

000 001 002 003 004 005 SAQ: STABILIZER-AWARE QUANTUM ERROR COR- 006 RECTION DECODER 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030 ABSTRACT 031

032 Quantum Error Correction (QEC) decoding faces a fundamental accuracy-
033 efficiency tradeoff. Classical methods like Minimum Weight Perfect Matching
034 (MWPM) exhibit variable performance across noise models and suffer from poly-
035 nomial complexity, while tensor network decoders achieve high accuracy but
036 at prohibitively high computational cost. Recent neural decoders reduce com-
037 plexity but lack the accuracy needed to compete with computationally expensive
038 classical methods. We introduce SAQ-Decoder, a unified framework combining
039 transformer-based learning with constraint aware post-processing that achieves
040 both near Maximum Likelihood (ML) accuracy and linear **computational scal-
041 ability with respect to the syndrome size**. Our approach combines a dual-stream
042 transformer architecture that processes syndromes and logical information with
043 asymmetric attention patterns, and a novel differentiable logical loss that directly
044 optimizes Logical Error Rates (LER) through smooth approximations over finite
045 fields. SAQ-Decoder achieves **high accuracy decoding**, with error thresholds of
046 10.99% (independent noise) and 18.6% (depolarizing noise) on toric codes that
047 **closely approach the theoretical** ML bounds of 11.0% and 18.9% while outper-
048 forming existing neural and classical baselines in accuracy, complexity, and
049 parameter efficiency. Our findings establish that learned decoders can simultane-
050 ously achieve competitive decoding accuracy and computational efficiency, ad-
051 dressing key requirements for practical fault-tolerant quantum computing systems.
052
053

1 INTRODUCTION

034 Since Feynman’s 1982 vision of quantum computation Feynman (2018), significant progress has
035 demonstrated that quantum computers can leverage quantum mechanical principles to achieve funda-
036 mental computational advantages over classical methods (Steane, 1998; Ladd et al., 2010; Preskill,
037 2012; deMarti iOlius et al., 2024). Landmark quantum algorithms have demonstrated computational
038 advantages, including exponential speedup for factoring (Shor, 1994) and quadratic search improve-
039 ment (Grover, 1996). Recent experimental demonstrations of quantum supremacy have further vali-
040 dated quantum computing’s potential across diverse domains (Arute et al., 2019; Zhong et al., 2020;
041 Wu et al., 2021; Huang et al., 2022; Madsen et al., 2022; Bao et al., 2023; Bluvstein et al., 2024;
042 Aghaee Rad et al., 2025). These advances promise to revolutionize cryptography (Ekert, 1991; Ben-
043 nnett & Brassard, 2014), optimization (Kadowaki & Nishimori, 1998; Bharti et al., 2022), materials
044 science (Lloyd, 1996), and machine learning (Huang et al., 2022; Cerezo et al., 2022).

045 Yet, for practical quantum computation to become a reality, errors on the physical level must be
046 corrected with high confidence. Despite recent advances, quantum noise remains a major obstacle
047 to practical quantum computing (goo, 2023). These errors arise through numerous mechanisms:
048 quantum gates cause unwanted errors due to imprecise implementation (Fowler et al., 2012a), while
049 additional errors stem from imperfections in the equipment (Preskill, 2018), interaction with the sur-
050 rounding environment (Burnett et al., 2019; Etxezarreta Martinez et al., 2021), or measuring quan-
051 tum systems (Fowler et al., 2012a). While fault-tolerant quantum computation can theoretically be
052 achieved through redundancy by combining multiple physical qubits into one logical qubit (Shor,
053 1995; Nielsen & Chuang, 2010), this approach creates a critical computational bottleneck: QEC
054 requires real-time decoding algorithms that must process syndrome measurements and determine
055 corrections within microsecond timescales while maintaining near-optimal accuracy (Terhal, 2015;
056 Higgott, 2022). Current decoding methods face a fundamental trade-off between computational effi-
057 ciency and accuracy.

054 ciency and error-correction performance, methods like MWPM (Fowler, 2013), Belief Propagation
 055 with Ordered Statistics Decoding (BP-OSD) (Roffe et al., 2020) and tensor network decoder (Bravyi
 056 et al., 2014) scaling prohibitively with code distance while faster heuristics sacrifice the accuracy
 057 essential for fault-tolerant operation (deMarti iOlius et al., 2024). The field of QEC has advanced
 058 significantly, with several families of QEC codes proposed, including topological codes (Kitaev,
 059 2003; Bombin & Martin-Delgado, 2006; Fowler et al., 2012a; Chamberland et al., 2020), Quantum
 060 Low-Density Parity Check (QLDPC) codes (MacKay et al., 2004; Panteleev & Kalachev, 2021;
 061 Breuckmann & Eberhardt, 2021), and quantum turbo codes (Poulin et al., 2009). Recently, there
 062 has been significant growth in machine learning techniques applied to quantum decoding (Wang &
 063 Tang, 2024; Klusch et al., 2024). However, existing neural decoders typically fail to achieve near-
 064 optimal error thresholds, creating a gap between the theoretical potential of learned approaches and
 065 the performance requirements of fault-tolerant quantum computing. We address this challenge by
 066 introducing a unified framework that combines transformer-based neural decoding with specialized
 067 architectural innovations. Our approach leverages neural networks to learn syndrome-to-error map-
 068 pings while employing dual-stream processing and logical-centric loss design to directly optimize
 069 logical error suppression. To achieve this, our framework introduces several key innovations:
 070

- 071 • A novel dual-stream transformer architecture (Vaswani et al., 2017) that simultaneously
 072 processes syndrome and logical information streams with specialized attention mecha-
 073 nisms, featuring global tokens (Zaheer et al., 2020) and structured masking patterns that
 074 capture the geometric constraints and local correlations inherent in stabilizer codes.
- 075 • A novel logical-centric multi objective loss, including differentiable minimum entropy loss
 076 that directly optimizes LER through smooth approximations of discrete GF(2) constraints,
 077 enabling end-to-end training that circumvents the non-differentiability challenges in QEC.
- 078 • Constraint-Projected Nullspace Descent (CPND), a novel deterministic post processing al-
 079 gorithm that leverages transformer probabilities as reliability weights to construct recovery
 080 operators with exact syndrome consistency.
- 081 • Near-optimal error thresholds of 10.99% and 18.6% for toric codes under independent and
 082 depolarizing noise, approaching ML bounds 11.0% and 18.9%, with linear scalability **in**
 083 **syndrome size** and general applicability across stabilizer code families, contrasting favor-
 084 ably with polynomial-scaling classical methods.

085 Our results significantly outperform existing neural decoders like QEC Transformer (QECCT)
 086 (Choukroun & Wolf, 2024) and classical methods like MWPM, while matching the performance
 087 of computationally expensive approaches across both toric and rotated surface codes.

088 The remainder of this paper is organized as follows. Section 2 surveys related work in QEC. Sec-
 089 tion 3 provides essential background on the quantum decoding problem. Our unified framework
 090 is presented in Section 4, where we detail the transformer architecture and dual-stream design and
 091 our loss formulation. Section 5 presents comprehensive experimental evaluation. Finally, Section 6
 092 summarizes our contributions and discusses implications for fault-tolerant quantum computing.

093 2 RELATED WORKS

094 A broad suite of QEC codes has been devised to protect quantum information from decoherence,
 095 noise, and gate imperfections. Extracting the underlying logical state from these codes requires
 096 dedicated decoders that infer the likely errors from the measured syndromes and prescribe correc-
 097 tions (Dennis et al., 2002). However, ML decoding for quantum codes is NP-hard (Kuo & Lu,
 098 2020), prompting the adoption of approximate methods that trade optimality for computational
 099 tractability (deMarti iOlius et al., 2024). Classical quantum decoding approaches include MWPM,
 100 which achieves near-optimal thresholds under independent noise but suffers from poor scaling even
 101 with practical approximations (Edmonds, 1965; Fowler et al., 2012b; Meinerz et al., 2022); belief
 102 propagation, effective for sparse parity-check codes but impeded by quantum degeneracy (Pearl,
 103 2022; Panteleev & Kalachev, 2021; Wang & Tang, 2024); union-find decoders that map syndromes
 104 to graph problems but achieve lower thresholds than MWPM (Delfosse & Nickerson, 2021); and
 105 tensor-network decoders that attain the highest accuracy at steep computational cost (Bravyi et al.,
 106 2014; goo, 2023). Despite their foundational role, these conventional approaches exhibit inherent
 107 limitations that impede practical deployment in large-scale, fault-tolerant quantum systems (Krenn

et al., 2023; deMarti iOlius et al., 2024). Machine learning has emerged as a compelling alternative, with various architectures that demonstrate accuracy and speed gains over classical baselines while allowing adaptation to device-specific, correlated noise processes that challenge traditional decoders (Wang & Tang, 2024; deMarti iOlius et al., 2024; Varsamopoulos et al., 2017; 2019; Harper et al., 2020; Magesan & Gambetta, 2020; Liu & Poulin, 2019). Specifically, these architectures are employed in reinforcement learning, (Colomer et al., 2020; Sweke et al., 2020; Fitzek et al., 2020; Çelikkanat et al., 2022; Veeresh et al., 2024), and supervised learning (Bishop & Nasrabadi, 2006; Goodfellow et al., 2016), where models are trained on labeled datasets to map measured syndromes to recovery operations (deMarti iOlius et al., 2024; Wang & Tang, 2024). Early approaches included feedforward networks (Torlai & Melko, 2017), neural decoders learning error distributions (Krasstanov & Jiang, 2017), and quantum autoencoders (Locher et al., 2023), demonstrating generalization while reducing complexity and adapting to noise. CNN-based decoders achieve strong performance on topological codes via spatial correlations (Maskara et al., 2019; Meinerz et al., 2022). More recently, transformer-based architectures have been explored, most notably the QECCT (Choukroun & Wolf, 2024), outperforming MWPM across topological codes. **Another innovative AI-based decoder is AlphaQubit (Bausch et al., 2024), which represents a major milestone in QEC decoding but employs a recurrent structure and processes analog measurement data, unlike our feed-forward architecture which utilizes discrete binary syndrome inputs.**

3 BACKGROUND

A binary linear code $\mathcal{C} \subseteq GF(2)^n$ is defined as the nullspace of a parity-check matrix $\mathbf{H} \in GF(2)^{(n-k) \times n}$, where $n \in \mathbb{N}$ physical bits encode $k \in \mathbb{N}$ logical (message) bits. For an error vector $\mathbf{e} \in GF(2)^n$, the syndrome $\mathbf{s} = \mathbf{H}\mathbf{e}^\top$ serves as a sufficient statistic for ML decoding. The transition to QEC introduces fundamental complications absent in classical settings. Unlike classical bits that exist in definite states $\{0, 1\}$, quantum information is encoded in qubits—two-level quantum systems that exist in coherent superpositions:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle, \quad \text{where } \alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1 \quad (1)$$

This quantum nature creates fundamental challenges: quantum errors form a continuous group, and the no-cloning theorem eliminates classical redundancy. Fortunately, the Pauli channel provides a tractable error model. Any single-qubit error can be decomposed in the Pauli basis $\{I, X, Y, Z\}$:

$$I|\psi\rangle = \alpha|0\rangle + \beta|1\rangle; \quad X|\psi\rangle = \alpha|1\rangle + \beta|0\rangle; \quad Y|\psi\rangle = -i\alpha|1\rangle + i\beta|0\rangle; \quad Z|\psi\rangle = \alpha|0\rangle - \beta|1\rangle \quad (2)$$

A general single-qubit Pauli channel applies error $P \in \{I, X, Y, Z\}$ with probability ϕ_P , where $\sum_P \phi_P = 1$. For n qubits, errors are tensor products $E = P_1 \otimes \dots \otimes P_n$, leading to 4^n possible error patterns. The exponential growth in error patterns (4^n vs. 2^n classically) creates a rich combinatorial optimization problem well suited to neural approaches.

Stabilizer Formalism. The stabilizer framework, (Gottesman, 1997), addresses QEC challenges by discretizing the error space while preserving quantum coherence. This formalism exploits the algebraic structure of the Pauli group to construct quantum codes syndrome extraction. The Pauli group foundation. The n -qubit Pauli group captures all local quantum errors:

$$\mathcal{P}_n = \{ \omega P_1 \otimes \dots \otimes P_n : \omega \in \{\pm 1, \pm i\}, P_j \in \{I, X, Y, Z\} \quad \text{for } j = 1, \dots, n \} \quad (3)$$

The global phases ω leave syndrome measurements invariant and can be quotiented out.

A stabilizer group \mathcal{S} forms an abelian subgroup of \mathcal{P}_n with $-I \notin \mathcal{S}$. The abelian structure guarantees that all stabilizer elements commute, enabling simultaneous measurability. An $[[n, k, L_{\text{code}}]]$ stabilizer code with distance L_{code} uses $m = n - k$ independent generators $\{S_i\}_{i=1}^m$ whose joint $+1$ eigenspace defines the codespace:

$$\mathcal{C}_{\mathcal{S}} = \{|\psi\rangle \in \mathcal{H}_2^n : S_i|\psi\rangle = |\psi\rangle, \quad \text{for } i = 1, \dots, m\} \quad (4)$$

For an error $E \in \mathcal{P}_n$, the syndrome $s(S_i, E)$ indicates whether stabilizer S_i commutes (0) or anticommutes (1) with E . The full syndrome vector $\mathbf{s}(E) = (s(S_1, E), \dots, s(S_m, E)) \in \{0, 1\}^m$ provides a classical signature of the quantum error. Crucially, measuring these stabilizers is non demolition, i.e., extracting error information without disturbing the encoded quantum state. Quantum

162 degeneracy occurs when multiple distinct errors produce identical syndromes because they differ by
 163 logical operators that commute with all stabilizers yet act nontrivially on the codespace.
 164

165 Quantum degeneracy creates a prediction problem: given syndrome s , determine which logical
 166 coset contains the true error. This presents formidable computational challenges with exponential
 167 syndrome spaces ($2^{O(L_{\text{code}}^2)}$ for surface codes), making neural approaches particularly attractive for
 168 learning optimal syndrome-to-coset mappings. Surface codes possess inherent geometric structure
 169 ideal for neural learning, with local syndrome correlations and hierarchical error patterns that align
 170 perfectly with attention mechanisms capable of capturing both local and global correlations.
 171

172 4 SAQ DECODER

173 We address QEC problem: given syndrome measurements, predict recovery operations that restore
 174 correct logical states. Due to degeneracy, multiple errors yield identical syndromes, requiring de-
 175 coders that find logically equivalent recovery operations. To tackle this challenge, we propose a
 176 novel architecture consists of three sequential stages: (i) dual-stream representation construction,
 177 (ii) Syndrome-Logical Transformer Decoder (SLTD), (iii) the post-processing CPND stage and (iv)
 178 novel differentiable logical centric loss.
 179

180 The dual-stream representation construction stage takes syndrome measurements as input and gen-
 181 erates initial logical class estimates. These estimates, along with the original syndrome measurements,
 182 are then transformed into two token streams that serve as input to the SLTD. Using shared trans-
 183 former weights, the SLTD processes these streams with distinct attention patterns tailored for QEC:
 184 syndrome tokens capture local correlations between neighboring stabilizer measurements, while log-
 185 ical tokens integrate information globally to determine error classes. The dual-stream architecture
 186 explicitly models the asymmetric information flow in quantum decoding, from local syndrome vio-
 187 lations to global logical error determination. **This dual-stream approach, shares high-level similarity**
 188 **with architectures used for classical codes, such as CrossMPT (Park et al., 2024).** The SLTD outputs
 189 logical class predictions and qubit flip predictions, which are trained using differentiable logical cen-
 190 tric losses that approximate discrete GF(2), before being fed to the CPND stage. Subsequently, the
 191 CPND enforces syndrome consistency while preserving the transformer’s learned representations,
 192 ensuring valid QEC.
 193

194 4.1 STAGE 1: DUAL-STREAM REPRESENTATION CONSTRUCTION.

195 Given a syndrome vector $s \in \{-1, +1\}^m$, we first obtain an initial logical class estimate $\tilde{\ell} \in \mathbb{R}^{4^k}$
 196 through a shallow MLP $b_\phi : \{-1, +1\}^m \rightarrow \mathbb{R}^{4^k}$, expressed as
 197

$$\tilde{\ell} = b_\phi(s) \quad (5)$$

198 where 4^k represents the total number of logical equivalence classes for k logical qubits. The shallow
 199 MLP $b_\phi(s)$ provides informed priors about the most likely logical class, enabling the SLTD to refine
 200 these estimates rather than exploring the entire logical space from scratch. **Such a mapping, where a**
 201 **syndrome input is processed by a shallow feed-forward network, appeared in earlier works, notably**
 202 **the FFN layer in (Meinerz et al., 2022) and the initial noise estimator in QECC (Choukroun &**
 203 **Wolf, 2024).** Crucially, in our work, b_ϕ performs a global estimation of the logical class ($\tilde{\ell}$), serving
 204 as a global prior input to the Logical Stream (\mathbf{T}_L). This contrasts with related approaches that
 205 utilize these initial layers primarily for generating local physical error probabilities or extracting an
 206 initial prediction of the recovery operator. The design choice aligns with the stabilizer formalism,
 207 where error correction decisions are made purely based on syndrome information, independent of
 208 the protected quantum information. With both syndrome measurements s and initial logical class
 209 estimates $\tilde{\ell}$ available, we construct two complementary token streams that capture different aspects
 210 of the quantum decoding problem:
 211

212 Syndrome Stream Construction. Each syndrome measurement $s_i \in \{-1, 1\}$ for $i = 1 \dots m$ is
 213 mapped to a learned embedding $\mathbf{t}_{i,S}^{[0]} = s_i \mathbf{w}_i^S \in \mathbb{R}^d$ using learnable positional embeddings $\mathbf{w}_i^S \in \mathbb{R}^d$
 214 (where d is the embedding dimension), which collectively form the learnable syndrome embedding
 215 matrix $\mathbf{W}_S = [\mathbf{w}_1^S; \dots; \mathbf{w}_m^S] \in \mathbb{R}^{m \times d}$. A learnable global token $\mathbf{g} \in \mathbb{R}^d$ is then prepended
 to enable cross-syndrome information exchange, forming the complete syndrome stream: $\mathbf{T}_S^{[0]} =$

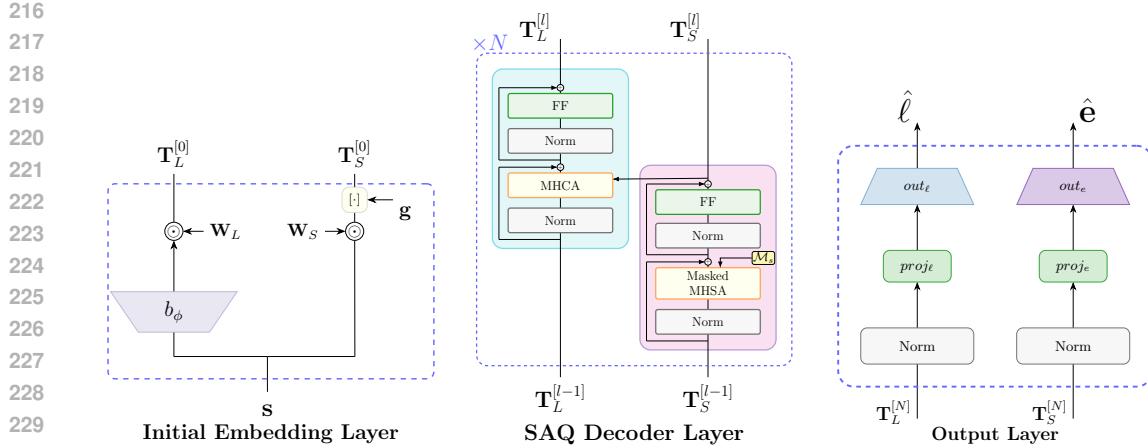


Figure 1: Architecture of SAQ-Decoder.

$[\mathbf{g}; \mathbf{t}_{1,S}^{[0]}, \dots, \mathbf{t}_{m,S}^{[0]}] \in \mathbb{R}^{(m+1) \times d}$. The global token enables efficient information aggregation across distant syndrome regions—essential for handling correlated noise and large error clusters.

Logical Stream Construction. Predicted logical class logits are embedded as $\mathbf{t}_{j,L}^{[0]} = \tilde{\ell}_j \mathbf{w}_j^L \in \mathbb{R}^d$ for $j = 1 \dots 4^k$ using learnable class-specific representations $\mathbf{w}_j^L \in \mathbb{R}^d$. These embeddings form the matrix $\mathbf{W}_L = [\mathbf{w}_1^L; \dots; \mathbf{w}_{4^k}^L] \in \mathbb{R}^{4^k \times d}$ and yield the logical token sequence $\mathbf{T}_L^{[0]} = [\mathbf{t}_{1,L}^{[0]}, \dots, \mathbf{t}_{4^k,L}^{[0]}] \in \mathbb{R}^{4^k \times d}$. The dual-stream design reflects that syndrome measurements encode local constraint violations while logical estimates capture global degeneracy patterns.

4.2 STAGE 2: SYNDROME-LOGICAL TRANSFORMER DECODER (SLTD)

Having constructed dual token streams, $\mathbf{T}_S^{[0]}$ and $\mathbf{T}_L^{[0]}$, the SLTD refines these representations through N transformer layers with asymmetric attention. We detail each computational step for an arbitrary layer l . Both token streams first undergo layer normalization (Ba et al., 2016) before attention computation. The normalized tokens are processed using an asymmetric attention mechanism that captures the fundamental information flow in QEC: syndrome measurements reflect local physical constraints, while logical error determination requires global integration. This design restricts syndrome attention to topological neighborhoods while allowing logical tokens global access, enabling efficient local-global information processing. Syndrome self-attention processes syndrome tokens through:

$$\mathbf{Q}_S^{[l-1]} = \tilde{\mathbf{T}}_S^{[l-1]} \mathbf{W}_Q^{[l]}; \quad \mathbf{K}_S^{[l-1]} = \tilde{\mathbf{T}}_S^{[l-1]} \mathbf{W}_K^{[l]}; \quad \mathbf{V}_S^{[l-1]} = \tilde{\mathbf{T}}_S^{[l-1]} \mathbf{W}_V^{[l]} \quad (6)$$

$$\mathbf{A}_S^{[l]} = \text{Softmax} \left(d^{-1/2} \left(\mathbf{Q}_S^{[l-1]} \mathbf{K}_S^{[l-1]}{}^T + \mathcal{M}_S \right) \right) \mathbf{V}_S^{[l-1]} \quad (7)$$

We introduce a novel syndrome attention mask \mathcal{M}_S that enforces topological constraints:

$$\mathcal{M}_S[i, j] = \begin{cases} 0 & \text{if } (\mathbf{H}\mathbf{H}^T + \mathbf{I}_m)_{i,j} > 0 \text{ or } i = 0 \text{ or } j = 0 \\ -\infty & \text{otherwise} \end{cases} \quad (8)$$

where $\mathbf{H} \in \{0, 1\}^{m \times n}$ is the parity-check matrix and \mathbf{I}_m is the identity matrix. The mask permits attention between: (i) each syndrome and itself (\mathbf{I}_m), (ii) syndrome pairs that share physical qubits ($\mathbf{H}\mathbf{H}^T > 0$), and (iii) all syndromes with the global aggregation token (corresponding to $i, j = 0$). For the logical stream, logical cross-attention enables logical tokens to attend to the updated syndrome representations.

$$\mathbf{Q}_L^{[l-1]} = \tilde{\mathbf{T}}_L^{[l-1]} \mathbf{W}_Q^{[l]}; \quad \mathbf{K}_S^{[l]} = \mathbf{T}_S^{[l]} \mathbf{W}_K^{[l]}; \quad \mathbf{V}_S^{[l]} = \mathbf{T}_S^{[l]} \mathbf{W}_V^{[l]} \quad (9)$$

$$\mathbf{A}_L^{[l]} = \text{Softmax} \left(d^{-1/2} \left(\mathbf{Q}_L^{[l-1]} \mathbf{K}_S^{[l]}{}^T \right) \right) \mathbf{V}_S^{[l]} \quad (10)$$

270 Logical tokens employ unrestricted attention patterns, enabling global syndrome integration. Following attention computation, residual connections combine the attention outputs with input tokens. 271 Both streams pass through standard FFNs with $4\times$ expansion and GELU activation (Hendrycks & 272 Gimpel, 2016). Finally, a second residual connection yields the layer outputs. This process transforms 273 initial token representations into refined syndrome and logical embeddings that capture both 274 local correlations and global quantum code structure. 275

276 **Output Generation.** Final token representations are normalized and projected to outputs, where 277 syndrome tokens (excluding the global token) produce physical error predictions $\hat{\mathbf{e}} = \mathbf{W}_{\text{out},S} \cdot$ 278 $(\tilde{\mathbf{T}}_{S,\text{no-global}}^{[N]} \cdot \mathbf{w}_{\text{pool},S})$ and logical tokens generate class $\hat{\ell} = \mathbf{W}_{\text{out},L} \cdot (\tilde{\mathbf{T}}_L^{[N]} \cdot \mathbf{w}_{\text{pool},L})$. 279

280 4.3 STAGE 3: CONSTRAINT-PROJECTED NULLSPACE DESCENT (CPND)

282 Neural decoders face a constraint challenge: networks learn correlations but cannot guarantee recovery 283 operators satisfy syndrome consistency over GF(2). CPND bridges this gap through constraint 284 enforcement preserving learned representations. It operates via (i) exact projection ensuring 285 syndrome consistency, and (ii) greedy descent using transformer probabilities to guide optimization 286 toward lower-weight solutions. A complete derivation and description of the method is provided in 287 Appendix B. **The raw prediction $\hat{\mathbf{e}}$ (its hard decision, \mathbf{e}^{pred}) is not guaranteed to satisfy the input** 288 **syndrome constraint.** Furthermore, the direct logical class prediction $\hat{\ell}$ provides a slightly superior 289 estimate of the logical class than the class implied by the raw error prediction. The definitive output, 290 $\mathbf{e}(\mathbf{s})$, is therefore produced by the CPND stage, which enforces two critical constraints (i) the 291 **syndrome constraint $\mathbf{s} = \mathbf{H}\mathbf{e}(\mathbf{s})$ and (ii) the target logical class $\hat{\ell} = \mathbf{L}\mathbf{e}(\mathbf{s})$, where $\mathbf{L} \in \{0, 1\}^{2k \times n}$** 292 **encodes the logical operators. This stage uses the transformer outputs $\hat{\mathbf{e}}$ as informative priors.**

293 4.4 LOGICAL-CENTRIC LOSS DESIGN

295 Our training objective combines three loss terms addressing quantum degeneracy by minimizing 296 LER via informed priors, direct classification, and differentiable constraint approximation. 297

298 **Informed logical priors loss** trains the auxiliary MLP $b_\phi(\mathbf{s})$ to map syndromes to logical classes:

$$299 \mathcal{L}_{LP} = \text{CE}(\hat{\ell}, y_{\text{class}}) \quad (11)$$

300 where y_{class} encodes the true logical syndrome as a class index, providing informed priors to guide 301 transformer processing. 302

303 **Logical class prediction loss** supervises the transformer’s refined logical output:

$$304 \mathcal{L}_{LC} = \text{CE}(\hat{\ell}, y_{\text{class}}) \quad (12)$$

306 ensuring accurate logical classification after cross-attention processing. 307

308 **Logical-minimum entropy loss.** A key challenge in neural quantum decoding is enforcing the 309 discrete constraint that recovery operators must preserve logical information. Specifically, we 310 require the true error \mathbf{e}^{true} and the recovery operator \mathbf{e}^{pred} satisfy $\mathbf{L}(\mathbf{e}^{\text{true}} \oplus \mathbf{e}^{\text{pred}}) = \mathbf{0}$ over 311 GF(2), where \mathbf{e}^{pred} is hard decision on the logits $\hat{\mathbf{e}}$ and the residual error $\mathbf{r} = \mathbf{e}^{\text{true}} \oplus \mathbf{e}^{\text{pred}}$ 312 must be a stabilizer for successful error recovery. Our contribution is a differentiable approximation 313 to this discrete constraint. We model the probability that each residual bit is flipped as 314 $\Pr(r_i = 1 | e_i^{\text{true}}) = q_i = \sigma((1 - 2e_i^{\text{true}})\hat{e}_i)$ for $i = 1, \dots, n$ and σ is the sigmoid function. For 315 each logical operator \mathbf{L}_i , the probability of violating the logical constraint is:

$$316 \Pr(\mathbf{L}_i \cdot \mathbf{r} = 1) = \Pr\left(\bigoplus_{j \in \chi_i} \mathbf{L}_{i,j} r_j = 1\right) = \frac{1}{2} \left[1 - \prod_{j \in \chi_i} (1 - 2q_j) \right] \quad (13)$$

318 where χ_i are the non zero elements set in \mathbf{L}_i . Our logical-minimum entropy loss minimizes the 319 expected number of logical violations (full derivation is provided in Appendix A): 320

$$321 \mathcal{L}_{\text{Entropy}} = -\frac{1}{2k} \sum_{i=1}^{2k} \log(1 - \Pr(\mathbf{L}_i \cdot \mathbf{r} = 1)) \quad (14)$$

323 The combined objective is $\mathcal{L} = \lambda_{LP}\mathcal{L}_{LP} + \lambda_{LC}\mathcal{L}_{LC} + \lambda_{\text{Entropy}}\mathcal{L}_{\text{Entropy}}$.

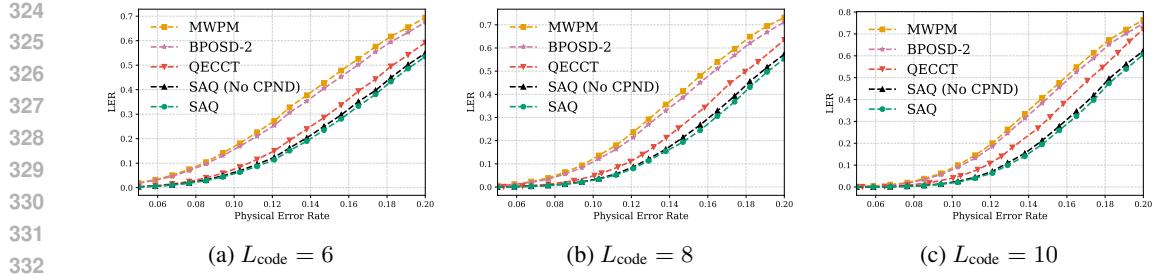


Figure 2: Toric code - depolarizing noise model results

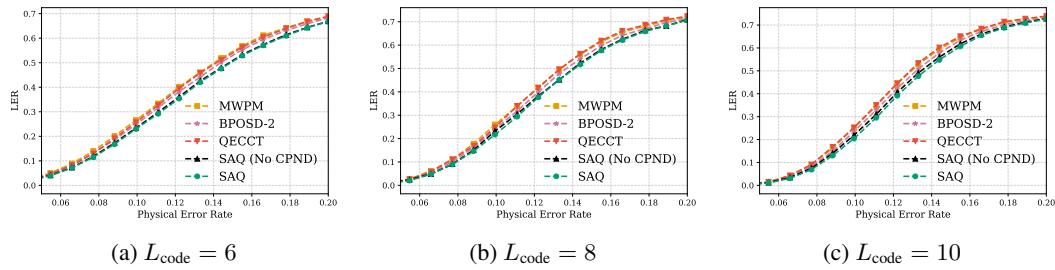


Figure 3: Toric code - independent noise model results

5 EXPERIMENTS AND RESULTS

To empirically validate the adaptability of the SAQ-Decoder to distinct lattice geometries, we evaluated our method across diverse code families and noise types. We primarily focused on topological codes due to their prominence in fault-tolerant quantum computing (deMarti iOlius et al., 2024), specifically toric codes (Kitaev, 1997) and rotated surface codes (Bombín & Martin-Delgado, 2007). To further demonstrate the framework’s broad applicability, we included an evaluation of the Repetition Code (Peres, 1985) and the Color Code (Bombín & Martin-Delgado, 2006) using stim (Gidney, 2021). We evaluated our method under three well-studied noise models: independent noise, depolarizing noise and circuit noise. Detailed descriptions of the code constructions are provided in Appendix C, training details and hyperparameters are provided in Reproducibility Statement. We evaluate our approach against three key baselines: the QECCT (Choukroun & Wolf, 2024), a state-of-the-art neural decoder that outperforms classical methods, Belief Propagation with Order-2 Ordered Statistics Decoder (BPOSD-2) (Roffe et al., 2020), and MWPM algorithm (Fowler, 2013), the gold standard classical decoder for surface codes. The BPOSD family of decoders is widely used, although its worst-case complexity scales as $\mathcal{O}(n^3)$ (deMarti iOlius et al., 2024), our implementation leverages the optimized implementation (Roffe, 2022) to provide a strong, practical classical benchmark for quantum codes. Although MWPM has a worst-case complexity $\mathcal{O}(n^3 \log n)$ (deMarti iOlius et al., 2024), we use the optimized implementation from Higgott (2022) which achieves near-quadratic complexity and serves as the primary classical benchmark for topological codes. We also consider the performance of the raw Syndrome Stream prediction, termed SAQ-Decoder (No CPND), as an architectural baseline. As our primary evaluation metric, we use the LER, which measures the probability that the QEC process fails to properly recover the encoded logical information. We also evaluate the code threshold, i.e., the critical noise rate below which increasing code distance improves performance.

5.1 EXPERIMENTAL RESULTS

The experiments span code lengths from $L_{\text{code}} = 3$ to 11 , comparable to those evaluated in QECCT. These results demonstrate that SAQ-Decoder achieves superior decoding performance compared to state-of-the-art baselines across diverse QEC scenarios. Figure 2 presents the performance of toric codes under depolarizing noise, where SAQ-Decoder exhibits striking advantages. Our method demonstrates consistent superiority across all code distances, with particularly dramatic improvements at $L_{\text{code}} = 10$ where SAQ-Decoder achieves 25 – 50% lower LER compared to MWPM

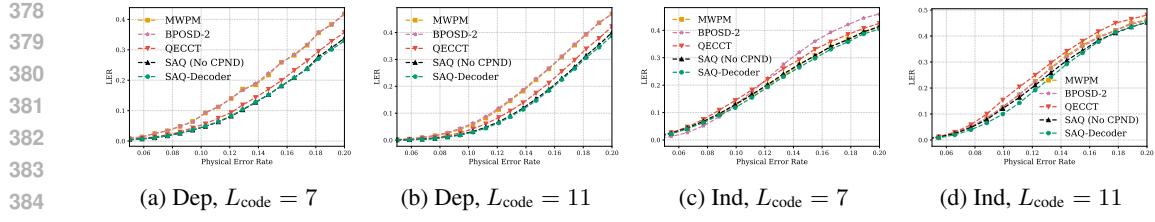


Figure 4: Rotated surface code results

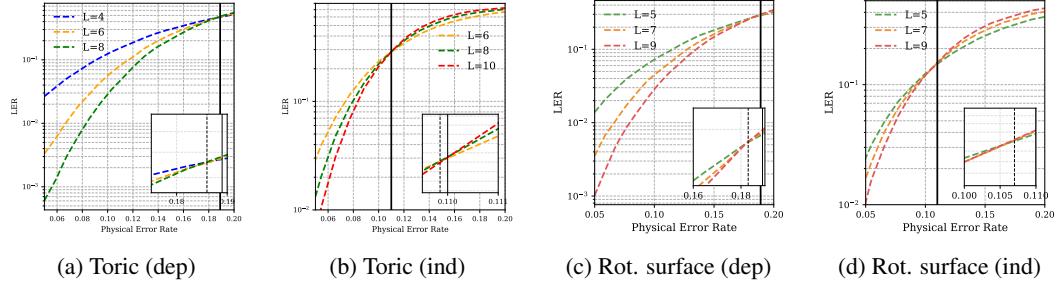


Figure 5: Error threshold analysis across topological codes and noise models.

and **BPOSD-2** at physical error rates above 0.15. The scalability benefits are clearly evident as the performance gap widens from $L_{\text{code}} = 6$ to $L_{\text{code}} = 10$. Similarly, under independent noise in Figure 3, SAQ-Decoder maintains robust performance across all code sizes, with particularly notable advantages at $L_{\text{code}} = 8$ and $L_{\text{code}} = 10$. Conversely, QECCT exhibits minimal performance gains relative to MWPM and **BPOSD-2**. Figure 4 demonstrates our method’s performance on rotated surface codes under independent and depolarizing noise models. Under depolarization noise in Figures 4a–4b, SAQ-Decoder consistently maintains lower LER than QECCT, **BPOSD-2** and MWPM across the entire noise range. Under independent noise conditions in Figures 4c–4d, SAQ-Decoder demonstrates even more substantial improvements, while QECCT exhibits inferior performance compared to MWPM and **BPOSD-2**. These results validate the effectiveness of our learned decoder with post-processing approach across the spectrum of topological QEC codes and noise models. We attribute SAQ-Decoder’s superior performance over QECCT to two key factors: (i) while QECCT focuses on reducing Bit Error Rate (BER), which is not the primary objective in QEC, SAQ-Decoder directly optimizes for logical error suppression; and (ii) our novel architecture combines direct logical class prediction with qubit flip priors, integrating these observations in a post-processing stage that guarantees syndrome consistency—unlike QECCT, which only predicts qubit-level flips without ensuring this crucial constraint. **Crucially, the SAQ-Decoder (No CPND) variant consistently outperforms all classical and neural baselines across the entire noise spectrum, demonstrating the power of the dual-stream architecture alone.** The SAQ-Decoder achieves error thresholds of 10.99% and 10.7% for toric and rotated surface codes respectively under independent noise, and error thresholds of 18.6% and 18.3% under depolarizing noises. For the toric code under depolarizing noise (Figure 5a), this threshold of 18.6% approaches the ML bound of 18.9% (Bombin et al., 2012) while maintaining linear complexity in syndrome size. This significantly outperforms **BPOSD-2** and MWPM (16%) (Wang et al., 2009) and exceeds the previous QECCT result (17.8%). For toric codes under independent noise (Figure 5b), we achieve a threshold of 10.99% while significantly outperforming **BPOSD-2 (10.8%)** and MWPM (10.3%) (Wang et al., 2003; Higgott, 2022), essentially reaching the ML threshold estimated between 10.9% and 11.0% (ecz, 2024). For rotated surface codes, SAQ-Decoder demonstrates remarkable consistency with the toric code performance. Under depolarizing noise, we achieve a threshold of 18.3% (Figure 5c), significantly exceeding both QECCT (17.2%), **BPOSD-2 (14.1%, based on our experiments)** and MWPM (14.0%, (deMarti iOlius et al., 2024)), while under independent noise, the threshold reaches 10.7% (Figure 5d) where QECCT achieved 10.3%, **BPOSD-2 10.2%** and MWPM 10.6%, based on our experiments. These findings indicate that our approach generalizes effectively across different topological code geometries without compromising performance. **A detailed comparison of our depolarizing noise threshold against other neural and classical decoders is provided in Appendix E.**

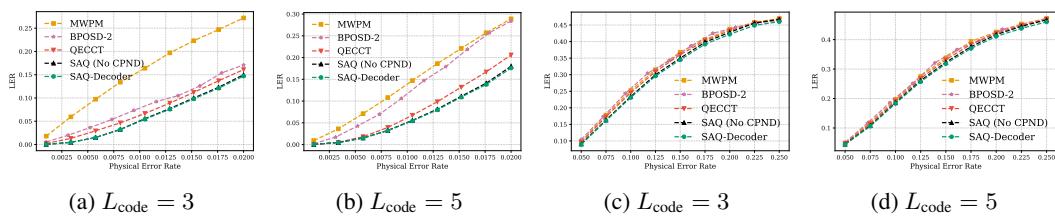


Figure 6: Color code and repetition code with circuit noise results. (a)–(b) are color code results and (c)–(d) are repetition code results.

To rigorously validate the generalizability of our SAQ-Decoder framework beyond surface codes, we conducted new experiments on two distinct code families: the color code ($L_{code} = 3, 5$) and the repetition code ($L_{code} = 3, 5$). Critically, both experiments were performed under realistic, multi-round circuit-level noise models. These experiments demonstrate robustness confirm our framework’s claim of generality, as it is fundamentally agnostic to the code family. Figure 6a illustrates the LER performance on a distance 3 color code with 2 rounds of circuit noise, demonstrating robustness with high marginal gaps from the baselines. In Figure 6b, SAQ-Decoder significantly outperforms all baselines across the entire range of physical error rates. For example, at the highest analyzed rate of $p = 0.02$, SAQ-Decoder achieves a LER that is 17.0% lower than QECCT and 64.2% lower than the MWPM baseline. Figure 6c presents the LER results for a distance 3 repetition code with 3 rounds of circuit noise, showing that the decoder remains robust with performance gaps relative to the baseline methods. Similarly, Figure 6d shows the results for a distance 5 repetition code with 3 rounds of circuit noise. While the performance of all decoders is closer on this code, SAQ-Decoder consistently maintains the lowest logical error rate. At $p = 0.25$, SAQ-Decoder achieves a LER that is 1.83% lower than QECCT and 2.61% lower than MWPM.

5.2 ABLATION STUDIES AND ANALYSIS

To understand the contribution of individual architectural components in our framework, we conduct comprehensive ablation studies on a toric code with distance $L_{code} = 6$ under depolarizing noise. These studies systematically evaluate the impact of the global token, multi-objective loss formulation, and dual-stream architecture on model performance and training dynamics.

Dual-Stream Study. To validate our dual-stream design, we conducted an ablation study examining four architectural variants: (1) separate weights per stream within a layer instead of weight sharing across the decoder stack, (2) symmetric cross-attention where both streams attend to each other rather than our asymmetric design, (3) logical-stream-only architecture removing syndrome processing, and (4) syndrome-stream-only architecture removing logical processing, as shown in Figure 7a. The results reveal a clear performance hierarchy from worst to best: logical-stream-only, bidirectional cross-attention, syndrome-stream-only, no weight sharing, and our full SAQ-Decoder architecture. These ablations demonstrate that single-stream variants perform poorly, weight sharing across layers slightly improves efficiency while halving the parameter count, and asymmetric information flow from syndromes to logical inference outperforms symmetric attention, validating the importance of our specialized dual-stream processing design for effective QEC.

Multi-Loss Ablation. To investigate the relative importance of different training objectives in our framework, we conduct an ablation study on the loss function components, varying the weighting parameters λ_{LP} , λ_{LC} , and $\lambda_{Entropy}$ for logical prior, logical classification, and entropy regularization respectively, as shown in Figure 7b. The full multi-objective formulation ($\lambda_{LP}, \lambda_{LC}, \lambda_{Entropy} = 0.2, 1.0, 1.0$) achieves the lowest final average LER of 1.972e-01. Systematic removal of individual components reveals measurable performance degradation: removing logical classification increases LER to 2.113e-01 (+7.2%), removing logical prior to 2.055e-01 (+4.2%), and removing entropy regularization to 2.047e-01 (+3.8%). These results confirm that all three objectives contribute meaningfully to the model’s QEC performance, with logical classification being the most critical component.

Effect of Global Token. The inclusion of a global token (*SAQ-Decoder*) improves both training dynamics and final performance compared to the masked architecture without a global token (*Mask*

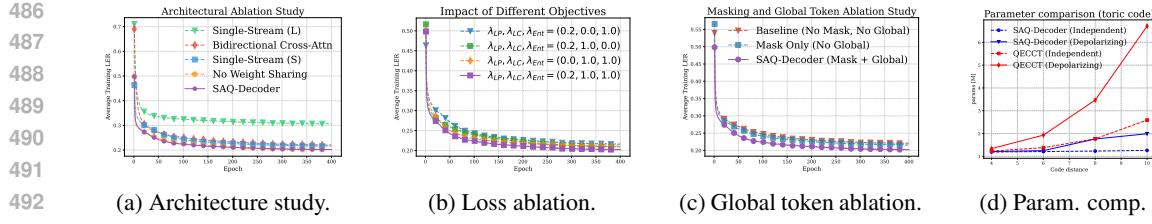


Figure 7: Rotated surface code results

Only), as shown in Figure 7c. The full SAQ-Decoder achieves faster convergence and lower final LER (~ 0.19 versus ~ 0.21 average LER). Notably, attention masking itself provides substantial benefits, with the mask-only architecture significantly outperforming the unmasked baseline (*Baseline*, neither mask nor global token). The global token acts as a syndrome-level aggregator, enabling the model to capture global syndrome patterns that local interactions might miss.

Computational Complexity. Our model achieves $O(Nmd^2)$ time complexity per forward pass by exploiting sparse attention patterns, avoiding the naive $O(Nm^2d)$ complexity of dense attention. The subsequent CPND refinement requires $O(m)$ time for online inference. This yields optimal linear scaling in the syndrome length and quadratic scaling in code distance. The 2^{2k} embedding term is negligible since k is small in practice (e.g., $k = 1$ for surface codes and $k = 2$ for toric codes). Our numerical comparison in Table 1 demonstrates that the SAQ-Decoder achieves significantly lower FLOPs and faster inference time compared to QECCT, validating its suitability for real-time QEC decoding. Extended data is available in Appendix F.

Table 1: Abridged Numerical Complexity Comparison (Toric Code)

Metric	L=6 (Depol)		L=10 (Depol)	
	SAQ-Decoder	QECCT	SAQ-Decoder	QECCT
Total FLOPs [G ↓]	0.21	1.05	0.80	4.10
Inference Time [ms ↓]	1.2	7.0	4.5	20.1

Parameter Efficiency. Figure 7d demonstrates that SAQ-Decoder for toric code maintains near-constant parameter count ($1.2 - 1.9M$) across code distances $L_{code} = 4$ to $L_{code} = 10$ for both noise models, exhibiting excellent scalability. In contrast, QECCT suffers from significant parameter growth, reaching $6.71M$ parameters at $L_{code} = 10$ under depolarizing noise, which is a $3.5\times$ increase over our method. This difference stems from fundamental architectural choices: while QECCT processes both qubit and syndrome information through transformer layers, our approach leverages logical class prediction to decouple syndrome processing from the full qubit space dimensionality. Although both methods employ sparse attention patterns, SAQ-Decoder’s logical class embedding strategy avoids the quadratic scaling in the combined qubit-syndrome space that affects QECCT. The parameter efficiency of SAQ-Decoder directly translates to reduced memory footprint, faster training convergence, and improved deployability on quantum computing systems, making it particularly attractive for fault-tolerant implementations.

6 CONCLUSION

We introduced SAQ-Decoder, a unified QEC framework that combines learned syndrome-to-error mappings with exact syndrome constraint satisfaction. Our dual-stream architecture with asymmetric attention captures the geometric structure of stabilizer codes while maintaining linear computational complexity in syndrome size. Experimental results demonstrate error thresholds of 10.99% and 18.6% for toric codes under independent and depolarizing noise respectively, essentially approaching ML bounds while significantly outperforming existing neural and classical decoders. The framework’s parameter efficiency and general applicability to any stabilizer code family make it a practical solution for scaling fault-tolerant quantum computation, bridging the critical gap between neural pattern recognition and the structured optimization requirements of QEC.

540 REPRODUCIBILITY STATEMENT
541542 **Logical-minimum entropy loss.** Due to page limitations, we provide the full derivation and expo-
543 sition of the logical-minimum entropy loss in Appendix A.544 **CPND stage.** A detailed derivation and exposition of the CPND stage is presented in Appendix B.545 **Training Details.** For reproducibility, we detail our complete training methodology and hyperpa-
546 rameters in Appendix D, with full source code provided in the Supplementary Materials.549 REFERENCES
550551 Suppressing quantum errors by scaling a surface code logical qubit. *Nature*, 614(7949):676–681,
552 2023.553 Toric code. In Victor V. Albert and Philippe Faist (eds.), *The Error Correction Zoo*. 2024. URL
554 <https://errorcorrectionzoo.org/c/toric>.555 H Aghaee Rad, T Ainsworth, RN Alexander, B Altieri, MF Askarani, R Baby, L Banchi, BQ Bara-
556 giola, JE Bourassa, RS Chadwick, et al. Scaling and networking a modular photonic quantum
557 computer. *Nature*, 638(8052):912–919, 2025.559 Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak
560 Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum supremacy using
561 a programmable superconducting processor. *Nature*, 574(7779):505–510, 2019.562 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint*
563 *arXiv:1607.06450*, 2016.565 Jueming Bao, Zhaorong Fu, Tanumoy Pramanik, Jun Mao, Yulin Chi, Yingkang Cao, Chonghao
566 Zhai, Yifei Mao, Tianxiang Dai, Xiaojiong Chen, et al. Very-large-scale integrated quantum
567 graph photonics. *Nature Photonics*, 17(7):573–581, 2023.568 Johannes Bausch, Andrew W Senior, Francisco JH Heras, Thomas Edlich, Alex Davies, Michael
569 Newman, Cody Jones, Kevin Satzinger, Murphy Yuezhen Niu, Sam Blackwell, et al. Learning
570 high-accuracy error decoding for quantum processors. *Nature*, 635(8040):834–840, 2024.572 Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin
573 tossing. *Theoretical computer science*, 560:7–11, 2014.574 Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav
575 Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. Noisy
576 intermediate-scale quantum algorithms. *Reviews of Modern Physics*, 94(1):015004, 2022.578 Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, vol-
579 ume 4. Springer, 2006.580 Dolev Bluvstein, Simon J Evered, Alexandra A Geim, Sophie H Li, Hengyun Zhou, Tom Manovitz,
581 Sepehr Ebadi, Madelyn Cain, Marcin Kalinowski, Dominik Hangleiter, et al. Logical quantum
582 processor based on reconfigurable atom arrays. *Nature*, 626(7997):58–65, 2024.584 Héctor Bombín and Miguel A Martin-Delgado. Optimal resources for topological two-dimensional
585 stabilizer codes: Comparative study. *Physical Review A—Atomic, Molecular, and Optical Physics*,
586 76(1):012305, 2007.587 Hector Bombin and Miguel Angel Martin-Delgado. Topological quantum distillation. *Physical*
588 *review letters*, 97(18):180501, 2006.589 Héctor Bombin, Ruben S Andrist, Masayuki Ohzeki, Helmut G Katzgraber, and Miguel A Martin-
590 Delgado. Strong resilience of topological codes to depolarization. *Physical Review X*, 2(2):
591 021004, 2012.593 Sergey Bravyi, Martin Suchara, and Alexander Vargo. Efficient algorithms for maximum likelihood
decoding in the surface code. *Physical Review A*, 90(3):032326, 2014.

594 Nikolas P Breuckmann and Jens Niklas Eberhardt. Quantum low-density parity-check codes. *PRX quantum*, 2(4):040101, 2021.

595

596

597 Jonathan J Burnett, Andreas Bengtsson, Marco Scigliuzzo, David Neepe, Marina Kudra, Per Delsing, and Jonas Bylander. Decoherence benchmarking of superconducting qubits. *npj Quantum Information*, 5(1):54, 2019.

598

599

600 Abdulkadir Çelikkanat, Nikolaos Nakis, and Morten Mørup. Piecewise-velocity model for learning 601 continuous-time dynamic node representations. *arXiv preprint arXiv:2212.12345*, 2022.

602

603 Marco Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and Patrick J Coles. Chal- 604 lenges and opportunities in quantum machine learning. *Nature computational science*, 2(9):567– 605 576, 2022.

606 Christopher Chamberland, Guanyu Zhu, Theodore J Yoder, Jared B Hertzberg, and Andrew W 607 Cross. Topological and subsystem codes on low-degree graphs with flag qubits. *Physical Re- 608 view X*, 10(1):011022, 2020.

609

610 Yoni Choukroun and Lior Wolf. Deep quantum error correction. In *Proceedings of the AAAI Con- 611 ference on Artificial Intelligence*, volume 38, pp. 64–72, 2024.

612 Laia Domingo Colomer, Michalis Skotiniotis, and Ramon Muñoz-Tapia. Reinforcement learning 613 for optimal error correction of toric codes. *Physics Letters A*, 384(17):126353, 2020.

614

615 Nicolas Delfosse and Naomi H Nickerson. Almost-linear time decoding algorithm for topological 616 codes. *Quantum*, 5:595, 2021.

617

618 Antonio deMarti iOlius, Patricio Fuentes, Román Orús, Pedro M Crespo, and Josu Etxezarreta Mar- 619 tinez. Decoding algorithms for surface codes. *Quantum*, 8:1498, 2024.

620

621 Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum memory. *Journal of Mathematical Physics*, 43(9):4452–4505, 2002.

622

623 Jack Edmonds. Paths, trees, and flowers. *Canadian Journal of mathematics*, 17:449–467, 1965.

624

625 Artur K Ekert. Quantum cryptography based on bell’s theorem. *Physical review letters*, 67(6):661, 626 1991.

627

628 Josu Etxezarreta Martinez, Patricio Fuentes, Pedro Crespo, and Javier Garcia-Frias. Time-varying 629 quantum channel models for superconducting qubits. *npj Quantum Information*, 7(1):115, 2021.

630

631 Richard P Feynman. Simulating physics with computers. In *Feynman and computation*, pp. 133– 153. cRc Press, 2018.

632

633 David Fitzek, Mattias Eliasson, Anton Frisk Kockum, and Mats Granath. Deep q-learning decoder 634 for depolarizing noise on the toric code. *Physical Review Research*, 2(2):023230, 2020.

635

636 Marc PC Fossorier and Shu Lin. Soft-decision decoding of linear block codes based on ordered 637 statistics. *IEEE Transactions on information Theory*, 41(5):1379–1396, 1995.

638

639 Austin G Fowler. Minimum weight perfect matching of fault-tolerant topological quantum error 640 correction in average $o(1)$ parallel time. *arXiv preprint arXiv:1307.1740*, 2013.

641

642 Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Surface codes: 643 Towards practical large-scale quantum computation. *Physical Review A—Atomic, Molecular, and 644 Optical Physics*, 86(3):032324, 2012a.

645

646 Austin G Fowler, Adam C Whiteside, and Lloyd CL Hollenberg. Towards practical classical pro- 647 cessing for the surface code. *Physical review letters*, 108(18):180501, 2012b.

648

649 Craig Gidney. Stim: a fast stabilizer circuit simulator. *Quantum*, 5:497, July 2021. ISSN 650 2521-327X. doi: 10.22331/q-2021-07-06-497. URL <https://doi.org/10.22331/q-2021-07-06-497>.

648 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
 649 MIT press Cambridge, 2016.
 650

651 Daniel Gottesman. *Stabilizer codes and quantum error correction*. California Institute of Technol-
 652 ogy, 1997.

653 Lov K Grover. A fast quantum mechanical algorithm for database search. In *Proceedings of the*
 654 *twenty-eighth annual ACM symposium on Theory of computing*, pp. 212–219, 1996.
 655

656 Robin Harper, Steven T Flammia, and Joel J Wallman. Efficient learning of quantum noise. *Nature*
 657 *Physics*, 16(12):1184–1188, 2020.

658 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
 659 *arXiv:1606.08415*, 2016.
 660

661 Oscar Higgott. Pymatching: A python package for decoding quantum codes with minimum-weight
 662 perfect matching. *ACM Transactions on Quantum Computing*, 3(3):1–16, 2022.

663 Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni, Hart-
 664 mut Neven, Ryan Babbush, Richard Kueng, John Preskill, et al. Quantum advantage in learning
 665 from experiments. *Science*, 376(6598):1182–1186, 2022.

666 Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse ising model.
 667 *Physical Review E*, 58(5):5355, 1998.

668 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 669 *arXiv:1412.6980*, 2014.

670 A Yu Kitaev. Quantum computations: algorithms and error correction. *Russian Mathematical*
 671 *Surveys*, 52(6):1191, 1997.

672 A Yu Kitaev. Fault-tolerant quantum computation by anyons. *Annals of physics*, 303(1):2–30, 2003.

673 Matthias Klusch, Jörg Lässig, Daniel Müssig, Antonio Macaluso, and Frank K Wilhelm. Quantum
 674 artificial intelligence: a brief survey. *KI-Künstliche Intelligenz*, 38(4):257–276, 2024.

675 Stefan Krastanov and Liang Jiang. Deep neural network probabilistic decoder for stabilizer codes.
 676 *Scientific reports*, 7(1):11003, 2017.

677 Mario Krenn, Jonas Landgraf, Thomas Foesel, and Florian Marquardt. Artificial intelligence and
 678 machine learning for quantum technologies. *Physical Review A*, 107(1):010101, 2023.

679 Kao-Yueh Kuo and Chung-Chin Lu. On the hardnesses of several quantum decoding problems.
 680 *Quantum Information Processing*, 19(4):123, 2020.

681 Thaddeus D Ladd, Fedor Jelezko, Raymond Laflamme, Yasunobu Nakamura, Christopher Monroe,
 682 and Jeremy Lloyd O’Brien. Quantum computers. *nature*, 464(7285):45–53, 2010.

683 Tzu-Hao Lin and Ching-Yi Lai. Union-intersection union-find for decoding depolarizing errors in
 684 topological codes. *arXiv preprint arXiv:2506.14745*, 2025.

685 Ye-Hua Liu and David Poulin. Neural belief-propagation decoders for quantum error-correcting
 686 codes. *Physical review letters*, 122(20):200501, 2019.

687 Seth Lloyd. Universal quantum simulators. *Science*, 273(5278):1073–1078, 1996.

688 David F Locher, Lorenzo Cardarelli, and Markus Müller. Quantum error correction with quantum
 689 autoencoders. *Quantum*, 7:942, 2023.

690 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv*
 691 *preprint arXiv:1608.03983*, 2016.

692 Arshpreet Singh Maan and Alexandru Paler. Machine learning message-passing for the scalable
 693 decoding of qldpc codes. *npj Quantum Information*, 11(1):78, 2025.

702 David JC MacKay, Graeme Mitchison, and Paul L McFadden. Sparse-graph codes for quantum
 703 error correction. *IEEE Transactions on Information Theory*, 50(10):2315–2330, 2004.
 704

705 Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi Askarani, Fabien Rortais, Trevor Vincent,
 706 Jacob FF Bulmer, Filippo M Miatto, Leonhard Neuhaus, Lukas G Helt, Matthew J Collins, et al.
 707 Quantum computational advantage with a programmable photonic processor. *Nature*, 606(7912):
 708 75–81, 2022.

709 Easwar Magesan and Jay M Gambetta. Effective hamiltonian models of the cross-resonance gate.
 710 *Physical Review A*, 101(5):052308, 2020.
 711

712 Nishad Maskara, Aleksander Kubica, and Tomas Jochym-O’Connor. Advantages of versatile neural-
 713 network decoding for topological codes. *Physical Review A*, 99(5):052351, 2019.

714 Kai Meinerz, Chae-Yeun Park, and Simon Trebst. Scalable neural decoder for topological surface
 715 codes. *Physical Review Letters*, 128(8):080505, 2022.

716

717 Michael A Nielsen and Isaac L Chuang. *Quantum computation and quantum information*. Cambridge
 718 university press, 2010.

719 Pavel Panteleev and Gleb Kalachev. Quantum ldpc codes with almost linear minimum distance.
 720 *IEEE Transactions on Information Theory*, 68(1):213–229, 2021.
 721

722 Seong-Joon Park, Hee-Youl Kwak, Sang-Hyo Kim, Yongjune Kim, and Jong-Seon No. Crossmpt:
 723 Cross-attention message-passing transformer for error correcting codes. *arXiv preprint*
 724 *arXiv:2405.01033*, 2024.

725 Judea Pearl. Fusion, propagation, and structuring in belief networks. In *Probabilistic and Causal
 726 Inference: The Works of Judea Pearl*, pp. 139–188. 2022.

727

728 Asher Peres. Reversible logic and quantum computers. *Physical review A*, 32(6):3266, 1985.

729

730 David Poulin, Jean-Pierre Tillich, and Harold Ollivier. Quantum serial turbo codes. *IEEE Transac-
 731 tions on Information Theory*, 55(6):2776–2798, 2009.

732 John Preskill. Quantum computing and the entanglement frontier. *arXiv preprint arXiv:1203.5813*,
 733 2012.

734 John Preskill. Quantum computing in the nisq era and beyond. *arXiv preprint arXiv:1801.00862*,
 735 2018.

736 Joschka Roffe. LDPC: Python tools for low density parity check codes, 2022. URL <https://pypi.org/project/ldpc/>.

737

738 Joschka Roffe, David R White, Simon Burton, and Earl Campbell. Decoding across the quantum
 739 low-density parity-check code landscape. *Physical Review Research*, 2(4):043423, 2020.

740

741 Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In *Proceed-
 742 ings 35th annual symposium on foundations of computer science*, pp. 124–134. Ieee, 1994.

743

744 Peter W Shor. Scheme for reducing decoherence in quantum computer memory. *Physical review A*,
 745 52(4):R2493, 1995.

746

747 Andrew Steane. Quantum computing. *Reports on Progress in Physics*, 61(2):117, 1998.

748

749 Ryan Sweke, Markus S Kesselring, Evert PL van Nieuwenburg, and Jens Eisert. Reinforcement
 750 learning decoders for fault-tolerant quantum computation. *Machine Learning: Science and Tech-
 751 nology*, 2(2):025005, 2020.

752

753 Barbara M Terhal. Quantum error correction for quantum memories. *Reviews of Modern Physics*,
 87(2):307–346, 2015.

754

755 Giacomo Torlai and Roger G Melko. Neural decoder for topological codes. *Physical review letters*,
 119(3):030501, 2017.

756 Savvas Varsamopoulos, Ben Criger, and Koen Bertels. Decoding small surface codes with feedfor-
 757 ward neural networks. *Quantum Science and Technology*, 3(1):015004, 2017.
 758

759 Savvas Varsamopoulos, Koen Bertels, and Carmen Garcia Almudever. Comparing neural network
 760 based decoders for the surface code. *IEEE Transactions on Computers*, 69(2):300–311, 2019.
 761

762 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 763 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 764 tion processing systems*, 30, 2017.
 765

766 K Veeresh, S Deepak, and T Srinivas. RL-qec: Harnessing reinforcement learning for quantum error
 767 correction advancements. In *2024 International Conference on Trends in Quantum Computing
 768 and Emerging Business Technologies*, pp. 1–5. IEEE, 2024.
 769

770 Chenyang Wang, Jim Harrington, and John Preskill. Confinement-higgs transition in a disordered
 771 gauge theory and the accuracy threshold for quantum memory. *Annals of Physics*, 303(1):31–58,
 772 2003.
 773

774 David S Wang, Austin G Fowler, Ashley M Stephens, and Lloyd CL Hollenberg. Threshold error
 775 rates for the toric and surface codes. *arXiv preprint arXiv:0905.0531*, 2009.
 776

777 Zihao Wang and Hao Tang. Artificial intelligence for quantum error correction: A comprehensive
 778 review. *arXiv preprint arXiv:2412.20380*, 2024.
 779

780 Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun
 781 Chung, Hui Deng, Yajie Du, Daojin Fan, et al. Strong quantum computational advantage using a
 782 superconducting quantum processor. *Physical review letters*, 127(18):180501, 2021.
 783

784 Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
 785 Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
 786 longer sequences. *Advances in neural information processing systems*, 33:17283–17297, 2020.
 787

788 Wei-Wei Zhang, Zhuo Xia, Wei Zhao, Wei Pan, and Haobin Shi. Self-attention u-net decoder for
 789 toric codes. *Physical Review Applied*, 23(6):064052, 2025.
 790

791 Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin,
 792 Dian Wu, Xing Ding, Yi Hu, et al. Quantum computational advantage using photons. *Science*,
 793 370(6523):1460–1463, 2020.
 794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A LOGICAL-MINIMUM ENTROPY LOSS DERIVATION
811

812 The goal of decoding in stabilizer codes is to produce a correction \mathbf{e}^{pred} (hard decision on the logits
813 $\hat{\mathbf{e}}$) such that the combined error $\mathbf{r} = \mathbf{e}^{true} \oplus \mathbf{e}^{pred}$ is a stabilizer, hence acts trivially on all logical
814 qubits. Equivalently, with \mathbf{L} denoting the logical-operator matrix, the logical-coset constraint is

$$815 \quad \mathbf{L}(\mathbf{e}^{true} \oplus \mathbf{e}^{pred}) = \mathbf{0} \text{ over } GF(2) \quad (15)$$

816 so decoding succeeds if no logical parity flips. Optimizing this condition directly is difficult because
817 XOR is non-differentiable. We therefore derive a smooth, probability-calibrated surrogate that re-
818 places hard parities by differentiable sign-expectations of Bernoulli logits. The resulting logical
819 minimum-entropy loss maximizes the probability that each logical parity is zero while preserving
820 the exact coset semantics in expectation and providing stable, well-aligned gradients for end-to-end
821 training.

822 For each qubit i , let $\hat{e}_i \in \mathbb{R}$ be the model logit and

$$824 \quad p_i \triangleq \sigma(\hat{e}_i) = \frac{1}{1 + e^{-\hat{e}_i}} \quad (16)$$

825 the corresponding flip probability, where $\sigma(\cdot)$ is the sigmoid function. We model the predicted
826 error bit as

$$828 \quad e_i^{pred} \sim \text{Bernoulli}(p_i), \quad (17)$$

829 while the ground-truth bit $e_i^{true} \in \{0, 1\}$ is fixed for the given sample. Define the per-qubit XOR

$$830 \quad r_i \triangleq e_i^{true} \oplus e_i^{pred} \in \{0, 1\}. \quad (18)$$

832 Conditioning r_i on e_i^{true} , we have

$$833 \quad r_i | e_i^{true} \sim \begin{cases} \text{Bernoulli}(\sigma(\hat{e}_i)) & \text{if } e_i^{true} = 0 \\ \text{Bernoulli}(1 - \sigma(\hat{e}_i)) & \text{if } e_i^{true} = 1 \end{cases} \quad (19)$$

834 it holds since for $r_i = 0 \oplus e_i^{pred} = e_i^{pred}$ and $r_i = 1 \oplus e_i^{pred} = 1 - e_i^{pred}$.

835 We focus on the non-parity conditional error probability

$$836 \quad q_i \triangleq \Pr(r_i = 1 | e_i^{true}) = (1 - e_i^{true})\sigma(\hat{e}_i) + (1 - \sigma(\hat{e}_i))e_i^{true} \quad (20)$$

837 which our loss is designed to minimize; driving $q_i \rightarrow 0$ forces the prediction to agree with the
838 ground truth modulo stabilizers (i.e., no logical flip).

839 We now simplify q_i , starting from

$$840 \quad q_i = \Pr(r_i = 1 | e_i^{true}) = \frac{1 - e_i^{true}}{1 + \exp(-\hat{e}_i)} + \frac{\exp(-\hat{e}_i) \cdot e_i^{true}}{1 + \exp(-\hat{e}_i)} \quad (21)$$

$$841 \quad = \frac{1 - e_i^{true} + \exp(-\hat{e}_i) \cdot e_i^{true}}{1 + \exp(-\hat{e}_i)} \quad (22)$$

842 Let $a = 1 - 2e_i^{true} \in \{-1, 1\}$, so $e_i^{true} = (1 - a)/2$, focusing on the numerator

$$851 \quad 1 - e_i^{true} + \exp(-\hat{e}_i) \cdot e_i^{true} = 1 + e_i^{true} \cdot (\exp(-\hat{e}_i) - 1) \quad (23)$$

$$852 \quad = 1 + \frac{1 - a}{2} \cdot (\exp(-\hat{e}_i) - 1) \quad (24)$$

$$853 \quad = 1 + \frac{1}{2} \cdot (\exp(-\hat{e}_i) - 1) - \frac{a}{2} \cdot (\exp(-\hat{e}_i) - 1) \quad (25)$$

$$854 \quad = \frac{(1 + \exp(-\hat{e}_i)) - a \cdot (\exp(-\hat{e}_i) - 1)}{2} \quad (26)$$

855 Plugging this back to equation 21 gives

$$856 \quad q_i = \Pr(r_i = 1 | e_i^{true}) = \frac{(1 + \exp(-\hat{e}_i)) - a \cdot (\exp(-\hat{e}_i) - 1)}{2 \cdot (1 + \exp(-\hat{e}_i))} \quad (27)$$

$$857 \quad = \frac{1}{2} \left[1 - \frac{a}{2} \cdot \frac{\exp(-\hat{e}_i) - 1}{\exp(-\hat{e}_i) + 1} \right] \quad (28)$$

864 Using $\frac{\exp(-x)-1}{\exp(-x)+1} = -\tanh(x/2)$ with $x = \hat{e}_i$
 865

$$866 \quad 867 \quad q_i = \frac{1}{2} \left[1 + \frac{a}{2} \cdot \tanh\left(\frac{\hat{e}_i}{2}\right) \right] \quad (29)$$

868 Here $\tanh(\cdot)$ is the hyperbolic tangent.
 869

870 From the previous result,
 871

$$872 \quad \Pr(r_i = 1 \mid e_i^{\text{true}}) = \frac{1}{2} \left[1 + a \tanh\left(\hat{e}_i/2\right) \right], \quad a = 1 - 2e_i^{\text{true}} \in \{\pm 1\}. \quad (30)$$

874 Substituting $e_i^{\text{true}} = 1$ (so $a = -1$) gives
 875

$$876 \quad 877 \quad \Pr(r_i = 1 \mid e_i^{\text{true}} = 1) = \frac{1}{2} \left[1 - \tanh\left(\hat{e}_i/2\right) \right] \quad (31)$$

878 while $e_i^{\text{true}} = 0$ (so $a = +1$) gives
 879

$$880 \quad 881 \quad \Pr(r_i = 1 \mid e_i^{\text{true}} = 0) = \frac{1}{2} \left[1 + \tanh\left(\hat{e}_i/2\right) \right] \quad (32)$$

882 Since \tanh is odd, i.e., $a \tanh(x) = \tanh(ax)$ for $a \in \{\pm 1\}$,
 883

$$884 \quad \Pr(r_i = 1 \mid e_i^{\text{true}}) = \frac{1}{2} \left[1 + \tanh\left(a \hat{e}_i/2\right) \right]. \quad (33)$$

885 To convert the \tanh form back to a probability, we use the sigmoid–tanh identity (as shown in Proposition A.1).
 886

887 **proposition A.1** (Sigmoid–tanh identity). *For all $y \in \mathbb{R}$,*
 888

$$889 \quad \sigma(y) = \frac{1}{1 + \exp(-y)} = \frac{1}{2} \left[1 + \tanh\left(y/2\right) \right] \quad (34)$$

890 *Proof.* Start from sigmoid $\sigma(y)$, multiplying numerator and denominator by $\exp(y/2)$:
 891

$$892 \quad \sigma(y) = \frac{1}{1 + \exp(-y)} = \frac{\exp(y/2)}{\exp(y/2) + \exp(-y/2)} \quad (35)$$

893 Let $A = \exp(y/2)$ and $B = \exp(-y/2)$. Then:
 894

$$895 \quad \frac{A}{A + B} = \frac{1}{2} \frac{(A + B) + (A - B)}{A + B} = \frac{1}{2} \left(1 + \frac{A - B}{A + B} \right) \quad (36)$$

896 But
 897

$$898 \quad \frac{A - B}{A + B} = \frac{\exp(y/2) - \exp(-y/2)}{\exp(y/2) + \exp(-y/2)} = \tanh\left(\frac{y}{2}\right) \quad (37)$$

899 Hence $\sigma(y) = \frac{1}{2} \left[1 + \tanh\left(\frac{y}{2}\right) \right]$ □
 900

901 Therefore,
 902

$$903 \quad q_i = \Pr(r_i = 1 \mid e_i^{\text{true}}) = \frac{1}{2} \left[1 + \tanh\left(a \hat{e}_i/2\right) \right] = \sigma(a \hat{e}_i) = \sigma((1 - 2e_i^{\text{true}}) \hat{e}_i) \quad (38)$$

904 We now pass to logical parities: each row of the logical operator matrix \mathbf{L} (which correspond to a
 905 distinct logical operator) induces a parity check over \mathbf{r} ;
 906

$$907 \quad \mathbf{L}_i \cdot \mathbf{r} = \bigoplus_{j \in \chi_i} \mathbf{L}_{i,j} r_j \quad (39)$$

908 where χ_i are the non zero elements set in \mathbf{L}_i , the following proposition provides $\mathbf{L}_i \cdot \mathbf{r}$ distribution
 909 in closed form.
 910

918 **proposition A.2** (Bernoulli parity distribution). Let $\{X_j\}_{j=1}^n$ be independent Bernoulli random
 919 variables with $\Pr(X_j = 1) = q_j \in [0, 1]$, and define the GF(2) parity $Q = \bigoplus_{j=1}^n X_j \in \{0, 1\}$.
 920 Then
 921

922
$$\Pr(Q = 1) = \frac{1}{2} \left[1 - \prod_{j=1}^n (1 - 2q_j) \right] \quad (40)$$

923
$$\Pr(Q = 0) = \frac{1}{2} \left[1 + \prod_{j=1}^n (1 - 2q_j) \right] \quad (41)$$

924 Equivalently, $\mathbb{E}[(-1)^Q] = \prod_{j=1}^n (1 - 2q_j)$.
 925

926 *Proof.* Consider the following product identity
 927

928
$$(-1)^Q = (-1)^{X_1 \oplus X_2 \oplus \dots \oplus X_n} = \prod_i (-1)^{X_i} \quad (42)$$

929 This identity holds because: $(-1)^{0 \oplus 0} = 1 = (-1)^0 \cdot (-1)^0$, $1(-1)^{0 \oplus 1} = -1 = (-1)^0 \cdot (-1)^1$ and
 930 $1(-1)^{1 \oplus 1} = 1 = (-1)^1 \cdot (-1)^1$
 931

932 Taking expectations on both sides yields
 933

934
$$\mathbb{E}[(-1)^Q] = \mathbb{E} \left[\prod_i (-1)^{X_i} \right] \quad (43)$$

935 and, by expanding the definition of expectation with respect to Q ,
 936

937
$$\mathbb{E}[(-1)^Q] = (-1)^0 \cdot \Pr(Q = 0) + (-1)^1 \cdot \Pr(Q = 1) = 1 - 2\Pr(Q = 1) \quad (44)$$

938 Under the independence assumption,
 939

940
$$\mathbb{E} \left[\prod_i (-1)^{X_i} \right] = \prod_i \mathbb{E}[(-1)^{X_i}] \quad (45)$$

941 and each factor evaluates to
 942

943
$$\mathbb{E}[(-1)^{X_i}] = (-1)^0 \cdot \Pr(X_i = 0) + (-1)^1 \cdot \Pr(X_i = 1) = (1 - q_i) - q_i = 1 - 2q_i \quad (46)$$

944 Thus,
 945

946
$$\mathbb{E}[(-1)^Q] = \prod_i (1 - 2q_i) \quad (47)$$

947 Equating equation 44 and equation 47 and solving for $\Pr(Q = 1)$ gives
 948

949
$$\Pr(Q = 1) = \frac{1}{2} \left[1 - \prod_i (1 - 2q_i) \right] \quad (48)$$

950 The key insight is that the XOR operation in GF(2) corresponds to multiplication in the group
 951 $(\{-1, 1\}, \cdot)$, which enables a closed-form expression for the parity distribution under independence. \square
 952

953 Therefore, it follows from Proposition A.2 and from equation 38 that
 954

955
$$\Pr(\mathbf{L}_i \cdot \mathbf{r} = 1) = \frac{1}{2} \left[1 - \prod_{j \in \chi_i} (1 - 2q_j) \right] = \frac{1}{2} \left[1 - \prod_{j \in \chi_i} (1 - 2\sigma((1 - 2e_j^{\text{true}}) \hat{e}_j)) \right] \quad (49)$$

956 Since $\mathbf{L}_i \cdot \mathbf{r} = 1$ corresponds to a logical error detected by the i -th logical operator (i.e., a bit flip or
 957 phase flip on a logical qubit), successful QEC requires minimizing this probability across all logical
 958 operators. To achieve this objective, we employ a minimum entropy loss that directly optimizes the
 959 negative log-likelihood of the desired outcome, namely that no logical errors occur. This approach
 960

972 concentrates the probability mass on the correct logical state while heavily penalizing configurations
 973 that lead to logical failures.
 974

975 Substituting the expression for $\Pr(\mathbf{L}_i \cdot \mathbf{r} = 1)$ into the entropy objective yields
 976

$$977 L_{\text{entropy}} = -\frac{1}{2k} \sum_{i=1}^{2k} \log \left(1 - \Pr(\mathbf{L}_i \cdot \mathbf{r} = 1) \right) \quad (50)$$

$$979 = -\frac{1}{2k} \sum_{i=1}^{2k} \log \left(1 + \prod_{j \in \chi_i} (1 - 2\sigma((1 - 2e_j^{\text{true}})\hat{e}_j)) \right) \quad (51)$$

982 B CONSTRAINT-PROJECTED NULLSPACE DESCENT (CPND)

985 The augmented matrix $\hat{\mathbf{H}} = [\mathbf{H}; \mathbf{L}] \in \{0, 1\}^{(m+2k) \times n}$ is constructed by vertically stacking the
 986 parity-check matrix $\mathbf{H} \in \{0, 1\}^{m \times n}$ (whose rows represent stabilizer generators that, when measured,
 987 produce the syndrome) above the logical operator matrix $\mathbf{L} \in \{0, 1\}^{2k \times n}$ (whose rows encode
 988 logical operators that, when applied to the error vector, determine the logical error class, k X-type
 989 + k Z-type logical operators). Since the stabilizer generators are linearly independent over GF(2)
 990 and the logical operators lie in the normalizer but not in the stabilizer subgroup, the rows of $\hat{\mathbf{H}}$ are
 991 linearly independent. Therefore, $\text{rank}(\hat{\mathbf{H}}) = m + 2k$.
 992

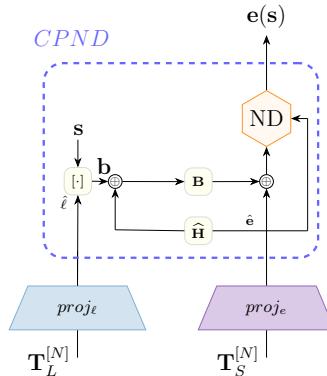


Figure 8: CPND.

1008 The constraint vector is $\mathbf{b} = [\mathbf{s}; \ell] \in \{0, 1\}^{(m+2k)}$ where \mathbf{s} is the syndrome and ℓ is the binarized
 1009 logical class prediction. We define the feasible recovery operator $\mathbf{e}(\mathbf{s})$ set
 1010

$$1011 \mathcal{F} = \left\{ \mathbf{e}(\mathbf{s}) \in \{0, 1\}^n \mid \hat{\mathbf{H}}\mathbf{e}(\mathbf{s}) = \mathbf{b} \right\} \quad (52)$$

1012 We precompute a left inverse $\mathbf{B} \in \{0, 1\}^{n \times (m+2k)}$ with $\hat{\mathbf{H}}\mathbf{B} = \mathbf{I}_{m+2k}$, a proof of existence of such
 1013 \mathbf{B} is given in Proposition B.1. Given \mathbf{e}^{pred} , we compute the residual $\mathbf{y} = \mathbf{b} \oplus \hat{\mathbf{H}}\mathbf{e}^{\text{pred}}$ and apply the
 1014 projection $\mathbf{e}' = \mathbf{e}^{\text{pred}} \oplus \mathbf{B}\mathbf{y}$. By construction: $\hat{\mathbf{H}}\mathbf{e}' = \hat{\mathbf{H}}\mathbf{e}^{\text{pred}} \oplus \mathbf{y} = \mathbf{b}$, ensuring $\mathbf{e}' \in \mathcal{F}$.
 1015

1016 **proposition B.1** (Existence and constructive computation of a left inverse over GF(2)). *Let $A \in \{0, 1\}^{r \times n}$ with $r \leq n$. There exists $X \in \{0, 1\}^{n \times r}$ such that $AX = I_r$ if and only if $\text{rank}(A) = r$.
 1017 Moreover, when A has full row rank, the r column-wise systems*

$$1018 Ax_i = e_i, \quad i = 1, \dots, r,$$

1019 (where e_i is the i -th standard basis vector of $GF(2)^r$) are all consistent, and any selection of solutions
 1020 $\{x_i\}_{i=1}^r$ stacked as $X = [x_1 \dots x_r]$ satisfies $AX = I_r$.
 1021

1022 *Proof.* (\Rightarrow) If $AX = I_r$, then $\text{rank}(A) \geq \text{rank}(I_r) = r$, hence $\text{rank}(A) = r$. (\Leftarrow) If $\text{rank}(A) = r$,
 1023 then the column space $\text{im}(A) \subseteq GF(2)^r$ has dimension r and therefore equals $GF(2)^r$. Thus
 1024 each e_i lies in $\text{im}(A)$, so there exists x_i with $Ax_i = e_i$. Stacking these solutions yields $AX =$
 1025 $[Ax_1 \dots Ax_r] = [e_1 \dots e_r] = I_r$. \square

1026 The projected solution \mathbf{e}' satisfies all constraints but is suboptimal in sense of minimum weight re-
 1027 recovery operation, the left inverse \mathbf{B} is constructed purely algebraically and ignores the transformer's
 1028 learned qubit flip probability. Since the constraint set forms an affine space $\mathbf{e}' \oplus \ker(\hat{\mathbf{H}})$, we tra-
 1029 versed this space to find lower-cost solutions while preserving feasibility. Let $\mathbf{N} = [\mathbf{v}_1, \dots, \mathbf{v}_g] \in$
 1030 $\{0, 1\}^{n \times g}$ span $\ker(\hat{\mathbf{H}})$ with $g = n - (m + 2k)$. We extract qubit flip probability from transformer
 1031 predictions: $p_q = \sigma(\hat{\mathbf{e}}_q)$ and define weights as log-likelihood ratios $w_q = -\log(p_q/(1 - p_q))$. The
 1032 objective is to minimize weighted Hamming cost: $\text{wt}_w(\mathbf{e}) = \sum_{q=1}^n w_q e_q$ where $\mathbf{e} \in \{0, 1\}^n$.
 1033

1034 Having \mathbf{e}' , we want to descend in the nullspace to find a minimal weight solution. First we convert
 1035 the binary solution \mathbf{e}' to signs $\sigma' = (1 - 2\mathbf{e}') \in \{+1, -1\}^n$, where $\sigma'_q = +1$ if $e'_q = 0$ and $\sigma'_q = -1$
 1036 if $e'_q = 1$ for $q = 1, \dots, n$. The main loop performs a single pass over the g nullspace generators
 1037 $\{\mathbf{v}_j\}_{j=1}^g$. For each generator \mathbf{v}_j , we identify its support $\chi_j = \{q : \mathbf{v}_{j,q} = 1\}$ and compute the cost
 1038 change $\Delta_j = \sum_{q \in \chi_j} w_q \sigma'_q$. If $\Delta_j < 0$, we accept the move: update $\mathbf{e}' \leftarrow \mathbf{e}' \oplus \mathbf{v}_j$ and flip signs
 1039 $\sigma'_q \leftarrow -\sigma'_q$ for all $q \in \chi_j$.
 1040

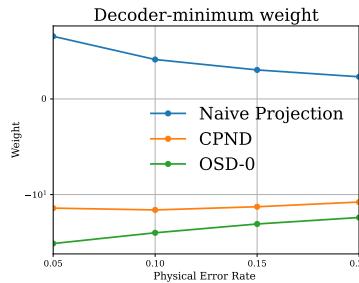
1041 Since $\hat{\mathbf{H}}\mathbf{v}_j = \mathbf{0}$ for $j = 1, \dots, g$, the nullspace descent preserves constraint satisfaction while
 1042 achieving monotonic cost reduction, terminating at a locally optimal solution. Algorithm 1 presents
 1043 the complete method.

Algorithm 1 Constraint-Projected Nullspace Descent (CPND)

1046 **Require:** $\hat{\mathbf{H}}, \mathbf{B}, \mathbf{N}; \mathbf{b}; \mathbf{e}^{pred}$; weights $w \in \mathbb{R}^n$
 1047 **Ensure:** $\mathbf{e}(\mathbf{s}) \in \{0, 1\}^n$ with $\hat{\mathbf{H}}\mathbf{e}(\mathbf{s}) = \mathbf{b}$, and reduced weighted cost $\text{wt}_w(\mathbf{e}(\mathbf{s})) = \sum_q w_q e_q(\mathbf{s})$

1048 1: $\mathbf{y} \leftarrow \mathbf{b} \oplus \hat{\mathbf{H}}\mathbf{e}^{pred}$
 1049 2: $\mathbf{e}' \leftarrow \mathbf{e}^{pred} \oplus \mathbf{B}\mathbf{y}$
 1050 3: $\sigma' \leftarrow (1 - 2\mathbf{e}') \in \{+1, -1\}^n$
 1051 4: **for** $j = 1$ to g **do**
 1052 5: $\chi_j \leftarrow \{q : \mathbf{v}_{j,q} = 1\}$
 1053 6: $\Delta_j \leftarrow \sum_{q \in \chi_j} w_q \sigma'_q$
 1054 7: **if** $\Delta_j < 0$ **then**
 1055 8: $\mathbf{e}' \leftarrow \mathbf{e}' \oplus \mathbf{v}_j$
 1056 9: $\sigma'_q \leftarrow -\sigma'_q$ for all $q \in \chi_j$
 1057 10: **end if**
 1058 11: **end for**
 1059 12: **return** $\mathbf{e}(\mathbf{s}) \leftarrow \mathbf{e}'$

1062
 1063 Since stabilizer generators commute, yielding $\mathbf{H}\mathbf{H}^T = \mathbf{0}$ over GF(2), the columns of \mathbf{H}^T span a
 1064 subspace of $\ker(\mathbf{H})$, providing an approximated basis for nullspace descent.
 1065



($\mathbf{e}' = \mathbf{e}^{\text{pred}} \oplus \mathbf{By}$), CPND and OSD-0 (Fossorier & Lin, 1995; Roffe et al., 2020). OSD-0 is a post-processing algorithm that achieves minimum weight solutions while maintaining syndrome consistency, but requires matrix inversion operations that scale cubically in complexity, compared to our method’s linear complexity. Across all error rates, the methods exhibit consistent performance ordering: OSD-0 achieves the lowest weights, CPND performs comparably to OSD-0, while the projection baseline consistently yields the highest weights. The performance gaps increase monotonically with p , demonstrating that CPND consistently approaches minimum-weight solutions. These results highlight that structure-aware post-processing methods (CPND and OSD-0) achieve uniformly superior weight minimization compared to naive projection approaches.

C SURFACE CODES

We evaluate our method on surface codes due to their prominence in fault-tolerant quantum computing, specifically toric codes (Kitaev, 1997) which encode $k = 2$ logical qubits in $n = 2L_{\text{code}}^2$ physical qubits, and rotated surface codes (Bombín & Martin-Delgado, 2007) which encode $k = 1$ logical qubit in $n = L_{\text{code}}^2$ physical qubits. Toric codes utilize periodic boundary conditions with qubits on lattice edges, while rotated surface codes employ a lattice geometry with qubits on vertices. The stabilizer generators are organized into two distinct groups based on lattice geometry, with different implementations for each code family. For toric codes, vertex stabilizers are constructed as products of Pauli-X operators acting on all qubits adjacent to each lattice vertex, while plaquette stabilizers consist of products of Pauli-Z operators acting on qubits surrounding each lattice face, yielding a total of $m = 2L_{\text{code}}^2 - 2$ stabilizer generators ($L_{\text{code}}^2 - 1$ vertex stabilizers and $L_{\text{code}}^2 - 1$ plaquette stabilizers corresponding to the vertices and faces of the $L_{\text{code}} \times L_{\text{code}}$ toric lattice). Rotated surface codes employ a fundamentally different geometry where all stabilizer generators are placed on lattice faces rather than being split between vertices and plaquettes. These face-based stabilizers come in two alternating types: X-type stabilizers (tensor products of Pauli-X operators on qubits surrounding a face) and Z-type stabilizers (tensor products of Pauli-Z operators on qubits surrounding a face). The lattice arrangement creates a natural checkerboard pattern where X- and Z-type stabilizers alternate, ensuring that every physical qubit—positioned on a vertex of the rotated lattice—participates in exactly two X-type and two Z-type stabilizer measurements. For an $L_{\text{code}} \times L_{\text{code}}$ rotated surface code, this checkerboard arrangement yields $m = 2L_{\text{code}}^2 - 1$ independent stabilizer generators, with $\frac{L_{\text{code}}^2 - 1}{2}$ generators of each type, when L is always odd. Figure 10 presents both code geometries.

Two standard noise models are examined: *independent noise* and *depolarizing noise*. Under the independent (uncorrelated) noise model, bit-flip (X) and phase-flip (Z) errors occur independently with equal error probability, allowing the decoding of X and Z syndromes to be treated separately. In contrast, the depolarizing noise model assigns equal probability $p/3$ to the non-identity Pauli operators, i.e., $\Pr(X) = \Pr(Z) = \Pr(Y) = \frac{p}{3}$, $\Pr(I) = 1 - p$, where $Y = iXZ$.

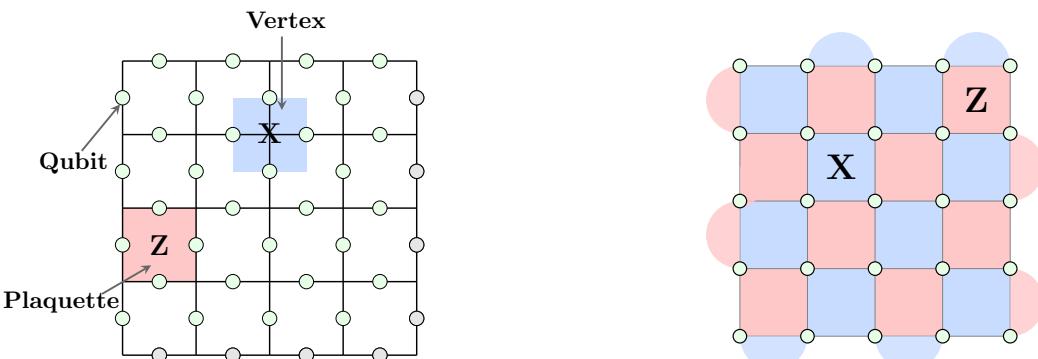


Figure 10: **Surface codes:** (left) Toric code with $L_{\text{code}} = 4$, where gray qubits represent boundary conditions with periodic boundary conditions (top row connects to bottom row, left column connects to right column). (right) Rotated surface code with $L_{\text{code}} = 5$. Data qubits adjacent to red faces correspond to Z-type stabilizer generators, while those adjacent to blue faces correspond to X-type stabilizer generators.

1134 **D TRAINING DETAILS.**

1135
 1136 Our training methodology randomly samples noise within the physical error rate testing range to en-
 1137 sure robust generalization across different noise regimes. The model architecture employs $N = 6-8$
 1138 transformer layers with shared parameters across dual token streams and an embedding dimension
 1139 of $d = 128$ and $h = 16$ attention heads. The multi-component loss function uses weighting param-
 1140 eters $\lambda_{LP} = 0.2$, $\lambda_{LC} = 1.0$, and $\lambda_{Ent} = 1.0$ for informed logical priors loss, logical class prediction
 1141 loss, and minimum entropy loss, respectively.

1142 We optimize using the Adam optimizer (Kingma & Ba, 2014) with mini-batches of 128 – 512
 1143 samples over 200 – 600 epochs, processing 5,000 – 20,000 mini-batches per epoch for a total of
 1144 approximately 2.56×10^6 error samples per training run. The initial learning rate is set between
 1145 3×10^{-4} and 1×10^{-4} , with cosine annealing decay to 1×10^{-6} by the end of training (Loshchilov
 1146 & Hutter, 2016). Detailed experimental configurations are presented in Table 2, with all experiments
 1147 conducted on a 48GB NVIDIA L40S GPU.

1148 We initialized our development from the QECCCT implementation. While longer training and alter-
 1149 native configurations may yield further improvements, time and computational constraints limited
 1150 our exploration of the hyperparameter space. We use the toric code implementation from Krastanov
 1151 & Jiang (2017), while the rotated surface code is implemented from scratch. Our source code is
 1152 provided in the Supplementary Materials.

1153
 1154 Table 2: Experimental configuration across different code distances and noise models.

Code Distance	Code Type	Noise Type	Learning Rate	Epochs	Batch Size	SAQ-Decoder Layers	Model Params	Physical Error Rate	Epoch Time [sec]
	ToricToric Toricpt; -Toricpt; -Toricpt;	Independent Depolarizing	2.5e-4 2e-4	200 200	512 128	6 6	1.2M 1.2M	0.01-0.20 0.05-0.20	192 283
	RotatedRotated Rotatedpt; -Rotatedpt; -Rotatedpt;	Independent Depolarizing	1e-4 2e-4	200 300	128 128	6 6	1.2M 1.2M	0.01-0.20 0.05-0.20	153 236
	ToricToric Toricpt; -Toricpt; -Toricpt;	Independent Depolarizing	2.5e-4 3e-4	400 400	512 512	6 6	1.2M 1.23M	0.01-0.20 0.05-0.20	184 478
	RotatedRotated Rotatedpt; -Rotatedpt; -Rotatedpt;	Independent Depolarizing	1e-4 3e-4	500 500	512 512	6 6	1.2M 1.21M	0.01-0.20 0.05-0.20	245 584
	ToricToric Toricpt; -Toricpt; -Toricpt;	Independent Depolarizing	1.5e-4 2e-4	600 600	128 128	6 8	1.22M 1.7M	0.01-0.20 0.05-0.20	386 2464
	RotatedRotated Rotatedpt; -Rotatedpt; -Rotatedpt;	Independent Depolarizing	1e-4 1e-4	600 600	512 128	6 8	1.2M 1.63M	0.01-0.20 0.05-0.20	285 641
	ToricToric Toricpt; -Toricpt; -Toricpt;	Independent Depolarizing	3e-4 3e-4	600 600	512 512	6 8	1.26M 1.85M	0.01-0.20 0.05-0.20	683 3090

1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 E COMPARATIVE THRESHOLD ANALYSIS
1189

1190 This appendix provides a detailed comparison of the SAQ-Decoder’s performance threshold under
1191 depolarizing noise against recent neural decoders and high-performance classical decoders. Our
1192 numerical comparison in Table 3, the results confirm that the SAQ-Decoder’s achieved threshold
1193 of **18.6%** approaches the theoretical Maximum Likelihood (ML) bound of 18.9% (Bombin et al.,
1194 2012) and represents the highest value reported for a practical, scalable decoder.

1195
1196 Table 3: Comparative Thresholds for Surface Codes (Depolarizing Noise)
1197

1198 Decoder / Paradigm	1199 Reported Threshold (\downarrow)
1200 SAQ-Decoder (Our Work)	18.6%
1201 QECCT (Choukroun & Wolf, 2024)	17.8%
1202 Astra (2024) (Maan & Paler, 2025)	$\sim 17.0\%$
1203 SU-NetQD (2025) (Zhang et al., 2025)	16.3%
1204 ML+UF (2022) (Meinerz et al., 2022)	16.2%
1205 MWPM (Classical Baseline) (Wang et al., 2009)	16.0%
1206 BP-OSD (Classical Baseline) (Roffe et al., 2020)	$\sim 16.0\%$
1207 UIUF (2024) (Lin & Lai, 2025)	15.6%

1208 Note: All percentages reflect toric or rotated surface code performance under standard depolarizing noise.
1209

1210 We use SU-NetQD as our primary baseline in this section (in addition to the comprehensive compar-
1211 ison to QECCT presented in Section 5). As summarized in Table 4, the proposed SAQ decoder con-
1212 sistently achieves the lowest logical error rate among all considered decoders across toric code with
1213 distances $L \in \{5, 7\}$ and physical error rates $p \in \{0.09, 0.13, 0.20\}$. Compared to the SU-NetQD
1214 architecture, SAQ yields systematically smaller LERs, while the classical BP-OSD-2 and MWPM
1215 decoders exhibit substantially higher error rates in the same regime. In particular, for distance $L = 7$
1216 at $p = 0.09$, SAQ attains a logical error rate of $\text{LER} = 1.95 \times 10^{-2}$, whereas SU-NetQD, BP-OSD-
1217 2, and MWPM reach $\text{LER} = 2.76 \times 10^{-2}$, 7.20×10^{-2} , and 6.90×10^{-2} , respectively. This
1218 corresponds to a relative LER reduction of about 29% with respect to SU-NetQD, and roughly 73%
1219 and 72% reductions compared to the BP-OSD-2 and MWPM baselines, respectively, highlighting
1220 the substantial performance advantage of the proposed SAQ decoder.

1221 F DETAILED COMPUTATIONAL METRICS
1222

1223 This appendix provides the detailed numerical comparisons of computational complexity and effi-
1224 ciency metrics for the SAQ-Decoder against the QECCT baseline. Metrics include the total number
1225 of floating-point operations (FLOPs), the total number of trainable parameters (Params), and the
1226 inference time per sample (Time). Our numerical comparison in Table 5 consistently demonstrates
1227 the superior efficiency and scalability of the SAQ-Decoder across all tested code distances (L) and
1228 noise models (independent ‘ind’ and depolarizing ‘dep’).
1229

1230 G THE USE OF LARGE LANGUAGE MODELS (LLMs)
1231

1232 LLMs were employed to assist in several aspects of this research and manuscript preparation. For
1233 the literature review, LLMs aided in the identification and sourcing of relevant related works to en-
1234 sure comprehensive coverage of the field. During the research process, LLMs were consulted for
1235 research ideation, though these explorations did not yield beneficial outcomes that influenced the
1236 final work. In manuscript preparation, LLMs assisted with improving grammar, enhancing textual
1237 transitions between sections, and refining the exposition of technical concepts for better clarity and
1238 readability. For software development, LLMs provided assistance in code writing, GPU acceleration
1239 optimizations, and debugging code issues. Despite these auxiliary uses, all core research contribu-
1240 tions, experimental design, theoretical insights, and scientific conclusions presented in this work are
1241 entirely the product of the authors’ original research and analysis.

1242
 1243
 1244 Table 4: LER comparison of SAQ and baseline decoders for toric code with distances $L_{code} = 5, 7$
 1245 at selected physical error rates p .

	p	SAQ	SU-NetQD	BP-OSD-2	MWPM
$L_{code} = 5$	0.09	0.051	0.057	0.107	0.108
	0.13	0.177	0.191	0.280	0.279
	0.20	0.519	0.534	0.623	0.624
$L_{code} = 7$	0.09	0.019	0.028	0.072	0.069
	0.13	0.139	0.149	0.262	0.253
	0.20	0.548	0.581	0.680	0.676

1254
 1255
 1256
 1257
 1258 Table 5: Comparison of SAQ and QECCT Decoder Computational Metrics
 1259

Code Type	L	Noise	Decoder	FLOPs [M ↓]	Params [M ↓]	Time [sec ↓]
Toric	4	ind	SAQ	27.48	1.20	2.13e-05
		dep	QECCT	57.01	1.23	2.61e-05
	6	ind	SAQ	61.51	1.20	2.59e-05
		dep	QECCT	114.09	1.33	8.13e-05
	8	ind	SAQ	55.16	1.20	2.27e-05
		dep	QECCT	128.37	1.37	1.01e-04
Rot. Surf.	10	ind	SAQ	116.88	1.23	6.39e-05
		dep	QECCT	257.08	1.90	3.41e-04
	5	ind	SAQ	93.92	1.22	5.01e-05
		dep	QECCT	228.45	1.75	2.73e-04
	7	ind	SAQ	259.15	1.70	2.15e-04
		dep	QECCT	458.01	3.42	9.72e-04
9	7	ind	SAQ	143.76	1.26	9.72e-05
		dep	QECCT	357.44	2.55	6.28e-04
	11	ind	SAQ	392.09	1.85	4.50e-04
		dep	QECCT	717.61	6.64	2.33e-03
	11	ind	SAQ	19.97	1.20	6.63e-06
		dep	QECCT	43.94	1.21	1.78e-05
11	5	ind	SAQ	38.55	1.20	1.50e-05
		dep	QECCT	87.92	1.28	5.49e-05
	7	ind	SAQ	36.57	1.20	1.46e-05
		dep	QECCT	86.73	1.27	5.37e-05
	9	ind	SAQ	71.77	1.21	3.23e-05
		dep	QECCT	173.62	1.52	1.75e-04
11	9	ind	SAQ	58.72	1.20	2.35e-05
		dep	QECCT	143.84	1.41	1.23e-04
	11	ind	SAQ	154.71	1.63	9.15e-05
		dep	QECCT	288.13	2.08	4.16e-04
	11	ind	SAQ	86.40	1.22	4.49e-05
		dep	QECCT	215.33	1.69	2.51e-04
	11	ind	SAQ	228.54	1.68	1.73e-04
		dep	QECCT	431.66	3.18	8.87e-04

1294 *L* denotes code distance. Lower values are better for all metrics.
 1295