information. Specifically, we
require the true error etrue and the recovery operator epred satisfy L(etrue ⊕ epred) = 0 over
GF(2), where epred is hard decision on the logits ê and the residual error r = etrue ⊕ epred

must be a stabilizer for successful error recovery. Our contribution is a differentiable approxi-
mation to this discrete constraint. We model the probability that each residual bit is flipped as
Pr(ri = 1|etruei ) = qi = σ((1 − 2etrue

i )êi) for i = 1, . . . , n and σ is the sigmoid function. For
each logical operator Li, the probability of violating the logical constraint is:

Pr (Li · r = 1) = Pr


⊕

j∈χi

Li,jrj = 1


 = 1

2

[
1−

∏

j∈χi

(1− 2qj)
]

(13)

where χi are the non zero elements set in Li. Our logical-minimum entropy loss minimizes the
expected number of logical violations (full derivation is provided in Appendix A):

LEntropy = − 1

2k

2k∑

i=1

log
(
1− Pr(Li · r = 1)

)
(14)

The combined objective is L = λLPLLP + λLCLLC + λEntropyLEntropy.

6
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Figure 2: Toric code - depolarizing noise model results
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Figure 3: Toric code - independent noise model results

5 EXPERIMENTS AND RESULTS

To empirically validate the adaptability of the SAQ-Decoder to distinct lattice geometries, we eval-
uated our method across diverse code families and noise types. We primarily focused on topological
codes due to their prominence in fault-tolerant quantum computing (deMarti iOlius et al., 2024),
specifically toric codes (Kitaev, 1997) and rotated surface codes (Bombı́n & Martin-Delgado, 2007).
To further demonstrate the framework’s broad applicability, we included an evaluation of the Repeti-
tion Code (Peres, 1985) and the Color Code (Bombin & Martin-Delgado, 2006) using stim (Gidney,
2021). We evaluated our method under three well-studied noise models: independent noise, de-
polarizing noise and circuit noise. Detailed descriptions of the code constructions are provided in
Appendix C, training details and hyperparameters are provided in Reproducibility Statement. We
evaluate our approach against three key baselines: the QECCT (Choukroun & Wolf, 2024), a state-
of-the-art neural decoder that outperforms classical methods, Belief Propagation with Order-2 Or-
dered Statistics Decoder (BPOSD-2) (Roffe et al., 2020), and MWPM algorithm (Fowler, 2013), the
gold standard classical decoder for surface codes. The BPOSD family of decoders is widely used,
although its worst-case complexity scales as O(n3)(deMarti iOlius et al., 2024), our implementa-
tion leverages the optimized implementation (Roffe, 2022) to provide a strong, practical classical
benchmark for quantum codes. Although MWPM has a worst-case complexity O(n3 log n) (de-
Marti iOlius et al., 2024), we use the optimized implementation from Higgott (2022) which achieves
near-quadratic complexity and serves as the primary classical benchmark for topological codes. We
also consider the performance of the raw Syndrome Stream prediction, termed SAQ-Decoder (No
CPND), as an architectural baseline. As our primary evaluation metric, we use the LER, which mea-
sures the probability that the QEC process fails to properly recover the encoded logical information.
We also evaluate the code threshold, i.e., the critical noise rate below which increasing code distance
improves performance.

5.1 EXPERIMENTAL RESULTS

The experiments span code lengths from Lcode = 3 to 11, comparable to those evaluated in QECCT.
These results demonstrate that SAQ-Decoder achieves superior decoding performance compared to
state-of-the-art baselines across diverse QEC scenarios. Figure 2 presents the performance of toric
codes under depolarizing noise, where SAQ-Decoder exhibits striking advantages. Our method
demonstrates consistent superiority across all code distances, with particularly dramatic improve-
ments at Lcode = 10 where SAQ-Decoder achieves 25 − 50% lower LER compared to MWPM
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Figure 4: Rotated surface code results
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Figure 5: Error threshold analysis across topological codes and noise models.

and and BPOSD-2 at physical error rates above 0.15. The scalability benefits are clearly evident
as the performance gap widens from Lcode = 6 to Lcode = 10. Similarly, under independent noise
in Figure 3, SAQ-Decoder maintains robust performance across all code sizes, with particularly
notable advantages at Lcode = 8 and Lcode = 10. Conversely, QECCT exhibits minimal perfor-
mance gains relative to MWPM and BPOSD-2. Figure 4 demonstrates our method’s performance
on rotated surface codes under independent and depolarizing noise models. Under depolarization
noise in Figures 4a–4b, SAQ-Decoder consistently maintains lower LER than QECCT, BPOSD-2
and MWPM across the entire noise range. Under independent noise conditions in Figures 4c–4d,
SAQ-Decoder demonstrates even more substantial improvements, while QECCT exhibits inferior
performance compared to MWPM and BPOSD-2. These results validate the effectiveness of our
learned decoder with post-processing approach across the spectrum of topological QEC codes and
noise models. We attribute SAQ-Decoder’s superior performance over QECCT to two key factors:
(i) while QECCT focuses on reducing Bit Error Rate (BER), which is not the primary objective in
QEC, SAQ-Decoder directly optimizes for logical error suppression; and (ii) our novel architecture
combines direct logical class prediction with qubit flip priors, integrating these observations in a
post-processing stage that guarantees syndrome consistency—unlike QECCT, which only predicts
qubit-level flips without ensuring this crucial constraint. Crucially, the SAQ-Decoder (No CPND)
variant consistently outperforms all classical and neural baselines across the entire noise spectrum,
demonstrating the power of the dual-stream architecture alone. The SAQ-Decoder achieves error
thresholds of 10.99% and 10.7% for toric and rotated surface codes respectively under independent
noise, and error thresholds of 18.6% and 18.3% under depolarizing noises. For the toric code under
depolarizing noise (Figure 5a), this threshold of 18.6% approaches the ML bound of 18.9% (Bombin
et al., 2012) while maintaining linear complexity in syndrome size. This significantly outperforms
BPOSD-2 and MWPM (16%) (Wang et al., 2009) and exceeds the previous QECCT result (17.8%).
For toric codes under independent noise (Figure 5b), we achieve a threshold of 10.99% while signif-
icantly outperforming BPOSD-2 (10.8%) and MWPM (10.3%) (Wang et al., 2003; Higgott, 2022),
essentially reaching the ML threshold estimated between 10.9% and 11.0% (ecz, 2024). For rotated
surface codes, SAQ-Decoder demonstrates remarkable consistency with the toric code performance.
Under depolarizing noise, we achieve a threshold of 18.3% (Figure 5c), significantly exceeding
both QECCT (17.2%), BPOSD-2 (14.1%, based on our experiments) and MWPM (14.0%, (deMarti
iOlius et al., 2024)), while under independent noise, the threshold reaches 10.7% (Figure 5d) where
QECCT achieved 10.3%, BPOSD-2 10.2% and MWPM 10.6%, based on our experiments. These
findings indicate that our approach generalizes effectively across different topological code geome-
tries without compromising performance. A detailed comparison of our depolarizing noise threshold
against other neural and classical decoders is provided in Appendix E.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Physical Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

LE
R

MWPM
BPOSD-2
QECCT
SAQ (No CPND)
SAQ-Decoder

(a) Lcode = 3

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Physical Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

LE
R

MWPM
BPOSD-2
QECCT
SAQ (No CPND)
SAQ-Decoder

(b) Lcode = 5

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Physical Error Rate

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

LE
R MWPM

BPOSD-2
QECCT
SAQ (No CPND)
SAQ-Decoder

(c) Lcode = 3

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Physical Error Rate

0.1

0.2

0.3

0.4

LE
R MWPM

BPOSD-2
QECCT
SAQ (No CPND)
SAQ-Decoder

(d) Lcode = 5

Figure 6: Color code and repetition code with circuit noise results. (a)–(b) are color code results and
(c)–(d) are repetition code results.

To rigorously validate the generalizability of our SAQ-Decoder framework beyond surface codes,
we conducted new experiments on two distinct code families: the color code (Lcode = 3, 5) and the
repetition code (Lcode = 3, 5). Critically, both experiments were performed under realistic, multi-
round circuit-level noise models. These experiments demonstrate robustness confirm our frame-
work’s claim of generality, as it is fundamentally agnostic to the code family. Figure 6a illustrates
the LER performance on a distance 3 color code with 2 rounds of circuit noise, demonstrating
robustness with high marginal gaps from the baselines. In Figure 6b, SAQ-Decoder significantly
outperforms all baselines across the entire range of physical error rates. For example, at the highest
analyzed rate of p = 0.02, SAQ-Decoder achieves a LER that is 17.0% lower than QECCT and
64.2% lower than the MWPM baseline. Figure 6c presents the LER results for a distance 3 repeti-
tion code with 3 rounds of circuit noise, showing that the decoder remains robust with performance
gaps relative to the baseline methods. Similarly, Figure 6d shows the results for a distance 5 repe-
tition code with 3 rounds of circuit noise. While the performance of all decoders is closer on this
code, SAQ-Decoder consistently maintains the lowest logical error rate. At p = 0.25, SAQ-Decoder
achieves a LER that is 1.83% lower than QECCT and 2.61% lower than MWPM.

5.2 ABLATION STUDIES AND ANALYSIS

To understand the contribution of individual architectural components in our framework, we con-
duct comprehensive ablation studies on a toric code with distance Lcode = 6 under depolarizing
noise. These studies systematically evaluate the impact of the global token, multi-objective loss
formulation, and dual-stream architecture on model performance and training dynamics.

Dual-Stream Study. To validate our dual-stream design, we conducted an ablation study exam-
ining four architectural variants: (1) separate weights per stream within a layer instead of weight
sharing across the decoder stack, (2) symmetric cross-attention where both streams attend to each
other rather than our asymmetric design, (3) logical-stream-only architecture removing syndrome
processing, and (4) syndrome-stream-only architecture removing logical processing, as shown in
Figure 7a. The results reveal a clear performance hierarchy from worst to best: logical-stream-only,
bidirectional cross-attention, syndrome-stream-only, no weight sharing, and our full SAQ-Decoder
architecture. These ablations demonstrate that single-stream variants perform poorly, weight shar-
ing across layers slightly improves efficiency while halving the parameter count, and asymmetric
information flow from syndromes to logical inference outperforms symmetric attention, validating
the importance of our specialized dual-stream processing design for effective QEC.

Multi-Loss Ablation. To investigate the relative importance of different training objectives in
our framework, we conduct an ablation study on the loss function components, varying the
weighting parameters λLP , λLC , and λEntropy for logical prior, logical classification, and en-
tropy regularization respectively, as shown in Figure 7b. The full multi-objective formulation
(λLP , λLC , λEntropy = 0.2, 1.0, 1.0) achieves the lowest final average LER of 1.972e-01. System-
atic removal of individual components reveals measurable performance degradation: removing logi-
cal classification increases LER to 2.113e-01 (+7.2%), removing logical prior to 2.055e-01 (+4.2%),
and removing entropy regularization to 2.047e-01 (+3.8%). These results confirm that all three ob-
jectives contribute meaningfully to the model’s QEC performance, with logical classification being
the most critical component.

Effect of Global Token. The inclusion of a global token (SAQ-Decoder) improves both training
dynamics and final performance compared to the masked architecture without a global token (Mask

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

Tr
ai

ni
ng

 L
E

R

Architectural Ablation Study

Single-Stream (L)
Bidirectional Cross-Attn
Single-Stream (S)
No Weight Sharing
SAQ-Decoder

(a) Architecture study.

0 50 100 150 200 250 300 350 400
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Av
er

ag
e 

Tr
ai

ni
ng

 L
E

R

Impact of Different Objectives

LP, LC, Ent = (0.2, 0.0, 1.0)
LP, LC, Ent = (0.2, 1.0, 0.0)
LP, LC, Ent = (0.0, 1.0, 1.0)
LP, LC, Ent = (0.2, 1.0, 1.0)

(b) Loss ablation.

0 50 100 150 200 250 300 350 400
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Av
er

ag
e 

Tr
ai

ni
ng

 L
E

R

Masking and Global Token Ablation Study

Baseline (No Mask, No Global)
Mask Only (No Global)
SAQ-Decoder (Mask + Global)

(c) Global token ablation.

4 5 6 7 8 9 10
Code distance

1

2

3

4

5

6

pa
ra

m
s 

[M
]

Parameter comparison (toric code)
SAQ-Decoder (Independent)
SAQ-Decoder (Depolarizing)
QECCT (Independent)
QECCT (Depolarizing)

(d) Param. comp.

Figure 7: Rotated surface code results

Only), as shown in Figure 7c. The full SAQ-Decoder achieves faster convergence and lower final
LER (∼ 0.19 versus ∼ 0.21 average LER). Notably, attention masking itself provides substantial
benefits, with the mask-only architecture significantly outperforming the unmasked baseline (Base-
line, neither mask nor global token). The global token acts as a syndrome-level aggregator, enabling
the model to capture global syndrome patterns that local interactions might miss.

Computational Complexity. Our model achieves O(Nmd2) time complexity per forward pass by
exploiting sparse attention patterns, avoiding the naive O(Nm2d) complexity of dense attention.
The subsequent CPND refinement requires O(m) time for online inference. This yields optimal
linear scaling in the syndrome length and quadratic scaling in code distance. The 22k embedding
term is negligible since k is small in practice (e.g., k = 1 for surface codes and k = 2 for toric codes).
Our numerical comparison in Table 1 demonstrates that the SAQ-Decoder achieves significantly
lower FLOPs and faster inference time compared to QECCT, validating its suitability for real-time
QEC decoding. Extended data is available in Appendix F.

Table 1: Abridged Numerical Complexity Comparison (Toric Code)

Metric L=6 (Depol) L=10 (Depol)

SAQ-Decoder QECCT SAQ-Decoder QECCT

Total FLOPs [G ↓] 0.21 1.05 0.80 4.10
Inference Time [ms ↓] 1.2 7.0 4.5 20.1

Parameter Efficiency. Figure 7d demonstrates that SAQ-Decoder for toric code maintains near-
constant parameter count ( 1.2 − 1.9M) across code distances Lcode = 4 to Lcode = 10 for both
noise models, exhibiting excellent scalability. In contrast, QECCT suffers from significant param-
eter growth, reaching 6.71M parameters at Lcode = 10 under depolarizing noise, which is a 3.5×
increase over our method. This difference stems from fundamental architectural choices: while
QECCT processes both qubit and syndrome information through transformer layers, our approach
leverages logical class prediction to decouple syndrome processing from the full qubit space dimen-
sionality. Although both methods employ sparse attention patterns, SAQ-Decoder’s logical class
embedding strategy avoids the quadratic scaling in the combined qubit-syndrome space that affects
QECCT. The parameter efficiency of SAQ-Decoder directly translates to reduced memory footprint,
faster training convergence, and improved deployability on quantum computing systems, making it
particularly attractive for fault-tolerant implementations.

6 CONCLUSION

We introduced SAQ-Decoder, a unified QEC framework that combines learned syndrome-to-error
mappings with exact syndrome constraint satisfaction. Our dual-stream architecture with asymmet-
ric attention captures the geometric structure of stabilizer codes while maintaining linear computa-
tional complexity in syndrome size. Experimental results demonstrate error thresholds of 10.99%
and 18.6% for toric codes under independent and depolarizing noise respectively, essentially ap-
proaching ML bounds while significantly outperforming existing neural and classical decoders. The
framework’s parameter efficiency and general applicability to any stabilizer code family make it a
practical solution for scaling fault-tolerant quantum computation, bridging the critical gap between
neural pattern recognition and the structured optimization requirements of QEC.
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REPRODUCIBILITY STATEMENT

Logical-minimum entropy loss. Due to page limitations, we provide the full derivation and expo-
sition of the logical-minimum entropy loss in Appendix A.

CPND stage. A detailed derivation and exposition of the CPND stage is presented in Appendix B.

Training Details. For reproducibility, we detail our complete training methodology and hyperpa-
rameters in Appendix D, with full source code provided in the Supplementary Materials.
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A LOGICAL-MINIMUM ENTROPY LOSS DERIVATION

The goal of decoding in stabilizer codes is to produce a correction epred (hard decision on the logits
ê) such that the combined error r = etrue ⊕ epred is a stabilizer, hence acts trivially on all logical
qubits. Equivalently, with L denoting the logical-operator matrix, the logical-coset constraint is

L
(
etrue ⊕ epred

)
= 0 over GF (2) (15)

so decoding succeeds if no logical parity flips. Optimizing this condition directly is difficult because
XOR is non-differentiable. We therefore derive a smooth, probability-calibrated surrogate that re-
places hard parities by differentiable sign-expectations of Bernoulli logits. The resulting logical
minimum-entropy loss maximizes the probability that each logical parity is zero while preserving
the exact coset semantics in expectation and providing stable, well-aligned gradients for end-to-end
training.

For each qubit i, let êi ∈ R be the model logit and

pi ≜ σ(êi) =
1

1 + e−êi
(16)

the corresponding flip probability, where σ(·) is the sigmoide function. We model the predicted
error bit as

epredi ∼ Bernoulli(pi), (17)
while the ground-truth bit etruei ∈ {0, 1} is fixed for the given sample. Define the per-qubit XOR

ri ≜ etruei ⊕ epredi ∈ {0, 1}. (18)

Conditioning ri on etruei , we have

ri|etruei ∼
{
Bernoulli (σ(êi)) if etruei = 0

Bernoulli (1− σ(êi)) if etruei = 1
(19)

it holds since for ri = 0⊕ epredi = epredi and ri = 1⊕ epredi = 1− epredi .

We focus on the non-parity conditional error probability

qi ≜ Pr(ri = 1|etruei ) = (1− etruei )σ(êi) + (1− σ(êi))etruei (20)
which our loss is designed to minimize; driving qi → 0 forces the prediction to agree with the
ground truth modulo stabilizers (i.e., no logical flip).

We now simplify qi, starting from

qi = Pr(ri = 1|etruei ) =
1− etruei

1 + exp (−êi)
+

exp (−êi) · etruei

1 + exp (−êi)
(21)

=
1− etruei + exp (−êi) · etruei

1 + exp (−êi)
(22)

Let a = 1− 2etruei ∈ {−1, 1}, so etruei = (1− a)/2, focusing on the numerator

1− etruei + exp (−êi) · etruei = 1 + etruei · (exp (−êi)− 1) (23)

= 1 +
1− a
2
· (exp (−êi)− 1) (24)

= 1 +
1

2
· (exp (−êi)− 1)− a

2
· (exp (−êi)− 1) (25)

=
(1 + exp (−êi))− a · (exp (−êi)− 1)

2
(26)

Plugging this back to equation 21 gives

qi = Pr(ri = 1|etruei ) =
(1 + exp (−êi))− a · (exp (−êi)− 1)

2 · (1 + exp (−êi))
(27)

=
1

2

[
1− a

2
· exp (−êi)− 1

exp (−êi) + 1

]
(28)
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Using exp (−x)−1
exp (−x)+1 = − tanh (x/2) with x = êi

qi =
1

2

[
1 +

a

2
· tanh

(
êi
2

)]
(29)

Here tanh (·) is the hyperbolic tangent.

From the previous result,

Pr(ri = 1 | etruei ) =
1

2

[
1 + a tanh

(
êi/2

)]
, a = 1− 2etruei ∈ {±1}. (30)

Substituting etruei = 1 (so a = −1) gives

Pr(ri = 1 | etruei = 1) =
1

2

[
1− tanh

(
êi/2

)]
(31)

while etruei = 0 (so a = +1) gives

Pr(ri = 1 | etruei = 0) =
1

2

[
1 + tanh

(
êi/2

)]
(32)

Since tanh is odd, i.e., a tanh(x) = tanh(a x) for a ∈ {±1},

Pr(ri = 1 | etruei ) =
1

2

[
1 + tanh

(
a êi/2

)]
. (33)

To convert the tanh form back to a probability, we use the sigmoid–tanh identity (as shown in Propo-
sition A.1).

proposition A.1 (Sigmoid–tanh identity). For all y ∈ R,

σ(y) =
1

1 + exp (−y) =
1

2

[
1 + tanh(y/2)

]
(34)

Proof. Start from sigmoid σ(y), multiplying numerator and denominator by exp(y/2):

σ(y) =
1

1 + exp(−y) =
exp(y/2)

exp(y/2) + exp(−y/2) (35)

Let A = exp(y/2) and B = exp(−y/2).Then:

A

A+B
=

1

2

(A+B) + (A−B)

A+B
=

1

2

(
1 +

A−B
A+B

)
(36)

But
A−B
A+B

=
exp(y/2)− exp(−y/2))
exp(y/2) + exp(−y/2) = tanh

(y
2

)
(37)

Hence σ(y) = 1
2

[
1 + tanh(y2 )

]

Therefore,

qi = Pr(ri = 1 | etruei ) =
1

2

[
1 + tanh

(
a êi/2

)]
= σ

(
a êi

)
= σ

(
(1− 2etruei ) êi

)
(38)

We now pass to logical parities: each row of the logical operator matrix L (which correspond to a
distinct logical operator) induces a parity check over r;

Li · r =
⊕

j∈χi

Li,jrj (39)

where χi are the non zero elements set in Li, the following proposition provides Li · r distribution
in closed form.
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proposition A.2 (Bernoulli parity distribution). Let {Xj}nj=1 be independent Bernoulli random
variables with Pr(Xj = 1) = qj ∈ [0, 1], and define the GF(2) parity Q =

⊕n
j=1Xj ∈ {0, 1}.

Then

Pr(Q = 1) = 1
2

[
1−

n∏

j=1

(1− 2qj)
]

(40)

Pr(Q = 0) = 1
2

[
1 +

n∏

j=1

(1− 2qj)
]

(41)

Equivalently, E[(−1)Q] = ∏n
j=1(1− 2qj).

Proof. Consider the following product identity

(−1)Q = (−1)X1⊕X2⊕···⊕Xn =
∏

i

(−1)Xi (42)

This identity holds because: (−1)0⊕0 = 1 = (−1)0 · (−1)0, 1(−1)0⊕1 = −1 = (−1)0 · (−1)1 and
1(−1)1⊕1 = 1 = (−1)1 · (−1)1

Taking expectations on both sides yields

E[(−1)Q] = E

[∏

i

(−1)Xi

]
(43)

and, by expanding the definition of expectation with respect to Q,

E[(−1)Q] = (−1)0 · Pr(Q = 0) + (−1)1 · Pr(Q = 1) = 1− 2Pr(Q = 1) (44)

Under the independence assumption,

E

[∏

i

(−1)Xi

]
=

∏

i

E[(−1)Xi ] (45)

and each factor evaluates to

E[(−1)Xi ] = (−1)0 · Pr(Xi = 0) + (−1)1 · Pr(Xi = 1) = (1− qi)− qi = 1− 2qi (46)

Thus,
E[(−1)Q] =

∏

i

(1− 2qi) (47)

Equating equation 44 and equation 47 and solving for Pr(Q = 1) gives

Pr(Q = 1) = 1
2

[
1−

∏

i

(1− 2qi)
]

(48)

The key insight is that the XOR operation in GF(2) corresponds to multiplication in the group
({−1, 1}, ·), which enables a closed-form expression for the parity distribution under independence.

Therefore, it follows from Proposition A.2 and from equation 38 that

Pr(Li · r = 1) = 1
2

[
1−

∏

j∈χi

(1− 2qj)
]
= 1

2

[
1−

∏

j∈χi

(
1− 2σ

(
(1− 2etruej ) êj

))]
(49)

Since Li · r = 1 corresponds to a logical error detected by the i-th logical operator (i.e., a bit flip or
phase flip on a logical qubit), successful QEC requires minimizing this probability across all logical
operators. To achieve this objective, we employ a minimum entropy loss that directly optimizes the
negative log-likelihood of the desired outcome, namely that no logical errors occur. This approach
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concentrates the probability mass on the correct logical state while heavily penalizing configurations
that lead to logical failures.

Substituting the expression for Pr(Li · r = 1) into the entropy objective yields

Lentropy = − 1

2k

2k∑

i=1

log
(
1− Pr(Li · r = 1)

)
(50)

= − 1

2k

2k∑

i=1

log
(
1 +

∏

j∈χi

(
1− 2σ((1− 2etruej )êj)

))
(51)

B CONSTRAINT-PROJECTED NULLSPACE DESCENT (CPND)

The augmented matrix Ĥ =
[
H; L

]
∈ {0, 1}(m+2k)×n is constructed by vertically stacking the

parity-check matrix H ∈ {0, 1}m×n (whose rows represent stabilizer generators that, when mea-
sured, produce the syndrome) above the logical operator matrix L ∈ {0, 1}2k×n (whose rows encode
logical operators that, when applied to the error vector, determine the logical error class, k X-type
+ k Z-type logical operators). Since the stabilizer generators are linearly independent over GF(2)
and the logical operators lie in the normalizer but not in the stabilizer subgroup, the rows of Ĥ are
linearly independent. Therefore, rank(Ĥ) = m+ 2k.

projℓ proje

⊕

T
[N ]
L T

[N ]
S

ND

e(s)

⊕

Ĥ

B

ê

[·]
ℓ̂

b

s

CPND

Figure 8: CPND.

The constraint vector is b = [s; ℓ] ∈ {0, 1}(m+2k) where s is the syndrome and ℓ is the binarized
logical class prediction. We define the feasible recovery operator e(s) set

F =
{
e(s) ∈ {0, 1}n | Ĥe(s) = b

}
(52)

We precompute a left inverse B ∈ {0, 1}n×(m+2k) with ĤB = Im+2k, a proof of existence of such
B is given in Proposition B.1. Given epred, we compute the residual y = b⊕ Ĥepred and apply the
projection e′ = epred ⊕By. By construction: Ĥe′ = Ĥepred ⊕ y = b, ensuring e′ ∈ F .
proposition B.1 (Existence and constructive computation of a left inverse over GF(2)). Let A ∈
{0, 1}r×n with r ≤ n. There exists X ∈ {0, 1}n×r such that AX = Ir if and only if rank(A) = r.
Moreover, when A has full row rank, the r column-wise systems

Axi = ei, i = 1, . . . , r,

(where ei is the i-th standard basis vector of GF (2)r) are all consistent, and any selection of solu-
tions {xi}ri=1 stacked as X = [x1 · · · xr] satisfies AX = Ir.

Proof. (⇒) If AX = Ir, then rank(A) ≥ rank(Ir) = r, hence rank(A) = r. (⇐) If rank(A) = r,
then the column space im(A) ⊆ GF (2)r has dimension r and therefore equals GF (2)r. Thus
each ei lies in im(A), so there exists xi with Axi = ei. Stacking these solutions yields AX =
[Ax1 · · · Axr] = [e1 · · · er] = Ir.
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The projected solution e′ satisfies all constraints but is suboptimal in sense of minimum weight re-
covery operation, the left inverse B is constructed purely algebraically and ignores the transformer’s
learned qubit flip probability. Since the constraint set forms an affine space e′ ⊕ ker(Ĥ), we tra-
verse this space to find lower-cost solutions while preserving feasibility. Let N = [v1, . . . ,vg] ∈
{0, 1}n×g span ker(Ĥ) with g = n− (m+ 2k). We extract qubit flip probability from transformer
predictions: pq = σ(êq) and define weights as log-likelihood ratios wq = − log(pq/(1− pq)). The
objective is to minimize weighted Hamming cost: wtw(e) =

∑n
q=1 wqeq where e ∈ {0, 1}n.

Having e′, we want to descend in the nullspace to find a minimal weight solution. First we convert
the binary solution e′ to signs σ′ = (1−2e′) ∈ {+1,−1}n, where σ′

q = +1 if e′q = 0 and σ′
q = −1

if e′q = 1 for q = 1 . . . , n. The main loop performs a single pass over the g nullspace generators
{vj}gj=1. For each generator vj , we identify its support χj = {q : vj,q = 1} and compute the cost
change ∆j =

∑
q∈χj

wqσ
′
q . If ∆j < 0, we accept the move: update e′ ← e′ ⊕ vj and flip signs

σ′
q ← −σ′

q for all q ∈ χj .

Since Ĥvj = 0 for j = 1 . . . g, the nullspace descent preserves constraint satisfaction while
achieving monotonic cost reduction, terminating at a locally optimal solution. Algorithm 1 presents
the complete method.

Algorithm 1 Constraint-Projected Nullspace Descent (CPND)

Require: Ĥ, B, N ; b; epred; weights w ∈ Rn

Ensure: e(s) ∈ {0, 1}n with Ĥe(s) = b, and reduced weighted cost wtw(e(s)) =
∑

q wqeq(s)

1: y← b⊕ Ĥepred

2: e′ ← epred ⊕ By
3: σ′ ← (1− 2e′) ∈ {+1,−1}n
4: for j = 1 to g do
5: χj ← { q : vj,q = 1 }
6: ∆j ←

∑

q∈χj

wq σ
′
q

7: if ∆j < 0 then
8: e′ ← e′ ⊕ vj

9: σ′
q ← −σ′

q for all q ∈ χj

10: end if
11: end for
12: return e(s)← e′

Since stabilizer generators commute, yielding HHT = 0 over GF(2), the columns of HT span a
subspace of ker(H), providing an approximated basis for nullspace descent.
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Figure 9: Comparison of recovery operator weights.

Figure 9 presents decoder recovery operator weights as a function of physical error rate p ∈
{0.05, 0.10, 0.15, 0.20} for the toric code under independent noise (Lcode = 4). We compare three
post-processing approaches that operate on SAQ-Decoder representations: the projection baseline
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(e′ = epred ⊕By), CPND and OSD-0 (Fossorier & Lin, 1995; Roffe et al., 2020). OSD-0 is a post-
processing algorithm that achieves minimum weight solutions while maintaining syndrome consis-
tency, but requires matrix inversion operations that scale cubically in complexity, compared to our
method’s linear complexity. Across all error rates, the methods exhibit consistent performance order-
ing: OSD-0 achieves the lowest weights, CPND performs comparably to OSD-0, while the projec-
tion baseline consistently yields the highest weights. The performance gaps increase monotonically
with p, demonstrating that CPND consistently approaches minimum-weight solutions. These re-
sults highlight that structure-aware post-processing methods (CPND and OSD-0) achieve uniformly
superior weight minimization compared to naive projection approaches.

C SURFACE CODES

We evaluate our method on surface codes due to their prominence in fault-tolerant quantum comput-
ing, specifically toric codes (Kitaev, 1997) which encode k = 2 logical qubits in n = 2L2

code physical
qubits, and rotated surface codes (Bombı́n & Martin-Delgado, 2007) which encode k = 1 logical
qubit in n = L2

code physical qubits. Toric codes utilize periodic boundary conditions with qubits on
lattice edges, while rotated surface codes employ a lattice geometry with qubits on vertices. The
stabilizer generators are organized into two distinct groups based on lattice geometry, with different
implementations for each code family. For toric codes, vertex stabilizers are constructed as products
of Pauli-X operators acting on all qubits adjacent to each lattice vertex, while plaquette stabilizers
consist of products of Pauli-Z operators acting on qubits surrounding each lattice face, yielding a
total of m = 2L2

code − 2 stabilizer generators (L2
code − 1 vertex stabilizers and L2

code − 1 plaquette
stabilizers corresponding to the vertices and faces of the Lcode ×Lcode toric lattice). Rotated surface
codes employ a fundamentally different geometry where all stabilizer generators are placed on lat-
tice faces rather than being split between vertices and plaquettes. These face-based stabilizers come
in two alternating types: X-type stabilizers (tensor products of Pauli-X operators on qubits surround-
ing a face) and Z-type stabilizers (tensor products of Pauli-Z operators on qubits surrounding a face).
The lattice arrangement creates a natural checkerboard pattern where X- and Z-type stabilizers alter-
nate, ensuring that every physical qubit—positioned on a vertex of the rotated lattice—participates
in exactly two X-type and two Z-type stabilizer measurements. For an Lcode × Lcode rotated surface
code, this checkerboard arrangement yields m = 2L2

code − 1 independent stabilizer generators, with
L2

code−1
2 generators of each type, when L is always odd. Figure 10 presents both code geometries.

Two standard noise models are examined: independent noise and depolarizing noise. Under the
independent (uncorrelated) noise model, bit-flip (X) and phase-flip (Z) errors occur independently
with equal error probability, allowing the decoding of X and Z syndromes to be treated separately.
In contrast, the depolarizing noise model assigns equal probability p/3 to the non-identity Pauli
operators, i.e., Pr(X) = Pr(Z) = Pr(Y ) = p

3 ,Pr(I) = 1− p, where Y = iXZ.

Plaquette

Vertex

Z

X
Qubit

Z

X

Figure 10: Surface codes: (left) Toric code with Lcode = 4, where gray qubits represent boundary
conditions with periodic boundary conditions (top row connects to bottom row, left column connects
to right column). (right) Rotated surface code with Lcode = 5. Data qubits adjacent to red faces
correspond to Z-type stabilizer generators, while those adjacent to blue faces correspond to X-type
stabilizer generators.
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D TRAINING DETAILS.

Our training methodology randomly samples noise within the physical error rate testing range to en-
sure robust generalization across different noise regimes. The model architecture employsN = 6−8
transformer layers with shared parameters across dual token streams and an embedding dimension
of d = 128 and h = 16 attention heads. The multi-component loss function uses weighting param-
eters λLP = 0.2, λLC = 1.0, and λEnt = 1.0 for informed logical priors loss, logical class prediction
loss, and minimum entropy loss, respectively.

We optimize using the Adam optimizer (Kingma & Ba, 2014) with mini-batches of 128 − 512
samples over 200 − 600 epochs, processing 5, 000 − 20, 000 mini-batches per epoch for a total of
approximately 2.56 × 106 error samples per training run. The initial learning rate is set between
3× 10−4 and 1× 10−4, with cosine annealing decay to 1× 10−6 by the end of training (Loshchilov
& Hutter, 2016). Detailed experimental configurations are presented in Table 2, with all experiments
conducted on a 48GB NVIDIA L40S GPU.

We initialized our development from the QECCT implementation. While longer training and alter-
native configurations may yield further improvements, time and computational constraints limited
our exploration of the hyperparameter space. We use the toric code implementation from Krastanov
& Jiang (2017), while the rotated surface code is implemented from scratch. Our source code is
provided in the Supplementary Materials.

Table 2: Experimental configuration across different code distances and noise models.

Code Code Noise Learning Epochs Batch SAQ-Decoder Model Physical Epoch Time
Distance Type Type Rate Size Layers Params Error Rate [sec]

ToricToricToricpt¡ -Toricpt¿ Independent 2.5e-4 200 512 6 1.2M 0.01-0.20 192
Depolarizing 2e-4 200 128 6 1.2M 0.05-0.20 283

RotatedRotatedRotatedpt¡ -Rotatedpt¿ Independent 1e-4 200 128 6 1.2M 0.01-0.20 153
SurfaceSurfaceSurfacept¡ -Surfacept¿ Depolarizing 2e-4 300 128 6 1.2M 0.05-0.20 236

ToricToricToricpt¡ -Toricpt¿ Independent 2.5e-4 400 512 6 1.2M 0.01-0.20 184
Depolarizing 3e-4 400 512 6 1.23M 0.05-0.20 478

RotatedRotatedRotatedpt¡ -Rotatedpt¿ Independent 1e-4 500 512 6 1.2M 0.01-0.20 245
SurfaceSurfaceSurfacept¡ -Surfacept¿ Depolarizing 3e-4 500 512 6 1.21M 0.05-0.20 584

ToricToricToricpt¡ -Toricpt¿ Independent 1.5e-4 600 128 6 1.22M 0.01-0.20 386
Depolarizing 2e-4 600 128 8 1.7M 0.05-0.20 2464

RotatedRotatedRotatedpt¡ -Rotatedpt¿ Independent 1e-4 600 512 6 1.2M 0.01-0.20 285
SurfaceSurfaceSurfacept¡ -Surfacept¿ Depolarizing 1e-4 600 128 8 1.63M 0.05-0.20 641

ToricToricToricpt¡ -Toricpt¿ Independent 3e-4 600 512 6 1.26M 0.01-0.20 683
Depolarizing 3e-4 600 512 8 1.85M 0.05-0.20 3090
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E COMPARATIVE THRESHOLD ANALYSIS

This appendix provides a detailed comparison of the SAQ-Decoder’s performance threshold under
depolarizing noise against recent neural decoders and high-performance classical decoders. Our
numerical comparison in Table 3, the results confirm that the SAQ-Decoder’s achieved threshold
of 18.6% approaches the theoretical Maximum Likelihood (ML) bound of 18.9% (Bombin et al.,
2012) and represents the highest value reported for a practical, scalable decoder.

Table 3: Comparative Thresholds for Surface Codes (Depolarizing Noise)

Decoder / Paradigm Reported Threshold (↓)
SAQ-Decoder (Our Work) 18.6%
QECCT (Choukroun & Wolf, 2024) 17.8%
Astra (2024) (Maan & Paler, 2025) ∼17.0%
SU-NetQD (2025) (Zhang et al., 2025) 16.3%
ML+UF (2022) (Meinerz et al., 2022) 16.2%
MWPM (Classical Baseline) (Wang et al., 2009) 16.0%
BP-OSD (Classical Baseline) (Roffe et al., 2020) ∼16.0%
UIUF (2024) (Lin & Lai, 2025) 15.6%

Note: All percentages reflect toric or rotated surface code performance under standard depolarizing noise.

We use SU-NetQD as our primary baseline in this section (in addition to the comprehensive compar-
ison to QECCT presented in Section 5). As summarized in Table 4, the proposed SAQ decoder con-
sistently achieves the lowest logical error rate among all considered decoders across toric code with
distances L ∈ {5, 7} and physical error rates p ∈ {0.09, 0.13, 0.20}. Compared to the SU-NetQD
architecture, SAQ yields systematically smaller LERs, while the classical BP-OSD-2 and MWPM
decoders exhibit substantially higher error rates in the same regime. In particular, for distance L = 7
at p = 0.09, SAQ attains a logical error rate of LER = 1.95×10−2, whereas SU-NetQD, BP-OSD-
2, and MWPM reach LER = 2.76 × 10−2, 7.20 × 10−2, and 6.90 × 10−2, respectively. This
corresponds to a relative LER reduction of about 29% with respect to SU-NetQD, and roughly 73%
and 72% reductions compared to the BP-OSD-2 and MWPM baselines, respectively, highlighting
the substantial performance advantage of the proposed SAQ decoder.

F DETAILED COMPUTATIONAL METRICS

This appendix provides the detailed numerical comparisons of computational complexity and effi-
ciency metrics for the SAQ-Decoder against the QECCT baseline. Metrics include the total number
of floating-point operations (FLOPs), the total number of trainable parameters (Params), and the
inference time per sample (Time). Our numerical comparison in Table 5 consistently demonstrates
the superior efficiency and scalability of the SAQ-Decoder across all tested code distances (L) and
noise models (independent ’ind’ and depolarizing ’dep’).

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were employed to assist in several aspects of this research and manuscript preparation. For
the literature review, LLMs aided in the identification and sourcing of relevant related works to en-
sure comprehensive coverage of the field. During the research process, LLMs were consulted for
research ideation, though these explorations did not yield beneficial outcomes that influenced the
final work. In manuscript preparation, LLMs assisted with improving grammar, enhancing textual
transitions between sections, and refining the exposition of technical concepts for better clarity and
readability. For software development, LLMs provided assistance in code writing, GPU acceleration
optimizations, and debugging code issues. Despite these auxiliary uses, all core research contribu-
tions, experimental design, theoretical insights, and scientific conclusions presented in this work are
entirely the product of the authors’ original research and analysis.
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Table 4: LER comparison of SAQ and baseline decoders for toric code with distances Lcode = 5, 7
at selected physical error rates p.

p SAQ SU-NetQD BP-OSD-2 MWPM

Lcode = 5
0.09 0.051 0.057 0.107 0.108
0.13 0.177 0.191 0.280 0.279
0.20 0.519 0.534 0.623 0.624

Lcode = 7
0.09 0.019 0.028 0.072 0.069
0.13 0.139 0.149 0.262 0.253
0.20 0.548 0.581 0.680 0.676

Table 5: Comparison of SAQ and QECCT Decoder Computational Metrics

Code Type L Noise Decoder FLOPs [M ↓] Params [M ↓] Time [sec ↓]

Toric 4 ind SAQ 27.48 1.20 2.13e-05
QECCT 57.01 1.23 2.61e-05

dep SAQ 61.51 1.20 2.59e-05
QECCT 114.09 1.33 8.13e-05

6 ind SAQ 55.16 1.20 2.27e-05
QECCT 128.37 1.37 1.01e-04

dep SAQ 116.88 1.23 6.39e-05
QECCT 257.08 1.90 3.41e-04

8 ind SAQ 93.92 1.22 5.01e-05
QECCT 228.45 1.75 2.73e-04

dep SAQ 259.15 1.70 2.15e-04
QECCT 458.01 3.42 9.72e-04

10 ind SAQ 143.76 1.26 9.72e-05
QECCT 357.44 2.55 6.28e-04

dep SAQ 392.09 1.85 4.50e-04
QECCT 717.61 6.64 2.33e-03

Rot. Surf. 5 ind SAQ 19.97 1.20 6.63e-06
QECCT 43.94 1.21 1.78e-05

dep SAQ 38.55 1.20 1.50e-05
QECCT 87.92 1.28 5.49e-05

7 ind SAQ 36.57 1.20 1.46e-05
QECCT 86.73 1.27 5.37e-05

dep SAQ 71.77 1.21 3.23e-05
QECCT 173.62 1.52 1.75e-04

9 ind SAQ 58.72 1.20 2.35e-05
QECCT 143.84 1.41 1.23e-04

dep SAQ 154.71 1.63 9.15e-05
QECCT 288.13 2.08 4.16e-04

11 ind SAQ 86.40 1.22 4.49e-05
QECCT 215.33 1.69 2.51e-04

dep SAQ 228.54 1.68 1.73e-04
QECCT 431.66 3.18 8.87e-04

L denotes code distance. Lower values are better for all metrics.

24


	Introduction
	Related works
	Background
	SAQ Decoder
	Stage 1: Dual-Stream Representation Construction.
	Stage 2: Syndrome-Logical Transformer Decoder (SLTD)
	Stage 3: Constraint-Projected Nullspace Descent (CPND)
	Logical-Centric Loss Design

	Experiments and Results
	Experimental results
	Ablation studies and analysis

	Conclusion
	Logical-minimum entropy loss derivation
	Constraint-Projected Nullspace Descent (CPND)
	Surface codes
	Training Details.
	Comparative Threshold Analysis
	Detailed Computational Metrics
	The Use of Large Language Models (LLMs)

