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Abstract

Pathology detection in medical imaging is crucial for radiologists, yet current approaches
that train specialized models for each region of interest often lack efficiency and robustness.
Furthermore, the scarcity of annotated medical data, particularly for diverse phenotypes,
poses significant challenges in achieving generalizability. To address these challenges, we
present a novel language-guided object detection pipeline for medical imaging that lever-
ages curriculum learning strategies, chosen for their ability to progressively train models on
increasingly complex samples, thereby improving generalization across pathologies, pheno-
types, and modalities. We developed a unified pipeline to convert segmentation datasets
into bounding box annotations, and applied two curriculum learning approaches - teacher
curriculum and bounding box size curriculum - to train a Grounding DINO model. Our
method was evaluated on different tumor types in MRI and CT scans and showed significant
improvements in detection accuracy. The teacher and bounding box size curriculum learn-
ing approaches yielded a 4.9% AP and 5.2% AP increase over baseline, respectively. The
results highlight the potential of curriculum learning to optimize medical image analysis
and clinical workflow by providing a versatile and efficient detection algorithm.

Keywords: Medical Image Analysis, Deep Learning, Tumor Detection, Curriculum Learn-
ing

1. Introduction and Related Work

Pathology detection on medical imaging is a cornerstone of modern radiology practice and
plays a crucial role in diagnosis and treatment planning. Accurate pathology detection is
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critical for determining the presence, location, and extent of abnormalities, guiding diagnos-
tic accuracy, enabling targeted treatments, monitoring disease progression, and evaluating
therapy efficacy. Simplifying associated workflows and reducing prediction complexity is
essential to increase efficiency, remove barriers to clinical adoption, and improve prediction
quality. This can be achieved by unifying specialized models into foundation models, and
by reducing algorithmic and task complexity. In this context, segmentation algorithms can
be substituted by detection-only algorithms for many clinical tasks, such as identifying new
metastases or counting the number of existing lesions.

Recent advances in medical imaging have led to the development of foundation models
capable of handling multiple modalities and interactive tasks (Ma et al., 2024a,b). These
models show superior flexibility compared to specialized segmentation networks such as
nnU-Net (Isensee et al., 2021), operating on different imaging modalities and accepting vi-
sual input prompts. In addition, recent developments have also demonstrated the benefits
of language guidance in medical image analysis, enabling more efficient medical image in-
terpretation, with several studies focusing on language-driven segmentation (Koleilat et al.,
2024b; Li et al., 2024; Liu et al., 2023; Zhao et al., 2024a) and improving zero-shot and
few-shot performance (Koleilat et al., 2024a). Notable work has been done in the area
of medical object detection, particularly for brain tumors (Mercaldo et al., 2023; Chen
et al., 2024a; Abdusalomov et al., 2023; He et al., 2023). However, there appears to be a
lack of multi-modal and multi-pathology detection frameworks. The success of Grounding
DINO (G-DINO) (Liu et al., 2025), an open-set language-guided object detector, has gen-
erated interest in its application to medical imaging, allowing the integration of different
pathologies, modalities and text prompts into a single network. So far, only a few algorithms
(Biswas, 2023; Xie et al., 2024; Ramesh et al., 2023) have taken advantage of this additional
guidance for object detection in medical imaging. In this study we focus on developing a
language-guided network to detect pathologies - specifically tumors - of various organs.

Unlike natural images, tumor detection poses unique challenges due to the significant
variability in tumor phenotypes across patients, which demands large datasets to achieve
generalization. However, the scarcity of annotated medical imaging data makes general-
ization challenging, especially for detecting smaller tumors (Abdusalomov et al., 2023; He
et al., 2023). To address these shortcomings, we investigated different Curriculum Learn-
ing (CL) strategies (Bengio et al., 2009) to increase detection accuracy. CL, introduced by
Bengio et al. (Bengio et al., 2009), has found several applications in the medical domain
(Jiménez-Sánchez et al., 2019; Wei et al., 2021; Oksuz et al., 2019; Fischer et al., 2024)
with the goal of improving performance by gradually increasing training complexity. The
strategy used in this study, called data-level CL, gradually increases the complexity of the
training samples: First, the model is trained on large, well-contrasted tumors to establish
robust feature representations. Next, the training data is expanded to include smaller, less
conspicuous tumors with increasing anatomical and modality variability. This progressive
learning approach helps the model develop better generalization capabilities and improves
its sensitivity to subtle pathological findings.

In this work, we explore the potential of two different CL strategies on G-DINO’s detec-
tion performance by pre-training the network on the TotalSegmentator dataset (Wasserthal
et al., 2023), followed by CL-based fine-tuning on tumor datasets spanning different imag-
ing modalities (Magnetic Resonance Imaging (MRI) and Computed Tomography (CT))
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and anatomical sites (brain metastasis, glioma, liver & kidney tumor). In addition, we
have developed a pipeline to convert ground truth segmentations into bounding boxes by
using morphological operations to consolidate them. This goes beyond the naive approach
of drawing tight bounding boxes around segmentations. An extensive evaluation of the
G-DINO baseline model was conducted, comparing its performance with models trained
using two CL approaches: teacher CL (Weinshall et al., 2018) and bounding box CL (Shi
and Ferrari, 2016). The results show a 4.9% improvement in Average Precision (AP) with
teacher CL and a 5.2% increase in AP with bounding box CL compared to the baseline
model. Based on the reviewed literature, this paper is among the initial efforts to:

1. Apply two different CL strategies to a language-guided detection network (G-DINO).
2. Train G-DINO jointly on different pathologies from various body regions and modal-

ities, demonstrating the model’s versatility with limited datasets.
3. Develop and formalize a novel preprocessing pipeline to convert medical segmentation

datasets into object detection datasets.

Figure 1: Overview of our method: As a first step, the natural image G-DINO model is
pre-trained on the Total Segmentator dataset (top left). In a second step, the baseline
is finetuned without CL on all pathology datasets (top right). Finally, two CL models
are trained: for teacher CL, the baseline is used to guide the difficulty sorting, while for
bounding box CL, the size of bounding boxes are used for difficulty sorting (bottom).

2. Method

Our methodological pipeline consists of three parts, as shown in Figure 1. The first part
consists of pre-training the language-guided detection network G-DINO on a large multi-
modal, multi-organ dataset to detect 163 different regions of interest - 104 for CT and 59 for
MRI. The second part consists of fine-tuning the pre-trained G-DINO on the pathological
datasets producing the baseline. Finally, the third part consists of fine-tuning the pre-
trained model on the pathological datasets using two different CL strategies.
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2.1. Ground Truth Bounding Box Generation

Since our experimental datasets are primarily designed for segmentation tasks, we devel-
oped a method to generate ground truth bounding boxes. To generate bounding boxes for
the pathology datasets, we first removed all segmentation masks not related to pathologies,
such as liver or liver vessel masks. Then, we merged masks if certain tumors had compart-
ments (e.g., “contrast enhancing” and “necrotic” parts). Finally, we performed dilation on
the binary segmentation mask to remove discontinuities in the tumor mask. This provides a
more accurate bounding box for a tumor instead of separate bounding boxes for discontin-
uous regions of the same tumor and ensures that the bounding boxes are not overly tight,
providing a more realistic representation similar to human annotation. We perform the
dilation in 2 iterations with a 3 × 3 kernel. After performing the dilation, we then drew
tight bounding boxes around the resulting segmentations (see Figure 2).

Figure 2: Depiction of the regularization effects of our bounding box pipeline using dilation.

2.2. Grounding DINO

G-DINO (Liu et al., 2025) is an open object detector capable of identifying any object
based on textual input, such as referring expressions or categories. Given a (Image,Text)
pair input, G-DINO predicts multiple (Bounding Box,Noun Phrase) pairs with confidence
scores for each detected entity. The noun phrase is the predicted semantic entity of the
box and is derived from the input prompt in an open-set fashion. The model employs a
dual-encoder-single-decoder architecture consisting of an image encoder for visual feature
extraction, a text encoder for textual information processing, a feature enhancer for fusion
of extracted features, a language-guided query selection module for query initialization,
and a cross-modality decoder for bounding box refinement (Liu et al., 2025). We used the
G-DINO implementation from the mmdetection framework (Zhao et al., 2024b) and adopted
the focal loss (Lin et al., 2020) (γ = 2.0 and α = 0.25) and the weighted L1 loss (w = 5) as
loss functions. (Zhao et al., 2024b) For image and text encoders, we used Swin-Tiny (Liu
et al., 2021) and bert-base-uncased (Devlin et al., 2018), respectively.

2.3. Curriculum Learning

Our CL approach includes two methods: teacher CL and bounding box CL. For the teacher
CL, we used the baseline model to perform inference on the entire training dataset of
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pathological images and computed the AP score for each image to sort them into five
difficulty levels based on their evaluation scores (ranging from 1 for the easiest to 5 for the
most difficult). This approach is common in data-level CL and is based on the premise
that simpler training samples will receive high precision scores, while more complex and
ambiguous samples will receive low scores. For false positives, we manually set the AP score
to 0.0 if the network predicts a bounding box with a confidence level greater than 0.3. The
bounding box curriculum classifies each training sample into one of five difficulty levels based
on the size of the smallest bounding box present in the image. We found that bounding
box size is a primary indicator of prediction difficulty, as shown by the performance of
the baseline model (Table 1). This approach has the advantage of not requiring a trained
baseline model a priori. In both CL approaches, we randomly assigned training samples
without bounding boxes (i.e., no object of interest) to difficulty categories to maintain an
equal distribution. To fine-tune the model on the pathological dataset using CL, we start
with the easiest category and progressively introduce more difficult categories at each epoch.
After 5 epochs, the network is fine-tuned on the complete data until convergence.

3. Experiments and Results

3.1. Pretraining & Datasets

In our experiments, we initialized the G-DINO architecture with weights published by
(Zhao et al., 2024b), which were trained on several natural image datasets (Objects365
(Shao et al., 2019), GRIT (Peng et al., 2023), V3Det (Wang et al., 2023), Golden-G dataset
(Kamath et al., 2021)). We first pretrained this network on the TotalSegmentator dataset,
which consists of CT (Wasserthal et al., 2023) and MRI (D’Antonoli et al., 2024) scans of the
entire human body, to adapt the image encoder weights to medical imaging modalities and to
improve medical semantic understanding. We then fine-tuned the network on heterogeneous
datasets spanning multiple modalities, pathologies, hospitals, and scanner manufacturers.
This aggregated dataset includes both MRI and CT scans with four different detection
targets: brain metastasis & glioma (MRI, T1-weighted contrast-enhanced) as well as liver
& kidney tumor (CT, contrast-enhanced). For brain metastases, we used a dataset by
Ramakrishnan et al. (Ramakrishnan et al., 2024) (abbreviated as Yale BM in this paper)
and the BraTS 2023 metastasis challenge (Moawad et al., 2023) (BraTS MET). For glioma,
we used the BraTS 2023 glioma challenge (Baid et al., 2021; Menze et al., 2015; Bakas et al.,
2017) (BraTS GLI). For liver tumor, we selected the Liver Tumor (MSD Liver) and Hepatic
Vessel (MSD Hep Vessel) challenges from the Medical Segmentation Decathlon (Antonelli
et al., 2022). For kidney tumor, we used the KiTS23 dataset (KiTS23 Kidney) (Heller et al.,
2023).

3.2. Data Preprocessing & Training Detail

Both CT and MRI datasets, originally in 3D NIfTI format, require preprocessing for com-
patibility with G-DINO, a 2D object detector. Following Ma et al. (Ma et al., 2024a), we
clipped MRI images to their [0.05, 99.5] percentile and normalized them to [0, 255], while CT
images were windowed (level = 40 and width = 400) before normalization. For the patholog-
ical datasets, we used organ segmentation masks to only retain slices containing the organ
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of the associated pathology. Patients from all datasets were split into train/validation/test
(0.7, 0.15, 0.15) sets. The resulting 2D training dataset consisted of 199,672 slices, of which
66,990 slices had bounding box annotations (i.e., tumors were present). During training,
the BraTS Glioma dataset was undersampled by a factor of 3 to ensure a balanced class
distribution. We trained the models on two NVIDIA RTX A6000 GPUs with a batch size
of 10 until convergence. The baseline model was trained with a learning rate of 1e−5 for the
first 5 epochs, followed by a learning rate of 1e−6, while the curricula models were trained
with 1e−5 for the first 7 epochs and 1e−6 for the remaining epochs to ensure equal data
exposure and to compensate for shorter curricula epochs due to data exclusion. Figure A1
in the appendix illustrates the training loss and validation curves.

3.3. Curriculum Learning - Difficulty categories

We categorized the training data into five difficulty levels based on two heuristics to obtain
two CL strategies as explained in Section 2.3. After training the baseline model, we observed
that the size of the bounding box correlated with the precision score and thus could be an
indicator of the difficulty of the samples (Table 1). To standardize bounding box sizes, we
calculated their areas relative to the image area. We then sorted the samples based on the
smallest bounding box present in each slice, ensuring an even distribution across categories.
Slices without bounding boxes were randomly assigned to maintain an equal distribution
of annotated and unannotated samples. For teacher CL, we additionally included slices
without ground-truth bounding boxes but with false positive predictions from the baseline
model and assigned them an AP score of 0.0. We then created intervals to maintain a
roughly equal distribution across categories. Dataset distributions across categories are
shown in the appendix for both heuristics in Table A1 and Table A2, respectively.

3.4. Experimental Setup

After pre-training on the TotalSegmentator dataset, we simultaneously fine-tuned G-DINO
on the full pathological training dataset to obtain three models: a baseline model and two
CL-based models using the bounding box and teacher principles introduced in Section 2.3.
During training, model weights were evaluated on a merge of the individual validation
sets, and the best performing (mean-AP over all detection targets) weights were selected.
Subsequent testing was performed on all datasets individually. We evaluated the object
detection results using the COCO metrics (Lin et al., 2014). We used AP values at different
IoU thresholds: AP@0.5 and AP@0.75 with IoU thresholds of 0.5 and 0.75, respectively.
The unspecified AP represents the average metric across IoU thresholds between 0.5 and
0.95 in 0.05 increments. Additionally, we evaluated the predictions separately for different
bounding box sizes, where AP small, AP medium, AP large refer to the AP of ground truth
bounding boxes with areas of [0, 322], [322, 962], and [962,∞) pixels, respectively.

3.5. Results

Table 1 shows the quantitative test results for all models. Figure 3 shows the predictions
of our three models alongside the ground truth for one case from each dataset. Both CL
approaches improved performance on average AP metrics, with the bounding box CL model
achieving the highest gains (+5.2% AP, +6.1% AP@0.75, +6.0% AP@0.5 over baseline).
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Dataset Curr.
AP (%)

@0.5

AP (%)

@0.75
AP (%)

AP (%)

large

AP (%)

medium

AP (%)

small

Overall

Without 69.7 50.6 46.5 69.3 62.0 30.9

Box 75.7 56.7 51.7 70.0 65.8 35.6

Teacher 75.5 56.0 51.4 72.7 65.5 35.6

Yale BM

Without 61.5 48.2 42.2 - 69.9 37.3

Box 79.5 64.9 56.9 - 81.5 52.4

Teacher 76.0 61.8 54.3 - 77.5 50.8

BraTS MET

Without 66.7 54.1 45.9 - 76.9 42.2

Box 82.7 65.9 57.4 - 83.8 54.2

Teacher 81.5 64.5 56.6 - 83.6 53.0

BraTS GLI

Without 84.8 72.2 65.8 - 81.1 48.1

Box 85.2 72.5 66.0 - 81.3 48.4

Teacher 84.5 71.8 65.4 - 80.7 47.5

MSD Liver

Without 61.4 32.1 33.2 66.6 46.8 19.9

Box 60.4 33.2 32.7 63.1 44.9 21.9

Teacher 61.3 30.2 31.9 65.8 46.0 19.0

MSD Hep Vessel

Without 69.4 37.7 39.2 62.8 43.7 15.0

Box 70.5 43.5 43.1 67.8 47.5 17.6

Teacher 72.4 42.9 42.9 68.5 46.4 17.8

KiTS23 Kidney

Without 74.6 59.5 52.9 78.4 53.8 22.6

Box 75.7 60.4 53.9 79.0 56.0 19.0

Teacher 77.0 64.5 57.4 83.8 58.6 25.2

Table 1: Overview of the AP scores on individual datasets and averaged to an overall score.

Both CL models outperformed the baseline in all size-constrained AP scores, with the largest
gains in the most difficult categories (AP small: +4.7% for both models, AP medium: +3.5%
& +3.8% for bounding box CL and teacher CL, respectively). The results thus support our
hypothesis that CL improves performance especially for the most difficult samples with the
smallest tumors. Looking at individual datasets, the CL models performed best in 5 out
of 6 datasets for all metrics, with the MSD Liver dataset showing slight underperformance
in this context (-0.5% AP for bounding box CL, -1.3% AP for teacher CL). Overall, the
results indicate that CL generally improves model performance, especially for challenging
detection tasks with small to medium bounding boxes.

3.6. Ablation Studies

To show the effect of CL, and also to follow recent work (Wu et al., 2023; Chen et al.,
2024b; Braun et al., 2017) that proposes a hard-to-easy methodology (anti-CL), we also
trained our models in such a setting. The results are shown in the appendix in Table A3.
Anti-box CL achieves an overall AP score of 49.5%, which is 3.0% better than the baseline
and 2.2% less than regular bounding box CL. Anti-teacher CL, on the other hand, achieves
an overall AP score of 51.2%, which is 3.7% better than the baseline and only slightly
(0.2%) worse than regular teacher CL. Both CL and anti-CL proved to be effective for both

7



Heidrich Rastogi Upadhya Brugnara Foltyn-Dumitru Wiestler Vollmuth

difficulty sorting approaches and outperformed the baseline. Our results show that when
training samples were sorted by difficulty based on the performance of the baseline model,
the sorting order had little effect on final accuracy. However, when the difficulty sorting
was based on bounding box size, the sample order during training had a more pronounced
effect, leading to greater variation in accuracy. This suggests that difficulty sorting based
on manual heuristics interacts more with learning dynamics than teacher-based difficulty
sorting.

Figure 3: Visualization of the predicted results with an illustrative case from each dataset.

4. Conclusion

Our study demonstrates the effectiveness of CL strategies in multimodal medical image
object detection. Implementation of bounding box size-based and teacher-guided curricula
improved overall detection accuracy, particularly for small and medium-sized objects. How-
ever, the lack of improvement on the MSD Liver dataset necessitates further investigation
into dataset-specific factors affecting the effectiveness of CL. We observed that both sort-
ing heuristics can be effectively applied in an anti-curriculum fashion, with only the teacher
heuristic being able to match the regular sorting approach. Thus, studying the necessary
conditions for successful anti-CL needs further investigation. Despite these promising re-
sults, challenges in CL implementation remain. Data-level CL still requires hand-crafted
difficulty categories and predefined scheduling. In addition, the computational overhead of
CL, especially in the teacher-guided approach, warrants consideration in balancing improved
performance with increased training time.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the 26th Annual International Conference on Machine Learn-
ing, ICML ’09, pages 41–48. Association for Computing Machinery, 2009. ISBN 978-1-
60558-516-1. doi: 10.1145/1553374.1553380. URL https://dl.acm.org/doi/10.1145/

1553374.1553380.

9

https://www.mdpi.com/2072-6694/15/16/4172
https://www.nature.com/articles/s41467-022-30695-9
https://arxiv.org/abs/2107.02314
https://www.nature.com/articles/sdata2017117
https://dl.acm.org/doi/10.1145/1553374.1553380
https://dl.acm.org/doi/10.1145/1553374.1553380


Heidrich Rastogi Upadhya Brugnara Foltyn-Dumitru Wiestler Vollmuth

Risab Biswas. Polyp-SAM++: Can a text guided SAM perform better for polyp segmen-
tation? arXiv preprint arXiv:2308.06623, 2023. doi: 10.48550/arXiv.2308.06623. URL
http://arxiv.org/abs/2308.06623.

Stefan Braun, Daniel Neil, and Shih-Chii Liu. A curriculum learning method for improved
noise robustness in automatic speech recognition. In 2017 25th European Signal Processing
Conference (EUSIPCO), pages 548–552. IEEE, 2017. doi: 10.23919/EUSIPCO.2017.
8081267. URL https://ieeexplore.ieee.org/document/8081267.

Aruna Chen, Da Lin, and Qiqi Gao. Enhancing brain tumor detection in MRI images using
YOLO-NeuroBoost model. Frontiers in Neurology, 15, 2024a. ISSN 1664-2295. doi: 10.
3389/fneur.2024.1445882. URL https://www.frontiersin.org/journals/neurology/

articles/10.3389/fneur.2024.1445882/full.

Junfan Chen, Jun Yang, Anfei Fan, Jinyin Jia, Chiyu Zhang, and Wei Li. Apan: Anti-
curriculum pseudo-labelling and adversarial noises training for semi-supervised medical
image classification. In Pattern Recognition and Computer Vision: 7th Chinese Con-
ference, PRCV 2024, Urumqi, China, October 18–20, 2024, Proceedings, Part XIV,
page 163–177, Berlin, Heidelberg, 2024b. Springer-Verlag. ISBN 978-981-97-8495-0. doi:
10.1007/978-981-97-8496-7 12. URL https://link.springer.com/chapter/10.1007/

978-981-97-8496-7_12.

Tugba Akinci D’Antonoli, Lucas K Berger, Ashraya K Indrakanti, Nathan Vishwanathan,
Jakob Weiß, Matthias Jung, Zeynep Berkarda, Alexander Rau, Marco Reisert, Thomas
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Appendix A. Training Loss and Validation Scores for all Trained Models

Figure A1: Training loss curves and validation AP plotted for the baseline and the two
CL-models. The x-axis denotes training steps and the vertical lines at the top of the graph
denote the start of new epochs for each model.

Appendix B. Data Distribution for Bounding Box Curriculum

Datasets

Area Interval
[0, 0.21) [0.21, 0.72) [0.72, 1.75) [1.75, 3.49) [3.49, 100] total

Yale BM 2037 1596 881 509 167 5190

BraTS GLI 3825 5186 7933 10346 10783 38073

BraTS MET 2969 1768 1067 725 227 6756

MSD Liver 2897 1294 510 196 225 5122

MSD Hep Vessel 717 917 758 383 504 3279

KiTS23 Kidney 1200 2619 1934 1340 1477 8570

total 13645 13380 13083 13499 13383 66990

Table A1: Distribution of image slices with ground truth annotations across datasets for
the bounding box sorting approach: Based on the smallest bounding box present in a
slice, the slice gets sorted into a particular difficulty interval. The intervals are defined by
standardized area of the bounding box, with the smallest area intervals being the hardest
category.
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Appendix C. Data Distribution for Teacher Curriculum

Datasets

AP Interval
[0, 0.30) [0.30, 0.69) [0.69, 0.87) [0.87, 0.9) [0.9, 1.0] total

Yale BM 878 1166 1875 1069 399 5387

BraTS GLI 6245 5242 7198 10281 10437 39403

BraTS MET 1232 1704 1993 1349 698 6976

MSD Liver 1181 2102 1337 531 166 5317

MSD Hep Vessel 1024 863 894 509 235 3525

KiTS23 Kidney 1676 1101 2160 2288 1854 9079

total 12236 12178 15457 16027 13789 69687

Table A2: Distribution of image slices with ground truth annotations and false positive
predictions across datasets for the teacher sorting approach: Based on the baseline inference
performance, the slice gets sorted into a particular difficulty interval. The intervals are
defined by AP scores, with the lowest AP score intervals being the hardest category.
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Appendix D. Evaluation Scores for Anti-Curriculum Approaches

Dataset Curr.
AP (%)

@0.5

AP (%)

@0.75
AP (%)

AP (%)

large

AP (%)

medium

AP (%)

small

Overall

Without 69.7 50.6 46.5 69.3 62.0 30.9

Anti Box 73.9 54.2 49.5 67.6 64.0 34.1

Anti Teacher 75.5 56.2 51.2 70.1 65.1 35.8

Yale BM

Without 61.5 48.2 42.2 - 69.9 37.3

Anti Box 79.2 64.3 56.0 - 81.9 51.1

Anti Teacher 79.2 63.5 55.7 - 80.4 51.8

BraTS MET

Without 66.7 54.1 45.9 - 76.9 42.2

Anti Box 82.4 65.9 57.0 - 81.9 53.9

Anti Teacher 83.5 68.3 58.1 - 83.9 55.2

BraTS GLI

Without 84.8 72.2 65.8 - 81.1 48.1

Anti Box 85.1 72.2 65.9 - 80.9 48.7

Anti Teacher 85.9 72.8 66.0 - 81.2 48.6

MSD Liver

Without 61.4 32.1 33.2 66.6 46.8 19.9

Anti Box 55.3 25.1 28.0 66.5 41.7 15.1

Anti Teacher 57.2 28.8 30.2 65.0 42.2 18.1

MSD Hep Vessel

Without 69.4 37.7 39.2 62.8 43.7 15.0

Anti Box 72.0 42.8 41.5 62.7 46.6 15.7

Anti Teacher 70.4 42.3 41.6 64.8 45.9 17.5

KiTS23 Kidney

Without 74.6 59.5 52.9 78.4 53.8 22.6

Anti Box 69.2 54.9 48.7 73.6 50.7 20.1

Anti Teacher 76.9 61.7 55.3 80.4 57.0 23.6

Table A3: Overview of the detection accuracies for the anti-curriculum models on all
datasets as well as an overall score (mean over the 6 datasets).

18


	Introduction and Related Work
	Method
	Ground Truth Bounding Box Generation
	Grounding DINO
	Curriculum Learning

	Experiments and Results
	Pretraining & Datasets
	Data Preprocessing & Training Detail
	Curriculum Learning - Difficulty categories
	Experimental Setup
	Results
	Ablation Studies

	Conclusion
	Training Loss and Validation Scores for all Trained Models
	Data Distribution for Bounding Box Curriculum
	Data Distribution for Teacher Curriculum
	Evaluation Scores for Anti-Curriculum Approaches

