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ABSTRACT

The early phase of training has been shown to be important in two ways for deep
neural networks. First, the degree of regularization in this phase significantly
impacts the final generalization. Second, it is accompanied by a rapid change in
the local loss curvature influenced by regularization choices. Connecting these two
findings, we show that stochastic gradient descent (SGD) implicitly penalizes the
trace of the Fisher Information Matrix (FIM) from the beginning of training. We
argue it is an implicit regularizer in SGD by showing that explicitly penalizing the
trace of the FIM can significantly improve generalization. We further show that the
early value of the trace of the FIM correlates strongly with the final generalization.
We highlight that in the absence of implicit or explicit regularization, the trace of the
FIM can increase to a large value early in training, to which we refer as catastrophic
Fisher explosion. Finally, to gain insight into the regularization effect of penalizing
the trace of the FIM, we show that it limits memorization by reducing the learning
speed of examples with noisy labels more than that of the clean examples, and
2) trajectories with a low initial trace of the FIM end in flat minima, which are
commonly associated with good generalization.

1 INTRODUCTION

Implicit regularization in gradient-based training of deep neural networks (DNNs) remains rel-
atively poorly understood despite bemg considered a critical component in their empirical suc-

cess ( , ). Recent work suggests that the early
phase of tramlng of DNNS might hold the key to understanding these implicit regularization effects.
(2019); (2017); (2018); (2019) show that by

introducing regularization later, a drop in performance due to lack of regularization in this phase is
hard to recover from, while on the other hand, removing regularization after the early phase has a
relatively small effect on the final performance.

Other works show that the early phase of training also has a dramatic effect on the trajectory in terms
of properties such as the local curvature of the loss surface or the gradient norm ( ,

; , ). In particular, ( ); ( );
( ); ( ); ( ) independently suggest that rapid changes
in the local curvature of the loss surface in the early phase critically affects the final generahzatlon
Closely related to our work, ( ); ( ) show that using a large

learning rate has a dramatic effect on the early optimization trajectory in terms of the loss curvature.
These observations lead to a question: what is the mechanism by which regularization in the early
phase impacts the optimization trajectory and generalization? We investigate this question mainly
through the lens of the Fisher Information Matrix (FIM), a matrix that can be seen as approximating
the local curvature of the loss surface in DNNs ( s ; s ).

Our main contribution is to show that the implicit regularization effect of using a large learning rate
or a small batch size can be modeled as an implicit penalization of the trace of the FIM (Tr(F')) from
the very beginning of training. We demonstrate on image classification tasks that the value of Tr(F)
early in training correlates with the final generalization performance across settings with different
learning rates or batch sizes. We then show evidence that explicitly regularizing Tr(F) (which we
call Fisher penalty) significantly improves generalization in training with a sub-optimal learning
rate. On the other hand, growth of Tr(F) early in training, which may occur in practice when using
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Figure 1: The catastrophic Fisher explosion phenomenon demonstrated for Wide ResNet trained using
stochastic gradient descent on the TinylmageNet dataset. Training is done with either a learning rate
optimized using grid search (1, = 0.0316, red), or a small learning rate (1, = 0.001, blue). Training
with 7y leads to large overfitting (left) and a sharp increase in the trace of the Fisher Information
Matrix (FIM, middle). The trace of the FIM is closely related to the gradient norm (right).
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Figure 2: Association between the value of Tr(F) in the initial phase of training (Tr(F;)) and test
accuracy on ImageNet, CIFAR-10 and CIFAR-100 datasets. Each point corresponds to multiple
seeds and a specific value of learning rate. Tr(F;) is recorded during the early phase of training
(2-7 epochs, see the main text for details). The plots show that early Tr(F') is predictive of final
generalization. Analogous results illustrating the influence of batch size are shown in Appendix A.1

a relatively small learning rate, coincides with poor generalization. We call this phenomenon the
catastrophic Fisher explosion. Figure 1 illustrates this effect on the TinyImageNet dataset (

) )-

Our second contribution is an analysis of why implicitly or explicitly regularizing Tr(F') impacts
generalization. We reveal two effects of implicit or explicit regularization of Tr(F): (1) penalizing
Tr(F) discourages memorizing noisy labels, (2) small Tr(F') in the early phase of training biases
optimization towards a flat minimum, as characterized by the trace of the Hessian.

2 IMPLICIT AND EXPLICIT REGULARIZATION OF THE FIM

Fisher Information Matrix Consider a probabilistic classification model pg (y|x), where 6 de-
notes its parameters. Let £(a, y; 6) be the cross-entropy loss function calculated for input  and label
y. Let g(x,y;0) = %6 (z,y; @) denote the gradient computed for an example (x,y). The central
object that we study is the Fisher Information Matrix F' defined as

F(e) = EzNX,QNpg(ykn)[g(xag)g($7g)T]a (1

where the expectation is often approximated using the empirical distribution X induced by the training
2

set. We denote its trace by Tr(F'). Later, we also look into the Hessian H(6) = %é(m, y; 0). We

denote its trace by Tr(H).

The FIM can be seen as an approximation to the Hessian ( , ). In particular, as
p(y|x; 0) — p(y|x), where p(y|x) is the empirical label distribution, the FIM converges to the
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Hessian. ( ) showed on image classifications tasks that Tr(H) ~ Tr(F') along the
optimization trajectory, which we also evidence in Appendix F.

Fisher Penalty Several studies have presented evidence that the early phase has a drastlc effect
on the trajectory in terms of the local curvature of the loss surface ( ,
) ; ) ; , ). In particular,
( ); ( ) show that using a large learning rate in stochastic
gradient descent biases training towards low curvature regions of the loss surface very early in training.
For example, using a large learning rate in SGD was shown to result in a rapid decay of Tr(H) along
the optimization trajectory ( ).

Our main contribution is to propose and investigate a specific mechanism by which using a large
learning rate or a small batch size implicitly influences final generalization. Our first insight is to shift
the focus from studying the Hessian, to studying properties of the FIM. Concretely, we hypothesize
that using a large learning rate or a small batch size improves generalization by implicitly penalizing
Tr(F) from the very beginning of training.

The benefit of studying the FIM is that it can be directly and efficiently manipulated during training.
In order to study the effect of implicit regularization of Tr(F'), we introduce a regularizer, which we
refer to as Fisher penalty, explicitly penalizing Tr(F). We derive this regularizer in the following
way. First, we note that Tr(F) can be written as Tr(F) = Eyox_jpy (y]2) [ %E(m, 9)|13].

To regularize Tr(F), we add the following term to the loss function:
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where (x1.5,y1.5) is a mini-batch, §; is sampled from pg(y|x;), and « is a hyperparameter. We
refer to this regularizer as Fisher penalty. The formulation is based on the empirical observation

2
that H% Zf;l g(x;, ng)H and Tr(F) correlate well during training. Crucially, this allows us to

reduce the added computational cost of Fisher penalty to that of a single additional backpropagation
call ( , ). Finally, we compute the gradient of the second term only every 10
optimization steps, and in a given iteration use the most recently computed gradient. We discuss
these approximations in detail in Appendix C.

Catastrophic Fisher Explosion To illustrate the concepts mentioned in this section, we train a
Wide ResNet model (depth 44, width 3) ( , ) on the TinyImageNet
dataset with SGD and two different learning rates. We illustrate in Figure 1 that the small learning
rate leads to dramatic overfitting, which coincides with a sharp increase in Tr(F) in the early phase
of training. We also show in Appendix D that these effects cannot be explained by the difference
in learning speed between runs with smaller and learning rates. We call this phenomenon the
catastrophic Fisher explosion.

3 EARLY-PHASE Tr(F) CORRELATES WITH FINAL GENERALIZATION

Using a large learning rate (1) or a small batch size (S) in SGD steers optimization to a lower
curvature region of the loss surface. However, it remains a hotly debated topic whether thls explains
their strong regularization effect (

, ). We begln by studylng the connectlon between Tr(F) and
generahzatlon in experiments across which we vary 7 or S in SGD.

Experimental setup We run our experiments in two settings: (1) ResNet-18 with Fixup

( ); ( ) trained on the ImageNet dataset ( , ), (2) ResNet-26

initialized with ( ) trained on the CIFAR-10 and CIFAR-100 datasets ( ,
). We train each architecture using SGD, with various values of 7, S, and random seed.

We define Tr(F;) as Tr(F') during the initial phase of training. The early-phase Tr(F') is measured
when the training loss crosses a task-specific threshold e. For ImageNet, we use learning rates 0.001,
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Table 1: Using a 10-30x smaller learning rate (Baseline) results in up to 9% degradation in test
accuracy on popular image classification benchmarks (c.f. to optimal *). Adding Fisher penalty (FP)
substantially improves generalization and closes the gap to n*. We do not use data augmentation with
CIFAR-10 and CIFAR-100 to ensure that using a small learning rate does not lead to under-fitting.

Setting n* Baseline | GPy GP | FP GP,

WResNet/TinyImageNet (aug.) 54.67% 52.57% | 52.719% 56.44% | 56.713% 55.41%

DenseNet/C100(w/o aug.) 66.09% 58.51% | 62.12% 64.42% | 66.41% 66.39%
VGG11/C100 (w/o aug.) 45.86% 36.86% | 45.26% 47.35% | 49.87% 48.26%
WResNet/C100 (w/o aug.) 53.96% 46.38% | 58.68% 57.68% | 57.05% 58.15%

SimpleCNN/C10(w/o aug.) 76.94% 71.32% | 75.68%  75.73% | 719.66%  79.76%

0.01, 0.1, and € = 3.5. For CIFAR-10, we use learning rates 0.007, 0.01, 0.05, and ¢ = 1.2. For
CIFAR-100, we use learning rates 0.001, 0.005, 0.01, and € = 3.5. In all cases, training loss reaches e
between 2 and 7 epochs across different hyper-parameter settings. We repeat similar experiments for
different batch sizes in Appendix A.l. The remaining training details can be found in Appendix G.1.

Results Figure 2 shows the correlation between Tr(F;) and test accuracy across runs with different
learning rates. We show results for CIFAR-10 and CIFAR-100 when varying the batch size in Figure
7 in the Appendix. We find that Tr(F;) correlates well with the final generalization in our setting,
which provides initial evidence for the importance of Tr(F). It also serves as a stepping stone
towards developing a more granular understanding of the role of implicit regularization of Tr(F') in
the following sections.

4 FISHER PENALTY

To better understand the significance of the identified correlation between Tr(F';) and generalization,
we now run experiments in which we directly penalize Tr(F). We focus our attention on the identified
effect of high learning rate on Tr(F).

Experimental setting We use a similar setting as in the previous section, but we include larger
models. We run experiments using Wide ResNet ( , ) (depth 44
and width 3, with or without BN layers), SimpleCNN (without BN layers), DenseNet (L=40,
K=12) ( s ) and VGG-11 ( ). We train these models
on either the CIFAR-10 or the CIFAR-100 datasets. Due to larger computatlonal cost, we replace
ImageNet with the TinyImageNet dataset ( , ) in these experiments.

To investigate if the correlation of Tr(F;) and final generalization holds more generally, we apply
Fisher penalty in two settings. First, we use a learning rate 10-30x smaller than the optimal one,
which both incur up to 9% degradation in test accuracy and results in large value of Tr(F;). We also
remove data augmentation from the CIFAR-10 and the CIFAR-100 datasets to ensure that training
with small learning rate does not result in underfitting. In the second setting, we add Fisher penalty in
training with an optimized learning rate using grid search (n*) and train with data augmentation.

Fisher penalty penalizes the gradient norm computed using labels sampled from pg(y|x). We
hypothesize that a similar, but weaker, effect can be introduced by other gradlent norm regularizers.
First, we compare FP to penahzmg the input gradient norm ||g..|| = amé (z,y), which we denote
by GPx ( ; R ). We also experiment with
penalizing the vamlla mini- batch gradlent ( ), which we denote by GP. Finally, we
experiment with penalizing the mini-batch gradient computed with random labels ||g.|| = 8%8 (z,9)
where ¢ is sampled from a uniform distribution over the label set (GP;). We are not aware of any
prior work using GP or GP; in supervised training, with the exception of ( ) where
the authors penalized /1 norm of gradients to compress the network towards the end of training.

We tune the hyperparameters on the validation set. More specifically for o, we test 10 different values
spaced uniformly between 10! x v to 10! x v on a logarithmic scale with v € R ;. For TinyImageNet
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Table 2: Fisher penalty (FP) improves generalization in 4 out of 5 settings when applied with the
optimal learning rate * and trained using standard data augmentation. In 3 out of 5 settings the
difference between FP and n* is small (below 1%), which is expected given that FP is aimed at
reproducing the regularization effect of large 7, and we compare to training with the optimal n*.

Setting n* FP

DenseNet/C100 (aug.) 74.41£047%  74.19£0.51%
VGG11/C100 (aug.) 59.82+1.23%  65.08+0.53%
WResNet/C100 (aug.) 69.48+0.30%  71.53+£1.22%
SimpleCNN/C10 (aug.) 87.16+0.16%  87.52+0.50%

WResNet/TinyImageNet (aug.) 54.70+0.04%  60.00+0.07 %
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Figure 3: Training with FP or GP4 improves generalization and limits early peak of Tr(F). Each
subfigure shows validation accuracy (left) and Tr(F) (right) for training with n* or a small learning
rate (blue) and for training with either GPx or FP (red). Curves were smoothed for clarity.

we test 5 alternatives instead. To pick the optimal learning rate, we evaluate 5 values spaced equally
on a logarithmic scale. We include the remaining experimental details in the Appendix G.2.

Fisher Penalty improves generalization Table | summarizes the results of the main experiment.
First, we observe that a suboptimal learning rate (10-30x lower than the optimal) leads to dramatic
overfitting. We observe a degradation of up to 9% in test accuracy, while achieving perfect training
accuracy (see Table 6 in the Appendix).

Fisher penalty closes the gap in test accuracy between the small and optimal learning rate, and even
achieves better performance than the optimal learning rate. A similar performance was observed
when minimizing ||g,||. We will come back to this observation in the next section.

GP and GPy reduce the early value of Tr(F) (see Table 4 in the Appendix). They, however, generally
perform worse than Tr(F) or GP; and do not fully close the gap between small and optimal learning
rate. We hypothesize they improve generalization by a similar but less direct mechanism than Tr(F)
and GP,.

In the second experimental setting, we apply FP to a network trained with the optimal learning rate
n*. According to Table 2, Fisher Penalty improves generalization in 4 out of 5 settings. The gap
between the baseline and FP is small in 3 out of 5 settings (below 1%), which is natural given that
we already regularize training implicitly by using the optimal 7 and data augmentation.

Geometry and generalization in the early phase of training Here, we investigate the temporal
aspect of Fisher Penalty on CIFAR-10 and CIFAR-100. In particular, we study whether early
penalization of Tr(F') matters for final generalization.

First, we observe that all gradient-norm regularizers reduce the early value of Tr(F) closer to Tr(F)
achieved when trained with the optimal learning rate n*. We show this effect with Wide ResNet and
VGG-11 on CIFAR-100 in Figure 3, and for other experimental settings in the Appendix. We also
tabulate the maximum achieved values of Tr(F') over the optimization trajectory in Appendix A.2.
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Figure 4: Each subplot summarizes an experiment in which we apply Fisher Penalty starting from a
certain epoch (x axis) and measure the final test accuracy (y axis). Fisher Penalty has to be applied
from the beginning of training to close the generalization gap to the optimal learning rate (c.f. the red
horizontal line to the blue horizontal line).

To test the importance of explicitly penalizing Tr(F') early in training, we start applying it after a
certain number of epoch FE € {1,2,4,8,16, 32,64, 128}. We use the best hyperparameter set from
the previous experiments. Figure 4 summarizes the results. For both datasets, we observe a consistent
pattern. When FP is applied starting from a later epoch, final generalization is significantly worse,
and the generalization gap arising from a suboptimal learning rate is not closed.

4.1 FISHER PENALTY REDUCES MEMORIZATION

It is not self-evident how regularizing Tr(F') influences generalization. In this section, we provide
evidence that regularizing Tr(F) slows down learning on data with noisy labels. To study this, we
replace labels of the examples in the CIFAR-100 dataset (25% or 50% of the training set) with labels
sampled uniformly. While label noise in real datasets is not uniform, methods that perform well with
uniform label noise generally are more robust to label noise in real datasets ( , ). We
also know that datasets such as CIFAR-100 contain many labeling errors ( , ). As such,
examining how Tr(F') reduces memorization of synthetic label noise provides an insight into how it
improves generalization in our prior experiments.

We expect FP to reduce memorization. When the predictive distribution pg(y|x) and the true
label distribution p*(y|x) are both uniform, Tr(F') of the specific example x is equivalent to the
squared loss gradient norm of the sample example. The proposed Fisher penalty thus minimizes the
contribution of the loss gradient from the training examples whose labels were sampled uniformly. In
other words, the Fisher penalty implicitly suppresses learning noisy examples, under the assumption
that clean examples’ label distributions are not uniform.

To study whether the above happens in practice, we compare FP to GPx, GP;, and mixup (

, ). While mixup is not the state-of-the-art approach to learning with noisy labels, it is
competitive among approaches that do not require additional data nor multiple stages of training.
In particular, it is a component in several state-of-the-art approaches ( , ; ,

). For gradient norm based regularizers, we evaluate 6 different hyperparameter values spaced
uniformly on a logarithmic scale, and for mixup we evaluate 8 € {0.2,0.4,0.8,1.6,3.2,6.4}. We
experiment with the Wide ResNet and VGG-11 models. We describe remaining experimental details
in the Appendix G.3.

Results We begin by studying the learning dynamics on data with noisy labels through the lens of
training accuracy and mini-batch gradient norm. We show the results for VGG-11 and ResNet-50
in Figure 5 and Figure 9 in the Appendix. We observe that FP limits the ability of the model to
memorize data more strongly than it limits its ability to learn from clean data. We can further confirm
our interpretation of the effect Tr(F) has on training by studying the gradient norms. As visible in
Figure 5, the gradient norm on examples with noisy labels is larger than on clean examples, and the
ratio is closer to 1 when large regularization is applied.

We report test accuracy (at the best validation point) in Table 3. We observe that Tr(F) reduces
memorization competitively to mixup. Furthermore, FP performs similarly to GP;, which agrees
with our interpretation of why FP limits learning on examples with noisy labels.
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Figure 6: Small Tr(F') during the early phase of training is more likely to reach wider minima.
Left: two ResNet-56 models are trained with two different levels of regularization for 20 epochs on
CIFAR-100. Tr(F) at the end of 20 epochs (Tr(F;)) is shown. Middle: Each model is then continued
trained using the low regularization configuration with different random seeds. A histogram of Tr(H)
at best test accuracy along the trajectory (Tr(Hgy)) is shown. Right: a histogram of test accuracy.

Table 3: Fisher Penalty (FP) and GP; both reduce memorization competitively to mixup. We measure
test accuracy at the best validation point in training with either 25% or 50% examples with noisy
labels in the CIFAR-100 dataset.

Noise  Setting Baseline Mixup  GPy | FP GP,

25%  VGG-11/C100 41.74%  52.31% 45.94% | 60.18% 58.46%
ResNet-52/C100  53.30%  61.61% 52.70% | 58.31% 57.60%

50%  VGG-11/C100 30.05%  39.15% 34.26% | 51.33% 50.33%
ResNet-52/C100 43.35%  51.71% 42.99% | 47.99%  50.08%
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Figure 5: Fisher penalty slows down training on data with noisy labels more strongly than it slows
down training on clean data for VGG-11 on CIFAR-100. This likely happens because FP penalizes
more strongly gradient norm on data with noisy labels. Left plot shows the training accuracy on
examples with clean/noisy labels (solid/dashed line). Middle plot shows the gradient norm evaluated
on examples with clean/noisy labels (solid/dashed). Right plot shows the ratio of gradient norm on
clean to noisy data. Red to blue color represents the regularization coefficient (from 10~2 to 101).

5 EARLY Tr(F) INFLUENCES FINAL CURVATURE

To provide further insight why it is important to regularize Tr(F') during the early phase of training, we
establish a connection between the early phase of training and the wide minima hypothesis (

, ) which states that flar minima typically correspond to
better generahzatlon. Here, we use Tr(H) as a measure of flatness.

Experimental setting We investigate how likely it is for an optimization trajectory to end up in
a wide minimum in two scenarios. 1) When optimization exhibits small Tr(F') early on. 2) When
optimization exhibits large Tr(F') early on. Specifically, we train two separate ResNet-26 models
for 20 epochs using high and low regularization configurations. At epoch 20 we record Tr(F) for
each model. We then use these two models as initialization for 8 separate models each, and continue
training using the low regularization configuration with different random seeds. The motivation
behind this experiment is to show that the degree of regularization in the early phase biases the
model towards minima with certain flatness (Tr(H)) even though no further high regularization
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configurations are used during the rest of the training. For all these runs, we record the best test
accuracy along the optimization trajectory along with Tr(H) at the point corresponding to the best
test accuracy. We describe the remaining experimental details in Appendix G.4.

Results We present the result in Figure 6 for the CIFAR-100 datasets, and for CIFAR-10 in
Appendix A.4. A training run that shows a lower Tr(F') during the early phase is more likely to end
up in a wider minimum as opposed to one that reaches large Tr(F) during the early phase. This
happens despite that the late phases of both sets of models use the low regularization configuration.
The latter runs have a high variance in the best test accuracy and always end up in sharper minima.
In Appendix G.4 we also show evolution of Tr(H) throughout training, which suggests that this
behavior can be attributed to curvature stabilization happening early during training.

6 RELATED WORK

SGD’s implicit regularization effect has been argued to be a critical component of the empirical

success of DNNs ( . ; s ) Much of it is attributed to the choice of
hyperparameters ( ; , ; , ), the low complexity
bias induced by gradient descent ( s ; ; , ) or the cross-entropy
loss function ( s ). However a more mechanistic understanding

of how SGD implicitly regulanzes DNNs remains a largely unsolved problem.

Prior work on replicating SGD’s implicit regularization focused mainly on the loss curvature at the
final minimum ( . ). ( ) propose a Langevin
dynamics based algorithm for ﬁndlng update directions that point towards wide minima.

( ) propose to find wide minima by averaging gradients at the neighborhood of the current
parameter state. In contrast, we shift the focus to the FIM and the early phase of training. This new
perspective allows us to more directly test our theory by explicitly penalizing Tr(F).

Penalizing Tr(F') is related to regularizing the input gradient norm, which was shown to be an effective

regularizer for deep neural networks ( , ). ( );

( ) show that SGD avoids memorization by extractlng commonalities between examples

due to following gradient descent directions shared between examples. Our work is complementary.

We argue that SGD implicitly penalizes Tr(F'), which also reduces memorization. Concurrently,

( ) show that SGD implicitly penalizes the gradient norm for large learning

rates and propose GP as an explicit regularizer. Similarly, we found that SGD implicitly regularizes

Tr(F), which is the squared gradient norm under labels sampled from pg(y|x). In contrast to them,

we connected the implicit regularization effect of SGD to large curvature in the early phase. We also
found GP to be a generally less effective regularizer than FP.

7 CONCLUSION

Inspired by recent findings of rapid changes to the local curvature of the loss surface that happen in
the early phase of training ( , , ), we
investigated more closely the connection between the loss geometry in the early phase of training of
neural networks and generalization.

We proposed and investigated a hypothesis that SGD influences generalization by implicitly penalizing
the trace of the Fisher Information Matrix (Tr(F')) from the very beginning of training. We show that
(1) the value of early Tr(F') correlates with final generalization, and (2) explicitly regularizing Tr(F)
can substantially improve generalization.

To gain further insight into the mechanism by which penalizing Tr(F') improves generalization,
we investigated training on noisy data. We found that penalizing Tr(F') reduces memorization by
penalizing examples with noisy labels more strongly than clean ones, which seems to happen because
it penalizes more strongly their gradient norm. This sheds new light onto implicit regularization
effects in SGD, and suggests the utility of penalizing Tr(F) as an explicit regularizer.

An interesting topic for the future is to put our findings in the context of transfer and continual
learning. We hypothesize that catastrophic Fisher explosion (the initial growth of Tr(F') to a large
value) can negatively impact not only generalization, but also transferability of the model.
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APPPENDIX

A ADDITIONAL RESULTS

A.l EARLY PHASE Tr(F) CORRELATES WITH FINAL GENERALIZATION

In this section, we present the additional experimental results for Section 3. The experiments with
varying batch size for CIFAR-100 and CIFAR-10 are shown in Figure 7. The conclusions are the
same as discussed in the main text in Section 3.
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Figure 7: Association between early phase values of Tr(F') and generalization, holds on the CIFAR-
10 and the CIFAR-100 datasets. Each point corresponds to multiple runs with randomly chosen
seeds and a specific value of batch size. TrF; is recorded during early phase (2-7 epochs, see main
text for details), while the test accuracy is the maximum value along the entire optimization path
(averaged across runs with the same batch size). The horizontal and vertical error bars show the
standard deviation of values across runs. The plots show that early phase Tr(F') is predictive of final
generalization.

A.2 FISHER PENALTY

We first show additional metrics for experiments summarized in Table 1. In Table 6 we show the final
training accuracy. Table 4 confirms that generally all gradient norm regularizers reduce the maximum
value of Tr(F) (we measure Tr(F) starting from after one epoch of training because Tr(F') explodes
in networks with batch normalization layers at initialization). Finally, Table 5 confirms that the
regularizers incurred a relatively small additional computational cost.

Figure 8 is a counterpart of Figure 3 for the other two models on the CIFAR-10 and the CIFAR-100
datasets.
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Figure 8: Same as Figure 3, but for DenseNet on CIFAR-100, and SimpleCNN on CIFAR-10. Curves
were smoothed for visual clarity.
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Table 4: The maximum value of Tr(F') along the optimization trajectory for experiments on CIFAR-10
or CIFAR-100 included in Table 1.

Setting n* Baseline ‘ GP, GP ‘ FP GP,
DenseNet/C100 (w/o aug.) 24.68 98.17 83.64 64.33 | 66.24 73.66
VGG11/C100 (w/o aug.) 50.88 148.19 102.95 58.53 | 6493 62.96
WResNet/C100 (w/o aug.) 26.21 91.39 41.43 4094 | 56.53 39.31

SCNN/C10 (w/o aug.) 2421 52.05 | 4796  25.03 | 19.63 25.35

Table 5: Time per epoch (in seconds) for experiments in Table 1.

*

Setting n Baseline | GP, GP | FP GP;
WResNet/TinylmageNet (aug.) 214.45 142.69 ‘ 233.14  143.78 ‘ 208.62 371.74
DenseNet/C100 (w/o aug.) 78.88 57.40 77.89 78.66 97.25 75.96

VGG11/C100 (w/o aug.) 30.50 35.27 31.54 3252 | 4341 42.40
WResNet/C100 (w/o aug.) 49.64  47.99 71.33 61.36 76.93 53.25
SCNN/C10 (w/o aug.) 18.64 19.51 26.09 19.91 21.21 20.55

Table 6: The final epoch training accuracy for experiments shown in Table 1. Experiments with small
learning rate reach no lower accuracy than experiments corresponding to a large learning rate n*.

*

Setting n Baseline | GP; GP | FP GP;
WResNet/TinyImageNet (aug.) 99.84% 99.96% ‘ 99.97%  93.84% ‘ 81.05% 86.46%
DenseNet/C100 (w/o aug) 99.98% 99.97% 99.96%  99.91% 9991%  99.39%
|

VGG11/C100 (w/o aug) 99.98% 99.98% 99.85%  99.62% 97.73%  86.32%
WResNet/C100 (w/o aug) 99.98% 99.98% 99.97%  99.96% 99.99%  99.94%
SCNN/C10 (w/o aug) 100.00%  100.00% | 97.79%  100.00% | 93.80% 94.64%

A.3 FISHER PENALTY REDUCES MEMORIZATION

In this section, we describe additional experimental results for Section 4.1. Figure 9 is the same as
Figure 5, but for ResNet-50.
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Figure 9: Same as Figure 5, but for ResNet-50.

A.4  EARLY Tr(F) INFLUENCES FINAL CURVATURE

In this section, we present additional experimental results for Section 5. The experiment on CIFAR-10
is shown in Figure 10. The conclusions are the same as discussed in the main text in Section 5.
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Figure 10: Small Tr(F) during the early phase of training is more likely to reach wider minima as
measured by Tr(H). Left: 2 models are trained with different levels of regularization for 20 epochs
on CIFAR-10. Tr(F') at the end of 20 epochs (denoted as Tr(F';)) is shown. Middle: Each model is
then used as initialization and trained until convergence using the low regularization configuration
with different random seeds. A histogram of Tr(H) at the point corresponding to the best test
accuracy along the trajectory (denoted by Tr(He)) is shown. Right: a histogram of the best test
accuracy corresponding to middle figure is shown.
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Figure 11: The value of Tr(H) over the course of training. Each point corresponds to runs with
different seeds and a specific value of learning rate n and batch size S. ¢ and TA respectively
denote the minimum training loss and the maximum test accuracy along the entire trajectory for the
corresponding runs (averaged across seeds). The plots show that flatter optimization trajectories
become biased towards flatter minima early during training, at a coarse scale of hyper-parameter
values (red vs blue).

Next, to understand why smaller Tr(F') during early phase is more likely to end up in a wider final
minimum, we track Tr(H) during the entire coarse of training and show that it stabilizes early during
training. In this experiment, we create two sets of hyper-parameters: coarse-grained and fine-grained.
For CIFAR-10, we use batch size S € AU B, where A = {480, 500, 520} and B = {80,100, 120}.
For all batch size configurations, a learning rate of 0.02 is used. Overloading the symbols A and
B for CIFAR-100, we use learning rate n € A U B, where A = {0.0008,0.001,0.0012} and
B = {0.008,0.01,0.012}. For all learning rate configurations, a batch size of 100 is used. In both
cases, the elements within each set (A and B) vary on a fine-grained scale, while the elements across
the two sets vary on a coarse-grained scale. The remaining details and additional experiments can
be found in Appendix G.4. The experiments are shown in Figure 11. Notice that after initialization
(index O on x-axis), the first value is computed at epoch 10 (at which point previous experiments
show that entanglement starts to hold with late phase).

We make three observations in this experiment. First, the relative ordering of Tr(H) values for runs
between sets A vs B stay the same after the first 10 epochs. Second, the degree of entanglement is
higher between any two epochs when looking at runs across sets A and B, while it is weaker when
looking at runs within any one the sets. Finally, test accuracies for set B runs are always higher than
those of set A runs, but this trend is not strong for runs within any one set. Note that the minimum
loss values are roughly at a similar scale for each dataset and they are all at or below 102,
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B COMPUTATION OF Tr(H)

We computed Tr(H) in our experiments using the Hutchinson’s estimator ( ),
Tr(H)=Tr(H-I)
= Tr(H - E[zz"))
=E[Tr(H - zz7)]
= FE[zTH - 2]

1 M
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Moo
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where I is the identity matrix, z is a multi-variate standard Gaussian random variable, and z;’s are i.i.d.
instances of z. The larger the value of M, the more accurate the agazprommatlon is. We used M = 30.
To make the above computation efficient, note that the gradient 5 only needs to be computed once
and it can be re-used in the summation over the M samples.

C APPROXIMATIONS IN FISHER PENALTY

In this section, we describe the approximations made in Fisher Penalty in detail. Recall, that Tr(F)
can be expressed as

0 _
TH(E) = Bovt ot || 5B ®

In the preliminary experiments, we found empirically that we can use the norm of the expected
gradient rather than the expected norm of the gradient, which is a more direct expression of Tr(F):

2 1N M P 2
] N Ar A% 14 noy Anm
B}wZMZIM@y’Q
' ) |
where N and M are the minibatch size and the number of samples from py(y|x,,), respectively.

This greatly improves the computational efficiency. With N = B and M = 1, we end up with the
following learning objective function:
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We found empirically that H % ZiB:l g(xi, 9i) H , which we denote by Tr(F?), and Tr(F) correlate

well during training. To demonstrate this, we train SimpleCNN on the CIFAR-10 dataset with 5
different learning rates (from 1072 to 10~!). The outcome is shown in Figure 12. We see that for
most of the training, with the exception of the final phase, Tr(F#) and Tr(F) correlate extremely
well. Equally importantly, we find that using a large learning affects both Tr(F?) and Tr(F), which
further suggests the two are closely connected.
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Figure 12: Correlation between Tr(F) and Tr(F?) for SimpleCNN trained on the CIFAR-10 dataset.
Blue to red color denotes learning rates from 1072 to 10~1. The value of Tr(F') and Tr(F?) correlate

strongly for the most of the training trajectory. Using large learning rate reduces both Tr(F) and
Tr(FB).
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Figure 13: A comparison between the effect of recomputing Fisher Penalty gradient every 10 iterations
(left) or every iteration (right), with respect to validation accuracy and Tr(F'). We denote by f the
frequency with which we update the gradient. Both experiments result in approximately 80% test
accuracy with the best configuration.
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Figure 14: Using Fisher Penalty without the approximation results in a similar generalization
performance. We penalize the norm of the gradient rather than norm of the mini-batch gradient (as
in Equation 2). We observe that this variant of Fisher Penalty improves generalization to a similar
degree as the version of Fisher Penalty used in the paper (c.f. Figure 13.), achieving 79.7% test
accuracy.

We also update the gradient of Tr(F?) only every 10 optimization steps. We found empirically it
does not affect generalization performance nor the ability to regularize Tr(F') in our setting. However,
we acknowledge that it is plausible that this choice would have to be reconsidered in training with
very large learning rates or with larger models.
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Figure 13 compares learning curves of training with FP recomputed every optimization step, or
every 10 optimization steps. For each, we tune the hyperparameter «, checking 10 values equally
spaced between 10~2 and 10° on a logarithmic scale. We observe that for the optimal value of a,
both validation accuracy and Tr(F) are similar between the two runs. Both experiments achieve
approximately 80% test accuracy.

Finally, to ensure that using the approximation in Equation 2 does not negatively affect how Fisher
Penalty improves generalization or reduces the value of Tr(F'), we experiment with a variant of
Fisher Penalty without the approximation. Please recall that we always measure Tr(F) (i.e. we do
not use approximations in computing Tr(F') that is reported in the plots), regardless of what variant
of penalty is used in regularizing the training.

Specifically, we augment the loss function with the norm of the gradient computed on the first
example in the mini-batch as follows

B
1 .
U(z1.5,y1:5:0) = B Zf(wiayi; 0) + allg(@y, 1) ®)

i=1

We apply this penalty in each optimization step. We tune the hyperparameter «, checking 10 values
equally spaced between 10~* and 10~2 on a logarithmic scale.

Figure 14 summarizes the results. We observe that the best value of « yields 79.7% test accuracy,
compared to 80.02% test accuracy yielded by the Fisher Penalty. The effect on Tr(F) is also very
similar. We observe that the best run corresponds to maximum value of Tr(F') of 24.16, compared to
that of 21.38 achieved by Fisher Penalty. These results suggest that the approximation used in Fisher
Penalty only improves the generalization and flattening effects of Fisher Penalty.

D A CLOSER LOOK AT THE SURPRISING EFFECT OF LEARNING RATE ON THE
LOSS GEOMETRY IN THE EARLY PHASE OF TRAINING

It is intuitive to hypothesize that the catastrophic Fisher explosion (the initial growth of the value
of Tr(F')) occurs during training with a large learning rate, but is overlooked due to not sufficiently
fine-grained computation of Tr(F'). In this section we show evidence against this hypothesis based on
the literature mentioned in the main text. We also run additional experiments in which we compute
the value of Tr(F') at each iteration.

The surprising effect of the learning rate on the geometry of the loss surface (e.g. the value of Tr(F))
was demonstrated in prior works (Jastrzebski et al., 2019; Golatkar et al., 2019; Lewkowycz et al.,
2020; Leclerc & Madry, 2020). In particular, Jastrzebski et al. (2020); Lewkowycz et al. (2020)
show that training with large learning rate rapidly escapes regions of high curvature, where curvature
is understood as the spectral norm of the Hessian evaluated at the current point of the loss surface.
Perhaps the most direct experimental data against this hypothesis can be found in Anonymous (2021)
in Figure 1, where training with Gradient Descent finds regions of the loss surface with large curvature
for small learning rate rapidly in the early phase of training.

We also run the following experiment to provide further evidence against the hypothesis. We train
SimpleCNN on the CIFAR-10 dataset using two different learning rates, while computing the value
of Tr(F') for every mini-batch. We use 128 random samples in each iteration to estimate Tr(F').

We find that training with a large learning rate never (even for a single optimization step) enters a
region with the value of Tr(F') as large as reached during training with a small learning rate. Figure 15
shows the experimental data.

We also found similar to hold when varying the batch size, see Section E, which further shows that
the observed effects cannot be explained by the difference in learning speed incurred by using a small
learning rate.

To summarize, both the published evidence of Jastrzebski et al. (2020); Lewkowycz et al. (2020);
Anonymous (2021), as well as our additional experiments are inconsistent with the hypothesis that
the results in this paper can be explained by differences in training speed between experiments using
large and small learning rates.
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Figure 15: Training with a large learning rate never (even for a single optimization step) enters a
region with as large value of Tr(F') as the maximum value of Tr(F') reached during training with a
small learning rate. We run the experiment using SimpleCNN on the CIFAR-10 dataset with two
different learning rates. The left plot shows the value of Tr(F') computed at each iteration, and the

right plot shows training accuracy computed on the current mini-batch (curve has been smoothed for
clarity).

E CATASTROPHIC FISHER EXPLOSION HOLDS IN TRAINING WITH LARGE
BATCH-SIZE

In this section, we show evidence that the conclusions transfer to large batch size training. Namely,
we show that (1) catastrophic Fisher explosion also occurs in large batch size training, and (2) Fisher
Penalty can improve generalization and close the generalization gap due to using a large batch
size (Keskar et al., 2017).
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Figure 16: Catastrophic Fisher explosion in large batch size training. Experiment run on the CIFAR-
10 and dataset the SimpleCNN model. The left plot shows the value of Tr(F) computed at each

iteration, and the right plot shows training accuracy computed on the current mini-batch (curve has
been smoothed for clarity).

We first train SimpleCNN on the CIFAR-10 dataset using three different batch sizes, while computing
the value of Tr(F') for every mini-batch. We use 128 random samples in each iteration to estimate
Tr(F). Figure 16 summarizes the experiment. We observe that training with a large batch size enters
a region of the loss surface with a substantially larger value of Tr(F) than the small batch size.

Next, we run a variant of one of the experiments in Table 1. Instead of using a suboptimal (smaller)
learning rate, we use a suboptimal (larger) batch size. Specifically, we train SimpleCNN on the
CIFAR-10 dataset (without augmentation) with a 10x larger batch size while keeping learning rate

the same. Using a larger batch size results in 3.24% lower test accuracy (76.94% compared to 73.7%
test accuracy, c.f. with Table 1).
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We next experiment with Fisher Penalty. We apply the penalty in each optimization step and use
the first 128 examples when computing the penalty. We also use a 2x lower learning rate, which
stabilizes training but does not improve generalization on its own (training with this learning rate
reaches 73.59% test accuracy). Figure 17 shows Tr(F') and validation accuracy during training for
different values of the penalty. We observe that Fisher Penalty improves test accuracy from 73.59%
to 78.7%. Applying Fisher Penalty also effectively reduces the peak value of Tr(F)/

Taken together, the results suggest that Catastrophic Fisher explosion holds in large batch size training;
using a small batch size improves generalization by a similar mechanism as using a large batch size,
which can be introduced explicitly in the form of Fisher Penalty.
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Figure 17: Fisher Penalty improves in large batch size training. Experiment run on the CIFAR-10
dataset (without augmentation) and the SimpleCNN model. Warmer color corresponds to larger
coefficient used in Fisher Penalty.

F Tr(H) AND Tr(F) CORRELATE STRONGLY

We demonstrate a strong correlation between Tr(H) and Tr(F) for DenseNet, ResNet-56 and
SimpleCNN in Figure 18. We calculate Tr(F) using a mini-batch. We see that Tr(F') has a
smaller magnitude (because we use the mini-batch gradient which has lower variance), but correlates
extremely well with Tr(H).
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Figure 18: Correlation between Tr(F') and Tr(H).

G ADDITIONAL EXPERIMENTAL DETAILS

G.1 EARLY PHASE Tr(F) CORRELATES WITH FINAL GENERALIZATION

Here, we describe additional details for experiments in Section 3.
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In the experiments with batch size, for CIFAR-10, we use batch sizes 100, 500 and 700, and € = 1.2.
For CIFAR-100, we use batch sizes 100, 300 and 700, and ¢ = 3.5. These thresholds are crossed
between 2 and 7 epochs across different hyperparameter settings. The remaining details for CIFAR-
100 and CIFAR-10 are the same as described in main text. The optimization details for these datasets
are as follows.

ImageNet: No data augmentation was used in order to allow training loss to converge to small values.
We use a batch size of 256. Training is done using SGD with momentum set to 0.9, weight decay set
to le — 4, and with base learning rate as per the aforementioned details. Learning rate is dropped by
a factor of 0.1 after 29 epochs and training is ended at around 50 epochs at which most runs converge
to small loss values. No batch normalization is used and weight are initialized using Fixup

( ). For each hyperparameter setting, we run two experiments with different random seeds
due to the computational overhead. We compute Tr(F') using 2500 samples (similarly to ?).

CIFAR-10: We used random flipping as data augmentation. In the experiments with variation in
learning rates, we use a batch size of 256. In the experiments with variation in batch size, we use a
learning rate of 0.02. Training is done using SGD with momentum set to 0.9, weight decay set to
le — 5, and with base learning rate as per the aforementioned details. Learning rate is dropped by
a factor of 0.5 at epochs 60, 120, and 170, and training is ended at 200 epochs at which most runs
converge to small loss values. No batch normalization is used and weight are initialized using

( ). For each hyperparameter setting, we run 32 experiments with different random seeds.
We compute Tr(F) using 5000 samples.

CIFAR-100: No data augmentation was used for CIFAR-100 to allow training loss to converge to
small values. We used random flipping as data augmentation for CIFAR-10. In the experiments with
variation in learning rates, we use a batch size of 100. In the experiments with variation in batch size,
we use a learning rates of 0.02. Training is done using SGD with momentum set to 0.9, weight decay
set to 1e — b, and with base learning rate as per the aforementioned details. Learning rate is dropped
by a factor of 0.5 at epochs 60, 120, and 170, and training is ended at 200 epochs at which most runs
converge to small loss values. No batch normalization is used and weight are initialized using

( ). For each hyperparameter setting, we run 32 experiments with different random seeds.
We compute Tr(F') using 5000 samples.

G.2 FISHER PENALTY

Here, we describe the remaining details for the experiments in Section 4. We first describe how we
tune hyperparameters in these experiments. In the remainder of this section, we describe each setting
used in detail .

Tuning hyperparameters In all experiments, we refer to the optimal learning rate n* as the
learning rate optimized using grid search. In most experiments we check 5 different learning rate
values uniformly spaced on a logarithmic scale, usually between 10~2 and 10°. In some experiments
we adapt the range to ensure that the range includes the optimal learning rate. We tune the learning
rate only once for each configuration (i.e. we do not repeat it for different random seeds).

In the first setting, for most experiments involving gradient norm regularizers, we use 10x smaller
learning rate than n*. For TinylmageNet, we use 30x smaller learning rate than n*. To pick the
regularization coefficient o, we evaluate 10 different values uniformly spaced on a logarithmic scale
between 107! x v to 10 x v with v € R . We choose the best performing « according to best
validation accuracy. We pick the value of v manually with the aim that the optimal « is included in
this range. We generally found that v = 0.01 works well for GP, GP;, and FP. For GPx we found in
some experiments that it is necessary to pick larger values of v.

Measuring Tr(F) We measure Tr(F') using the number of examples equal to the batch size used in
training. For experiments with Batch Normalization layers, we use Batch Normalization in evaluation
mode due to the practical reason that computing Tr(F') uses batch size of 1, and hence Tr(F) is not
defined for a network with Batch Normalization layers in training mode.

DenseNet on the CIFAR-100 dataset We use the DenseNet (L=40, k=12) configuration from
( ). We largely follow the experimental setting in ( ). We use
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the standard data augmentation (where noted) and data normalization for CIFAR-100. We hold out
random 5000 examples as the validation set. We train the model using SGD with momentum of 0.9,
a batch size of 128, and weight decay of 0.0001. Following ( ), we train for 300
epochs and decay the learning rate by a factor of 0.1 after epochs 150 and 225. To reduce variance, in
testing we update Batch Normalization statistics using 100 batches from the training set.

Wide ResNet on the CIFAR-100 dataset We train Wide ResNet (depth 44 and width 3, without
Batch Normalization layers). We largely follow experimental setting in ( ).We use
the standard data augmentation and data normalization for CIFAR-100. We hold out random 5000
examples as the validation set. We train the model using SGD with momentum of 0.9, a batch size
of 128, weight decay of 0.0010. Following ( ), we train for 300 epochs and decay the
learning rate by a factor of 0.1 after epochs 150 and 225. We remove Batch Normalization layers. To
ensure stable training we use the Skiplnit initialization ( , ).

VGG-11 on the CIFAR-100 dataset We adapt the VGG-11 model ( )
to CIFAR-100. We do not use dropout nor Batch Normalization layers. We hold out random 5000
examples as the validation set. We use the standard data augmentation (where noted) and data
normalization for CIFAR-100. We train the model using SGD with momentum of 0.9, a batch size of
128, and weight decay of 0.0001. We train the model for 300 epochs, and decay the learning rate by a
factor of 0.1 after every 40 epochs starting from epoch 80.

SimpleCNN on the CIFAR-10 dataset We also run experiments on the CNN example architecture
from the Keras example repository ( , )!, which we change slightly. Specifically,
we remove dropout and reduce the size of the final fully-connected layer to 128. We train it for 300
epochs and decay the learning rate by a factor of 0.1 after the epochs 150 and 225. We train the
model using SGD with momentum of 0.9, a batch size of 128.

Wide ResNet on the TinyImageNet dataset We train Wide ResNet (depth 44 and width 3, with
Batch Normalization layers) on TinyImageNet ( ). TinyImageNet consists of subset
of 100,000 examples from ImageNet that we downsized to 32 x 32 pixels. We train the model using
SGD with momentum of 0.9, a batch size of 128, and weight decay of 0.0001. We train for 300
epochs and decay the learning rate by a factor of 0.1 after epochs 150 and 225. We train the model
using SGD with momentum of 0.9, a batch size of 128. We do not use validation in TinyImageNet
due to its larger size. To reduce variance, in testing we update Batch Normalization statistics using
100 batches from the training set.

G.3 FISHER PENALTY REDUCES MEMORIZATION

Here, we describe additional experimental details for Section 4.1. We use two configurations described
in Section G.2: VGG-11 trained on CIFAR-100 dataset, and Wide ResNe trained on the CIFAR-100
dataset. We tune the regularization coefficient « in the range {0.01,0.1,0.31, 10}, with the exception
of GP, for which we use the range {10, 30, 100, 300, 1000}. We tuned mixup coefficient in the range
{0.4,0.8,1.6,3.2,6.4}. We removed weight decay in these experiments.

G.4 EARLY Tr(F) INFLUENCES FINAL CURVATURE

CIFAR-10: We used random flipping as data augmentation for CIFAR-10. We use a learning rate
of 0.02 for all experiments. Training is done using SGD with momentum 0.9, weight decay le — 5,
and with batch size as shown in figures. Learning rate is drop by a factor of 0.5 at 80, 150, and 200
epochs, and training is ended at 250 epochs. No batch normalization is used and weight are initialized
using ( ). For each batch size, we run 32 experiments with different random seeds.
We compute Tr(F) using 5000 samples.

CIFAR-100: No data augmentation is used. We use a batch size of 100 for all experiments. Training
is done using SGD with momentum 0.9, weight decay 1e — 5, and with base learning rate as shown
in figures. Learning rate is drop by a factor of 0.5 at 80, 150, and 200 epochs, and training is ended at
250 epochs. No batch normalization is used and weight are initialized using ( ). For

! Accessible at https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py.
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each learning rate, we run 32 experiments with different random seeds. We compute Tr(F) using
5000 samples.
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