
When Extragradient Meets PAGE:
Bridging Two Giants to Boost Variational Inequalities

Gleb Molodtsov1,2 Valery Parfenov1 Egor Petrov1 Evseev Grigoriy1 Daniil Medyakov1,2 Aleksandr

Beznosikov2,1,3

1Moscow Institute of Physics and Technology
2Ivannikov Institute for System Programming of the RAS

3Innopolis University

Abstract

Variational inequalities (VIs) have emerged as
a universal framework for solving a wide range
of problems. A broad spectrum of applications
includes optimization, equilibrium analysis, re-
inforcement learning, and the rapidly evolving
field of generative adversarial networks (GANs).
Stochastic methods have proven to be powerful
tools for addressing such problems, but they of-
ten suffer from irreducible variance, necessitating
the development of variance reduction techniques.
Among these, SARAH-based algorithms have
demonstrated remarkable practical effectiveness.
In this work, we propose a new stochastic vari-
ance reduced algorithm for solving stochastic vari-
ational inequalities. We push the boundaries of ex-
isting methodologies by leveraging PAGE method
to solve VIs. Unlike prior studies that lacked theo-
retical guarantees under general assumptions, we
establish rigorous convergence rates, thus closing
a crucial gap in the literature. Our contributions
extend both theoretical understanding and practical
advancements in solving variational inequalities.
To substantiate our claims, we conduct extensive
experiments across diverse benchmarks, including
a widely studied denoising task. The results con-
sistently showcase the superior efficiency of our
approach, underscoring its potential for real-world
applications.

1 INTRODUCTION

Variational inequalities (VIs) have been a cornerstone of
mathematical research for a long time, offering an approach
to solving a wide range of problems. With the pioneering
work [Browder, 1965], and since then, they have become an
indispensable tool. We consider the VI problem by seeking

a solution z∗ ∈ Z that satisfies the following condition:

∀z ∈ Z ↪→ ⟨F (z∗), z − z∗⟩ ⩾ 0, (1)

where F is a monotone operator. Variational inequalities of-
fer a versatile framework for tackling various mathematical
challenges, including minimization problems, saddle and
fixed point problems [Stampacchia, 1964, Facchinei and
Pang, 2003, Kinderlehrer and Stampacchia, 2000]. To build
intuition, we present several illustrative examples.

Example 1 (Convex optimization). Consider the optimiza-
tion problem:

min
z∈Rd

[f(z)] . (2)

Here, f represents a smooth data fitting term. In this sce-
nario, let F (z) = ∇f(z). Thus, if f is convex, the optimiza-
tion problem (2) can be reformulated within the variational
inequality framework.

One of the main reasons for the widespread use of VIs is
that many non-smooth optimization problems can be re-
formulated as saddle point problems, significantly improv-
ing solution efficiency [Nesterov, 2005, Nemirovski, 2004,
Chambolle and Pock, 2011, Esser et al., 2010].

Example 2 (Convex-concave saddle points). Now, consider
the convex-concave saddle point problem:

min
x∈Rdx

max
y∈Rdy

[f(x, y)] . (3)

In this setting, f serves the same role as in Example 1. De-
fine F (z) = F (x, y) = [∇xf(x, y),−∇yf(x, y)]. Thus, if
f is smooth and convex-concave, this establishes the con-
nection between the saddle point formulation (3) and varia-
tional inequalities.

The investigation of minimization problems is frequently
conducted independently of VIs. However, the study of sad-
dle point problems is closely intertwined with VIs, as these
two areas share a strong theoretical and practical connection.
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Example 3. (Fixed points). Consider the fixed point prob-
lem:

Find z∗ ∈ Rd such that T (z∗) = z∗, (4)

where T : Rd → Rd is an operator. With F (z) = z − T (z),
it can be proved that z∗ ∈ Rd is a solution for (1) if and
only if F (z∗) = 0, i.e. z∗ ∈ Rd is a solution for (4).

Additionally, recent research has established important con-
nections between VIs and fields such as reinforcement learn-
ing [Omidshafiei et al., 2017, Jin and Sidford, 2020], adver-
sarial training [Madry et al., 2017], and generative adversar-
ial networks (GANs) [Goodfellow et al., 2014]. In particular,
in-depth analysis of variational inequalities provides theo-
retical insights and practical guidance for improving GAN
training methods [Daskalakis et al., 2017, Gidel et al., 2018,
Mertikopoulos et al., 2018, Chavdarova et al., 2019, Liang
and Stokes, 2019, Peng et al., 2020].

Beyond these modern applications, VIs also play a crucial
role in classical problems such as clustering [Xu et al., 2004],
matrix factorization [Bach et al., 2008], image denoising
[Esser et al., 2010, Chambolle and Pock, 2011], robust opti-
mization [Ben-Tal et al., 2009], economic modeling, game
theory [Von Neumann and Morgenstern, 1953], and optimal
control [Facchinei and Pang, 2003].

Despite their broad applicability, solving variational inequal-
ities presents significant challenges. Traditional optimiza-
tion techniques, such as the gradient method, often fail in
this context, both in terms of efficiency and theoretical con-
vergence guarantees [Harker and Pang, 1990, Beznosikov
et al., 2023]. Among the many approaches developed for
solving VIs, the EXTRAGRADIENT method [Korpelevich,
1976, Mokhtari et al., 2020] has proven to be one of the
most effective.

Recent advances in machine learning and data science intro-
duce additional complexities. The growing size of datasets
and increasing model complexity demand computationally
efficient algorithms [Bottou, 2010, Dean et al., 2012]. A
fundamental optimization problem underlying many ma-
chine learning tasks is Empirical Risk Minimization (ERM).
In the context of distributed systems, where data is spread
across multiple devices, the ERM problem is commonly
formulated as:

min
z∈Rd

[
f(z) =

1

n

n∑
i=1

Eξi∼Di [fξi(z)]

]
, (5)

where Di is an unknown distribution of the training sample
data on the i-th device. A particularly important and widely
studied case arises when all nodes share the same underlying
data distribution, i.e., Di = D for all i. In this setting, the
objective (5) reduces to a finite-sum optimization problem:

f(z) =
1

n

n∑
i=1

fi(z), (6)

where each fi(z) := Eξ∼D[fξ(z)] corresponds to the ex-
pected loss over a local mini-batch or a single sample, as-
suming access to identical distributions across nodes.

Moreover, this finite-sum function can be reformulated as
an adversarial training problem:

min
w∈Rd

max
∥ri∥⩽D

[
1

N

∑N

i=1

(
wT (xi + ri)− yi

)2
+

λ

2
∥w∥2 − β

2
∥r∥2

]
,

(7)

where the samples correspond to features xi and targets
yi. This reformulation enables efficient large-scale problem
solving.

Stochastic algorithms are particularly well-suited for han-
dling such problems as (6). Instead of computing the full
operator value at each iteration, stochastic methods ran-
domly sample Fi. The stochastic EXTRAGRADIENT method
[Juditsky et al., 2011] follows this principle by selecting in-
dependent random indices it, jt at iteration t and performing
the following updates:

zt+
1
2 = zt − γFit(z

t),

zt+1 = zt − γFjt(z
t+ 1

2 ).
(8)

This method extends the classical SGD approach [Robbins
and Monro, 1951] by incorporating an additional step to
improve stability. However, it suffers from high variance
in stochastic operator estimates, limiting its convergence
to a neighborhood of the optimal solution rather than the
exact solution itself [Juditsky et al., 2011, Mishchenko et al.,
2020]. This issue also affects classical SGD [Bottou, 2009,
Moulines and Bach, 2011, Gower et al., 2020]. The intu-
ition behind this problem can be easily extracted from the
example with a setup involving heterogeneous data, where
near the optimal point ∇f(z∗) = 1

n

∑n
i=1 ∇fi(z

∗) → 0,
while some ∇fi(z

∗) can retain finite values. As a result, in
the optimum region, SGD will take large steps, preventing
it from reaching the optimum.

A major breakthrough in addressing this limitation was the
introduction of variance reduction (VR) techniques, origi-
nally developed for finite-sum minimization [Johnson and
Zhang, 2013]. At each iteration, an index it is selected along
with a reference point ωt, which is periodically updated or
chosen probabilistically [Kovalev et al., 2020]. In the con-
text of convex optimization, the variance-reduced gradient
at zt+

1
2 is given by:

g(zt) = ∇fit(z
t+ 1

2 )−∇fit(ω
t) +∇f(ωt). (9)

Variance reduction techniques construct more accurate gra-
dient estimators over time, enabling the use of larger step
sizes and accelerating convergence.



In addition to the widely used SVRG [Johnson and Zhang,
2013], related methods include SAG [Roux et al., 2012,
Schmidt et al., 2017], SAGA [Defazio et al., 2014a, Qian
et al., 2019], and FINITO [Defazio et al., 2014b]. However,
for both convex and non-convex smooth minimization prob-
lems, the best guarantees of convergence are given by other
variance-reduced technique SARAH [Nguyen et al., 2017,
Hu et al., 2019] (and its modifications: SPIDER [Fang
et al., 2018], STORM [Cutkosky and Orabona, 2019]). No-
tably, loopless version PAGE [Li et al., 2021] has garnered
significant interest due to its ability to provide improved con-
vergence guarantees through probabilistic reference point
updates.

SARAH technique rejects memorizing all components of
the reference gradient and deals with the biased gradient
estimator in the inner loop:

gt = ∇fit(z
t+ 1

2 )−∇fit(z
t− 1

2 ) + gt−1. (10)

Biasedness complicates the theoretical analysis. At the same
time, such an update rule leads to smoother changes in the
gradient estimator g from iteration to iteration, lower mem-
ory costs, and demonstrates better practical performance.
Returning to the example with heterogeneous data, this time
the difference ∇fit(z

t)−∇fit(z
t−1) is going to be small

for small steps. This fact allows remain the scale of gt af-
ter its initialization with original gradient in the outer loop.
Therefore, the issue with large gradient estimators near the
optimum is resolved. Additionally, provided demonstration
outlines the practical difference of the (10) and (9) update
rules. Indeed, (10) utilizes the gradient difference in con-
secutive points, while (9) considers the difference between
the current and reference points. This provides an additional
boost to (10).

The probabilistic approach simplifies the theoretical analysis
achieving the best convergence guarantees. Particularly, we
draw attention to the iteration of PAGE, which provides the
intuition behind our algorithm:

gt =

{
∇f(zt) ,with prob. p
∇fit(z

t)−∇fit(z
t−1) + gt−1 ,with prob. 1− p.

Meanwhile, current research continues to explore the appli-
cation of variance reduction techniques for solving varia-
tional inequalities. Although most methods in this area are
based on SVRG [Alacaoglu and Malitsky, 2021, Medyakov
et al., 2024], the more practically beneficial SARAH
method has received limited attention, with only a few stud-
ies examining its application [Beznosikov and Gasnikov,
2023]. Our work bridges this gap by proposing the use of
such variance reduction technique in the loopless version
for variational inequalities under broader assumptions of
Lipschitz continuity and monotonicity.

BRIEF LITERATURE REVIEW

• Deterministic approaches for solving VIs. As previ-
ously noted, the EXTRAGRADIENT method [Korpelevich,
1976] is a classical deterministic approach for solving the
problem (1) in the Euclidean setting. Building on this,
the MIRROR-PROX method [Nemirovski, 2004] was intro-
duced, incorporating Bregman divergence to extend the
framework to non-Euclidean geometries. In addition to
these, several other deterministic methods have been pro-
posed for solving VIs, including FORWARD-BACKWARD-
FORWARD (FBF) [Tseng, 2000], DUAL EXTRAPOLATION
[Nesterov, 2007], REFLECTED GRADIENT [Malitsky, 2015],
and FORWARD-REFLECTED-BACKWARD (FORB) [Malit-
sky and Tam, 2020].

• Stochastic methods for VIs. The application of various
stochastic methods for solving variational inequalities and
saddle point problems has been the subject of extensive
research. The first stochastic versions of algorithms for solv-
ing variational inequalities were proposed by [Juditsky et al.,
2011]. The idea was further developed in [Gidel et al., 2018,
Hsieh et al., 2019, Mishchenko et al., 2020, Hsieh et al.,
2020, Gorbunov et al., 2022, Beznosikov et al., 2023, 2024,
Solodkin et al., 2024]. Subsequently, researchers employed
variance reduction techniques to mitigate the inherent vari-
ance in these stochastic methods. Specifically, [Palaniappan
and Bach, 2016] explored a stochastic GRADIENT METHOD
with VR, combining SVRG with Catalyst acceleration.

The combination of these techniques with methods tradi-
tionally used for variational inequalities appeared in [Chav-
darova et al., 2019] who integrated EXTRAGRADIENT with
SVRG, leveraging variance reduction to achieve improved
convergence rates. The aforementioned variance reduction
technique has also been explored later [Alacaoglu et al.,
2021, Alacaoglu and Malitsky, 2021, Kovalev et al., 2022,
Beznosikov et al., 2022].

Although most of the methods were based on the SVRG
approach, some studies focused on analyzing the SARAH
method, which is more appealing from a practical stand-
point for minimization problems. Thus, [Chen et al., 2022]
proposed SPIDER-GDA, achieving a stochastic first-order
oracle complexity of O

((
n+

√
nκxκ

2
y

)
log(1/ϵ)

)
under

two-sided conditions (κx = L/µx, κy = L/µy). The given
estimate has a significant drawback: it depends cubically
on L/µ. In reality, while batch size parameters n can be
dynamically adjusted to influence convergence speed, the
problem parameters remain fixed. Consequently, despite
potential gains from adjusting n, the overall estimate typ-
ically presents a much worse scenario on average. Later,
[Beznosikov and Gasnikov, 2023] presented results for the
SARAH method with objective functions under a cocoerciv-
ity condition on the operator. However, the given assump-
tion is a more stringent analogue of the Lipschitz continuity
condition and does not hold even for training a neural net-



work with two convolutional layers [Cybenko, 1989]. A
comparison of these assumptions for variational inequalities
is provided in [Loizou et al., 2021]. In contrast, our study
offers an analysis based on more general assumptions.

CONTRIBUTIONS

Our main contributions are highlighted here.

• Adaptation of PAGE for Variational Inequalities. We
present an application of the PAGE method, leveraging
its practically beneficial variance reduction technique
for solving variational inequalities.

• Convergence Estimates under General Assumptions.
We provide theoretical convergence estimates for our
method under more general assumptions on the op-
erator and problem conditions (Lipschitz constant),
surpassing previous studies in this area.

• Comprehensive Experimental Validation. Extensive
experiments demonstrate the superiority of applying
PAGE to EXTRAGRADIENT methods over their vanilla
versions or its previous combinations with variance
reduction technique. To validate our approach, we con-
ducted the following experiments:

1. Training ResNet-18 on CIFAR-10 for a multi-class
classification task.

2. Image denoising as a practical application of saddle-
point methods.

3. Solving toy bilinear tasks to analyze performance in
controlled settings.

4. Adversarial training to highlight robustness and effi-
ciency.

SETUP

Notation. In this paper, we use ⟨x, y⟩ :=
∑n

i=1 xiyi to
denote the standard inner product of x, y ∈ Rd, where xi

corresponds to the i-th component of x in the standard basis
of Rd. It induces the ℓ2-norm in Rd in the following way:
∥x∥ := ∥x∥2 =

√
⟨x, x⟩.

Recall that we consider the problem (1), where the opera-
tor F has the form (6). Additionally, we present a list of
assumptions within which we obtain the main statements.

Assumption 1. (Lipschitzness.) The operator F has a
stochastic oracle Fi that is unbiased F (z1) = E [Fi(z1)]
and is L-Lipschitz in mean:

Ei

[
∥Fi(z1)− Fi(z2)∥2

]
⩽ L2∥z1 − z2∥2

for any z1, z2 ∈ Z .

Note that F can be expressed as a finite sum, F =
1
n

∑n
i=1 Fi, where each component Fi is Li-Lipschitz con-

tinuous, and the full operator F is LF -Lipschitz. By ap-
plying the triangle inequality, it naturally follows that
LF ⩽ 1

n

∑n
i=1 Li. On the one hand, the sum 1

n

∑n
i=1 Li

can be significantly larger than LF . On the other hand, while
computing each individual Li may be straightforward, de-
termining the exact value of LF might not be feasible. In
such cases, the inequality provides a practical upper bound
for LF .

Even in the general form, the problem demonstrates poten-
tial issues caused by suboptimal stochastic oracles. If the
Lipschitz constant L of our stochastic oracle is significantly
worse (i.e., larger) than LF , it can negate the benefits of
using inexpensive stochastic oracles. In what follows, for
finite-sum problems, we assume that Lipschitz constants are
similar for two arbitrary oracles from this sum.

Assumption 2. (Monotonicity conditions.) We need two
cases of monotonicity:

(a) Strong monotonicity: Operator F is µ-strongly mono-
tone, i.e.,

⟨F (z1)− F (z2), z1 − z2⟩ ⩾ µ∥z1 − z2∥2

for any z1, z2 ∈ Z .

(b) Monotonicity: Operator F is monotone, i.e.,

⟨F (z1)− F (z2), z1 − z2⟩ ⩾ 0

for any z1, z2 ∈ Z .

For minimization problems, Assumption 2(a) means strong
convexity, and for saddle point problems, strong convexity–
strong concavity. At the same time, variance reduction meth-
ods are usually considered under Assumption (1) or its ana-
logues, such as L-smoothness in the worst-case scenario.
In light of these facts, our assumptions are classic for such
problems.

2 ALGORITHMS AND CONVERGENCE
ANALYSIS

Having established the necessary background, we can now
proceed to the main theoretical contribution of our paper.
Let us start with our Algorithm 1 (EXTRAPAGE).

Line 5 demonstrates that EXTRAPAGE encapsulates PAGE
update rule principle. In particular, the oracle uses informa-
tion about the operator from previous iterations in order to
reach a variance reduction effect. At the same time, it does
not apply reference point concept, instead of this we use
probabilistic approach, defining

Gt = F (zt+
1/2)



Algorithm 1 EXTRAPAGE

1: Input: Initial points z−1/2 = z0 ∈ Rd; Initial gradient
G−1 = F (z−1/2)

2: Parameter: Stepsize γ > 0, probability p ∈ (0, 1]
3: for t = 0, 1, 2, . . . , T − 1 do
4: zt+

1
2 = zt − γGt−1

5: Gt =

{
F (zt+1/2), p

Gt−1 + Fit(z
t+1/2)− Fit(z

t−1/2), 1− p

6: zt+1 = zt − γGt

7: end for
8: Output: zT

with probability p and

Gt = Gt−1 + Fit(z
t+1/2)− Fit(z

t−1/2)

with probability 1− p. It means, we compute full gradient
every 1

p iterations in average. Therefore, using p ∼ 1
n sig-

nificantly reduces oracle complexity compared to classical
GD, loosing to SGD in computational iteration cost only
by a constant factor.

Let us now recall the classical EXTRAGRADIENT step (8)
and pay special attention on how we adapt it to our case.
As in the vanilla EXTRAGRADIENT method, we use zt+1/2,
computed in Line 4. One can note that we use a new com-
puted reduced gradient to perform the main step of the
method, and the previous one to find an extrapolation point.
In this way, we accurately adapt the variance reduction idea
to the EXTRAGRADIENT technique. However, in contrast to
vanilla Stochastic EXTRAGRADIENT, our algorithm updates
the gradient estimator only once per iteration. The theoreti-
cal analysis has revealed that the second gradient estimator
update makes the recursion formulation more complex with-
out yielding better convergence guarantees.

It is worth noting that SARAH lacks an essential feature
of unbiasedness in stochastic operators compared to the
SVRG algorithm:

Eit
[
Git(z

t)
]
̸= 1

n

n∑
i=1

Fi(z
t) = F (zt).

This limitation results in a more complex analysis and re-
quires non-standard techniques to establish convergence.
More particularly, the only remaining tool for theoretical
analysis is evaluation of terms under the expectation, with
explicit use of algorithm iterations.

Now we turn to the formal analysis. First, we would like to
provide a brief discussion. In stochastic optimization, com-
putational cheap gradient estimators are used instead of gra-
dients. This way, stochastic algorithms reach acceleration in
terms of iteration cost, but to remain its iterations effective,
we strive to minimize the difference between the estimator
and original gradient. As mentioned earlier, the concept of

variance reduction methods is to collect information from
previous iterations and use it to improve the quality of the
gradient estimation at the current point. Subsequently, con-
trolling the difference between the original gradient and its
estimator is a key consideration in the development of an
effective stochastic method. Our algorithm enables a recur-
sive analysis of the squared norm of this difference, which
is formalized in Lemma 1. This lemma is pivotal not only
for deriving convergence guarantees but also for gaining
fundamental insights into variance reduction techniques.

Lemma 1. For iterations of Algorithm 1 the following in-
equality holds:

EitEGt−1

∥∥∥F (zt+
1/2)−Gt

∥∥∥2 =

(1− p)

[
Eit

∥∥∥Fit

(
zt+

1/2
)
− Fit

(
zt−

1/2
)∥∥∥2

+
∥∥∥F (zt−

1/2)−Gt−1
∥∥∥2 − ∥∥∥F (zt+1/2

)
− F

(
zt−

1/2
)∥∥∥2 ].

If F = 1
n

n∑
i=1

Fi represents the loss of the model on homo-

geneous data, the first term in brackets tends to be small,
which means remaining the estimation quality during the
executing of the algorithm. In our setting, Assumption 1
provides a further estimate:

E
∥∥∥F (zt+

1/2)−Gt
∥∥∥2 ⩽ (1− p)E

∥∥∥F (zt−
1/2)−Gt−1

∥∥∥2
+ (1− p)L2E

∥∥∥zt+1/2 − zt−
1/2
∥∥∥2.

At this point, we introduce our main theoretical result. Bi-
asedness not only complicates the analysis but also affects
the convergence criteria. Theorem 1 provides convergence
guarantees for the EXTRAPAGE algorithm based on a
specifically constructed function that ensures the stability
of the method:

V t = E
[ ∥∥zt − z∗

∥∥2 + γ2H
∥∥∥F (zt−

1/2)−Gt−1
∥∥∥2

+ 2γM
〈
F (zt−

1/2)−Gt−1, zt−
1/2 − z∗

〉
+ γ2

∥∥Gt −Gt−1
∥∥2 ],

where M = 1−p
p−γµ and H = 70n3. Taking into account the

choice of the stepsize γ and probability p in Theorem 1, M
can be estimated as M ∼ n. We outline the third term in the
Lyapunov function V t, which represents a scalar product.
Such a term can be negative and is unusual for Lyapunov
functions in variational inequality problems.

Theorem 1. Under Assumptions 1, 2(a), after T iterations
of Algorithm 1 with γ ⩽ 1

30Ln3/2
, p = 1

n , the following
holds:

V T ⩽ (1− γµ)
T ∥∥z0 − z∗

∥∥2 .



Thus, we established the linear convergence of Algorithm 1
with respect to the function V . It is important to outline that
V includes terms containing the difference F (zt+1/2)−Gt,
which imposes tight restrictions on

∥∥F (zt+1/2)−Gt
∥∥.This

suggests that Gt provides a sufficiently accurate approxi-
mation of F (zt+1/2), thereby validating the effectiveness of
our choice for the update rule of Gt.

Corollary 1 reflects the superiority of the obtained guar-
antees based on the function V t over the usual criterion
∥zt − z∗∥2, which is not obvious due to the possible negativ-
ity of the scalar product

〈
F (zt−1/2)−Gt−1, zt−1/2 − z∗

〉
.

Corollary 1. In settings of Theorem 1, after T iterations
of Algorithm 1 with γ ⩽ 1

30Ln3/2
and p = 1

n , the following
holds:

E
[
1
2∥z

T − z∗∥2+γ2H
2

∥∥F (zT−1/2)−GT−1
∥∥2 ]

⩽ (1− γµ)
T ∥∥z0 − z∗

∥∥2 .
As a final point of our theoretical analysis, we introduce
Corollary 2.

Corollary 2. Suppose Assumptions 1, 2(a) hold. Then Algo-
rithm 1 with γ = 1

30Ln3/2
and p = 1

n , to reach ε-accuracy,
where ε ∼ V T , needs

O
(
Ln3/2

µ
log

1

ε

)
iterations and oracle calls.

Let us briefly discuss the result. Comparing our result
with other estimates in this class, under Assumptions 1
and 2(a), our algorithm has a worse dependence on n.
Nevertheless, this phenomenon is explainable. The con-
vergence analysis of variance reduction methods that are
not unbiased, particularly in the extragradient setting, in-
herently introduces an inner product term of the form〈
F (zt−1/2)−Gt−1, zt−1/2 − z∗

〉
in the function governing

the convergence rate. This inner product significantly com-
plicates the analysis. Placing this term in the recursion leads
to the emergence of an additional degree of n

1
2 . However,

this can be seen as a trade-off – a chance to obtain superior
practical convergence at the cost of gradient bias.

Remark 1. We can transform the obtained estimation for
the case of monotone stochastic operators 2(b) acting on a
bounded domain of diameter D. To do this, we use a reg-
ularization trick with µ ∼ ε

D2 . Thus, solving the problem
with the operator F̂ (z) = F (z) + µ(z − z0) with the accu-
racy ε

2 , we solve the problem (1) with the accuracy ε and

obtain Õ
(

Ln
3/2

ε

)
iteration and oracle complexity. This is

convergence in argument, it differs from the classical form.

3 EXPERIMENTS

Our experimental evaluation spans a diverse set of tasks,
illustrating the effectiveness of EXTRAPAGE in various
practical settings. The structure of this section is as follows:

- Analysis on Toy Bilinear Problems (Section 3.1): We
begin with an evaluation of EXTRAPAGE’s performance on
synthetic bilinear problems. These controlled experiments
serve as a baseline for comparison with existing approaches.

- Deep Learning Scalability (Section 3.2): We assess the
scalability and adaptability of EXTRAPAGE by training a
ResNet-18 model on the CIFAR-10 image classification.

- Practical Utility in Denoising (Section 3.3): We then
apply our method to image denoising — a canonical appli-
cation of saddle-point optimization.

- Performance on GAN Training (Section 3.4): To further
validate the robustness and convergence properties of EX-
TRAPAGE, we compare it against established baselines in
the challenging setting of GAN training.

We compare Algorithm 1 EXTRAPAGE to those in the liter-
ature. Therefore, we take EXTRAGRADIENT [Juditsky et al.,
2011], EXTRAGRADIENT WITH VARIANCE REDUCTION
(EGVR) [Alacaoglu and Malitsky, 2022], Stochastic Gra-
dient Descent Ascent (SGDA) [Nemirovski et al., 2009]
with and without clipping and SPIDER-GDA [Chen et al.,
2022] algorithms as a reference. Additional experiments,
including adversarial training and extended formulations
discussed above, are provided in Appendix A.

3.1 BILINEAR SADDLE POINT PROBLEM

We start our experiments with a distributed bilinear problem

min
x∈Rdx

max
y∈Rdy

xTAy+aTx+bT y+
λ2

2
∥x∥2−λ2

2
∥y∥2, (11)

where A ∈ Rd×d, a, b ∈ Rd. This problem is λ-strongly
convex–strongly-concave and, moreover, it is ∥A∥2-smooth.
Therefore, this distributed problem is well suited for the
primary comparison of our methods. We take d = 100, and
in order to apply stochastic methods, we generate a set of
positive definite matrices Ai and vectors ai, bi randomly.
We represent matrix A as the sum of matrices Ai, that is,
A =

∑n
i=1 Ai, where n = 100, the same operation is

performed for vectors a and b.

The experiments are carried out for matrices with the ratio
of eigenvalues L

µ = 104 and L
µ = 102, where L, µ are

the maximum and minimum eigenvalues of the matrix A,
respectively. The results are presented in Figures 1, 2.

The empirical findings reveal that EXTRAPAGE showcases
enhanced convergence when contrasted with the aforemen-
tioned algorithms. Of particular note is the performance of
our methodology at huge L/µ ratios. Although the conver-
gence rate of L3

/µ3 was formerly derived by [Chen et al.,
2022], this bound fails to precisely depict the real-world be-
havior witnessed with substantial condition number. Despite
the fast convergence of the algorithm under such conditions,
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compared to different
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with L
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Figure 2: EXTRAPAGE
compared to different
baselines on the problem 11
with L

µ = 102.

a considerable gap persisted between the theoretical pre-
diction and the observed empirical outcomes. This paper
bridges this shortcoming by establishing a refined, more
accurate convergence rate. This rate faithfully reflects the
actual performance, specifically with such large condition
number, which are common in real-world scenarios.

3.2 IMAGE CLASSIFICATION

We investigate the performance of our method compared
to the baselines on an image classification problem. We
consider the ResNet-18 model [He et al., 2016] with the
provided in this paper weight optimizers and the public
CIFAR-10 [Krizhevsky et al., 2009] image dataset. To ex-
plore the robustness of the optimizers, we reformulate the
standard minimization problem into the min-max optimiza-
tion framework. Specifically, let f(w, x, y) denote the loss
function, where w ∈ Rdw represents the model parameters,
x ∈ Rdx is the input, and y ∈ R is the corresponding label.
We consider the following optimization problem:

min
w∈Rdw

max
∥ri∥⩽D

1

n

n∑
i=1

f(w, xi + r, yi) +
λ

2
∥w∥2 − β

2
∥r∥2,

where f is the cross-entropy loss function, r represents
adversarial noise introduced to model data perturbations,
and λ, β are regularization parameters. The formulation can
be expressed as a variational inequality:

z =

(
w
r

)
, Fi(z) =

(
∇wf(w, xi + r, yi) + λw
−∇rf(w, xi + r, yi) + βr

)
.

The results are presented in Figure 3.

EXTRAPAGE exhibits stronger fluctuations in both accu-
racy and loss, yet this dynamic behavior enables it to achieve
higher peak and average accuracy compared to other base-
lines. While the trajectory is more volatile, the algorithm
consistently outperforms the alternatives, demonstrating its
effectiveness for the applied image classification task. We
also compare the running times for all methods in Table 1.

Despite being slower than the fastest baselines, EXTRA-
PAGE demonstrates a reasonable epoch time while deliver-
ing superior performance in terms of accuracy, as observed

0 20 40 60 80 100

101

6 × 100

2 × 101

Lo
ss

Training Loss

0 20 40 60 80 100

2 × 100

3 × 100

4 × 100

Test Loss

0 20 40 60 80 100

Epochs

30

60

90

Ac
cu

ra
cy

Training Accuracy

0 20 40 60 80 100

Epochs

30

60

90

Test Accuracy

EG EGVR SGDA SGDA clipped SpiderGDA ExtraPAGE (ours)

Figure 3: EXTRAPAGE compared to different baselines on
CIFAR dataset. We choose n = 100, p = 1

n .

Table 1: Runtime comparison of our algorithms with n =
100, p = 1

n .

Algorithm Total Time Round Time

EG 467.447 4.674 ± 0.020
EGVR 618.560 6.186 ± 0.009
SGDA 433.672 4.337 ± 0.043
SGDA clipped 438.911 4.389 ± 0.252
SPIDER 841.750 8.417 ± 0.761
ExtraPAGE 634.692 6.347 ± 0.010

in the corresponding learning curves. This suggests that
its computational overhead is justified by improved conver-
gence behavior. In Appendix A.3 we further investigate the
convergence and runtime values of ExtraPAGE and other
baselines at different values of n and p.

3.3 IMAGE DENOISING

To formulate the image denoising problem [Chambolle and
Pock, 2011], we consider the classic saddle point problem
as we demonstrate in Example 2:

min
x∈X

max
y∈Y

[⟨Kx, y⟩+G1(x)−G2(y)] ,

where regularizers G1 and G2 are proper convex lower semi-
continuous functions, and K is a continuous linear operator.
To proceed with image denoising, we consider g as a given
noisy image and u as the solution we seek. We use the Carte-
sian grid with the step h : {(i · h, j · h)}. Thus, specifically
for the image denoising, we consider:

min
u∈X

max
p∈Y

[
⟨∇u, p⟩Y + λ/2∥u− g∥22 − δP (p)

]
,

where p is a dual variable, δP (p) is the indicator function
of the set P defined as: P = {p ∈ Y : ∥p(x)∥ ⩽ 1}.
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Figure 4: EXTRAPAGE and other baselines convergence on image with σ = 0.1 on the problem 12

The indicator function δP (p) is defined as zero if p belongs
to the set P , and infinity otherwise. We define operator
∇u as the difference between neighboring pixels in the
grid horizontally and vertically, normalizing by the step
of the grid h. This formulation represents a saddle point
problem, where we seek to minimize the first term with
respect to u while simultaneously maximizing the second
term with respect to p. Using duality, we can write the final
formulation of considering problem as

min
u∈X

max
p∈Y

[
−⟨u, div p⟩X + λ/2∥u− g∥22 − δP (p)

]
. (12)

We divide images into batches – equal squares. We con-
sider two options: batches of size 4 and 8 according to the
grid. Since the images are black and white, they are single-
channel, which means that each batch is a square matrix
with non-negative integers. It is also important to note that
when calculating the gradient, the edges of the batch are
processed according to the rule of adding a number equal to
that of the nearest neighbor.

We select two images with different levels of additive zero-
mean Gaussian noise: σ = 0.05 and σ = 0.1. Figure 4
provides a comparison of the proposed methods on the im-
age with σ = 0.1. Additional results for all methods on
another image are presented in Figure 7 in Appendix A.2.

Comparing the images, it can be observed that EGVR
demonstrates strong practical performance, with results that
are nearly indistinguishable to the human eye from those of
EXTRAPAGE. The slight difference lies in the loss behav-
ior. We notice that EGVR performs slightly better than our
algorithm during first epochs. Nonetheless, with continued

training, the convergence rate of our algorithm surpasses
superiority. Besides, while both EXTRAPAGE and EGVR
converge well, EXTRAPAGE shows a smoother and more
stable decline in error. In contrast, other methods struggle
significantly with the problem, failing to reduce noise ef-
fectively. This can be attributed to its inherent limitations
in handling variance-reduced stochastic updates, which are
crucial for image denoising. Finally, compared to the orig-
inal noisy image, all tested methods achieved significant
noise reduction.

3.4 GAN TRAINING

Generative Adversarial Networks (GANs) represent a pow-
erful class of models widely applied in image generation
tasks. StyleGAN [Karras, 2019] standing out for its ability
to produce high-quality synthetic images. The adversarial
nature of GAN training poses an minmax optimization
problem, which can be effectively framed as a Variational In-
equality. Thus, we explore the application of EXTRAPAGE
in training a StyleGAN model for style translation.

We utilize the I’M SOMETHING OF A PAINTER MYSELF
dataset, which consists of two distinct domains: a set of 300
Monet paintings and a set of 7028 photographs. Each image
is resized to 256×256 pixels. We train the generator with an
extrapolation step for both discriminators. We configure the
training with a fixed learning rate γ = 5× 10−5 and a batch
size of 5, consistent across both domains. The probability
parameter p = 1

n is set based on the effective dataset size,
though for computational efficiency, we adapt it to the mini-
batch context. Training is conducted for multiple random



initializations, specifically with random states 50 and 57.
The results are presented in Figure 5.
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Figure 5: All components use EXTRAPAGE with γ = 5×
10−5 and batch size 5, random state 50

We provide additional results in Appendix A.4. As GANs
represent one of the most prominent applications of VI algo-
rithms in modern machine learning, EXTRAPAGE proves
its applicability to a wide range of tasks.

4 DISCUSSION

In this paper, we present EXTRAPAGE, a novel algorithm
for solving variational inequalities (VIs) and saddle point
problems (SPPs). Our method is built upon variance-reduced
algorithm PAGE and leads to superior theoretical conver-
gence properties compared to baselines and slightly out-
perform them in practice. Additionally, our work closes an
important gap in the theoretical understanding of SARAH-
based methods applied to VIs and SPPs. Specifically, we
derive a complexity bound with a linear dependence on
the condition number of the problem under the assumption
of Lipschitzness. Future research should refine theoretical
bounds to establish the optimality of our method. What is
more, further investigation into adaptive stepsize strategies
could enhance the applicability of the method.
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A ADDITIONAL EXPERIMENTS

In this section, we present additional experiments that have been performed as well as the technical details for them.
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A.1 ADVERSARIAL TRAINING

We address an adversarial training problem. We can formulate it the way as in (7).

We evaluate this issue across several datasets: mushrooms, a9a, w8a, and ijcnn1, sourced from the LIBSVM library
[Chang and Lin, 2011]. A brief description of these datasets is provided in Table 2. The results are presented in Figure 6.
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Figure 6: EXTRAPAGE compared to different baselines on mushrooms, a9a, w8a, and ijcnn1 datasets on the problem
(7).

As shown on plots, EXTRAPAGE consistently outperforms other methods across all datasets (mushrooms, a9a, w8a,
ijcnn1). These datasets vary in size and complexity, providing a comprehensive evaluation of our proposed algorithms in
the context of adversarial training.

Table 2: Summary of Datasets

Name Number of
Instances

Number of
Features

Number of
Classes

mushrooms 8,124 112 2
a9a 32,561 123 2
w8a 49,749 300 2
ijcnn1 49,990 22 2



A.2 IMAGE DENOISING

In this section, we present additional experiments conducted on image denoising. Consistent with our previous findings, a
notable pattern emerges: although EGVR initially converges faster, EXTRAPAGE exhibits more stable convergence over
time, ultimately reaching a more precise minimum. Both methods significantly outperform the vanilla EXTRAGRADIENT
approach on this task. These results further reinforce the effectiveness of variance reduction techniques when applied to
another image with noise level σ = 0.05, underscoring their utility in solving denoising problems.
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Figure 7: EXTRAPAGE and other baselines convergence on image with σ = 0.05 on the problem 12 with batch sizes
∈ {4, 8}
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Figure 8: EXTRAPAGE and other baselines convergence on image with σ = 0.1 on the problem 12

A.3 IMAGE CLASSIFICATION

This experiment was conducted on the CIFAR-10 dataset [Krizhevsky et al., 2009], widely used as a benchmark in
optimization community, consisting of 50,000 training and 10,000 test samples. Each sample is a 32 × 32 RGB image
associated with one of ten class labels. The experiments were implemented in Python using the PyTorch library [Paszke
et al., 2019], leveraging both a single CPU (Intel Xeon 2.20 GHz) and a single GPU (NVIDIA Tesla P100) for computation.

The experiments are conducted with the following setup:

• learning rate γ = 0.01 for all optimizers;

• regularization parameters λ = β = 0.0005.

Below, we present a series of convergence plots and corresponding runtime tables that illustrate the performance of
EXTRAPAGE under different distributed settings. Each figure shows the optimization trajectory for EXTRAPAGE compared
to baseline methods when varying the number of workers n and the update probability p. The tables summarize total training
time and per-round timing statistics for each configuration, allowing a clear comparison of efficiency and stability across all
tested scenarios.
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Figure 9: EXTRAPAGE compared to different baselines on CIFAR dataset. We choose n = 100, p = 1
2n .

Algorithm Total Time Round Time

EG 467.447 4.674 ± 0.020
EGVR 618.560 6.186 ± 0.009
SGDA 433.672 4.337 ± 0.043
SGDA clipped 438.911 4.389 ± 0.252
SPIDER 841.750 8.417 ± 0.761
ExtraPAGE 633.366 6.334 ± 0.009

Table 3: Runtime comparison of our algorithms with n = 100, p = 1
2n .
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Figure 10: EXTRAPAGE compared to different baselines on CIFAR dataset. We choose n = 100, p = 2
n .

Algorithm Total Time Round Time

EG 467.447 4.674 ± 0.020
EGVR 618.560 6.186 ± 0.009
SGDA 433.672 4.337 ± 0.043
SGDA clipped 438.911 4.389 ± 0.252
SPIDER 841.750 8.417 ± 0.761
ExtraPAGE 634.688 6.347 ± 0.011

Table 4: Runtime comparison of our algorithms with n = 100, p = 2
n .
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Figure 11: EXTRAPAGE compared to different baselines on CIFAR dataset. We choose n = 390, p = 1
n .

Algorithm Total Time Round Time

EG 692.169 6.922 ± 0.292
EGVR 1129.090 11.291 ± 0.013
SGDA 526.992 5.270 ± 1.162
SGDA clipped 516.918 5.169 ± 1.154
SPIDER 1133.076 11.331 ± 4.043
ExtraPAGE 1178.660 11.787 ± 0.028

Table 5: Runtime comparison of our algorithms with n = 390, p = 1
n .
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Figure 12: EXTRAPAGE compared to different baselines on CIFAR dataset. We choose n = 390, p = 1
2n .

Algorithm Total Time Round Time

EG 692.169 6.922 ± 0.292
EGVR 1129.090 11.291 ± 0.013
SGDA 526.992 5.270 ± 1.162
SGDA clipped 516.918 5.169 ± 1.154
SPIDER 1133.076 11.331 ± 4.043
ExtraPAGE 1177.751 11.778 ± 0.152

Table 6: Runtime comparison of our algorithms with n = 390, p = 1
2n .



0 20 40 60 80 100

102

2 × 101

3 × 101

4 × 101

6 × 101

Lo
ss

Training Loss

0 20 40 60 80 100

101

6 × 100

2 × 101

Test Loss

0 20 40 60 80 100

Epochs

30

60

90

Ac
cu

ra
cy

Training Accuracy

0 20 40 60 80 100

Epochs

30

60

90

Test Accuracy

EG EGVR SGDA SGDA clipped SpiderGDA ExtraPAGE (ours)

Figure 13: EXTRAPAGE compared to different baselines on CIFAR dataset. We choose n = 390, p = 2
n .

Algorithm Total Time Round Time

EG 692.169 6.922 ± 0.292
EGVR 1129.090 11.291 ± 0.013
SGDA 526.992 5.270 ± 1.162
SGDA clipped 516.918 5.169 ± 1.154
SPIDER 1133.076 11.331 ± 4.043
ExtraPAGE 1173.841 11.738 ± 0.023

Table 7: Runtime comparison of our algorithms with n = 390, p = 2
n .

Based on the conducted experiments, EXTRAPAGE consistently demonstrates robust and stable convergence regardless of
the number of workers n or the update probability p. Through experiments with varying n, we confirm that EXTRAPAGE
outperforms existing benchmarks in ill-conditioned problems and high condition number scenarios relative to batch count,
while spending comparable time for each iteration. Parameter analysis further shows minimal sensitivity to p, indicating that
EXTRAPAGE effectively balances computation and communication overhead without degradation in efficiency. Overall,
these results highlight EXTRAPAGE’s stability and insensitivity to both n and p.

A.4 GAN TRAINING

In this section, we provide additional experiments with random state 57. The experiments were held on a single GPU
(NVIDIA A100). The results are presented in Figure 14.
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Figure 14: All components use EXTRAPAGE with γ = 5× 10−5 and batch size 5, random state 57

B GENERAL INEQUALITIES

First, we mention important inequalities that are used in further proofs. Consider a function f satisfying Assumption 1.
Then for any n in the real numbers and for all vectors x, y, xi in Rn with a positive scalar c, the following inequalities hold.

|⟨x, y⟩| ⩽
∥x∥2

2c
+

c∥y∥2

2
(Young)

−⟨x, y⟩ = −∥x∥2

2
− ∥y∥2

2
+

∥x− y∥2

2

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2 ⟨x, y⟩
(Norm)

∥∇f(x)−∇f(y)∥2 ⩽ L2∥x− y∥2

f(x) ⩽ f(y) + ⟨∇f(y), x− y⟩+ L

2
∥x− y∥2

f(x) ⩽ f(y)− ⟨∇f(x), y − x⟩ − 1

2L
∥∇f(x)−∇f(y)∥2

(Lip)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

⩽ n

n∑
i=1

∥xi∥2

∥x+ y∥2 ⩽ (1 + c)∥x∥2 +
(
1 +

1

c

)
∥y∥2

(CS)

C PROOF

In this section, we provide all the necessary proofs. First, we prove Lemmas 1, 2 and 3. Then, we use them to establish the
main Theorem 1, which guarantees the convergence of our algorithm. Finally, we derive Corollaries 1 and 2.

We begin with Lemma 1, which reflects the change in the quality of the gradient estimation from one iteration to the next.
This lemma is crucial not only for the subsequent analysis but also has independent significance in developing intuition
about variance reduction methods.



Lemma 1. For iterations of Algorithm 1 the following equation holds:

EitEGt−1

∥∥∥F (zt+
1/2)−Gt

∥∥∥2 = (1− p)

[∥∥∥F (zt−
1/2)−Gt−1

∥∥∥2 +Eit

∥∥∥Fit

(
zt+

1/2
)
− Fit

(
zt−

1/2
)∥∥∥2

−
∥∥∥F (zt+1/2

)
− F

(
zt−

1/2
)∥∥∥2] .

Proof. We examine the following term using the update rule (Line 5). We take the expectation over Gt−1:

EGt−1

∥∥∥F (zt+
1/2)−Gt

∥∥∥2 = (1− p)
∥∥∥F (zt+

1/2)− Fit(z
t+1/2) + Fit(z

t−1/2)−Gt−1
∥∥∥2

= (1− p)
∥∥∥F (zt+

1/2)− Fit(z
t+1/2) + Fit(z

t−1/2)− F (zt−
1/2) + F (zt−

1/2)−Gt−1
∥∥∥2

= (1− p)
∥∥∥F (zt+

1/2)− Fit(z
t+1/2) + Fit(z

t−1/2)− F (zt−
1/2)
∥∥∥2

+ (1− p)
∥∥∥F (zt−

1/2)−Gt−1
∥∥∥2

+ 2(1− p)
〈
F (zt+

1/2)− Fit(z
t+1/2) + Fit(z

t−1/2)− F (zt−
1/2), F (zt−

1/2)−Gt−1
〉
.

Taking the expectation over it and utilizing Eit [Fit(z)] = F (z), we derive that the scalar product is equal to zero. We
continue the equation:

EitEGt−1

∥∥∥F (zt+
1/2)−Gt

∥∥∥2 = (1− p)Eit

∥∥∥F (zt+
1/2)− Fit(z

t+1/2) + Fit(z
t−1/2)− F (zt−

1/2)
∥∥∥2

+ (1− p)
∥∥∥F (zt−

1/2)−Gt−1
∥∥∥2

= (1− p)
∥∥∥F (zt+

1/2)− F (zt−
1/2)
∥∥∥2 + (1− p)Eit

∥∥∥Fit(z
t+1/2)− Fit(z

t−1/2)
∥∥∥2

− 2(1− p)Eit

〈
F (zt+

1/2)− F (zt−
1/2), Fit(z

t+1/2)− Fit(z
t−1/2)

〉
+ (1− p)

∥∥∥F (zt−
1/2)−Gt−1

∥∥∥2
= −(1− p)

∥∥∥F (zt+
1/2)− F (zt−

1/2)
∥∥∥2

+ (1− p)Eit

∥∥∥Fit(z
t+1/2)− Fit(z

t−1/2)
∥∥∥2 + (1− p)

∥∥∥F (zt−
1/2)−Gt−1

∥∥∥2 .
This finishes the proof of the lemma.

We emphasize that Lemma 1 is formulated as an equation without any assumptions on the operator F , making it an exact
and general estimate. Now, we proceed to the proof of Lemma 2 which is a general statement of Euclidean geometry and
serves as the first step in deriving the recursion.

Lemma 2. Let z, y ∈ Rd, z+ = z − y. Then for all u ∈ Rd the following equation holds:

∥z+ − u∥2 = ∥z − u∥2 − 2⟨y, z+ − u⟩ − ∥z+ − z∥2.

Proof. We transform the left part as follows:

∥z+ − u∥2 = ∥z+ − z + z − u∥2

= ∥z − u∥2 + 2⟨z+ − z, z − u⟩+ ∥z+ − z∥2

= ∥z − u∥2 + 2⟨z+ − z, z+ − u⟩ − ∥z+ − z∥2

= ∥z − u∥2 − 2⟨y, z+ − u⟩ − ∥z+ − z∥2.

This finishes the proof of the lemma.



Lemma 3 serves as the final prerequisite for the main analysis in Theorem 1 and relies on the assumption of the strong
monotonicity of the operator F to derive a recursion for the term ∥zt − z∗∥2.

Lemma 3 (Descent lemma). Under Assumption 2(a), after T iterations of Algorithm 1 the following equation holds:∥∥zt+1 − z∗
∥∥2 = (1− γµ)

∥∥zt − z∗
∥∥2 − (1− 2γµ))

∥∥zt+1/2 − zt
∥∥2

+ 2γ
〈
F (zt+

1/2)−Gt, zt+
1/2 − z∗

〉
+ γ2

∥∥Gt −Gt−1
∥∥2 .

Proof. We substitute z = zt, y = γGt, z+ = zt+1, u = z∗, and z = zt, y = γGt−1, z+ = zt+1/2, u = zt+1 into Lemma 2
and summing the obtained equations. It yields∥∥zt+1 − z∗

∥∥2 + ∥∥∥zt+1/2 − zt+1
∥∥∥2 =

∥∥zt − z∗
∥∥2 − ∥∥∥zt+1/2 − zt

∥∥∥2
− 2γ

〈
Gt, zt+1 − z∗

〉
− 2γ

〈
Gt−1, zt+

1/2 − zt+1
〉

=
∥∥zt − z∗

∥∥2 − ∥∥∥zt+1/2 − zt
∥∥∥2

− 2γ
〈
Gt, zt+

1/2 − z∗
〉
− 2γ

〈
Gt−1 −Gt, zt+

1/2 − zt+1
〉
. (13)

Now we examine the first scalar product:

−2γ
〈
Gt, zt+

1/2 − z∗
〉
= 2γ

〈
F (zt+

1/2)−Gt, zt+
1/2 − z∗

〉
− 2γ

〈
F (zt+

1/2), zt+
1/2 − z∗

〉
.

Under the setting (1) and the strong monotonicity (Assumption 2(a)), the last term transforms into

−2γ
〈
F (zt+

1/2), zt+
1/2 − z∗

〉
= −2γ

〈
F (zt+

1/2)− F (z∗), zt+
1/2 − z∗

〉
− 2γ

〈
F (z∗), zt+

1
2 − z∗

〉
⩽ −2γµ

∥∥∥zt+1/2 − z∗
∥∥∥2 ⩽ −γµ

∥∥zt − z∗
∥∥2 + 2γµ

∥∥∥zt+1/2 − zt
∥∥∥2 ,

where the last inequality utilizes (CS). Finally, we obtain

−2γ
〈
Gt, zt+

1/2 − z∗
〉
⩽ 2γ

〈
F (zt+

1/2)−Gt, zt+
1/2 − z∗

〉
− γµ

∥∥zt − z∗
∥∥2 + 2γµ

∥∥∥zt+1/2 − zt
∥∥∥2 . (14)

Now it is sufficient to note that according to Lines 6 and 4, γ(Gt−1 −Gt) = zt+1 − zt+1/2, which transforms the second
scalar product in (13) into

−2γ
〈
Gt−1 −Gt, zt+

1/2 − zt+1
〉
= 2γ2

∥∥Gt −Gt−1
∥∥2 . (15)

Substituting (15) and (14) into (13) finishes the proof of the lemma.

Now, we are fully prepared to present the main analysis in Theorem 1. We begin with Lemma 3, deriving recursive relations
for its terms, including those representing scalar products. Such terms can be negative and impose significant constraints.

Theorem 1. Under Assumptions 1, 2(a), after T iterations of Algorithm 1 with γ ⩽ 1
30Ln3/2

, p = 1
n , the following inequality

holds:

E
[∥∥zT − z∗

∥∥2 +γ2
∥∥GT−1 −GT−2

∥∥2 + 2γM
〈
F (zT−1/2)−GT−1, zT−1/2 − z∗

〉
+γ2H

∥∥∥F (zT−1/2)−GT−1
∥∥∥2] ⩽ (1− γµ)

T ∥∥z0 − z∗
∥∥2 ,

where M = 1−p
p−γµ and H = 70n3.

Proof. We start with the result provided by Lemma 3:∥∥zt+1 − z∗
∥∥2 = (1− γµ)

∥∥zt − z∗
∥∥2 − (1− 2γµ)

∥∥zt+1/2 − zt
∥∥2



+2γ
〈
F (zt+

1/2)−Gt, zt+
1/2 − z∗

〉
+ 2γ2

∥∥Gt −Gt−1
∥∥2 .

Taking the expectation over Gt−1 and it from the both sides of the inequality,

EitEGt−1

∥∥zt+1 − z∗
∥∥2 = (1− γµ)

∥∥zt − z∗
∥∥2 − (1− 2γµ)

∥∥zt+1/2 − zt
∥∥2 (16)

+2γEitEGt−1

〈
F (zt+

1/2)−Gt, zt+
1/2 − z∗

〉
+ 2γ2EitEGt−1

∥∥Gt −Gt−1
∥∥2 .

There let us consider the obtained in (16) terms separately. First,

EitEGt−1

〈
F (zt+

1/2)−Gt, zt+
1/2 − z∗

〉
= p

〈
F (zt+

1/2)− F (zt+
1/2), zt+

1/2 − z∗
〉

+ (1− p)
〈
F (zt+

1/2)−Gt−1, zt+
1/2 − z∗

〉
+ (1− p)Eit

〈
−Fit(z

t+1/2) + Fit(z
t−1/2), zt+

1/2 − z∗
〉

= (1− p)
〈
F (zt−

1/2)−Gt−1, zt+
1/2 − z∗

〉
= (1− p)

〈
F (zt−

1/2)−Gt−1, zt−
1/2 − z∗

〉
+ (1− p)

〈
F (zt−

1/2)−Gt−1, zt+
1/2 − zt−

1/2
〉
.

Using the (Young)’s inequality, we get

2γEitEGt−1

〈
F (zt+

1/2)−Gt, zt+
1/2 − z∗

〉
⩽2γ(1− p)E

〈
F (zt−

1/2)−Gt−1, zt−
1/2 − z∗

〉
+

1− p

c

∥∥∥zt+1/2 − zt−
1/2
∥∥∥2

+ c(1− p)γ2
∥∥∥F (zt−

1/2)−Gt−1
∥∥∥2 , (17)

where c we define later. Now we focuse on the last term of (17). Lemma 1 provides:

EitEGt−1

∥∥∥F (zt+
1/2)−Gt

∥∥∥2 ⩽ (1− p)Eit

∥∥∥Fit(z
t+1/2)− Fit(z

t−1/2)
∥∥∥2 + (1− p)

∥∥∥F (zt−
1/2)−Gt−1

∥∥∥2 .
Using Assumption 1,

EitEGt−1

∥∥∥F (zt+
1/2)−Gt

∥∥∥2 ⩽ (1− p)L2
∥∥∥zt+1/2 − zt−

1/2
∥∥∥2 + (1− p)

∥∥∥F (zt−
1/2)−Gt−1

∥∥∥2 . (18)

Then we reflect on the last term in (16) and, making similar transformations, obtain

EitEGt−1

∥∥Gt −Gt−1
∥∥2 = (1− p)Eit

∥∥∥Fit(z
t+1/2)− Fit(z

t−1/2)
∥∥∥2 + p

∥∥∥F (zt+
1/2)−Gt−1

∥∥∥2
Ass. 1
⩽ (1− p)L2

∥∥∥zt+1/2 − zt−
1/2
∥∥∥2 + p

∥∥∥F (zt+
1/2)− F (zt−

1/2) + F (zt−
1/2)−Gt−1

∥∥∥2
(CS),Ass. 1

⩽ (1− p)L2
∥∥∥zt+1/2 − zt−

1/2
∥∥∥2 + 2pL2

∥∥∥zt+1/2 − zt−
1/2
∥∥∥2

+ 2pE
∥∥∥F (zt−

1/2)−Gt−1
∥∥∥2

= (1 + p)L2
∥∥∥zt+1/2 − zt−

1/2
∥∥∥2 + 2p

∥∥∥F (zt−
1/2)−Gt−1

∥∥∥2 . (19)

Note that the first term frequently appears in convergence analysis. Let us expand it in detail:∥∥∥zt+1/2 − zt−
1/2
∥∥∥2 (CS)

⩽

(
1 +

1

a

)∥∥∥zt+1/2 − zt
∥∥∥2 + (1 + a)

∥∥∥zt − zt−
1/2
∥∥∥2

=

(
1 +

1

a

)∥∥∥zt+1/2 − zt
∥∥∥2 + (1 + a) γ2

∥∥Gt−1 −Gt−2
∥∥2 .

Taking expectations and applying (19),

Eit−1EGt−2

∥∥∥zt+1/2 − zt−
1/2
∥∥∥2 ⩽

(
1 +

1

a

)
Eit−1EGt−2

∥∥∥zt+1/2 − zt
∥∥∥2 + 2p (1 + a) γ2

∥∥∥F (zt−
3/2)−Gt−2

∥∥∥2



+ (1 + p) (1 + a)L2γ2
∥∥∥zt−1/2 − zt−

3/2
∥∥∥2 .

We now enter the recursion, considering that

∥z1/2 − z−
1/2∥2 ⩽

(
1 +

1

a

)
∥z1/2 − z0∥2 + (1 + a)∥z0 − z−

1/2∥2.

Putting z−1 = z−1/2 = z0, as well as G−1 = F (z−1/2), we derive the estimate:

Ei0EG−1 . . .Eit−1EGt−2

∥∥∥zt+1/2 − zt−
1/2
∥∥∥2

⩽

(
1 +

1

a

) t∑
k=0

(
(1 + p) (1 + a)L2γ2

)t−k EikEGk−1 . . .Eit−1EGt−2

∥∥∥zk+1/2 − zk
∥∥∥2

+2p (1 + a) γ2
t∑

k=0

(
(1 + p) (1 + a)L2γ2

)t−k EikEGk−1 . . .Eit−1EGt−2

∥∥∥F (zk−
1/2)−Gk−1

∥∥∥2 .
If we choose γ ⩽ 1

L
√

2(1+p)(1+a)
, we get that

Ei0EG−1 . . .Eit−1EGt−2

∥∥∥zt+1/2 − zt−
1/2
∥∥∥2

⩽

(
1 +

1

a

) t∑
k=0

(
1

2

)t−k

EikEGk−1 . . .Eit−1EGt−2

∥∥∥zk+1/2 − zk
∥∥∥2

+2p (1 + a) γ2
t∑

k=0

(
1

2

)t−k

EikEGk−1 . . .Eit−1EGt−2

∥∥∥F (zk−
1/2)−Gk−1

∥∥∥2 . (20)

For the sake of clarity, let us redefine the terms important for analysis:
δt = ∥zt − z∗∥2 ,
St =

〈
F (zt−1/2)−Gt−1, zt−1/2 − z∗

〉
,

gt =
∥∥F (zt−1/2)−Gt−1

∥∥2 .
We sum (16), (17) and 2γ2·(19), and take additional expectations. We get

Ei0EG−1 . . .EitEGt−1δt+1 + 2γ2Ei0EG−1 . . .EitEGt−1

∥∥Gt −Gt−1
∥∥2

⩽ Ei0EG−1 . . .Eit−1EGt−2

[
(1− γµ)δt − (1− 2γµ))

∥∥∥zt+1/2 − zt
∥∥∥2 + (1− p)2γSt

+

(
1− p

c
+ 2(1 + p)L2γ2

)∥∥∥zt+1/2 − zt−
1/2
∥∥∥2 + (c(1− p) + 4p) γ2gt

]
. (21)

We proceed to analyze the convergence of the sum V t = E
[
δt + 2γMSt + γ2Hgt + 2γ2

∥∥Gt −Gt−1
∥∥2]. At this stage,

(21) +M · (17) + γ2H · (18) reveals:

Ei0EG−1 . . .Eit−1EGt−2

[
δt+1 + 2γMSt+1 + γ2Hgt+1 + 2γ2

∥∥Gt+1 −Gt
∥∥2]

⩽ Ei0EG−1 . . .Eit−1EGt−2

[
(1− γµ)δt − (1− 2γµ)E

∥∥zt+1/2 − zt
∥∥2 + (1− p)(M + 1)2γSt

+

(
(1− p)(M + 1)

c
+ 2(1 + p)L2γ2 + (1− p)L2γ2H

)
E
∥∥zt+1/2 − zt−

1/2
∥∥2

+((1− p)(H + cM) + c(1− p) + 4p) γ2gt

]
.



Using (20) and taking the full expectation,

V t+1 ⩽ (1− γµ)Eδt − (1− 2γµ)E
∥∥zt+1/2 − zt

∥∥2 + (1− p)(M + 1)2γESt

+

(
(1− p)(M + 1)

c
+ 2(1 + p)L2γ2 + (1− p)L2γ2H

)
·

[(
1 +

1

a

) t∑
k=0

(
1

2

)t−k

E
∥∥∥zk+1/2 − zk

∥∥∥2
+ 2p (1 + a) γ2

t∑
k=0

(
1

2

)t−k

Egk
]

+ ((1− p)(H + cM) + c(1− p) + 4p) γ2Egt.

Now we sum this over all iterations with positive coefficients qt:

T−1∑
t=0

qtV t+1 ⩽ (1− γµ)

T−1∑
t=0

qtEδt − (1− 2γµ)

T−1∑
t=0

qtE
∥∥zt+1/2 − zt

∥∥2 (22)

+ (1− p)(M + 1)2γ

T−1∑
t=0

qtESt

+

(
(1− p)(M + 1)

c
+ 2(1 + p)L2γ2 + (1− p)L2γ2H

)
·

[(
1 +

1

a

) T−1∑
t=0

qt
t∑

k=0

(
1

2

)t−k

E
∥∥∥zk+1/2 − zk

∥∥∥2
+ 2p (1 + a) γ2

T−1∑
t=0

qt
t∑

k=0

(
1

2

)t−k

Egk
]

+ ((1− p)(H + cM) + c(1− p) + 4p) γ2
T−1∑
t=0

qtEgt.

At this stage, our task is to choose the constants qt,M,H such that the factors of identical terms in (22) cancel out. We
commence with choosing qt = (1− γµ)−t.

• We proceed with taking a look at St. Our objective is to reduce terms involving St, t ∈ {1, 2, ..., T − 1} by equating
their coefficients on the RHS and LHS:

2γMqt−1 = (1− p)(M + 1)2γqt,

M =
1− p

p− γµ
. (23)

For clarity, we define

D =
(1− p)(M + 1)

c
+ 2(1 + p)L2γ2 + (1− p)L2γ2H. (24)

• Then we consider the coefficient at gt.

LHS : γ2H

T−1∑
t=0

qtgt+1.

RHS : 2p (1 + a)Dγ2
T−1∑
t=0

qt
t∑

k=0

(
1

2

)t−k

gk + ((1− p)(H + cM) + c(1− p) + 4p) γ2
T−1∑
t=0

qtgt.



Equating the coefficients of gt, yields

qtγ2H ⩾ qt+1γ2 ((1− p)c+ 4p+ (1− p)(H + cM)) + 2p(1 + a)Dγ2

(
T−1∑
k=t

(
1

2

)k−t

qk

)
︸ ︷︷ ︸
qt

(
T−1−t∑
k=0

( 1
2 )

k
qk

)
.

After that, we can divide the left and right sides by qtγ2:

H ⩾ q ((1− p)c+ 4p+ (1− p)(H + cM)) + 2p(1 + a)D · 1

1− q
2

.

Choosing q ⩽ 4
3 , we obtain 1

1− q
2
⩽ 3. In that way, recalling the definition of D (24), we want

H
(
1− q(1− p)− 6p(1 + a)(1− p)L2γ2

)
⩾ q (4p+ (1− p) (M + 1) c) (25)

+ 6p(1 + a)

(
(1− p)(1 +M)

c
+ 2(1 + p)L2γ2

)
.

Which enable us to omit the terms containing gt, t ∈ {1, 2, ..., T − 1} in inequality (22).

• Let us lastly dissect the coefficient with ∥zt+1/2 − zt∥2 to eliminate this terms from (22). Here we use(
T−1∑
k=t

(
1
2

)k−t
qk
)

= qt
(

T−1−t∑
k=0

(
1
2

)k
qk
)

⩽ 3qt again:

D

(
1 +

1

a

) T−1∑
k=t

qk
(
1

2

)k−t

− qt(1− 2γµ) ⩽ 0,

3D

(
1 +

1

a

)
⩽ 1− 2γµ.

Substituting D from the definition (24) we obtain:

3

(
(1− p)(M + 1)

c
+ 2(1 + p)L2γ2 + (1− p)L2γ2H

)(
1 +

1

a

)
⩽ 1− 2γµ.

Which pose further restriction on H:

3H(1− p)L2γ2

(
1 +

1

a

)
⩽ 1− 2γµ− 3

(
(1− p)(M + 1)

c
+ 2(1 + p)L2γ2

)(
1 +

1

a

)
. (26)

For the proper H to exist, that satisfy both (26) and (25), the following inequality should hold:

1

1− q(1− p)− 6p(1 + a)(1− p)L2γ2

[
q (4p+ (1− p)(M + 1)c) + 6p(1 + a)

(
(1− p)(1 +M)

c
+ 2(1 + p)L2γ2

)]
⩽

1

3(1− p)
(
1 + 1

a

)
L2γ2

[
1− 2γµ− 3

(
(1− p)(1 +M)

c
+ 2(1 + p)L2γ2

)(
1 +

1

a

)]
. (27)

We evaluate (27) assuming a = 1, γ = 1
bLn3/2

, b ⩾ 1, n ⩾ 4, p = 1
n . First of all, we recall (23) and derive a useful upper

bound for M + 1:

M + 1 =
1− γµ

p− γµ
=

1

p− p µ
Lb

√
n

⩽
2

p
= 2n. (28)

Now our strategy is to obtain the upper bound for the LHS and lower for the RHS of (27). Let us start with the RHS:

RHS ⩾
b2n3

6

[
1− 2µ

bn3/2L
− 6

(
2n

c
+

4

b2n3

)]
.



Here we encountered with the necessity to set c > 12n. For further analysis we will use c = 24n:

RHS ⩾
b2n3

6

[
1

2
− 2

bn3/2
− 24

b2n3

]
⩾

b2n3

6

[
1

2
− 1

2b
− 3

8b2

]
. (29)

Then, we start evaluation of the LHS, using our choice of q, γ, c, a and derived upper bound for M + 1:

LHS ⩽
1− γµ

(1− γµ)− (1− p)− (1− γµ)2p(1− p) 1
b2n3

(30)

·
[
4

3

(
4p+ (1− p)c

2

p

)
+ 12p

(
(1− p)

c

2

p
+ 2(1 + p)

1

b2n3
)

)]
⩽

1

p
(
1− 1

b
√
n
− 12

b2n2

) [4
3

(
4p+ 48

1

p2

)
+ p+

48p4

b2

]

⩽
n3

1− 1
2b −

3
4b2

[
64 +

1

12
+

1

64
+

3

256b2

]
. (31)

Combining (29) and (30) we reach a sufficient condition for the existence of a solution to inequality (27):

1

1− 1
2b −

3
4b2

[
64 +

1

12
+

1

64
+

3

256b2

]
⩽

b2

6

[
1

2
− 1

2b
− 3

8b2

]
.

Straight forward evaluation shows b ⩾ 28.6 is sufficient. Which means that under assumption b ⩾ 30 lower bound of H less
then upper one. To select the appropriate value for H with a compact notation, we observe that b = 30 implies:

RHS ⩾
n3b2

6

[
1

2
− 1

2b
− 3

8b2

]
=

1159

16
n3 ⩾ 72n3,

LHS ⩽
n3

1− 1
2b −

3
4b2

[
64 +

1

12
+

1

64
+

3

256b2

]
=

4922801

75456
n3 ⩽ 66n3.

And an increase in b expands these boundaries. Therefore for all γ ⩽ 1
30Ln3/2

we can set H = 70n3. Finally, we claim that
γ ⩽ 1

30Ln3/2
satisfies all the previous constrains. After these preparations we can derive the necessary result from (22):

E
[∥∥zT − z∗

∥∥2 + γ2
∥∥GT−1 −GT−2

∥∥2 + 2γM
〈
F (zT−1/2)−GT−1, zT−1/2 − z∗

〉
+γ2H

∥∥∥F (zT−1/2)−GT−1
∥∥∥2]

⩽
∥∥z0 − z∗

∥∥2 + 2γM
〈
F (z−

1/2)−G−1, z−
1/2 − z∗

〉
+ γ2H

∥∥∥F (z−
1/2)−G−1

∥∥∥2 =
∥∥z0 − z∗

∥∥2 .
This finishes the proof of the theorem.

Corollary 1 highlights the advantage of the obtained guarantees based on the function V t over the conventional cri-
terion ∥zt − z∗∥2. This superiority is not immediately apparent due to the potential negativity of the scalar product〈
F (zt−1/2)−Gt−1, zt−1/2 − z∗

〉
.

Corollary 1. In settings of Theorem 1, after T iterations of Algorithm 1 with γ ⩽ 1
30Ln3/2

and p = 1
n , the following

inequality holds:

E
[
1

2

∥∥zT − z∗
∥∥2 + γ2H

2

∥∥∥F (zT−1/2)−GT−1
∥∥∥2] ⩽ (1− γµ)

T ∥∥z0 − z∗
∥∥2 .

Proof. First of all, due to the (Young) inequality, we get

2γM
〈
F (zT−1/2)−GT−1, zT−1/2 − z∗

〉
⩾ −γ2H

2

∥∥∥F (zT−1/2)−GT−1
∥∥∥2 − 2M2

H

∥∥∥zT−1/2 − z∗
∥∥∥2 . (32)



Then, we apply (CS) to derive

−
∥∥∥zT−1/2 − z∗

∥∥∥2 ⩾ −2
∥∥∥zT−1/2 − zT

∥∥∥2 − 2
∥∥zT − z∗

∥∥2 . (33)

Recalling estimate (28) we conclude M ⩽ 2n. Combining it with (32), (33) and chosen H = 70n3 we obtain

2γM
〈
F (zT−1/2)−GT−1, zT−1/2 − z∗

〉
⩾ −γ2H

2

∥∥∥F (zT−1/2)−GT−1
∥∥∥2 − 4

35n

∥∥zT − z∗
∥∥2

− 4

35n

∥∥∥zT − zT−1/2
∥∥∥2 . (34)

After that, we examine
∥∥GT−1 −GT−2

∥∥2 using Lines 4 and 6 of Algorithm 1:

γ2
∥∥GT−1 −GT−2

∥∥2 =
∥∥∥(zT−1 − zT )− (zT−1 − zT−1/2)

∥∥∥2 =
∥∥∥zT − zT−1/2

∥∥∥2 . (35)

Finally, we plug (35) and (34) into the Lyapunov function V t in the result of Theorem 1:

(1− γµ)
T ∥∥z0 − z∗

∥∥2 ⩾ E
[ ∥∥zT − z∗

∥∥2 + γ2
∥∥GT−1 −GT−2

∥∥2 + 2γM
〈
F (zT−1/2)−GT−1, zT−1/2 − z∗

〉
+γ2H

∥∥∥F (zT−1/2)−GT−1
∥∥∥2 ]

⩾ E
[(

1− 4

35n

)(∥∥zT − z∗
∥∥2 + γ2

∥∥GT−1 −GT−2
∥∥2)+ γ2H

2

∥∥∥F (zT−1/2)−GT−1
∥∥∥2] .

This finishes the proof of the corollary.

Now we are ready to present the final convergence estimate for our method.

Corollary 2. Suppose Assumptions 1, 2(a) hold. Then Algorithm 1 with γ = 1
30Ln3/2

and p = 1
n , to reach ε-accuracy, where

ε ∼ V T , needs

Õ
(
Ln3/2

µ
log

1

ε

)
iterations and oracle calls.

Proof. Theorem 1 guarantees that Algorithm 1 converges to ε-accuracy within Õ
(

log 1
ε

γµ

)
iterations. Setting γ with

the upper bound 1
30Ln3/2

we reach Õ
(

Ln
3/2

µ log 1
ε

)
iteration complexity. Then, we note that average iteration cost is

2(1− p) + pn = 3− 2p, which implies the same bound Õ
(

Ln
3/2

µ log 1
ε

)
for the oracle complexity.
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