
Visualizing Linear RNNs Through Unrolling

Josue Casco-Rodriguez∗, Tyler Burley∗, CJ Barberan†,
Ahmed Imtiaz Humayun∗, Randall Balestriero‡, Richard G. Baraniuk∗

∗Rice University, †Microsoft, ‡Brown University

Abstract

Neural networks are revolutionizing artificial intelligence (AI), but suffer from
poor explainability; for example, recurrent neural networks (RNNs) hold massive
potential for sequential or real-time information processing, but their recurrences
exacerbate explainability issues and make understanding or predicting RNN behav-
ior difficult. One way to explain neural networks is SplineCam, which illustrates a
2D projection of a neural network’s analytical form—however, it does not natively
support RNNs. We circumvent this limitation by using linearly-recurrent RNNs,
which can be unrolled into feedforward networks. We apply the resulting method,
dubbed SplineCam-Linear-RNN, to linearly-recurrent RNNs trained on biosignal
data and sequential MNIST. Our procedure enables: (1) unprecedented visualiza-
tion of the decision boundary and complexity of an RNN, and (2) visualization of
the frequency sensitivity of RNNs around individual data points.

1 Introduction

Recurrent neural networks (RNNs) imbue artificial intelligence (AI) with the ability to process data
sequentially or in real-time, and are foundational to the progress of fields like time-series processing,
language modeling, and robotics [1]. For example, RNNs can process biosignals in real-time to
swiftly assist technologies such as epilepsy detection or prosthetic control [2].

However, RNNs suffer from an exacerbated form of a malady inherent to deep learning: poor
explainability and interpretability. Deep neural networks are already very nonlinear nonlinear
and thus highly difficult to understand, interpret, or describe in the same way that humans can
describe mathematical functions or explain the reasoning behind a decision. RNNs compound
the complexity of deep networks, and thus the challenges of explainability and interpretation, by
recurrently processing data in a sequential fashion. RNNs are crucial to the algorithms behind
safety-critical real-time applications like medicine [2, 3], automation [4], and forecasting [5], and yet
rigorous methods to explain—i.e., accurately interpret [6]—the inner workings of RNNs or how they
may fail are sorely lacking.

To elucidate the inner workings of RNNs, we extend a new theoretically sound neural network
illustration method, SplineCam [7], to a family of RNNs with linear recurrences (“linear RNNs”).
First, we train linear RNNs [8] on an electromyography (EMG) dataset, the PhysioNet 2017 dataset
[9]1, and the sequential MNIST [10–12] dataset. Then, we unroll the RNN so that it is compatible
with SplineCam, which allows us to:

1. Illustrate the complexity, decision boundary, and adversarial examples of the RNN in 2D.

2. Probe the frequency-sensitivity of linear RNNs around individual data samples.

1to our knowledge, this may be the first instance of linear RNNs for EMG and PhysioNet classification.

Preprint. Under review.



2 Background

2.1 Related Work

Neural Networks as Continuous Piece-Wise Affine Functions. Deep neural networks are often
composed of linear transformations followed by rectified-linear (ReLU) nonlinearities. Networks that
only use continuous piecewise-linear (CPWL) nonlinearities, such as (leaky) ReLUs, are themselves
elaborate CPWL functions. Spline theory [13] analyzes CPWL networks to produce several recent
insights into key facets of neural network behavior like normalization and adversarial robustness
[14, 15]. One notable recent insight is SplineCam [7], which precisely visualizes the decision
boundary, adversarial examples, and complexity of a CPWL neural network by computing the
boundaries of linear regions of a neural network in a 2D space around input samples.

RNNs, Splines, and Explainability. Pre-existing work in explaining RNNs has largely avoided
incorporating spline theory, resulting in a lack of precise methods to visualize and probe the function
represented by an RNN. One popular method of explaining RNNs is through attention mechanisms
[16, 17] that use a variety of heuristics (e.g., RNN weights [18] or gradients [17]) or additional neural
networks ([19–21]) to estimate the amount of attention, or importance, the RNN places on each
timestep of an input sequence. Another method of explaining RNNs is through generating adversarial
examples [16]: existing generation methods include gradient descent [17] and causal regression [22].
As for spline theory, Wang et al. [23] proposed some insights into the functional nature of RNNs and
hidden state initialization, but since then RNN spline theory has received little attention. Pre-existing
works have not developed a training-free method of visualizing the precise analytical form of RNNs.

2.2 Neural Networks

Feedforward. Feedforward neural networks are nonlinear operators composed from a cascade
of linear and nonlinear functions. We focus on CPWL networks, in which, at each layer ℓ, linear
preactivations, with weights Wℓ and bias bℓ, are fed through a (leaky) ReLU σℓ:

fℓ(X) = σℓ(fℓ−1(X)Wℓ + bℓ), f0(X) = X (1)

Recurrent. Unlike feedforward networks, RNNs use both feedforward layers (Equation 1) and re-
current layers that process inputs sequentially. A simple recurrent layer with parameters A,B,C,D
has a hidden state hk which is updated at each timestep by a nonlinear function σh(·)2 of its previous
value hk−1 and the newest input signal uk. The value of hk is then transmitted to the next layers in
an RNN via the processed hidden state yk:

hk = σh(Ahk−1 +Buk), yk = Chk +Duk (2)

Linear Recurrent. Performant RNNs traditionally used nonlinear recurrences σh(·) (Equation 2),
even if it incurred gradient instability and computational inefficiency [8, 12]. However, recent work
has shown that “linear RNNs”—RNNs with linear recurrences (σh(x) = x), careful initialization, and
specific parameterization—can match and out-perform traditional RNNs with nonlinear recurrences
via temporal compression of information, gradient stabilization, and parallelization [8, 12, 25].

3 Methods

Models, Data, and Unrolling. We train linear RNNs on two biosignal classification datasets—a
PhysioNet electrocardiograph (ECG) dataset, and an EMG dataset—and the sequential MNIST
dataset. Our RNNs use the parameterization recently perscribed by Orvieto et al. [8], and the
classification decision for each sample is taken solely from the logits of the final timestep. The
convolutional representation of linear RNNs allows us to unroll each recurrent layer into a simple
feedforward layer, which is compatible with SplineCam. Our work is focused on linear RNNs because
RNNs with nonlinear recurrences are far more computationally expensive to unroll.

2The RNN is CPWL if and only if σh(·) is CPWL. Gated RNNs (e.g., GRUs, LSTMs) [24] are not CPWL.

2



Figure 1: SplineCam-Linear-RNN can illus-
trate the decision boundary and complex-
ity of a linear RNN around two multiple-
channel samples. Plotted is a random 2D
projection, from SplineCam-Linear-RNN, of
a linear RNN trained on EMG biosignal data.
The 2D projection is anchored around two se-
quences from the same class: one correctly,
and one incorrectly classified by the RNN.
Through SplineCam-Linear-RNN, we can:
(1) observe the complexity (partition density,
thin red lines) around data samples, and (2)
sample adversarial examples near the decision
boundary (thick red lines). The two anchor
sequences and the adversarial sequence in be-
tween them are in Figure 3.

Figure 2: SplineCam-Linear-RNN can il-
lustrate the frequency-sensitivity of a lin-
ear RNN around a sequential MNIST data
sample. Here, instead of random 2D pro-
jections (Figure 1), we use sinusoidal projec-
tions of a fixed frequency, anchored around
a single sequential MNIST sample (green).
Coordinates on the dashed circle are sinu-
soidal perturbations of the same frequency
and amplitude, but different phases. We see
that the linear RNN is sensitive to the phase
of the sinusoidal perturbation applied to the
anchor image: one perturbation (black) is on
the same side of the decision boundary as the
anchor, while the other is not. The anchor and
its sinusoidal perturbations are in Figure 4.

Frequency-Sensitivity. SplineCam typically depicts a neural network on a random 2D projection
of its input domain, centered around one or two data samples [7]. We propose to also plot the behavior
of a neural network around a 2D sinusoidal projection of the input domain centered around a single
data sample. Specifically, the horizontal and vertical dimensions of the projection correspond to
cosine and sine perturbations, of the same frequency, that are applied to the given data sample. By
plotting the RNN’s behavior with respect to sinusoidal perturbations of the same frequency, we can
see how sinusoidal perturbations of a given frequency—but any phase, akin to a unit circle of a given
frequency—affect the complexity and decision of the RNN around a single data sample; in other
words, for a given frequency and data sample, we can see the frequency sensitivity of an RNN.

4 Results

4.1 Illustrating the Decision Boundary and Complexity of Linear RNNs

Figures 1 and 3 show how SplineCam-Linear-RNN visualizes the complexity and decision boundary
of linear RNNs and generates adversarial samples. Essentially, SplineCam-Linear-RNN calculates
a 2D projection of the exact analytical form of a linear RNN around one or two data samples, and
then uses this analytical form to generate adversarial samples and exactly illustrate the complexity
and behavior of the linear RNN near data samples. In any SplineCam plot, each thin line is a 2D
projection of the border between piecewise-linear regions of a neuron’s behavior—for (leaky) ReLU
networks, this border is where the preactivation of a given neuron equals 0.

3



Figure 3: SplineCam-Linear-RNN can sample adversarial samples between two multi-channel
time series. Here are the EMG samples from Figure 1. Each color corresponds to a different channel,
and the x-axis simply corresponds to the temporal dimension.

Figure 4: SplineCam-Linear-RNN can find adversarial samples through frequency-sensitivity.
Here are one correctly classified sequence and two perturbed sequences with the same perturbation
frequency, but different phases. The difference between the two perturbation phases is minimal, but
changes the classification decision. These perturbations are from SplineCam-Linear-RNN (Figure 2).
These images were originally sequential MNIST sequences, but have been reshaped for visualization.

4.2 Probing the Frequency-Sensitivity of Linear RNNs

Aside from illustrating the spline partitions and decision boundary of a neural network along a random
2D projection of the input plane, SplineCam-Linear-RNN can also illustrate the behavior of a neural
network along a sinusoidal 2D projection of a given frequency and variable phase, akin to a unit circle
of fixed frequency around a given data sample. The resulting visualizations are shown in Figures 2
and 4: they show how the behavior of linear RNNs can vary with respect to the frequency chosen.

5 Conclusions and Future Work

We have presented SplineCam-Linear-RNN, a holistic algorithm that covers how to unroll, visualize,
and understand RNNs with linear recurrences. Unlike any other existing algorithms, SplineCam-
Linear-RNN can: (1) rigorously visualize the complexity and decision boundary of an RNN, and
(2) visualize the frequency-sensitivity of RNNs around given data samples and frequencies. Future
works include: (a) understanding whether the nature of LRU unrolling induces any specific properties
in decision boundary arrangements compared to vanilla convolutional or feedforward networks; (b)
applying SplineCam-Linear-RNN to regression tasks; (c) using other 2D projection bases relevant to
sequential data, such as wavelets; (d) using selective 2D projections that can focus on certain timesteps
or regions of interest; and (e) visualizing how the 2D projection of a data sample moves as the data
sample evolves over time, perhaps by projecting sliding windows of a data sample. Additionally,
extending SplineCam-Linear-RNN to RNNs with nonlinear recurrences would be interesting.

4



6 Acknowledgements

This work was supported by NSF grants CCF-1911094 and IIS-1730574; ONR grants N00014-23-1-
2714, N00014-24-1-2225, and MURI N00014-20-1-2787; AFOSR grant FA9550-22-1-0060; DOE
grant DE-SC0020345; DOI grant 140D0423C0076; and a Vannevar Bush Faculty Fellowship, ONR
grant N00014-18-1-2047.

References
[1] Ibomoiye Domor Mienye, Theo G. Swart, and George Obaido. Recurrent neural networks: A

comprehensive review of architectures, variants, and applications. Information, 15(9), 2024.
doi: 10.3390/info15090517.

[2] Yassin Khalifa, Danilo Mandic, and Ervin Sejdić. A review of hidden markov models and
recurrent neural networks for event detection and localization in biomedical signals. Information
Fusion, 69, 2021. doi: https://doi.org/10.1016/j.inffus.2020.11.008.

[3] Shitong Mao and Ervin Sejdić. A review of recurrent neural network-based methods in
computational physiology. IEEE Transactions on Neural Networks and Learning Systems, 34
(10), 2022.

[4] Ramya S Nair and P Supriya. Robotic path planning using recurrent neural networks. In 2020
11th International Conference on Computing, Communication and Networking Technologies
(ICCCNT), 2020.

[5] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks
for time series forecasting: Current status and future directions. International Journal of
Forecasting, 37(1), 2021.

[6] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.
Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE
5th International Conference on data science and advanced analytics (DSAA), 2018.

[7] Ahmed Imtiaz Humayun, Randall Balestriero, Guha Balakrishnan, and Richard G. Baraniuk.
SplineCam: Exact visualization and characterization of deep network geometry and decision
boundaries. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[8] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. In
International Conference on Machine Learning (ICML), 2023.

[9] Gari D Clifford, Chengyu Liu, Benjamin Moody, H Lehman Li-wei, Ikaro Silva, Qiao Li,
AE Johnson, and Roger G Mark. AF classification from a short single lead ECG recording: The
PhysioNet/computing in cardiology challenge 2017. In 2017 Computing in Cardiology (CinC),
2017.

[10] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

[11] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In International Conference on Machine Learning (ICML), 2016.

[12] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations (ICLR), 2022.

[13] Randall Balestriero and Richard G Baraniuk. Mad max: Affine spline insights into deep learning.
Proceedings of the IEEE, 109(5), 2020.

[14] Randall Balestriero and Richard G Baraniuk. Batch normalization explained. arXiv preprint
arXiv:2209.14778, 2022.

5



[15] Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always
grok and here is why. arXiv preprint arXiv:2402.15555, 2024.

[16] Thomas Rojat, Raphaël Puget, David Filliat, Javier Del Ser, Rodolphe Gelin, and Natalia
Díaz-Rodríguez. Explainable artificial intelligence (XAI) on timeseries data: A survey. arXiv
preprint arXiv:2104.00950, 2021.

[17] Ziqi Zhao, Yucheng Shi, Shushan Wu, Fan Yang, Wenzhan Song, and Ninghao Liu. Interpreta-
tion of time-series deep models: A survey. arXiv preprint arXiv:2305.14582, 2023.

[18] Wendong Ge, Jin-Won Huh, Yu Rang Park, Jae-Ho Lee, Young-Hak Kim, and Alexander
Turchin. An interpretable icu mortality prediction model based on logistic regression and
recurrent neural networks with lstm units. In AMIA Annual Symposium Proceedings, volume
2018, 2018.

[19] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. Lstm fully convolutional
networks for time series classification. IEEE Access, 6, 2017.

[20] Cedric Schockaert, Reinhard Leperlier, and Assaad Moawad. Attention mechanism for multi-
variate time series recurrent model interpretability applied to the ironmaking industry. arXiv
preprint arXiv:2007.12617, 2020.

[21] Cj Barberan, Sina Alemmohammad, Naiming Liu, Randall Balestriero, and Richard Baraniuk.
NeuroView-RNN: It’s about time. In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency, 2022. doi: 10.1145/3531146.3533224.

[22] Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, and Vineeth N Balasubramanian.
Neural network attributions: A causal perspective. In International Conference on Machine
Learning (ICML), 2019.

[23] Zichao Wang, Randall Balestriero, and Richard Baraniuk. A max-affine spline perspective of
recurrent neural networks. In International Conference on Learning Representations (ICLR),
2019.

[24] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural
networks: Lstm cells and network architectures. Neural computation, 31(7), 2019.

[25] Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In International Conference on Learning Representations (ICLR), 2023.

6


	Introduction
	Background
	Related Work
	Neural Networks

	Methods
	Results
	Illustrating the Decision Boundary and Complexity of Linear RNNs
	Probing the Frequency-Sensitivity of Linear RNNs

	Conclusions and Future Work
	Acknowledgements

