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Abstract
The rapid progress of large language models
(LLMs) has gained considerable attention for
their universal capability of conducting reasoning,
decision-making across diverse domains. These
advances have revolutionized natural language
understanding tasks, particularly in code gener-
ation, contributing to the prosperity of develop-
ing autonomous agents for end-to-end program-
ming in software engineering applications. De-
spite these recent successes, their application to
the design of federated learning systems (FL) re-
mains nascent. In this position paper, we advocate
for an agentic FL paradigm that harnesses coop-
erating task-specialized LLM agents to automate
the entire FL lifecycle. We outline a four-stage
workflow in which planning, coding, and optimiz-
ing agents iteratively generate, refine, and vali-
date FL strategies under a human-inspired devel-
opment process. We emphasize open research
directions to advance multi-agent FL systems that
adaptively configure and manage real-world FL
deployments.

1. Introduction
Recent advancements in large language models (LLMs)
have catalyzed a breakthrough in building LLM-based
agents for accomplishing complex, multi-step problems in
code generation (Zhang et al., 2024b; Tao et al., 2024a;
Islam et al., 2024; Nunez et al., 2024; Tao et al., 2024b).
The development of LLM-based agents augments the func-
tionality with access to external tools like APIs or search
engines as knowledge bases to retrieve diverse information
(Lewis et al., 2020; Chen et al., 2024b), showing remarkable
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capability in reasoning, planning, and solving programming
challenges across a wide spectrum of domains (Li et al.,
2024b; Tao et al., 2024b; Chang et al., 2024; Lange et al.,
2025; Gandhi et al., 2025). However, their performance in
agentic federated learning (AgenticFL) programming is not
explored.

Existing Federated Learning (FL) approaches have primar-
ily focused on developing robust and effective strategies to
address a series of interrelated challenges encountered dur-
ing collaborative and decentralized training between clients
and servers (as summarized in Table 2). Typically, these
methods target specific FL issues, such as data heterogene-
ity and communication efficiency, from a local or systemic
perspective, thus addressing only isolated tasks within the
FL context. In contrast, real-world deployments expose FL
strategies to multifaceted challenges that static designs do
not address. For instance, while many studies on evaluating
the robustness of their proposed methods have concentrated
on heterogeneous client data (i.e. non-IID distributions),
practical scenarios reveal that heterogeneity manifests itself
across devices (Zhang et al., 2024a; Jia et al., 2024; Xu
et al., 2024), data distributions (Li et al., 2020; Reddi et al.,
2020; Wang et al., 2020; Acar et al., 2021; Kim et al., 2022),
model architectures (Diao et al., 2020; Kim et al., 2023; Li
et al., 2022), task objectives (Marfoq et al., 2021; Chen &
Zhang, 2022; Lu et al., 2024), and communication resources
(Chen et al., 2020; Nguyen et al., 2022; Yu et al., 2023; Liu
et al., 2024a). This bottleneck in current FL strategies un-
derscores the need for LLM-powered programming agents
capable of adaptively designing FL strategies that are ready
for deployment in the wild.

A promising solution to tackle these challenges is to con-
struct an agentic workflow to dynamically design FL strate-
gies that can adapt to various user queries. Early approaches
utilizing an LLM-powered coding agent for automatic code
generation in application development (Muennighoff et al.,
2023; Dong et al., 2024; Ridnik et al., 2024) by directly
generating code from problem descriptions or sample I/O,
employing prompting techniques such as chain-of-thought
(Wei et al., 2022) and ReAct (Yao et al., 2023). Despite the
success of LLMs in code generation, many of these single-
agent methods struggle with complex problem solving tasks
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as the input token increases (Li et al., 2023; Levy et al.,
2024; Qian et al., 2024) in the context length of program-
ming problems.

Many studies in LLMs have particularly contributed to the
construction of multiagent frameworks to significantly en-
hance the performance of LLMs in complex problem solv-
ing tasks by facilitating collaborations between specialized
autonomous agents (Yang et al., 2025; Zhang et al., 2025).
In particular, in automated code generation, Huang et al.
(2023) proposed AgentCoder that separates code generation
from test case design and execution to enhance accuracy
while reducing token overhead. Islam et al. (2024) emulate
the human programming cycle by autonomously integrat-
ing retrieval, planning, coding, and debugging to improve
competitive code synthesis. Ishibashi & Nishimura (2024)
proposed self-organized agents that dynamically distribute
code generation and optimization tasks among proliferat-
ing agents for large-scale code generation and optimization.
Furthermore, recent research has revealed the capability
of multi-agent collaboration for automatic programming
in a long-term context for task-oriented code generation
in robotics engineering (Wang et al., 2025) or scientific re-
search (Gandhi et al., 2025; Hong et al., 2024). For example,
Chen et al. (2024a); Liu et al. (2024b); Phan et al. (2024);
Ma et al. (2024) adopt multi-agent processes to decouple
programming roles based on contextual information to re-
solve real-world GitHub issues in SWE-bench (Jimenez
et al., 2024), achieving superior performance compared to
single-agent methods.

In this position paper, we first present four fundamental ratio-
nales that motivate the adoption of AgenticFL frameworks
in FL design. In Section 3, we formalize the AgenticFL
paradigm as a multi-agent workflow, introducing a traversal
schema that mirrors the human programming cycle. We con-
clude by outlining promising avenues for future research,
encouraging the community to further investigate how col-
laborative multi-agent systems can innovate and optimize
FL architectures.

2. Motivation of Agentic FL Strategy Design

Rationale 1

Federated learning confronts multifaceted chal-
lenges in real-world applications.

Recent advances in FL have demonstrated its promise for
decentralized learning across domains such as healthcare,
finance, and personalized recommendations (Zhang et al.,
2021; Imteaj & Amini, 2022; Zhou et al., 2024), yet real-
world deployments (Fig. 1) must contend with stringent pri-
vacy requirements, device-level vulnerabilities, and model-
integrity threats, especially in IoMT-based healthcare set-

tings (Nguyen et al., 2022; Antunes et al., 2022), while
most existing FL strategies address these challenges in isola-
tion, highlighting the need for an integrated, ready-to-deploy
framework for complex, multifaceted applications.

Rationale 2

Federated Learning strategies can benefit from
complementary strategies.

Existing FL methods typically tackle isolated tasks while
being able to enhance with complementary strategies. For
example, in non-IID settings, Li et al. (2024a); Zhang et al.
(2022); Jiang et al. (2022); Hu et al. (2024) integrate algo-
rithms mitigating feature and label skew with established
strategies such as FedProx (Li et al., 2020), FedNova (Wang
et al., 2020), and SCAFFOLD (Karimireddy et al., 2020) to
improve performance in heterogeneous environments, and
Chen & Chao (2020); Dong et al. (2022); Li et al. (2022);
Kim et al. (2022); Ye et al. (2023b;a) show that adding novel
local-training regularizers and modular enhancements to ex-
isting FL strategies further bolsters model robustness and
delivers significant benchmark gains.

Rationale 3

Federated Learning strategies are vulnerable to
diverse scenarios or settings.

FL deployments face diverse client environments, data dis-
tributions, communication budgets, and computational con-
straints, causing existing FL strategies to behave unpre-
dictably under limited communication rounds (Wu et al.,
2022; Li et al., 2021a; Karimireddy et al., 2020; Mendieta
et al., 2022), exhibit sensitivity to client resource hetero-
geneity (Ye et al., 2023b; Diao et al., 2020; Kim et al., 2023;
Li et al., 2022), and suffer performance fluctuations from
hyperparameter configurations and participation variability
in client selection (Wu et al., 2023; Cho et al., 2022; Yan
et al., 2023; Jhunjhunwala et al., 2022; Xu et al., 2021),
thereby underscoring the need for adaptive AgenticFL strat-
egy designs.

Rationale 4

Federated Learning deployment requires adap-
tive framework integration.

Federated learning frameworks range from research-
oriented systems such as Flower (Beutel et al., 2020),
OpenFL (Reina et al., 2021), and PySyft (Ziller et al., 2021),
which offer modular environments for rapid prototyping, to
industrial-oriented platforms such as FATE (Liu et al., 2021),
IBM-FL (Ludwig et al., 2020), NVIDIA FLARE (Roth
et al., 2022), and FedML (He et al., 2020), which empha-
size scalability, robustness, and operational efficiency. This
dichotomy motivates an agentic FL framework for adap-
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Figure 1: Overview of various Federated Learning (FL) approaches and their focus areas.

tive, on-demand, task-specific strategy design to combine
experimental innovation with production-grade reliability.

3. Towards Multi-Agents Collaboration in
Agentic FL Ecosystem

Figure 2 depicts our proposed AgenticFL workflow for de-
signing and implementing agent systems. Inspired by the
typical software engineering lifecycle, we organize the pro-
cess into four successive stages—planning, programming,
optimization, and deployment—each supported by special-
ized agents that collaborate according to the contextual in-
formation they observe.

3.1. Progressive Plan with User-in-the-Loop

The AgenticFL framework initiates with a multi-turn elab-
oration process to construct robust coding initiatives. This
phase integrates user feedback through structured user-
agent interactions, establishing meta-review criteria that
guide subsequent coding processes. The formalized user
feedback Fu informs the planning process P , such that
P (Fu) → {T1, T2, . . . , Tn}, where each Ti represents a
discrete coding task with defined objectives and constraints
for a specific FL problem.

3.2. Iterative Codebase Generation and Validation

Once the specification is settled, a coding agent and a de-
bugging agent operate as a tightly coupled pair within a
single “worker group.” The coder translates each sub-task

into executable code modules, while the debugger executes
the generated code against unit tests, integration tests, or
simulation scripts. Within the worker group architecture,
two specialized agents operate in tandem: Coder (Ac) and
Debugger (Ad). These agents engage in an iterative cod-
ing–testing loop expressed as {Ac ↔ Ad}k, where k repre-
sents the number of iteration cycles until convergence to a
functionally correct codebase C that satisfies the predefined
task specifications and validation criteria.

3.3. Self-Debating for Optimizing coding candidates

The optimization phase employs a reflection agent Ar

that operates in a dual-stage manner. Initially, Ar deter-
mines optimization directions aligned with federated learn-
ing objectives (e.g., global convergence rate, communi-
cation efficiency). Subsequently, Ar performs structured
self-critique to generate detailed optimization proposals
P = {p1, p2, . . . , pn}. A committee of reviewer agents
powered by different LLMs {R1, R2, . . . , Rm} evaluates
these candidates using a LLM-based metric G(·) (e.g., G-
EVAL (Liu et al., 2023)) to rank the coding proposals from
multiple dimensions including novelty, correctness, and
testability.

Pk = argmax
P ′⊂P,|P ′|=k

∑
pi∈P ′

1

m

m∑
j=1

G(pi, Rj) (1)

The top-k candidates Pk are forwarded to the worker
group {Ac, Ad} for implementation as executable artifacts
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Figure 2: A general overview of agentic federated learning auto-programming workflow.

{a1, a2, ..., ak}. These artifacts undergo execution-based
evaluation against a standardized FL simulation (i.e., client
datasets and network conditions) and measure empirically
relevant performance indicators (e.g., test accuracy, total
communication rounds, end-to-end runtime). The artifact
that demonstrates optimal performance in these metrics is
selected as the final optimized output.

3.4. General Workflow of Agentic FL Programming

Planning. The AgenticFL workflow is initiated by a plan-
ning agent, which transforms the user’s high-level speci-
fication into a precise, structured set of FL design speci-
fication. First, the agent decomposes the query into core
requirements, such as choice of model architecture, privacy
budget, client heterogeneity, and communication resource,
and encodes these as structured planning objectives. To
ground its decisions, the agent dynamically issues API calls
to domain-specific tools, consults web search results for
algorithmic best practices, and retrieves analogous deploy-
ments and protocol templates from a Retrieval-Augmented
Generation (RAG) database. By integrating these exemplars
and blueprints, the planner produces a coherent development
roadmap that specifies modular subtasks, recommended hy-
perparameter ranges, and fallback strategies. This enriched,
context-aware prompt is then passed forward to downstream
agents to guide programming and optimization.

Programming. Next, the resulting blueprint is forwarded to
coding agents. Conditioned on the planner’s specification,
the coder emits an executable but minimal codebase that
comprises client-side training loops, server-side aggregation
logic, and auxiliary infrastructure (data loaders, logging
hooks, and differential privacy). The agent maintains mod-
ularity by encapsulating each functional component in a
separate module or class.

Optimization. Once a baseline implementation is available,
a suite of candidate refinements is produced at the optimiza-
tion stage with adaptive aggregation schedules, compres-

sion schemes. These candidates are evaluated via simulated
FL rounds on representative data partitions to assess each
variant’s empirical performance (e.g., convergence speed,
communication overhead, privacy leakage) and selects the
most promising configuration as the optimized output.

Deployment. Finally, the optimized artifact is passed to
a deployment sub-routine. Depending on the target envi-
ronment (e.g., research prototype or production), the final
optimization output is transformed into a task-specific pack-
age for one of the major FL frameworks (e.g., Flower (Beu-
tel et al., 2020), PySyft (Ziller et al., 2021), or NVIDIA
FLARE (Roth et al., 2022)). This adaptation entails translat-
ing generic training loops and aggregation routines into the
framework’s native API calls, provisioning execution envi-
ronments via containerization, and generating orchestration
scripts to coordinate distributed clients.

4. Conclusion
Through this paper, we propose a principled AgenticFL
framework for FL design, inspired by the human software-
development cycle. We first motivate the necessity of adopt-
ing multi-agent collaboration in FL through several key
rationales, followed by introducing a structured workflow
comprising planning, programming, optimization, and de-
ployment stages, each executed by specialized autonomous
agents. We highlighted key functional roles for each agent,
discussed their interplay across the FL lifecycle.

Future work includes developing the AgenticFL framework
with role-based agents based on FL task requirements, con-
ducting empirical studies on the efficiency of different task
specifications, and investigating adaptive agent behaviors
that respond to dynamic federated environments. We hope
this work inspires the community to further investigate and
refine multi-agent collaborative methodologies, ultimately
advancing the efficiency, flexibility, and scalability of auto-
mated agentic FL system design.
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A. Appendix
A.1. Overview of existing FL strategies across different tasks

Table 1 summarizes a representative set of FL algorithms, highlighting the primary challenges each method addresses (e.g.,
statistical heterogeneity, communication efficiency, and personalization) and distilling their core technical innovations. For
clarity, we annotate each method with its evaluation objective: top-1 test accuracy (◆), communication rounds/time (★),
and parameter transmission volume (▼). This overview situates our agentic workflow within the broader landscape of FL
research and underscores the diverse strategies that agents may leverage or augment in practice.

Table 1: Overview of federated learning (FL) baselines, the challenges they address, and their key approaches. Evaluation
objectives are indicated by symbols: ◆ denotes top-1 test accuracy, ★ denotes communication rounds/time, and ▼ denotes
parameter transmission.

Method Features Description

FedAvg ◆ (McMahan
et al., 2017)

basic aggregation Averages local model updates on the server to form a global model.

FedAvgM ◆ (Hsu
et al., 2019)

Non-IID data Momentum-based variant of FedAvg for handling heterogeneous
data distributions.

FedProx ◆ (Li et al.,
2020)

Non-IID data Incorporates a proximal term to stabilize local training under data
heterogeneity.

FedDyn ◆ (Acar
et al., 2021)

Non-IID data Dynamically adjusts local objectives to counteract distribution drift.

FedMLB ◆ (Kim
et al., 2022)

Non-IID data Employs multi-level branched regularization with online knowledge
distillation to align representations.

SCAFFOLD ◆
(Karimireddy et al.,
2020)

Non-IID data, convergence rate Utilizes control variates to mitigate client drift for improved conver-
gence.

FedNova ◆ (Wang
et al., 2020)

Non-IID data, convergence rate Normalizes local updates to address objective inconsistency and
enhance convergence speed.

FedOpt ◆ (Reddi
et al., 2020)

Non-IID data, convergence rate Leverages advanced server optimizers (e.g., Adam) to accelerate
global model convergence.

FedBN ◆ (Li et al.,
2021b)

Non-IID data, convergence rate Excludes local Batch Normalization parameters from aggregation to
mitigate feature shift.

MOON ◆ (Li et al.,
2021a)

Non-IID data, convergence rate Applies model-level contrastive learning to align local updates with
the global model, reducing drift.

HeteroFL ◆ (Diao
et al., 2020)

model heterogeneity Distributes subnetworks adaptively to handle varied model complex-
ities for efficient aggregation.

DepthFL ◆ (Kim
et al., 2023)

model heterogeneity Uses depth scaling with mutual self-distillation among sub-classifiers
to aggregate heterogeneous models.

FedPara ◆★ (Hyeon-
Woo et al., 2021)

communication cost Re-parameterizes network layers via a low-rank Hadamard product
to reduce communication overhead.

FedPAQ ◆★▼ (Rei-
sizadeh et al., 2020)

Non-IID data, communication Adopts periodic averaging, partial participation, and quantized up-
dates to lower communication costs.

FedKD ◆★▼ (Wu
et al., 2022)

communication cost Employs adaptive mutual distillation with dynamic gradient com-
pression to mitigate communication overhead.

FedDM ◆★ (Xiong
et al., 2023)

communication cost Utilizes iterative distribution matching with synthesized local surro-
gate functions to approximate loss landscapes and reduce rounds.
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Method Features Description

FedRep ◆ (Collins
et al., 2021)

personalization Learns a shared low-dimensional representation with personalized
heads for efficient model adaptation.

FedNS ◆ (Li et al.,
2024a)

Non-IID data, noisy data Integrates gradient norm-based detection to handle corrupt or unreli-
able client data.

A.2. Overview of FL Research Areas and Key Challenges

Table 2 illustrates the principal research topics in FL, identifies the key technical challenges associated with each topic, and
provides a concise description of their focus. This table serves as a reference for situating our proposed agentic workflow
within the broader landscape of FL research.

Table 2: Overview of federated learning (FL) topics and their associated challenges

FL Topics Main Challenges Description

Private & Secure FL Communication Efficiency,
Security & Privacy

Focuses on reducing communication overhead and
ensuring data confidentiality through encryption
and secure aggregation protocols.

Heterogeneous FL Data and Model Heterogene-
ity

Addresses the issues arising from distributed
clients with heterogeneous resources (e.g., data,
device) to improve global model generalizability.

Personalized FL Data Heterogeneity, Model
Personalization

Tailors the global model to individual client needs,
mitigating the adverse effects of statistical hetero-
geneity.

Multi-task FL Data Heterogeneity Leverages multi-task learning to simultaneously
learn shared and task-specific representations, ef-
fectively managing heterogeneous data.

Fed-AL Data Heterogeneity Integrates active learning to select informative sam-
ples, thereby reducing the negative impact of lim-
ited labeled data resources on distributed clients.

Fed-CL Data Heterogeneity, Catas-
trophic Forgetting

Employs continual learning strategies to handle
sequential data tasks while preventing the loss of
previously learned knowledge.

Robust FL Data Heterogeneity, Noisy
Data

Implements robust aggregation methods to coun-
teract the influence of noisy inputs from input or
label space, enhancing model stability.

One-shot FL Communication Efficiency,
Data Heterogeneity

Aims to minimize communication rounds by com-
pressing and efficiently aggregating updates while
addressing diverse data characteristics.
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