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Abstract

Pathology detection in medical imaging is crucial for radiologists, yet current approaches
that train specialized models for each region of interest often lack efficiency and robustness.
Furthermore, the scarcity of annotated medical data, particularly for diverse phenotypes,
poses significant challenges in achieving generalizability. To address these challenges, we
present a novel language-guided object detection pipeline that leverages curriculum learn-
ing strategies, chosen for their ability to progressively train models on increasingly complex
samples, thereby improving generalization across pathologies, phenotypes, and modalities.
We developed a unified pipeline to convert segmentation datasets into bounding box anno-
tations, and applied two curriculum learning approaches - teacher curriculum and bounding
box size curriculum - to train a Grounding DINO model. Our method was evaluated on
different tumor types in MRI and CT scans and showed significant improvements in detec-
tion accuracy. The teacher and bounding box size curriculum learning approaches yielded
a 4.9% AP and 5.2% AP increase over baseline, respectively. The results highlight the
potential of curriculum learning to optimize medical image analysis and clinical workflow.
The code is available at https://github.com/CCI-Bonn/CL4OD.

Keywords: Medical Image Analysis, Deep Learning, Tumor Detection, Curriculum Learn-
ing

1. Introduction and Related Work

Pathology detection on medical imaging is a cornerstone of modern radiology practice and
plays a crucial role in diagnosis and treatment planning. Accurate pathology detection is
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critical for determining the presence, location, and extent of abnormalities, guiding diagnos-
tic accuracy, enabling targeted treatments, monitoring disease progression, and evaluating
therapy efficacy. Simplifying associated workflows and reducing prediction complexity is
essential to increase efficiency, remove barriers to clinical adoption, and improve prediction
quality. This can be achieved by unifying specialized models into foundation models, and
by reducing algorithmic and task complexity. In this context, segmentation algorithms can
be substituted by detection-only algorithms for many clinical tasks, such as identifying new
metastases or counting the number of existing lesions.

Recent advances in medical imaging have led to the development of foundation models
capable of handling multiple modalities and interactive tasks (Ma et al., 2024a,b). These
models show superior flexibility compared to specialized segmentation networks such as
nnU-Net (Isensee et al., 2021), operating on different imaging modalities and accepting vi-
sual input prompts. In addition, recent developments have also demonstrated the benefits
of language guidance in medical image analysis, enabling more efficient medical image in-
terpretation, with several studies focusing on language-driven segmentation (Koleilat et al.,
2024b; Li et al., 2024; Liu et al., 2023; Zhao et al., 2025) and improving zero-shot and
few-shot performance (Koleilat et al., 2024a). Notable work has been done in the area
of medical object detection, particularly for brain tumors (Mercaldo et al., 2023; Chen
et al., 2024a; Abdusalomov et al., 2023; He et al., 2023). However, there appears to be a
lack of multi-modal and multi-pathology detection frameworks. The success of Grounding
DINO (G-DINO) (Liu et al., 2024), an open-set language-guided object detector, has gen-
erated interest in its application to medical imaging, allowing the integration of different
pathologies, modalities and text prompts into a single network. So far, only a few algo-
rithms (Biswas, 2023; Xie et al., 2024; Ramesh et al., 2023) have taken advantage of this
additional guidance for object detection in medical imaging. Additionally, these works do
not investigate G-DINO in detail, as a stand-alone architecture, but rather use it as a box
prompt generator for SAM, following the idea of Grounded SAM (Ren et al., 2024). In this
study we focus on developing a language-guided network to detect pathologies - specifically
tumors - of various organs.

Unlike natural images, tumor detection poses unique challenges due to the significant
variability in tumor phenotypes across patients, which demands large datasets to achieve
generalization. However, the scarcity of annotated medical imaging data makes general-
ization challenging, especially for detecting smaller tumors (Abdusalomov et al., 2023; He
et al., 2023). Foundation segmentation models such as MedSAM (Ma et al., 2024a) even
ignore this issue by entirely excluding pathologies with a volume less than 1000 pixels and
a cross-sectional area less than 100 pixels. To address these shortcomings, we investigated
different Curriculum Learning (CL) strategies (Bengio et al., 2009) to increase detection ac-
curacy. CL, introduced by Bengio et al. (Bengio et al., 2009), has found several applications
in the medical domain (Jiménez-Sánchez et al., 2019; Wei et al., 2021; Oksuz et al., 2019;
Fischer et al., 2024) with the goal of improving performance by gradually increasing train-
ing complexity. The strategy used in this study, called data-level CL, gradually increases
the complexity of the training samples: First, the model is trained on large, well-contrasted
tumors to establish robust feature representations. Next, the training data is expanded
to include smaller, less conspicuous tumors with increasing anatomical and modality vari-
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ability. This progressive learning approach helps the model develop better generalization
capabilities and improves its sensitivity to subtle pathological findings.

In this work, we explore the potential of two different CL strategies on G-DINO’s detec-
tion performance by pre-training the network on the TotalSegmentator dataset (Wasserthal
et al., 2023), followed by CL-based fine-tuning on tumor datasets spanning different imag-
ing modalities (Magnetic Resonance Imaging (MRI) and Computed Tomography (CT))
and anatomical sites (brain metastasis, glioma, liver & kidney tumor). In addition, we
have developed a pipeline to convert ground truth segmentations into bounding boxes by
using morphological operations to consolidate them. This goes beyond the naive approach
of drawing tight bounding boxes around segmentations. An extensive evaluation of the
G-DINO baseline model was conducted, comparing its performance with models trained
using two CL approaches: teacher CL (Weinshall et al., 2018) and bounding box CL (Shi
and Ferrari, 2016). The results show a 4.9% improvement in Average Precision (AP) with
teacher CL and a 5.2% increase in AP with bounding box CL compared to the baseline
model. Based on the reviewed literature, this paper is among the initial efforts to:

1. Apply two different CL strategies to a language-guided detection network (G-DINO).
2. Train G-DINO jointly on different pathologies from various body regions and modal-

ities, demonstrating the model’s versatility with limited datasets.
3. Develop and formalize a novel preprocessing pipeline to convert medical segmentation

datasets into object detection datasets.

Figure 1: Overview of our method: As a first step, the natural image G-DINO model is
pre-trained on the Total Segmentator dataset (top left). In a second step, the baseline
is finetuned without CL on all pathology datasets (top right). Finally, two CL models
are trained: for teacher CL, the baseline is used to guide the difficulty sorting, while for
bounding box CL, the size of bounding boxes are used for difficulty sorting (bottom).
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2. Method

Our methodological pipeline consists of three parts, as shown in Figure 1. The first part
consists of pre-training the language-guided detection network G-DINO on a large multi-
modal, multi-organ dataset to detect 163 different regions of interest - 104 for CT and 59 for
MRI. The second part consists of fine-tuning the pre-trained G-DINO on the pathological
datasets producing the baseline. Finally, the third part consists of fine-tuning the pre-
trained model on the pathological datasets using two different CL strategies.

2.1. Ground Truth Bounding Box Generation

Open-source medical object detection datasets are even more scarce than segmentation
datasets. To leverage the relative abundance of medical segmentation datasets, we devised
an efficient method to generate ground truth bounding boxes from existing segmentation
data. To generate bounding boxes for the pathology datasets, we first removed all seg-
mentation masks not related to pathologies, such as liver or liver vessel masks. Then,
we merged masks if certain tumors had compartments (e.g., “contrast enhancing” and
“necrotic” parts). Finally, we performed dilation on the binary segmentation mask to re-
move discontinuities in the tumor mask. This provides a more accurate bounding box for
a tumor instead of separate bounding boxes for discontinuous regions of the same tumor
and ensures that the bounding boxes are not overly tight, providing a more realistic rep-
resentation similar to human annotation. We perform the dilation in 2 iterations with a
3× 3 kernel. After performing the dilation, we then drew tight bounding boxes around the
resulting segmentations (see Figure 2). Models like MedSAM, which use oracle bounding
boxes as training prompts, address noisy boxes by discarding segmentation masks below a
size threshold. Our approach mitigates noise while retaining masks for small tumors.

Figure 2: Depiction of the regularization effects of our bounding box pipeline using dilation.

2.2. Grounding DINO

G-DINO (Liu et al., 2024) is an open object detector capable of identifying any object
based on textual input, such as referring expressions or categories. Given an (Image,Text)
pair input, G-DINO predicts multiple (Bounding Box,Noun Phrase) pairs with confidence
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scores for each detected entity. The noun phrase is the predicted semantic entity of the
box and is derived from the input prompt in an open-set fashion. The model employs a
dual-encoder-single-decoder architecture consisting of an image encoder for visual feature
extraction, a text encoder for textual information processing, a feature enhancer for fusion
of extracted features, a language-guided query selection module for query initialization,
and a cross-modality decoder for bounding box refinement (Liu et al., 2024). We used the
G-DINO implementation from the mmdetection framework (Zhao et al., 2024) and adopted
the focal loss (Lin et al., 2020) (γ = 2.0 and α = 0.25) and the weighted L1 loss (w = 5)
as loss functions. (Zhao et al., 2024) For image and text encoders, we used Swin-Tiny (Liu
et al., 2021) and bert-base-uncased (Devlin et al., 2019), respectively. The text prompt is
constructed by concatenating all possible class names. Thus, the fine-tuning prompt for all
training images was “glioma . brain metastasis . liver tumor . kidney tumor“.

2.3. Curriculum Learning

Weinshall et al. (Weinshall et al., 2018) theoretically showed that in linear regression,
convergence decreases with increasing sample difficulty. Empirically, they found that in
non-convex optimization, higher difficulty increases gradient variance, slowing convergence
and worsening generalization compared to CL. Based on this, we propose two difficulty-
sorting methods: teacher CL and bounding box CL. For the teacher CL, we used the
baseline model to perform inference on the entire training dataset of pathological images
and computed the AP score for each image to sort them into five difficulty levels based
on their evaluation scores (ranging from 1 for the easiest to 5 for the most difficult). The
baseline model acts as a difficulty grader, assuming high-precision samples are easier to
learn, while low-precision ones are more challenging. For false positives, we manually set
the AP score to 0.0 if the network predicts a bounding box with a confidence level greater
than 0.3. In bounding box-based curriculum, difficulty is defined by bounding box size,
as multiple studies (including original G-DINO) show precision scores increase with larger
boxes. The bounding box curriculum classifies each training sample into one of five difficulty
levels based on the size of the smallest bounding box present in the image. We found that
bounding box size is a primary indicator of prediction difficulty, as shown by the performance
of the baseline model (Table 1). This approach has the advantage of not requiring a trained
baseline model a priori. In both CL approaches, we randomly assigned training samples
without bounding boxes (i.e., no object of interest) to difficulty categories to maintain an
equal distribution. To fine-tune the model on the pathological dataset using CL, we start
with the easiest category and progressively introduce more difficult categories at each epoch.
After 5 epochs, the network is fine-tuned on the complete data until convergence.

3. Experiments and Results

3.1. Pretraining & Datasets

In our experiments, we initialized the G-DINO architecture with weights published by
(Zhao et al., 2024), which were trained on several natural image datasets (Objects365
(Shao et al., 2019), GRIT (Peng et al., 2023), V3Det (Wang et al., 2023), Golden-G dataset
(Kamath et al., 2021)). We first pretrained this network on the TotalSegmentator dataset,
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which consists of CT (Wasserthal et al., 2023) and MRI (Akinci D’Antonoli et al., 2024)
scans of the entire human body, to adapt the image encoder weights to medical imaging
modalities and to improve medical semantic understanding. We then fine-tuned the network
on heterogeneous datasets spanning multiple modalities, pathologies, hospitals, and scanner
manufacturers. This aggregated dataset includes both MRI and CT scans with four different
detection targets: brain metastasis, glioma, liver & kidney tumor. A detailed overview of
all datasets used in this work is given in Table A1 in the Appendix.

3.2. Data Preprocessing & Training Detail

Both CT and MRI datasets, originally in 3D NIfTI format, require preprocessing for com-
patibility with G-DINO, a 2D object detector. Following Ma et al. (Ma et al., 2024a), we
clipped MRI images to their [0.05, 99.5] percentile and normalized them to [0, 255], while CT
images were windowed (level = 40 and width = 400) before normalization. For the patholog-
ical datasets, we used organ segmentation masks to only retain slices containing the organ
of the associated pathology. Patients from all datasets were split into train/validation/test
(0.7, 0.15, 0.15) sets. The resulting 2D training dataset consisted of 199,672 slices, of which
66,990 slices had bounding box annotations (i.e., tumors were present). During training,
the BraTS Glioma dataset was undersampled by a factor of 3 to ensure a balanced class
distribution. We trained the models on two NVIDIA RTX A6000 GPUs with a batch size
of 10 until convergence. The baseline model was trained with a learning rate of 1e−5 for the
first 5 epochs, followed by a learning rate of 1e−6, while the curricula models were trained
with 1e−5 for the first 7 epochs and 1e−6 for the remaining epochs to ensure equal data
exposure and to compensate for shorter curricula epochs due to data exclusion. Figure A1
in the appendix illustrates the training loss and validation curves.

3.3. Curriculum Learning - Difficulty categories

We categorized the training data into five difficulty levels based on two heuristics to obtain
two CL strategies as explained in Section 2.3. After training the baseline model, we observed
that the size of the bounding box correlated with the precision score and thus could be an
indicator of the difficulty of the samples (Table 1). To standardize bounding box sizes, we
calculated their areas relative to the image area. We then sorted the samples based on the
smallest bounding box present in each slice, ensuring an even distribution across categories.
Slices without bounding boxes were randomly assigned to maintain an equal distribution
of annotated and unannotated samples. For teacher CL, we additionally included slices
without ground-truth bounding boxes but with false positive predictions from the baseline
model and assigned them an AP score of 0.0. We then created intervals to maintain a
roughly equal distribution across categories. Dataset distributions across categories are
shown in the appendix for both heuristics in Table A2 and Table A3, respectively.

3.4. Experimental Setup

After pre-training on the TotalSegmentator dataset, we simultaneously fine-tuned G-DINO
on the full pathological training dataset to obtain three models: a baseline model and two
CL-based models using the bounding box and teacher principles introduced in Section 2.3.
For the baseline, the training data was sampled entirely randomly. All weights were updated
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Dataset Curr.
AP (%)

@0.5

AP (%)

@0.75
AP (%)

AP (%)

large

AP (%)

medium

AP (%)

small

Overall

Without 69.7 50.6 46.5 69.3 62.0 30.9

Box 75.7 56.7 51.7 70.0 65.8 35.6

Teacher 75.5 56.0 51.4 72.7 65.5 35.6

Yale BM

Without 61.5 48.2 42.2 - 69.9 37.3

Box 79.5 64.9 56.9 - 81.5 52.4

Teacher 76.0 61.8 54.3 - 77.5 50.8

BraTS MET

Without 66.7 54.1 45.9 - 76.9 42.2

Box 82.7 65.9 57.4 - 83.8 54.2

Teacher 81.5 64.5 56.6 - 83.6 53.0

BraTS GLI

Without 84.8 72.2 65.8 - 81.1 48.1

Box 85.2 72.5 66.0 - 81.3 48.4

Teacher 84.5 71.8 65.4 - 80.7 47.5

MSD Liver

Without 61.4 32.1 33.2 66.6 46.8 19.9

Box 60.4 33.2 32.7 63.1 44.9 21.9

Teacher 61.3 30.2 31.9 65.8 46.0 19.0

MSD Hep Vessel

Without 69.4 37.7 39.2 62.8 43.7 15.0

Box 70.5 43.5 43.1 67.8 47.5 17.6

Teacher 72.4 42.9 42.9 68.5 46.4 17.8

KiTS23 Kidney

Without 74.6 59.5 52.9 78.4 53.8 22.6

Box 75.7 60.4 53.9 79.0 56.0 19.0

Teacher 77.0 64.5 57.4 83.8 58.6 25.2

Table 1: Overview of the AP scores on individual datasets and averaged to an overall score.

during training, including the image and text encoders. During training, model weights were
evaluated on a merge of the individual validation sets, and the best performing (mean-AP
over all detection targets) weights were selected. Subsequent testing was performed on all
datasets individually. We evaluated the object detection results using the COCO metrics
(Lin et al., 2014). We used AP1 values at different IoU thresholds: AP@0.5 and AP@0.75
with IoU thresholds of 0.5 and 0.75, respectively. The unspecified AP represents the average
metric across IoU thresholds between 0.5 and 0.95 in 0.05 increments. Additionally, we
evaluated the predictions separately for different bounding box sizes, where AP small, AP
medium, AP large refer to the AP of ground truth bounding boxes with areas of [0, 322],
[322, 962], and [962,∞) pixels, respectively.

3.5. Results

Pretraining takes around 4 days while fine-tuning takes around 2.5 days for each model.
Teacher CL additionally requires 2.5 days of baseline training beforehand and approximately
5 hours for evaluating the baseline on the entire training set to assign difficulty classes to
each sample. Table 1 shows the quantitative test results for all models. Figure 3 shows the
predictions of our three models alongside the ground truth for one case from each dataset.
Both CL approaches improved performance on average AP metrics, with the bounding box

1. Standard deviation cannot be computed for single-class AP scores from a single model, as AP is a single
summary value — the area under the precision-recall curve — rather than a distribution.
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CL model achieving the highest gains (+5.2% AP, +6.1% AP@0.75, +6.0% AP@0.5 over
baseline). Both CL models outperformed the baseline in all size-constrained AP scores,
with the largest gains in the most difficult categories (AP small: +4.7% for both models,
AP medium: +3.5% & +3.8% for bounding box CL and teacher CL, respectively). The
results thus support our hypothesis that CL improves performance especially for the most
difficult samples with the smallest tumors. Looking at individual datasets, the CL models
performed best in 5 out of 6 datasets for all metrics, with the MSD Liver dataset showing
slight underperformance in this context (-0.5% AP for bounding box CL, -1.3% AP for
teacher CL). Overall, the results indicate that CL generally improves model performance,
especially for challenging detection tasks with small to medium bounding boxes. Figure A2
in the Appendix shows the density distribution across categories as the teacher model trains.
After training, the distribution shifts toward the “Easiest” category.

Figure 3: Visualization of the predicted results with an illustrative case from each dataset.

3.6. Ablation Studies

Anti-Curriculum: To show the effect of CL, and also to follow recent work (Wu et al.,
2023; Chen et al., 2024b; Braun et al., 2017) that proposes a hard-to-easy methodology
(anti-CL), we also trained our models in such a setting. The results are shown in the
appendix in Table A4. Anti-box CL achieves an overall AP score of 49.5%, which is 3.0%
better than the baseline and 2.2% less than regular bounding box CL. Anti-teacher CL, on
the other hand, achieves an overall AP score of 51.2%, which is 3.7% better than the baseline
and only slightly (0.2%) worse than regular teacher CL. Both CL and anti-CL proved to be
effective for both difficulty sorting approaches and outperformed the baseline. Our results
show that when training samples were sorted by difficulty based on the performance of
the baseline model, the sorting order had little effect on final accuracy. However, when
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the difficulty sorting was based on bounding box size, the sample order during training
had a more pronounced effect, leading to greater variation in accuracy. This suggests that
difficulty sorting based on manual heuristics interacts more with learning dynamics than
teacher-based difficulty sorting.
Finetuning Modality: In this experiment we try to determine the individual contributions
of each modality and the overall benefit of their combination during finetuning. Table A5
in the Appendix G presents test scores for two models, each finetuned on a single modality
without CL. The results do not indicate a clear advantage of fine-tuning on a single modality
versus multiple modalities. As expected, the CT model performs poorly on MRI datasets
and vice versa. When tested on the same modality, its performance is comparable to multi-
modal networks Table 1. Specifically, the CT model underperforms compared to the best
model across all three CT datasets, while the MRI model achieves performance similar to
the multi-modal fine-tuned CL algorithm.
Pretraining: To evaluate the effect of pretraining, we perform multiple ablations. Firstly,
we test the natural image & medically pretrained G-DINO (without fine-tuning) on the
pathological datasets to compare their comprehension of pathologies. While both mod-
els have scores of < 1% AP across all datasets, a qualitative analysis (see Figure A3 in
the Appendix H) shows, that the pretrained model seems to grasp the concept of a tissue
structure better whereas the former is detecting the entire anatomical structure from back-
ground. We also fine-tuned two additional bounding box CL models: one pretrained only
on MRI scans from TotalSegmentator, and the other only on CT. The results in Table A6
in the Appendix I indicate that the multi-modal pretraining yields better results (51.7 %
AP, Table 1) compared to MRI-only (50.6 % AP) and CT-only (50.9 % AP) pretraining.
CL Categories: To evaluate the effect of the number of difficulty categories employed
during CL training, we perform a small experiment by training the bounding box CL model
with just two difficulty categories, opposed to five difficulty categories used otherwise. The
results - Table A7 in Appendix J - indicate that fewer difficulty categories do not increase
overall performance: 50.4% AP score compared to 51.7% for bounding box CL in Table 1.

4. Conclusion

Our study demonstrates the effectiveness of CL strategies in multimodal medical image
object detection. Implementation of bounding box size-based and teacher-guided curricula
improved overall detection accuracy, particularly for small and medium-sized objects. How-
ever, the lack of improvement on the MSD Liver dataset necessitates further investigation
into dataset-specific factors affecting the effectiveness of CL. We observed that both sort-
ing heuristics can be effectively applied in an anti-curriculum fashion, with only the teacher
heuristic being able to match the regular sorting approach. Thus, studying the necessary
conditions for successful anti-CL needs further investigation. We also explored pretrain-
ing G-DINO on a single modality before fine-tuning on the full pathological dataset. Our
results indicate that multi-modal pretraining yields slightly better performance. Despite
these promising results, challenges in CL implementation remain. Data-level CL still re-
quires hand-crafted difficulty categories and predefined scheduling. In addition, the compu-
tational overhead of CL, especially in the teacher-guided approach, warrants consideration
in balancing improved performance with increased training time.
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Appendix A. Overview of all Pathological Datasets

Dataset Name Citation Mod. Pathology Images

Yale BM (Ramakrishnan et al., 2024) MRI T1-ce Brain metastasis 25,563
BraTS MET (Moawad et al., 2023) MRI T1-ce Brain metastasis 30,430

BraTS GLI
(Baid et al., 2021)
(Menze et al., 2015)
(Bakas et al., 2017)

MRI T1-ce Glioma 163,066

MSD Liver (Antonelli et al., 2022) CT-ce Liver tumor 19,134
MSD Hep Vessel (Antonelli et al., 2022) CT-ce Liver tumor 13,013
KiTS23 Kidney (Heller et al., 2023) CT-ce Kidney tumor 32,909

Table A1: Overview of pathological datasets used in this work. ”-ce” refers to constrast
enhancing MRI / CT.

Appendix B. Training Loss and Validation Scores for all Trained Models

Figure A1: Training loss curves and validation AP plotted for the baseline and the two
CL-models. The x-axis denotes training steps and the vertical lines at the top of the graph
denote the start of new epochs for each model.
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Appendix C. Data Distribution for Bounding Box Curriculum

Datasets

Area Interval
[0, 0.21) [0.21, 0.72) [0.72, 1.75) [1.75, 3.49) [3.49, 100] total

Yale BM 2037 1596 881 509 167 5190

BraTS GLI 3825 5186 7933 10346 10783 38073

BraTS MET 2969 1768 1067 725 227 6756

MSD Liver 2897 1294 510 196 225 5122

MSD Hep Vessel 717 917 758 383 504 3279

KiTS23 Kidney 1200 2619 1934 1340 1477 8570

total 13645 13380 13083 13499 13383 66990

Table A2: Distribution of image slices with ground truth annotations across datasets for
the bounding box sorting approach: Based on the smallest bounding box present in a
slice, the slice gets sorted into a particular difficulty interval. The intervals are defined by
standardized area of the bounding box, with the smallest area intervals being the hardest
category.

Appendix D. Data Distribution for Teacher Curriculum

Datasets

AP Interval
[0, 0.30) [0.30, 0.69) [0.69, 0.87) [0.87, 0.9) [0.9, 1.0] total

Yale BM 878 1166 1875 1069 399 5387

BraTS GLI 6245 5242 7198 10281 10437 39403

BraTS MET 1232 1704 1993 1349 698 6976

MSD Liver 1181 2102 1337 531 166 5317

MSD Hep Vessel 1024 863 894 509 235 3525

KiTS23 Kidney 1676 1101 2160 2288 1854 9079

total 12236 12178 15457 16027 13789 69687

Table A3: Distribution of image slices with ground truth annotations and false positive
predictions across datasets for the teacher sorting approach: Based on the baseline inference
performance, the slice gets sorted into a particular difficulty interval. The intervals are
defined by AP scores, with the lowest AP score intervals being the hardest category.
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Appendix E. Evolution of the Sample Distribution During Training of
the Teacher Curriculum Model

Figure A2: The histogram shows how sample distribution across difficulty categories evolves
during Teacher CL trainings. We evaluate the distribution at three stages: (a) before
training, (b) midway, after the model has encountered all categories at least once, and (c)
after training is complete. As shown in the figure, the midway distribution shifts towards
both extremes, reflecting ongoing learning. By the end of training, samples predominantly
cluster in the “Easy” category.
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Appendix F. Evaluation Scores for Anti-Curriculum Approaches

Dataset Curr.
AP (%)

@0.5

AP (%)

@0.75
AP (%)

AP (%)

large

AP (%)

medium

AP (%)

small

Overall

Without 69.7 50.6 46.5 69.3 62.0 30.9

Anti Box 73.9 54.2 49.5 67.6 64.0 34.1

Anti Teacher 75.5 56.2 51.2 70.1 65.1 35.8

Yale BM

Without 61.5 48.2 42.2 - 69.9 37.3

Anti Box 79.2 64.3 56.0 - 81.9 51.1

Anti Teacher 79.2 63.5 55.7 - 80.4 51.8

BraTS MET

Without 66.7 54.1 45.9 - 76.9 42.2

Anti Box 82.4 65.9 57.0 - 81.9 53.9

Anti Teacher 83.5 68.3 58.1 - 83.9 55.2

BraTS GLI

Without 84.8 72.2 65.8 - 81.1 48.1

Anti Box 85.1 72.2 65.9 - 80.9 48.7

Anti Teacher 85.9 72.8 66.0 - 81.2 48.6

MSD Liver

Without 61.4 32.1 33.2 66.6 46.8 19.9

Anti Box 55.3 25.1 28.0 66.5 41.7 15.1

Anti Teacher 57.2 28.8 30.2 65.0 42.2 18.1

MSD Hep Vessel

Without 69.4 37.7 39.2 62.8 43.7 15.0

Anti Box 72.0 42.8 41.5 62.7 46.6 15.7

Anti Teacher 70.4 42.3 41.6 64.8 45.9 17.5

KiTS23 Kidney

Without 74.6 59.5 52.9 78.4 53.8 22.6

Anti Box 69.2 54.9 48.7 73.6 50.7 20.1

Anti Teacher 76.9 61.7 55.3 80.4 57.0 23.6

Table A4: Overview of the detection accuracies for the anti-curriculum models on all
datasets as well as an overall score (mean over the 6 datasets).
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Appendix G. Evaluation Scores of Non-Curricula Models Trained on
One Modality Only

Finetuning

Modality
Dataset

AP (%)

@0.5

AP (%)

@0.75
AP (%)

AP (%)

large

AP (%)

medium

AP (%)

small

CT

Yale BM 0.6 0.1 0.2 - 1.1 0.1

BraTS MET 0.8 0.2 0.3 - 0.9 0.3

BraTS GLI 1.1 0.2 0.4 - 0.8 0.2

MSD Liver 55.3 24.5 27.3 65.6 39.6 14.5

MSD Hep Vessel 71.2 40.2 40.5 62.4 46.5 17.6

KiTS23 Kidney 77.3 61.9 54.7 79.6 55.3 23.1

MRI

Yale BM 78.6 63.8 56.1 - 79.2 52.2

BraTS MET 83.3 68.2 58.9 - 84.4 55.7

BraTS GLI 85.1 72.4 65.8 - 81.2 48.1

MSD Liver 0.1 0.0 0.0 0.1 0.1 0.0

MSD Hep Vessel 0.1 0.0 0.1 0.2 0.1 0.0

KiTS23 Kidney 0.6 0.2 0.2 3.9 0.4 0.2

Table A5: Evaluation on all datasets of two models finetuned on one modality only.

Finetuning Modality: The finetuned models shown in Table 1 are trained on a multi-
modal data from all pathological datasets, making it unclear how each modality contributes
individually or whether their combination provides a clear advantage. Table A5 presents
test scores for two models finetuned on a single modality without CL. While results are
inconclusive, they indicate that combining modalities is not detrimental. As expected, the
CT model performs poorly on MRI datasets and vice versa. Moreover, performance on
datasets of the same modality as training data is comparable to that of fully finetuned
models in Table 1. Specifically, the CT model ranks lowest on MSD Liver, second low-
est on MSD Hep Vessel, and second best on KiTS23 Kidney. Meanwhile, the MRI model
ranks second best on Yale BM, ties for second best on BraTS GLI, and performs best on
BraTS MET, compared to the finetuned models in Table 1.
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Appendix H. Qualitative Comparison of Models Directly After
Pretraining on Natural Images vs. Medical Images

Figure A3: A comparison of the top-three bounding box predictions from the natural image
G-DINO model and the G-DINO model pretrained on TotalSegmentator (CT &MRI) across
four pathological examples. Neither model was finetuned on the pathological datasets.
In instances where fewer than three distinct boxes appear, the same box was predicted
multiple times within the top-three. The findings showcase that the natural image G-DINO
model typically predicts bounding boxes that encompass the entire region of the human
body present in the slice, whereas the medically pretrained G-DINO model sometimes even
accurately identifies some tumors or detects the corresponding organ.

In this experiment we test vanilla G-DINO trained on natural image & pretrained
G-DINO (on multimodal medical images from TotalSegmentator dataset) directly on the
pathological datasets without finetuning to compare their comprehension of pathologies. As
expected both models have scores of ≤ 1% AP across all datasets, as they have never been
trained on pathological data. However, a qualitative analysis as illustrated in Figure A3,
suggests that the pretrained model exhibits a better understanding of tissue structures,
whereas the vanilla model struggles to differentiate anatomical features, often detecting the
entire image as a foreground object rather than identifying meaningful regions.
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Appendix I. Evaluation Scores for Two Bounding Box Curriculum
Models Finetuned After CT-only / MRI-only Pretraining

Pretraining

Modality
Dataset

AP (%)

@0.5

AP (%)

@0.75
AP (%)

AP (%)

large

AP (%)

medium

AP (%)

small

CT

Overall 74.2 55.8 50.9 72.0 63.2 36.1

Yale BM 77.2 63.4 56.0 - 78.1 52.1

BraTS MET 83.3 67.1 58.0 - 83.5 54.8

BraTS GLI 85.2 73.1 66.6 - 82.1 49.1

MSD Liver 56.8 30.9 30.7 65.1 40.0 20.0

MSD Hep Vessel 65.6 38.0 38.9 66.3 39.9 18.1

KiTS23 Kidney 76.9 62.0 54.9 84.7 55.8 22.7

MRI

Overall 74.8 54.8 50.6 71.6 63.9 35.3

Yale BM 78.6 64.2 56.4 - 82.1 51.9

BraTS MET 82.2 65.0 56.9 - 83.3 53.4

BraTS GLI 85.4 72.7 66.4 - 82.6 48.4

MSD Liver 59.4 30.5 31.9 68.0 42.2 20.7

MSD Hep Vessel 70.1 37.8 39.6 63.5 40.7 19.6

KiTS23 Kidney 73.1 58.7 52.3 83.2 52.7 17.7

Table A6: Results of Bounding Box CL models for two different pretraining strategies. CT
and MRI denote that the models were first pretrained on TotalSegmentator CT / MRI -
only and then finetuned using box curriculum.

In this experiment we fine-tuned two additional bounding box CL models: one pretrained
only on MRI scans from TotalSegmentator, and the other pretrained only on CT data. The
results are tabulated in Table A6. The results indicate that the multi-modal pretraining
yields better results (51.7 % AP, Table 1) compared to MRI-only (50.6 % AP) and CT-only
(50.9 % AP) pertaining. Moreover, the performance of the multimodal pretrained bounding
box CL model is better than the CT-only pretrained bounding box CL model on two out of
three CT test datasets, and better than the MRI-only pretrained bounding box CL model
on two out of three MRI test datasets.
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Appendix J. Evaluation Scores of a Bounding Box Curriculum Model
Trained With Two Difficulty Categories Only

Number of

CL Categories
Dataset

AP (%)

@0.5

AP (%)

@0.75
AP (%)

AP (%)

large

AP (%)

medium

AP (%)

small

2

Overall 74.4 55.2 50.4 66.7 64.2 35.4

Yale BM 77.9 63.6 56.0 - 79.2 52.4

BraTS MET 81.9 65.4 56.6 - 83.3 53.3

BraTS GLI 84.6 72.1 65.8 - 81.1 48.6

MSD Liver 60.6 31.0 32.0 61.1 44.3 21.0

MSD Hep Vessel 71.0 43.0 42.6 65.6 46.6 16.7

KiTS23 Kidney 70.3 56.2 49.4 73.5 50.8 20.4

Table A7: Results table of a bounding box CL model trained using only two difficulty
categories.

This ablation study investigates the effect of the number of difficulty categories employed
during CL training. For all standard CL-based models depicted in Table 1, the training
procedure utilizes five difficulty categories, which are incrementally introduced with each
training epoch. After five CL epochs, fine-tuning is then conducted on the entire training
set. In contrast, for the ablation, we implemented bounding box CL using only two difficulty
categories. Specifically, the model was initially trained on the easier difficulty category for
three epochs, after which the second category was introduced and training continued until
convergence. The results demonstrate a slight decrease in performance, with an AP score
of 50.4% compared to 51.7% AP for the regular bounding box CL (see Table 1).
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